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Information Theory  
 

The 1st Module 
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Claude E. Shannon (1916-2001) 

Math/EE Bachelor from UMich (1936) 

MSEE and Math Ph.D. from MIT (1940) 

 A landmark paper ―Mathematical Theory of 

Communications‖ (1948) 

– Founder of Information Theory 

– Fundamental limits on communications 

– Information quantified as a logarithmic measure 

 For more info on him, make a visit to  

 http://www.bell-labs.com/news/2001/february/26/1.html  
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Novel Perspective on Communications  

 Communications: Transfer of information from a source to a receiver  

 Messages (information) can have semantic meaning; but they are 
irrelevant for the design of a comm. system. 

 What’s important then? 
– A message is selected from a set of all possible messages and transmitted, 

and regenerated at the receiver. 

– The size of the message set has something to do with the amount of 
information. 

 The capacity of the channel is the maximum size of message set that 
can be transferred over the channel and can be regenerated almost 
error-free at the receiver 

Messages 

Channel 
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The Size M of Message Set 

 Is the Amount of information 

 M or any monotonic function of M can be used as a measure of 

information. 

 His choice was the logarithmic function.  Why? 

– If M1 > M2  , log(M1) > log(M2) 

– When base 2, log2(M) is the number of memory cells.   

– We call the resulting unit ―bits.‖   

– A four-bit register can represent a message set of size 24, and a three-bit 

register 23.  

– The amount of information is log2(2
4) = 4 bits and 3 bits.  

– This choice was made out of convenience; but considered appropriate (See 

the axiomatic definition of entropy in Cover & Thomas 1st Ed., Prob2.4)  
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Fundamental Limits on Communications Systems 

 The Sampling and Modulation Theorem (Nyquist and Hartley 1928)  

 Source and Channel Coding Theorem (Shannon) 

 

 Can we define a quantity which measures the amount of information produced 
by a digital or an analog source?  

  Rate Distortion and Source Coding Theorem:  
– ―n-bit quantization‖: Distortion will increase if we reduce n. 

– Source code takes away redundancy in the source and reduces the number of bits 
required. 

 

 How about the size of message set that can be transferred over a noisy channel 
almost error-free? 

  Channel Capacity and Channel Coding Theorem:  
– Channel code adds redundancy in order to gain protection against random error 

occurring in the channel 
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Uncertainty and Entropy 

  Suppose a set of n possible outcomes, each having the 
probability of occurrence as p1, p2, …, pn. 

 After a random experiment, we have an outcome.   

 Then, we can say about the occurrence of an event. 

  Entropy is a measure of uncertainty (randomness) on 
the occurrence of an event. 

  We use logarithmic measures (non-negative)  
– log(1/pi) ¸  0,  

  If pi < pj, then log(1/pi) > log(1/pj). 

– Less probable event means larger uncertainty. 

– More probable event means smaller uncertainty. 

– The sure event has zero uncertainty. 
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Definition of Entropy 

 Entropy is the average measure of uncertainty of a 

distribution, p1, p2, …, pn . 

  H(p1, p2, …, pn) := j=1
n pj log(1/pj) 
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Some Properties of Entropy 

 Uncertainty = Amount of Information = The number of 

bits needed in representation 

More uncertain event carries more information. 

 The sure event carries zero amount of information 

– A binary source generates ―1‖ with probability 1. Then, the source 

produces zero amount of information, i.e., log(1/1) = 0.  

– A binary source generates ―1‖ and ―0‖ with equal probability. Each 

event carries the same amount of information. Then, this source 

generates 1 bit of information.  
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Entropy of a RV 

 Let X be a random variable with alphabet A = {x1, x2, …, 
xn} and its probability mass function p(x) = Pr{X=xi 2 A} 

We define entropy for r.v. X 

  H(X) := x2X p(x) log(1/p(x)) 
 

– Note that in fact this measure has nothing to do with the random 
variable X, but has everything to do with the distribution.  

– The range of X does not play any role in the calculation of H(X). 

  When the base of the logarithm is 2, the unit is ―bits.‖ 

  When the base is e, the unit is ―nats.‖  
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H(X) is the Average Uncertainty (Information) of X 

  Let’s take some examples 

  Ex1) When X is binary 

  Ex2) When X is quaternary  
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Entropy gives the largest lower bound on the number  

of bits required to represent the set of events  

 Ex3) Average Information Content in English 

 Assume all 26 letters occur equally likely from a source 

– H = log2(26) = 4.7 bits/character 
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Entropy gives the largest lower bound on the number of bits  

required to represent the set of events 

  Assume some distribution other than uniform 

– a, e, o, t   with prob = 0.1 

– h, i, n, r, s   with prob= 0.07 

– c, d, f, l, m, p, u, y   with prob. = 0.02 

– b, g, j, k, q, v, w, x, z  with prob. = 0.01 

– H = 4.17 bits/character 

 Thus, if there was a source generating letters according to 

this distribution (ignoring spaces, commas, etc), then the 

source’s information rate is 4.17 bits per character. 
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Entropy and Information 

 Entropy is the minimum attainable average length of any binary description 

system. 

– I’ll explain this with the next example. 

 

 Ex4) Suppose a race of 8 horses. The race was held in LA yesterday.  We are 

here in Gwangju. There is a reporter in LA. The reporter can only make an 

binary answer—Yes or No—to our question.  Now, knowing that the winning 

prob. of each horse is (1/2, 1/4, 1/8, 1/16, 1/64, 1/64, 1/64, 1/64) respectively; 

which horse would you ask first to be the winning horse?  The objective is to 

determine the winning horse as quickly as possible.  

– Note that the entropy is  H = 2 bits. 
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Entropy and Information 

 The map from the horse index to the binary sequence is a code.  

 This coding strategy achieves the entropy bound. 

 The average length = 1(1/2) + 2(1/4) + 3(1/8) + 4(1/16) + 6(1/64)*4 = 2  
(which is the same as H = 2) 

 What happens if the horse index, 0, 1, …,7, was used for the coding? How 
many bits would be needed then? 
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Joint Entropy and Conditional Entropy 

 Joint Entropy: The joint entropy H(X, Y) of a pair of 
discrete random variable (X, Y) with a joint distribution 
p(x, y) is defined as 

 H(X, Y) := - x y p(x, y) log p(x, y) 

         = - E{log p(X, Y)} 

 

 Conditional Entropy: 

 H(Y | X) := - x y p(x, y) log p(y | x) 

          = - E{log p(Y|X)} 

          = - x p(x) H(Y | X = x) 

          = - x p(x) y p(y|x) log p(y|x) 
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Chain Rule: H(X, Y) = H(X) + H(Y|X) 

 H(X, Y) := - x y p(x, y) log p(x, y) 

  = - x y p(x, y) log[p(x) p(y|x)] 

  = - x y p(x, y) [log p(x) + log p(y|x)] 

  = - x p(x) log p(x) - x y p(x, y) log p(y|x)  

 = H(X) + H(Y|X) 

   or similarly 

  = H(Y) + H(X|Y) 
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Example 

 H(X) = 3/8 * log2(8/3) + 5/8*   
 log2(8/5) = 0.9544 

 H(Y) = 6/8 * log2(8/6) +    
 2/8*log2(8/2) = 0.8113 

 H(Y|X) = x p(x) H(Y|X=x) 

  = 3/8*H(Y|X=0)+5/8*H(Y|X=1) 

  = 3/8*H(2/3, 1/3)+5/8*H(4/5, 1/5) 

  = 3/8*0.9183+5/8*0.7219 

  = 0.7955 

 H(X, Y) = H(X) + H(Y|X) = 1.75 

 H(X, Y) = - E{log p(X, Y)}  

  = 2/8*log2(4) + (4/8)*log2(2) +  
 2*1/8*log2(8)  

  = 1/4*2 + 1/2 + 2*3/8 = 1 + 3/4 = 1.75 

Y 

X 

0         1 

0 

 

1 

2/8    4/8 

 

1/8    1/8 

The units are [bit]. 
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Max. entropy when uniform 

 H(X) ·  log|X|, where |X| is the size of alphabet, with 

equality iff X is uniform over X. 

– Non-uniform gives maximum entropy under a certain input criteria 

– cf) Gaussian distribution gives max. entropy under average energy 

constraint.  

– I owe you the proof of this statement, especially the only if part. 
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Jensen’s Inequality 

 For any f(x) convex U, it is easy to see 

  1/2 f(x1) + 1/2 f(x2) ¸  f[(x1+x2)/2] 

 This holds true for any distribution p1+ p2=1 such that 

  p1 f(x1) + p2 f(x2) ¸  f(p1 x1 + p2 x2) 

 For r.v. X and function f convex U,  

    E{f(X)} ¸  f(E{X}) 

– For strictly convex U f(x), equality iff X is a constant 

 What if a function is concave Å ? 

f(x) 

x1 x2 (x1+x2)/2 

1/2 f(x1) + 1/2 f(x2) 

f[(x1+x2)/2] 
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Relative Entropy is Non-Negative! 

 D(p  || q) = Kullback Leibler Distance between two distributions p(z) 
and q(z)) or Relative Entropy 

       := z p(z) log(p(z)/q(z) 

 Suppose p(z) and q(z) are strict positive distributions (no zero 
probability masses).  Let Sp and Sq denote their alphabets respectively.     

 

 - D(p  || q) = z 2 Sp
 p(z) log[q(z)/p(z)]  

       ·  log{z 2 Sp
 p(z) [q(z)/p(z)]}        

   (log is strict concave  ;thus equality only if p(z)/q(z) constant) 

        = log{z2Sp
 q(z)} 

       ·  log{z2Sq
 q(z)} = log(1) = 0 

 

 Thus, D(p || q) ¸  0 with equality iff p(z) = q(z).  

– Is the equality iff part easy to prove? 
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Example on Relative Entropy 

 Let X = {0, 1} and two distr.’s p(x) and q(x) 

 p(x=0) = 1- r, p(x=1) = r 

 q(x=0) = 1- s, q(x=1) = s 

 D(p || q) = (1-r) log[(1-r)/(1-s)] + r log[r/s] 

 D(q || p) = (1-s) log[(1-s)/(1-r)] + s log[s/r] 

 Thus, D(p || q)  D(q || p) in general 

– Relative Entropy is not symmetric in general 

 Ex) when r = s, then D(p||q)=D(q||p) = 0 

 Ex) when r = 1/2, s = 1/4, D(p||q) = 0.2075, D(q||p) = 

0.1887 
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Relative Entropy is Non-Negative!  

(Other Approach) 

 Suppose p(z) and q(z) are strict positive distributions (no 

zero probability masses).  Let Sp and Sq denote their 

alphabets respectively.     

 If the sum z2Sp
 p(z) log(p(z)/q(z))  = 0, then p(z) = q(z) 

for all z2Sp. 

 Proof: 

 z p(z) log(p(z)/q(z)) ¸  z p(z) (1 - q(z)/p(z)))    (Why?)  

       = z2Sp
 p(z) – z2Sp

 q(z)  

       ¸  (1 – 1) = 0  (Why?) 
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Entropy is maximum, when uniform distributed 

 Proof: Let u(x) be uniform on X 

 H(p) = x p(x) log(1/p(x)) 

   = x p(x) {log(1/p(x)) + log(u(x)) – log(u(x))} 

   = – x p(x) log(u(x)) + x p(x) {log[u(x)/p(x)]  

   = log|X| - D(p || u) 
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Mutual Information is Non-Negative! 

 I(X; Y) := x y p(x, y) log[p(x, y)/p(x)p(y)] 

  = D( p(x, y) || p(x)p(y) ) 

   ----- Distance between the joint and the  

   product distribution. 

   ----- Thus, Mutual Information is non- 

   negative. 

  = E(x,y){log[p(X, Y)/p(X)p(Y)]} ¸  0 
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I(X, Y) = H(X) – H(X | Y) 

 I(X; Y) = x2 X y 2 Y p(x, y) log[p(x, y)/p(x)p(y)] 

  = x2 X y 2 Y p(x, y) log[ p(y) p(x |y)/p(x) p(y) ] 

  = x2 X y 2 Y p(x, y) {log[p(x |y)] – log[p(x)]} 

  = H(X) – H(X|Y) 

 Reduction in uncertainty of X due to the knowledge of Y 

 Also, I(X; Y) = H(Y) – H(Y|X) 

 How much can I tell about X knowing Y? 

 How much can I tell about Y knowing X? 

 I(X; Y) = I(Y; X) 
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Mutual Information? 

 The measure of amount of information about X we can 

have knowing Y (vise versa). 

– Cf) Measure of correlation between X and Y, see P2.11. 

 Ex) Suppose Y = X, then H(X|Y) = 0 (no uncertainty).  

Self-mutual information is entropy.  

– Thus, knowing Y means knowing X exactly (the full information 

H(X) = H(Y) is obtained) 

 Ex) Suppose Y and X independent, then H(X|Y) = H(X), 

then I(X;Y) = H(X) – H(X) = 0.  

– Knowing Y cannot tell anything about X. 

– Can you show that if I(X; Y) = 0, then X and Y independent? 
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Relationships 

 I(X; Y)  = H(X) – H(X|Y) = H(Y) – H(Y|X) 

 Thus, I(X; Y) = H(X) + H(Y) – H(X, Y) 

    --- use  H(X, Y) = H(X) + H(Y|X) 

I(X,Y) 

H(X) H(Y) 

H(X, Y) 

H(X|Y) H(Y|X) 
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Conditioning reduces entropy 

 H(X|Y) ·  H(X), with equality iff X and Y independent 

–  I(X; Y) = H(X) – H(X|Y) ¸  0 

 cf) I(X; Y) = 0 iff X and Y independent.   
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Chain Rules 

 Let X1, X2, …, Xn drawn from p(x1, x2, …, xn). Then, 

 H(X1, X2) = H(X1) + H(X2|X1) 

 H(X1, X2, X3) = H(X1) + H(X2, X3|X1) 

    = H(X1) + H(X2|X1) + H(X3 |X1,X2) 

 … 

 H(X1, X2, …, Xn) = i=1
n H(Xi |Xi-1, …, X1} 

 

 

 

 

Watch out for the notation 
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Results in previous page lead to 

 H(X1, X2, …, Xn)  ·   i=1
n H(Xi)  

   with equality iff Xi are independent 
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Conditional Mutual Information 

  I(X; Y | Z) = H(X | Z) – H(Y | X, Z)  

   = E{log[p(X, Y | Z)/p(X | Z)p(Y | Z)]} 

 

 Can we say this?  

– I(X; Y| Z) = 0 IFF X and Y indep. given Z. 
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Chain Rule for Information 

 I(X1, X2, X3; Y)  

  = E{log[p(X1, X2, X3, Y)/p(X1, X2, X3)p(Y)]} 

  = H(X1, X2, X3) – H(X1, X2, X3|Y) 

  = H(X1)+H(X2|X1) + H(X3|X1, X2)  

    – H(X1|Y) – H(X2|X1, Y) – H(X3|X1,X2,Y) 

  = I(X1; Y) + I(X2; Y|X1) + I(X3;Y| X1, X2) 

 

In general, we have 

  I(X1, …, Xn; Y) = i=1
n I(Xi ;Y |X1, …, Xi-1) 
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Concavity of log: Log Sum Inequality 

 For non-negative a1, a2, …, an and b1, b2, …, bn 

  i=1
n ai log(ai/bi) ¸  (i=1

n ai) log[ ai/ bi] 

 with equality iff ai/bi constant. 

 Note, sum of numbers ¸  a single number. 

 Proof: 

– f(t) = t log t, t > 0, is strictly convex (f’’(t) = 1/t > 0 for t > 0) 

– Use the Jensen’s Inequality: avg. of maps ¸  map of avg.  

– i=1
n i f(ti) ¸  f( i ti) for i ¸  0 and i i = 1, ti > 0 

– Substitute i = bi/i bi, and ti = ai/bi 

– Equality iff ai/bi constant 

 

 

0 

t log(t) 

t 
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Use the Log Sum Inequality to show D(p || q) ¸  0 

 D(p || q) =  p(x) log[p(x)/q(x)] 

         ¸   p(x) log[ p(x)/ q(x)]  

   = 1 log(1/1) = 0 
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D(p || q) is convex in the pair (p, q) 

Mixing distributions decreases the relative entropy 

 Consider two pairs (p1, q1) and (p2, q2) of distributions 

Which one is bigger? 

– Avg. of relative entropies, 0.5(D(p1||q1) + D(p2||q2)) – (1) 

– Relative entropy of avg. distribution: D(0.5(p1 + p2) || 0.5(q1+q2)) – 

(2) 

 (1)’: p1(x)log(p1(x)/q1(x)) + p2(x) log[p2(x)/q2(x)] 

 (2)’: (p1(x) + p2(x)) log[(p1(x)+p2(x))/(q1(x)+q2(x))]  

 (1)’  ̧  (2)’ – the Log Sum Inequality 

 Summing over all x, we have (1) ¸  (2)  
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Concavity of Entropy 

 Recall the proof that entropy is maximum when the 

distribution is uniform. 

 Let u(x) be uniform on X 

 H(p) = x p(x) log(1/p(x)) 

   = x p(x) {log(1/p(x)) + log(u(x)) – log(u(x))} 

   = – log(u(x)) + x p(x) {log[u(x)/p(x)]  

   = log|X| - D(p || u) 

 Not only is entropy maximum for uniform distribution but 

also a concave function of p(x). 
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Concavity of Entropy 

(other approach) 

 H(p) is a concave function of a distribution p(x) 

 This means if you mix distributions, the entropy increases. 

 Let X1 ~ p1(x) and X2 ~ p2(x) 

 Let Z = X where  = 1 with prob.  and 2 with 1- 

 Thus, the distr. of Z is  p1(x) + (1 - ) p2(x) 

We know H(Z) ¸  H(Z | )   

   --- conditioning reduces entropy 

 Thus, we have 

 H[ p1(x) + (1 - ) p2(x)] ¸   H[p1(x)] + (1-) H[p2(x)]. 

– This shows f(E) ¸  E(f).  Thus, entropy is a concave function of 

distribution.  
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Concavity of I(X; Y) over p(x) given p(y|x) 

 I(X; Y) = H(Y) – H(Y|X)  

 H(Y) is a concave function of p(y). 

– Note p(y) =  p(x) p(y|x) is a linear function of p(x).  

– Thus, H(Y) is a concave function of p(x).   

 H(Y|X) =  p(x) H(Y|X = x), is a linear function of p(x). 

 Thus, I(X; Y) is a concave function of p(x) given p(y|x). 
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Sequence of results so far 

 Relative entropy is non negative.  Proved! 

 Relative entropy is zero IFF the two distributions are 

identical.  Proved! 

 Entropy H(X) is maximum with X ~ uniform distribution. 

Mutual information is a relative entropy. 

Mutual information is thus non negative. 

MI I(X; Y) = 0 IFF X and Y independent. 

 Conditioning reduces entropy. 

 Entropy is a concave function of distribution. 

MI I(X; Y) is a concave function of p(x) given p(y|x). 
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HW#1 

 Cover & Thomas: Ch2: 1, 2, 5, 8, 12, 14, 18,  

 Showing the convexity of f(x) = ex is easy.  Use the Calculus:  Take the 

derivatives twice and show that it’s positive everywhere.  Now, prove 

the convexity of f(x) using the general convexity proving technique 

learned in this lecture. 

 

 (Challenge; Optional) Consider arbitrary random variables X1, X2, and  

 

 

 where the matrix elements [aij] are arbitrary non zero constants and N1 

and N2 are independent random variables.  Let’s denote             . 

   Prove or disprove I(X; Y1, Y2) ·  I(X; Y1) + I(X; Y2). 

      1 11 12 1 1

2 21 22 2 2

Y a a X N

Y a a X N 

 1

2
:

X

XX
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HW#1 

 I(X1, X2; Y) and I(X; Y).  Are they different? 

 Recall the HW#0 problem on the joint distribution of U and V.   

(a) For the first case where p1 = 0.1 and p2 = 0.2, find the following measures: H(U), H(V), 

H(U|µ1), H(V|µ2),  H(U|V), H(V|U), H(U, V), I(U; V), I(U; µ), I(V; µ). 

(b) Repeat for p1=0.01 and p2 = 0.02.   

(c) Note there is a notable change in I(U; V) between (a) and (b).  Describe this change and make 

qualitative statements explaining the change.  What would happen to I(U; V) when p1 and p2 

approach zero?  What would happen if they both approach 1/2.  
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