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Information Theory  
 

The 1st Module 
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Claude E. Shannon (1916-2001) 

Math/EE Bachelor from UMich (1936) 

MSEE and Math Ph.D. from MIT (1940) 

 A landmark paper ―Mathematical Theory of 

Communications‖ (1948) 

– Founder of Information Theory 

– Fundamental limits on communications 

– Information quantified as a logarithmic measure 

 For more info on him, make a visit to  

 http://www.bell-labs.com/news/2001/february/26/1.html  

 

 

 © 200x Heung-No Lee 

http://www.bell-labs.com/news/2001/february/26/1.html
http://www.bell-labs.com/news/2001/february/26/1.html
http://www.bell-labs.com/news/2001/february/26/1.html


68 

Novel Perspective on Communications  

 Communications: Transfer of information from a source to a receiver  

 Messages (information) can have semantic meaning; but they are 
irrelevant for the design of a comm. system. 

 What’s important then? 
– A message is selected from a set of all possible messages and transmitted, 

and regenerated at the receiver. 

– The size of the message set has something to do with the amount of 
information. 

 The capacity of the channel is the maximum size of message set that 
can be transferred over the channel and can be regenerated almost 
error-free at the receiver 

Messages 

Channel 

Regenerate 
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The Size M of Message Set 

 Is the Amount of information 

 M or any monotonic function of M can be used as a measure of 

information. 

 His choice was the logarithmic function.  Why? 

– If M1 > M2  , log(M1) > log(M2) 

– When base 2, log2(M) is the number of memory cells.   

– We call the resulting unit ―bits.‖   

– A four-bit register can represent a message set of size 24, and a three-bit 

register 23.  

– The amount of information is log2(2
4) = 4 bits and 3 bits.  

– This choice was made out of convenience; but considered appropriate (See 

the axiomatic definition of entropy in Cover & Thomas 1st Ed., Prob2.4)  
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Fundamental Limits on Communications Systems 

 The Sampling and Modulation Theorem (Nyquist and Hartley 1928)  

 Source and Channel Coding Theorem (Shannon) 

 

 Can we define a quantity which measures the amount of information produced 
by a digital or an analog source?  

  Rate Distortion and Source Coding Theorem:  
– ―n-bit quantization‖: Distortion will increase if we reduce n. 

– Source code takes away redundancy in the source and reduces the number of bits 
required. 

 

 How about the size of message set that can be transferred over a noisy channel 
almost error-free? 

  Channel Capacity and Channel Coding Theorem:  
– Channel code adds redundancy in order to gain protection against random error 

occurring in the channel 
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Uncertainty and Entropy 

  Suppose a set of n possible outcomes, each having the 
probability of occurrence as p1, p2, …, pn. 

 After a random experiment, we have an outcome.   

 Then, we can say about the occurrence of an event. 

  Entropy is a measure of uncertainty (randomness) on 
the occurrence of an event. 

  We use logarithmic measures (non-negative)  
– log(1/pi) ¸  0,  

  If pi < pj, then log(1/pi) > log(1/pj). 

– Less probable event means larger uncertainty. 

– More probable event means smaller uncertainty. 

– The sure event has zero uncertainty. 
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Definition of Entropy 

 Entropy is the average measure of uncertainty of a 

distribution, p1, p2, …, pn . 

  H(p1, p2, …, pn) := j=1
n pj log(1/pj) 
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Some Properties of Entropy 

 Uncertainty = Amount of Information = The number of 

bits needed in representation 

More uncertain event carries more information. 

 The sure event carries zero amount of information 

– A binary source generates ―1‖ with probability 1. Then, the source 

produces zero amount of information, i.e., log(1/1) = 0.  

– A binary source generates ―1‖ and ―0‖ with equal probability. Each 

event carries the same amount of information. Then, this source 

generates 1 bit of information.  
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Entropy of a RV 

 Let X be a random variable with alphabet A = {x1, x2, …, 
xn} and its probability mass function p(x) = Pr{X=xi 2 A} 

We define entropy for r.v. X 

  H(X) := x2X p(x) log(1/p(x)) 
 

– Note that in fact this measure has nothing to do with the random 
variable X, but has everything to do with the distribution.  

– The range of X does not play any role in the calculation of H(X). 

  When the base of the logarithm is 2, the unit is ―bits.‖ 

  When the base is e, the unit is ―nats.‖  
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H(X) is the Average Uncertainty (Information) of X 

  Let’s take some examples 

  Ex1) When X is binary 

  Ex2) When X is quaternary  
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Entropy gives the largest lower bound on the number  

of bits required to represent the set of events  

 Ex3) Average Information Content in English 

 Assume all 26 letters occur equally likely from a source 

– H = log2(26) = 4.7 bits/character 
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Entropy gives the largest lower bound on the number of bits  

required to represent the set of events 

  Assume some distribution other than uniform 

– a, e, o, t   with prob = 0.1 

– h, i, n, r, s   with prob= 0.07 

– c, d, f, l, m, p, u, y   with prob. = 0.02 

– b, g, j, k, q, v, w, x, z  with prob. = 0.01 

– H = 4.17 bits/character 

 Thus, if there was a source generating letters according to 

this distribution (ignoring spaces, commas, etc), then the 

source’s information rate is 4.17 bits per character. 

© 200x Heung-No Lee 



78 

Entropy and Information 

 Entropy is the minimum attainable average length of any binary description 

system. 

– I’ll explain this with the next example. 

 

 Ex4) Suppose a race of 8 horses. The race was held in LA yesterday.  We are 

here in Gwangju. There is a reporter in LA. The reporter can only make an 

binary answer—Yes or No—to our question.  Now, knowing that the winning 

prob. of each horse is (1/2, 1/4, 1/8, 1/16, 1/64, 1/64, 1/64, 1/64) respectively; 

which horse would you ask first to be the winning horse?  The objective is to 

determine the winning horse as quickly as possible.  

– Note that the entropy is  H = 2 bits. 
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Entropy and Information 

 The map from the horse index to the binary sequence is a code.  

 This coding strategy achieves the entropy bound. 

 The average length = 1(1/2) + 2(1/4) + 3(1/8) + 4(1/16) + 6(1/64)*4 = 2  
(which is the same as H = 2) 

 What happens if the horse index, 0, 1, …,7, was used for the coding? How 
many bits would be needed then? 
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Joint Entropy and Conditional Entropy 

 Joint Entropy: The joint entropy H(X, Y) of a pair of 
discrete random variable (X, Y) with a joint distribution 
p(x, y) is defined as 

 H(X, Y) := - x y p(x, y) log p(x, y) 

         = - E{log p(X, Y)} 

 

 Conditional Entropy: 

 H(Y | X) := - x y p(x, y) log p(y | x) 

          = - E{log p(Y|X)} 

          = - x p(x) H(Y | X = x) 

          = - x p(x) y p(y|x) log p(y|x) 
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Chain Rule: H(X, Y) = H(X) + H(Y|X) 

 H(X, Y) := - x y p(x, y) log p(x, y) 

  = - x y p(x, y) log[p(x) p(y|x)] 

  = - x y p(x, y) [log p(x) + log p(y|x)] 

  = - x p(x) log p(x) - x y p(x, y) log p(y|x)  

 = H(X) + H(Y|X) 

   or similarly 

  = H(Y) + H(X|Y) 
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Example 

 H(X) = 3/8 * log2(8/3) + 5/8*   
 log2(8/5) = 0.9544 

 H(Y) = 6/8 * log2(8/6) +    
 2/8*log2(8/2) = 0.8113 

 H(Y|X) = x p(x) H(Y|X=x) 

  = 3/8*H(Y|X=0)+5/8*H(Y|X=1) 

  = 3/8*H(2/3, 1/3)+5/8*H(4/5, 1/5) 

  = 3/8*0.9183+5/8*0.7219 

  = 0.7955 

 H(X, Y) = H(X) + H(Y|X) = 1.75 

 H(X, Y) = - E{log p(X, Y)}  

  = 2/8*log2(4) + (4/8)*log2(2) +  
 2*1/8*log2(8)  

  = 1/4*2 + 1/2 + 2*3/8 = 1 + 3/4 = 1.75 
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2/8    4/8 

 

1/8    1/8 

The units are [bit]. 
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Max. entropy when uniform 

 H(X) ·  log|X|, where |X| is the size of alphabet, with 

equality iff X is uniform over X. 

– Non-uniform gives maximum entropy under a certain input criteria 

– cf) Gaussian distribution gives max. entropy under average energy 

constraint.  

– I owe you the proof of this statement, especially the only if part. 
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Jensen’s Inequality 

 For any f(x) convex U, it is easy to see 

  1/2 f(x1) + 1/2 f(x2) ¸  f[(x1+x2)/2] 

 This holds true for any distribution p1+ p2=1 such that 

  p1 f(x1) + p2 f(x2) ¸  f(p1 x1 + p2 x2) 

 For r.v. X and function f convex U,  

    E{f(X)} ¸  f(E{X}) 

– For strictly convex U f(x), equality iff X is a constant 

 What if a function is concave Å ? 

f(x) 

x1 x2 (x1+x2)/2 

1/2 f(x1) + 1/2 f(x2) 

f[(x1+x2)/2] 
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Relative Entropy is Non-Negative! 

 D(p  || q) = Kullback Leibler Distance between two distributions p(z) 
and q(z)) or Relative Entropy 

       := z p(z) log(p(z)/q(z) 

 Suppose p(z) and q(z) are strict positive distributions (no zero 
probability masses).  Let Sp and Sq denote their alphabets respectively.     

 

 - D(p  || q) = z 2 Sp
 p(z) log[q(z)/p(z)]  

       ·  log{z 2 Sp
 p(z) [q(z)/p(z)]}        

   (log is strict concave  ;thus equality only if p(z)/q(z) constant) 

        = log{z2Sp
 q(z)} 

       ·  log{z2Sq
 q(z)} = log(1) = 0 

 

 Thus, D(p || q) ¸  0 with equality iff p(z) = q(z).  

– Is the equality iff part easy to prove? 
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Example on Relative Entropy 

 Let X = {0, 1} and two distr.’s p(x) and q(x) 

 p(x=0) = 1- r, p(x=1) = r 

 q(x=0) = 1- s, q(x=1) = s 

 D(p || q) = (1-r) log[(1-r)/(1-s)] + r log[r/s] 

 D(q || p) = (1-s) log[(1-s)/(1-r)] + s log[s/r] 

 Thus, D(p || q)  D(q || p) in general 

– Relative Entropy is not symmetric in general 

 Ex) when r = s, then D(p||q)=D(q||p) = 0 

 Ex) when r = 1/2, s = 1/4, D(p||q) = 0.2075, D(q||p) = 

0.1887 
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Relative Entropy is Non-Negative!  

(Other Approach) 

 Suppose p(z) and q(z) are strict positive distributions (no 

zero probability masses).  Let Sp and Sq denote their 

alphabets respectively.     

 If the sum z2Sp
 p(z) log(p(z)/q(z))  = 0, then p(z) = q(z) 

for all z2Sp. 

 Proof: 

 z p(z) log(p(z)/q(z)) ¸  z p(z) (1 - q(z)/p(z)))    (Why?)  

       = z2Sp
 p(z) – z2Sp

 q(z)  

       ¸  (1 – 1) = 0  (Why?) 
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Entropy is maximum, when uniform distributed 

 Proof: Let u(x) be uniform on X 

 H(p) = x p(x) log(1/p(x)) 

   = x p(x) {log(1/p(x)) + log(u(x)) – log(u(x))} 

   = – x p(x) log(u(x)) + x p(x) {log[u(x)/p(x)]  

   = log|X| - D(p || u) 

© 200x Heung-No Lee 



89 

Mutual Information is Non-Negative! 

 I(X; Y) := x y p(x, y) log[p(x, y)/p(x)p(y)] 

  = D( p(x, y) || p(x)p(y) ) 

   ----- Distance between the joint and the  

   product distribution. 

   ----- Thus, Mutual Information is non- 

   negative. 

  = E(x,y){log[p(X, Y)/p(X)p(Y)]} ¸  0 
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I(X, Y) = H(X) – H(X | Y) 

 I(X; Y) = x2 X y 2 Y p(x, y) log[p(x, y)/p(x)p(y)] 

  = x2 X y 2 Y p(x, y) log[ p(y) p(x |y)/p(x) p(y) ] 

  = x2 X y 2 Y p(x, y) {log[p(x |y)] – log[p(x)]} 

  = H(X) – H(X|Y) 

 Reduction in uncertainty of X due to the knowledge of Y 

 Also, I(X; Y) = H(Y) – H(Y|X) 

 How much can I tell about X knowing Y? 

 How much can I tell about Y knowing X? 

 I(X; Y) = I(Y; X) 
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Mutual Information? 

 The measure of amount of information about X we can 

have knowing Y (vise versa). 

– Cf) Measure of correlation between X and Y, see P2.11. 

 Ex) Suppose Y = X, then H(X|Y) = 0 (no uncertainty).  

Self-mutual information is entropy.  

– Thus, knowing Y means knowing X exactly (the full information 

H(X) = H(Y) is obtained) 

 Ex) Suppose Y and X independent, then H(X|Y) = H(X), 

then I(X;Y) = H(X) – H(X) = 0.  

– Knowing Y cannot tell anything about X. 

– Can you show that if I(X; Y) = 0, then X and Y independent? 
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Relationships 

 I(X; Y)  = H(X) – H(X|Y) = H(Y) – H(Y|X) 

 Thus, I(X; Y) = H(X) + H(Y) – H(X, Y) 

    --- use  H(X, Y) = H(X) + H(Y|X) 

I(X,Y) 

H(X) H(Y) 

H(X, Y) 

H(X|Y) H(Y|X) 
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Conditioning reduces entropy 

 H(X|Y) ·  H(X), with equality iff X and Y independent 

–  I(X; Y) = H(X) – H(X|Y) ¸  0 

 cf) I(X; Y) = 0 iff X and Y independent.   
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Chain Rules 

 Let X1, X2, …, Xn drawn from p(x1, x2, …, xn). Then, 

 H(X1, X2) = H(X1) + H(X2|X1) 

 H(X1, X2, X3) = H(X1) + H(X2, X3|X1) 

    = H(X1) + H(X2|X1) + H(X3 |X1,X2) 

 … 

 H(X1, X2, …, Xn) = i=1
n H(Xi |Xi-1, …, X1} 

 

 

 

 

Watch out for the notation 
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Results in previous page lead to 

 H(X1, X2, …, Xn)  ·   i=1
n H(Xi)  

   with equality iff Xi are independent 
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Conditional Mutual Information 

  I(X; Y | Z) = H(X | Z) – H(Y | X, Z)  

   = E{log[p(X, Y | Z)/p(X | Z)p(Y | Z)]} 

 

 Can we say this?  

– I(X; Y| Z) = 0 IFF X and Y indep. given Z. 
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Chain Rule for Information 

 I(X1, X2, X3; Y)  

  = E{log[p(X1, X2, X3, Y)/p(X1, X2, X3)p(Y)]} 

  = H(X1, X2, X3) – H(X1, X2, X3|Y) 

  = H(X1)+H(X2|X1) + H(X3|X1, X2)  

    – H(X1|Y) – H(X2|X1, Y) – H(X3|X1,X2,Y) 

  = I(X1; Y) + I(X2; Y|X1) + I(X3;Y| X1, X2) 

 

In general, we have 

  I(X1, …, Xn; Y) = i=1
n I(Xi ;Y |X1, …, Xi-1) 
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Concavity of log: Log Sum Inequality 

 For non-negative a1, a2, …, an and b1, b2, …, bn 

  i=1
n ai log(ai/bi) ¸  (i=1

n ai) log[ ai/ bi] 

 with equality iff ai/bi constant. 

 Note, sum of numbers ¸  a single number. 

 Proof: 

– f(t) = t log t, t > 0, is strictly convex (f’’(t) = 1/t > 0 for t > 0) 

– Use the Jensen’s Inequality: avg. of maps ¸  map of avg.  

– i=1
n i f(ti) ¸  f( i ti) for i ¸  0 and i i = 1, ti > 0 

– Substitute i = bi/i bi, and ti = ai/bi 

– Equality iff ai/bi constant 

 

 

0 

t log(t) 

t 
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Use the Log Sum Inequality to show D(p || q) ¸  0 

 D(p || q) =  p(x) log[p(x)/q(x)] 

         ¸   p(x) log[ p(x)/ q(x)]  

   = 1 log(1/1) = 0 
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D(p || q) is convex in the pair (p, q) 

Mixing distributions decreases the relative entropy 

 Consider two pairs (p1, q1) and (p2, q2) of distributions 

Which one is bigger? 

– Avg. of relative entropies, 0.5(D(p1||q1) + D(p2||q2)) – (1) 

– Relative entropy of avg. distribution: D(0.5(p1 + p2) || 0.5(q1+q2)) – 

(2) 

 (1)’: p1(x)log(p1(x)/q1(x)) + p2(x) log[p2(x)/q2(x)] 

 (2)’: (p1(x) + p2(x)) log[(p1(x)+p2(x))/(q1(x)+q2(x))]  

 (1)’  ̧  (2)’ – the Log Sum Inequality 

 Summing over all x, we have (1) ¸  (2)  
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Concavity of Entropy 

 Recall the proof that entropy is maximum when the 

distribution is uniform. 

 Let u(x) be uniform on X 

 H(p) = x p(x) log(1/p(x)) 

   = x p(x) {log(1/p(x)) + log(u(x)) – log(u(x))} 

   = – log(u(x)) + x p(x) {log[u(x)/p(x)]  

   = log|X| - D(p || u) 

 Not only is entropy maximum for uniform distribution but 

also a concave function of p(x). 
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Concavity of Entropy 

(other approach) 

 H(p) is a concave function of a distribution p(x) 

 This means if you mix distributions, the entropy increases. 

 Let X1 ~ p1(x) and X2 ~ p2(x) 

 Let Z = X where  = 1 with prob.  and 2 with 1- 

 Thus, the distr. of Z is  p1(x) + (1 - ) p2(x) 

We know H(Z) ¸  H(Z | )   

   --- conditioning reduces entropy 

 Thus, we have 

 H[ p1(x) + (1 - ) p2(x)] ¸   H[p1(x)] + (1-) H[p2(x)]. 

– This shows f(E) ¸  E(f).  Thus, entropy is a concave function of 

distribution.  
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Concavity of I(X; Y) over p(x) given p(y|x) 

 I(X; Y) = H(Y) – H(Y|X)  

 H(Y) is a concave function of p(y). 

– Note p(y) =  p(x) p(y|x) is a linear function of p(x).  

– Thus, H(Y) is a concave function of p(x).   

 H(Y|X) =  p(x) H(Y|X = x), is a linear function of p(x). 

 Thus, I(X; Y) is a concave function of p(x) given p(y|x). 
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Sequence of results so far 

 Relative entropy is non negative.  Proved! 

 Relative entropy is zero IFF the two distributions are 

identical.  Proved! 

 Entropy H(X) is maximum with X ~ uniform distribution. 

Mutual information is a relative entropy. 

Mutual information is thus non negative. 

MI I(X; Y) = 0 IFF X and Y independent. 

 Conditioning reduces entropy. 

 Entropy is a concave function of distribution. 

MI I(X; Y) is a concave function of p(x) given p(y|x). 
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HW#1 

 Cover & Thomas: Ch2: 1, 2, 5, 8, 12, 14, 18,  

 Showing the convexity of f(x) = ex is easy.  Use the Calculus:  Take the 

derivatives twice and show that it’s positive everywhere.  Now, prove 

the convexity of f(x) using the general convexity proving technique 

learned in this lecture. 

 

 (Challenge; Optional) Consider arbitrary random variables X1, X2, and  

 

 

 where the matrix elements [aij] are arbitrary non zero constants and N1 

and N2 are independent random variables.  Let’s denote             . 

   Prove or disprove I(X; Y1, Y2) ·  I(X; Y1) + I(X; Y2). 

      1 11 12 1 1

2 21 22 2 2

Y a a X N

Y a a X N 

 1

2
:

X

XX
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HW#1 

 I(X1, X2; Y) and I(X; Y).  Are they different? 

 Recall the HW#0 problem on the joint distribution of U and V.   

(a) For the first case where p1 = 0.1 and p2 = 0.2, find the following measures: H(U), H(V), 

H(U|µ1), H(V|µ2),  H(U|V), H(V|U), H(U, V), I(U; V), I(U; µ), I(V; µ). 

(b) Repeat for p1=0.01 and p2 = 0.02.   

(c) Note there is a notable change in I(U; V) between (a) and (b).  Describe this change and make 

qualitative statements explaining the change.  What would happen to I(U; V) when p1 and p2 

approach zero?  What would happen if they both approach 1/2.  
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