Information Theory

The $1^{\text {st }}$ Module

Play

Claude E. Shannon (1916-2001)

* Math/EE Bachelor from UMich (1936)
* MSEE and Math Ph.D. from MIT (1940)
* A landmark paper "Mathematical Theory of Communications" (1948)
- Founder of Information Theory
- Fundamental limits on communications
- Information quantified as a logarithmic measure
* For more info on him, make a visit to
http://www.bell-labs.com/news/2001/february/26/1.html

Novel Perspective on Communications

Messages

* Communications: Transfer of information from a source to a receiver
. Messages (information) can have semantic meaning; but they are irrelevant for the design of a comm. system.
*What's important then?
- A message is selected from a set of all possible messages and transmitted, and regenerated at the receiver.
- The size of the message set has something to do with the amount of information.
* The capacity of the channel is the maximum size of message set that can be transferred over the channel and can be regenerated almost error-free at the receiver

The Size M of Message Set

* Is the Amount of information
* M or any monotonic function of M can be used as a measure of information.
His choice was the logarithmic function. Why?
- If $M_{1}>M_{2}, \log \left(M_{1}\right)>\log \left(M_{2}\right)$
- When base $2, \log 2(\mathrm{M})$ is the number of memory cells.
- We call the resulting unit "bits."
- A four-bit register can represent a message set of size 2^{4}, and a three-bit register 2^{3}.
- The amount of information is $\log _{2}\left(2^{4}\right)=4$ bits and 3 bits.
- This choice was made out of convenience; but considered appropriate (See the axiomatic definition of entropy in Cover \& Thomas $1^{\text {st }}$ Ed., Prob2.4)

Fundamental Limits on Communications Systems

* The Sampling and Modulation Theorem (Nyquist and Hartley 1928)
* Source and Channel Coding Theorem (Shannon)
* Can we define a quantity which measures the amount of information produced by a digital or an analog source?
* Rate Distortion and Source Coding Theorem:
- " n-bit quantization": Distortion will increase if we reduce n.
- Source code takes away redundancy in the source and reduces the number of bits required.
* How about the size of message set that can be transferred over a noisy channel almost error-free?
* Channel Capacity and Channel Coding Theorem:
- Channel code adds redundancy in order to gain protection against random error occurring in the channel

Uncertainty and Entropy

* Suppose a set of n possible outcomes, each having the probability of occurrence as $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{n}}$.
* After a random experiment, we have an outcome.
* Then, we can say about the occurrence of an event. Entropy is a measure of uncertainty (randomness) on the occurrence of an event.
We use logarithmic measures (non-negative)
$-\log \left(1 / \mathrm{p}_{\mathrm{i}}\right) \geq 0$,
* If $\mathrm{p}_{\mathrm{i}}<\mathrm{p}_{\mathrm{j}}$, then $\log \left(1 / \mathrm{p}_{\mathrm{i}}\right)>\log \left(1 / \mathrm{p}_{\mathrm{j}}\right)$.
- Less probable event means larger uncertainty.
- More probable event means smaller uncertainty.
- The sure event has zero uncertainty.

Definition of Entropy

* Entropy is the average measure of uncertainty of a distribution, $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{n}}$.

$$
\mathrm{H}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{n}}\right):=\sum_{\mathrm{j}=1}{ }^{n} \mathrm{p}_{\mathrm{j}} \log \left(1 / \mathrm{p}_{\mathrm{j}}\right)
$$

Some Properties of Entropy

* Uncertainty = Amount of Information = The number of bits needed in representation
* More uncertain event carries more information.

The sure event carries zero amount of information

- A binary source generates " 1 " with probability 1 . Then, the source produces zero amount of information, i.e., $\log (1 / 1)=0$.
- A binary source generates " 1 " and " 0 " with equal probability. Each event carries the same amount of information. Then, this source generates 1 bit of information.

Entropy of a RV

Let X be a random variable with alphabet $\mathrm{A}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots\right.$, $\left.\mathrm{x}_{\mathrm{n}}\right\}$ and its probability mass function $\mathrm{p}(\mathrm{x})=\operatorname{Pr}\left\{\mathrm{X}=\mathrm{x}_{\mathrm{i}} \in \mathrm{A}\right\}$
We define entropy for r.v. X

$$
\mathrm{H}(\mathrm{X}):=\sum_{\mathrm{x} \in \mathrm{x}} \mathrm{p}(\mathrm{x}) \log (1 / \mathrm{p}(\mathrm{x}))
$$

- Note that in fact this measure has nothing to do with the random variable X , but has everything to do with the distribution.
- The range of X does not play any role in the calculation of $\mathrm{H}(\mathrm{X})$.
*When the base of the logarithm is 2 , the unit is "bits."
When the base is e, the unit is "nats."

$\mathrm{H}(\mathrm{X})$ is the Average Uncertainty (Information) of X

* Let's take some examples

Ex1) When X is binary

* Ex2) When X is quaternary

Entropy gives the largest lower bound on the number of bits required to represent the set of events

* Ex3) Average Information Content in English
* Assume all 26 letters occur equally likely from a source
- $\mathbf{H}=\log _{2}(26)=4.7$ bits/character

Entropy gives the largest lower bound on the number of bits required to represent the set of events

Assume some distribution other than uniform

- a, e, o, t with prob=0.1
- h, i, n, r, s with prob= 0.07
$-\mathrm{c}, \mathrm{d}, \mathrm{f}, \mathrm{l}, \mathrm{m}, \mathrm{p}, \mathrm{u}, \mathrm{y} \quad$ with prob. $=0.02$
$-\mathrm{b}, \mathrm{g}, \mathrm{j}, \mathrm{k}, \mathrm{q}, \mathrm{v}, \mathrm{w}, \mathrm{x}, \mathrm{z} \quad$ with prob. $=0.01$
- $\mathrm{H}=4.17$ bits/character
* Thus, if there was a source generating letters according to this distribution (ignoring spaces, commas, etc), then the source's information rate is 4.17 bits per character.

Entropy and Information

* Entropy is the minimum attainable average length of any binary description system.
- I'll explain this with the next example.

Ex4) Suppose a race of 8 horses. The race was held in LA yesterday. We are here in Gwangju. There is a reporter in LA. The reporter can only make an binary answer-Yes or No-to our question. Now, knowing that the winning prob. of each horse is $(1 / 2,1 / 4,1 / 8,1 / 16,1 / 64,1 / 64,1 / 64,1 / 64)$ respectively; which horse would you ask first to be the winning horse? The objective is to determine the winning horse as quickly as possible.

- Note that the entropy is $\mathrm{H}=2$ bits.

Entropy and Information

$\mathrm{p}_{\text {i }}$			Length
1/2	0	0	1
1/4	1	10	2
1/8	2	110	3
1/16	3	1110	4
1/64	4	111100	6
1/64	5	111101	6
1/64	6	111110	6
1/64	7	111111	6

* The map from the horse index to the binary sequence is a code.
* This coding strategy achieves the entropy bound.
* The average length $=1(1 / 2)+2(1 / 4)+3(1 / 8)+4(1 / 16)+6(1 / 64) * 4=2$ (which is the same as $\mathrm{H}=2$)
*What happens if the horse index, $0,1, \ldots, 7$, was used for the coding? How many bits would be needed then?

Joint Entropy and Conditional Entropy

* Joint Entropy: The joint entropy H(X, Y) of a pair of discrete random variable (X, Y) with a joint distribution $p(x, y)$ is defined as

$$
\begin{aligned}
\mathrm{H}(\mathrm{X}, \mathrm{Y}) & :=-\sum_{\mathrm{x}} \sum_{\mathrm{y}} \mathrm{p}(\mathrm{x}, \mathrm{y}) \log \mathrm{p}(\mathrm{x}, \mathrm{y}) \\
& =-\mathrm{E}\{\log \mathrm{p}(\mathrm{X}, \mathrm{Y})\}
\end{aligned}
$$

Conditional Entropy:

$$
\begin{aligned}
\mathrm{H}(\mathrm{Y} \mid \mathrm{X}) & :=-\sum_{\mathrm{x}} \sum_{\mathrm{y}} \mathrm{p}(\mathrm{x}, \mathrm{y}) \log \mathrm{p}(\mathrm{y} \mid \mathrm{x}) \\
& =-\mathrm{E}\{\log \mathrm{p}(\mathrm{Y} \mid \mathrm{X})\} \\
& =-\sum_{\mathrm{x}} \mathrm{p}(\mathrm{x}) \mathrm{H}(\mathrm{Y} \mid \mathrm{X}=\mathrm{x}) \\
& =-\sum_{\mathrm{x}} \mathrm{p}(\mathrm{x}) \sum_{\mathrm{y}} \mathrm{p}(\mathrm{y} \mid \mathrm{x}) \log \mathrm{p}(\mathrm{y} \mid \mathrm{x})
\end{aligned}
$$

Chain Rule: $\mathrm{H}(\mathrm{X}, \mathrm{Y})=\mathrm{H}(\mathrm{X})+\mathrm{H}(\mathrm{Y} \mid \mathrm{X})$

* $\mathrm{H}(\mathrm{X}, \mathrm{Y}):=-\sum_{\mathrm{x}} \Sigma_{\mathrm{y}} \mathrm{p}(\mathrm{x}, \mathrm{y}) \log \mathrm{p}(\mathrm{x}, \mathrm{y})$

$$
=-\sum_{\mathrm{x}} \Sigma_{\mathrm{y}} \mathrm{p}(\mathrm{x}, \mathrm{y}) \log [\mathrm{p}(\mathrm{x}) \mathrm{p}(\mathrm{y} \mid \mathrm{x})]
$$

$$
=-\sum_{\mathrm{x}} \sum_{\mathrm{y}} \mathrm{p}(\mathrm{x}, \mathrm{y})[\log \mathrm{p}(\mathrm{x})+\log \mathrm{p}(\mathrm{y} \mid \mathrm{x})]
$$

$$
=-\sum_{x} p(x) \log p(x)-\sum_{x} \sum_{y} p(x, y) \log p(y \mid x)
$$

$$
=\mathrm{H}(\hat{\mathrm{X}})+\mathrm{H}(\mathrm{Y} \mid \mathrm{X})
$$

or similarly
$=\mathrm{H}(\mathrm{Y})+\mathrm{H}(\mathrm{X} \mid \mathrm{Y})$

Example

```
* \(\mathrm{H}(\mathrm{X})=3 / 8 * \log _{2}(8 / 3)+5 / 8^{*}\)
    \(\log _{2}(8 / 5)=0.9544\)
* \(\mathrm{H}(\mathrm{Y})=6 / 8 * \log _{2}(8 / 6)+\)
    \(2 / 8 * \log _{2}(8 / 2)=0.8113\)
* \(\mathrm{H}(\mathrm{Y} \mid \mathrm{X})=\sum_{\mathrm{x}} \mathrm{p}(\mathrm{x}) \mathrm{H}(\mathrm{Y} \mid \mathrm{X}=\mathrm{x})\)
    \(=3 / 8 * \mathrm{H}(\mathrm{Y} \mid \mathrm{X}=0)+5 / 8 * \mathrm{H}(\mathrm{Y} \mid \mathrm{X}=1)\)
    \(=3 / 8 * \mathrm{H}(2 / 3,1 / 3)+5 / 8 * \mathrm{H}(4 / 5,1 / 5)\)
    \(=3 / 8 * 0.9183+5 / 8 * 0.7219\)
    \(=0.7955\)
* \(\mathrm{H}(\mathrm{X}, \mathrm{Y})=\mathrm{H}(\mathrm{X})+\mathrm{H}(\mathrm{Y} \mid \mathrm{X})=1.75\)
* \(\mathrm{H}(\mathrm{X}, \mathrm{Y})=-\mathrm{E}\{\log \mathrm{p}(\mathrm{X}, \mathrm{Y})\}\)
    \(=2 / 8 * \log _{2}(4)+(4 / 8) * \log _{2}(2)+\)
    \(2 * 1 / 8 * \log _{2}(8)\)
    \(=1 / 4 * 2+1 / 2+2 * 3 / 8=1+3 / 4=1.75\)
```

X		
	0	1
0	$2 / 8$	$4 / 8$
1	$1 / 8$	$1 / 8$

The units are [bit].

Max. entropy when uniform

* $\mathrm{H}(\mathrm{X}) \leq \log |X|$, where $|X|$ is the size of alphabet, with equality iff X is uniform over \boldsymbol{X}.
- Non-uniform gives maximum entropy under a certain input criteria
- cf) Gaussian distribution gives max. entropy under average energy constraint.
- I owe you the proof of this statement, especially the only if part.

Jensen's Inequality

* For any $f(\mathrm{x})$ convex U , it is easy to see

$$
1 / 2 \mathrm{f}\left(\mathrm{x}_{1}\right)+1 / 2 \mathrm{f}\left(\mathrm{x}_{2}\right) \geq \mathrm{f}\left[\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right) / 2\right]
$$

* This holds true for any distribution $p_{1}+p_{2}=1$ such that

$$
\mathrm{p}_{1} f\left(\mathrm{x}_{1}\right)+\mathrm{p}_{2} f\left(\mathrm{x}_{2}\right) \geq \mathrm{f}\left(\mathrm{p}_{1} \mathrm{x}_{1}+\mathrm{p}_{2} \mathrm{x}_{2}\right)
$$

* For r.v. X and function f convex U ,

$$
\mathrm{E}\{f(\mathrm{X})\} \geq f(\mathrm{E}\{\mathrm{X}\})
$$

- For strictly convex $\mathrm{U} f(\mathrm{x})$, equality iff X is a constant

What if a function is concave \cap ?

Relative Entropy is Non-Negative!

* $\mathrm{D}(\mathrm{p} \| q)=$ Kullback Leibler Distance between two distributions $\mathrm{p}(\mathrm{z})$ and $q(z))$ or Relative Entropy

$$
:=\sum_{\mathrm{z}} \mathrm{p}(\mathrm{z}) \log (\mathrm{p}(\mathrm{z}) / \mathrm{q}(\mathrm{z})
$$

* Suppose $\mathrm{p}(\mathrm{z})$ and $\mathrm{q}(\mathrm{z})$ are strict positive distributions (no zero probability masses). Let S_{p} and S_{q} denote their alphabets respectively.
- $\mathrm{D}(\mathrm{p} \| \mathrm{q})=\sum_{\mathrm{z} \in \mathrm{S}_{\mathrm{p}}} \mathrm{p}(\mathrm{z}) \log [\mathrm{q}(\mathrm{z}) / \mathrm{p}(\mathrm{z})]$

$$
\leq \log \left\{\sum_{z \in S_{p}} \mathrm{p}(\mathrm{z})[\mathrm{q}(\mathrm{z}) / \mathrm{p}(\mathrm{z})]\right\}
$$

(log is strict concave \cap;thus equality only if $p(z) / q(z)$ constant)

$$
=\log \left\{\sum_{\mathrm{z} \in \mathrm{~S}_{\mathrm{p}}} \mathrm{q}(\mathrm{z})\right\}
$$

$$
\leq \log \left\{\sum_{z \in S_{q}} q(z)\right\}=\log (1)=0
$$

*Thus, $\mathrm{D}(\mathrm{p} \| \mathrm{q}) \geq 0$ with equality iff $\mathrm{p}(\mathrm{z})=\mathrm{q}(\mathrm{z})$.

- Is the equality iff part easy to prove?

Example on Relative Entropy

Let $\mathcal{X}=\{0,1\}$ and two distr.'s $\mathrm{p}(\mathrm{x})$ and $\mathrm{q}(\mathrm{x})$
$\mathrm{p}(\mathrm{x}=0)=1-\mathrm{r}, \mathrm{p}(\mathrm{x}=1)=\mathrm{r}$
$\mathrm{q}(\mathrm{x}=0)=1-\mathrm{s}, \mathrm{q}(\mathrm{x}=1)=\mathrm{s}$
$\mathrm{D}(\mathrm{p} \| \mathrm{q})=(1-\mathrm{r}) \log [(1-\mathrm{r}) /(1-\mathrm{s})]+\mathrm{r} \log [\mathrm{r} / \mathrm{s}]$
$\mathrm{D}(\mathrm{q} \| \mathrm{p})=(1-\mathrm{s}) \log [(1-\mathrm{s}) /(1-\mathrm{r})]+\mathrm{s} \log [\mathrm{s} / \mathrm{r}]$
Thus, $\mathrm{D}(\mathrm{p} \| \mathrm{q}) \neq \mathrm{D}(\mathrm{q} \| \mathrm{p})$ in general

- Relative Entropy is not symmetric in general

Ex) when $\mathrm{r}=\mathrm{s}$, then $\mathrm{D}(\mathrm{p} \| \mathrm{q})=\mathrm{D}(\mathrm{q} \| \mathrm{p})=0$
Ex) when $\mathrm{r}=1 / 2, \mathrm{~s}=1 / 4, \mathrm{D}(\mathrm{p} \| \mathrm{q})=0.2075, \mathrm{D}(\mathrm{q} \| \mathrm{p})=$ 0.1887

Relative Entropy is Non-Negative!
 (Other Approach)

* Suppose $\mathrm{p}(\mathrm{z})$ and $\mathrm{q}(\mathrm{z})$ are strict positive distributions (no zero probability masses). Let S_{p} and S_{q} denote their alphabets respectively.
If the sum $\sum_{\mathrm{z} \in \mathrm{S}_{\mathrm{p}}} \mathrm{p}(\mathrm{z}) \log (\mathrm{p}(\mathrm{z}) / \mathrm{q}(\mathrm{z}))=0$, then $\mathrm{p}(\mathrm{z})=\mathrm{q}(\mathrm{z})$ for all $z \in S_{p}$.
- Proof:

$$
\begin{array}{rlrl}
\sum_{\mathrm{z}} \mathrm{p}(\mathrm{z}) \log (\mathrm{p}(\mathrm{z}) / \mathrm{q}(\mathrm{z})) & \left.\geq \sum_{\mathrm{z}} \mathrm{p}(\mathrm{z})(1-\mathrm{q}(\mathrm{z}) / \mathrm{p}(\mathrm{z}))\right) & & \text { (Why?) } \\
& =\sum_{z \in \mathrm{~S}_{\mathrm{p}}} \mathrm{p}(\mathrm{z})-\sum_{\mathrm{z} \in \mathrm{~S}_{\mathrm{p}}} \mathrm{q}(\mathrm{z}) & & \\
& \geq(\text { Why? }) \tag{Why?}
\end{array}
$$

Entropy is maximum, when uniform distributed

* Proof: Let $\mathbf{u}(\mathrm{x})$ be uniform on \boldsymbol{X}

$$
\begin{aligned}
\mathrm{H}(\mathrm{p}) & =\sum_{\mathrm{x}} \mathrm{p}(\mathrm{x}) \log (1 / \mathrm{p}(\mathrm{x})) \\
& =\sum_{\mathrm{x}} \mathrm{p}(\mathrm{x})\{\log (1 / \mathrm{p}(\mathrm{x}))+\log (\mathrm{u}(\mathrm{x}))-\log (\mathrm{u}(\mathrm{x}))\} \\
& =-\sum_{\mathrm{x}} \mathrm{p}(\mathrm{x}) \log (\mathrm{u}(\mathrm{x}))+\sum_{\mathrm{x}} \mathrm{p}(\mathrm{x})\{\log [\mathrm{u}(\mathrm{x}) / \mathrm{p}(\mathrm{x})] \\
& =\log |\mathcal{X}|-\mathrm{D}(\mathrm{p} \| \mathrm{u})
\end{aligned}
$$

Mutual Information is Non-Negative!

($\mathrm{I}(\mathrm{X} ; \mathrm{Y}):=\sum_{\mathrm{x}} \sum_{\mathrm{y}} \mathrm{p}(\mathrm{x}, \mathrm{y}) \log [\mathrm{p}(\mathrm{x}, \mathrm{y}) / \mathrm{p}(\mathrm{x}) \mathrm{p}(\mathrm{y})]$

$$
=\mathrm{D}(\mathrm{p}(\mathrm{x}, \mathrm{y}) \| \mathrm{p}(\mathrm{x}) \mathrm{p}(\mathrm{y}))
$$

----- Distance between the joint and the product distribution.
----- Thus, Mutual Information is nonnegative.

$$
=\mathrm{E}_{(\mathrm{x}, \mathrm{y})}\{\log [\mathrm{p}(\mathrm{X}, \mathrm{Y}) / \mathrm{p}(\mathrm{X}) \mathrm{p}(\mathrm{Y})]\} \geq 0
$$

$\mathrm{I}(\mathrm{X}, \mathrm{Y})=\mathrm{H}(\mathrm{X})-\mathrm{H}(\mathrm{X} \mid \mathrm{Y})$

($\mathrm{I} ; \mathrm{Y})=\sum_{\mathrm{x} \in \mathrm{X}} \sum_{\mathrm{y} \in \mathrm{Y}} \mathrm{p}(\mathrm{x}, \mathrm{y}) \log [\mathrm{p}(\mathrm{x}, \mathrm{y}) / \mathrm{p}(\mathrm{x}) \mathrm{p}(\mathrm{y})]$

$$
\begin{aligned}
& \left.=\sum_{x \in X} \sum_{y \in Y} p(x, y) \log [p)(p(x \mid y) / p(x))(y)\right] \\
& =\sum_{x \in X} \sum_{y \in Y} p(x, y)\{\log [p(x \mid y)]-\log [p(x)]\} \\
& =H(X)-H(X \mid Y)
\end{aligned}
$$

* Reduction in uncertainty of X due to the knowledge of Y

Also, $\mathrm{I}(\mathrm{X} ; \mathrm{Y})=\mathrm{H}(\mathrm{Y})-\mathrm{H}(\mathrm{Y} \mid \mathrm{X})$
How much can I tell about X knowing Y ?
How much can I tell about Y knowing X ?
I(X; Y) $=\mathrm{I}(\mathrm{Y} ; \mathrm{X})$

Mutual Information?

The measure of amount of information about X we can have knowing Y (vise versa).

- Cf) Measure of correlation between X and Y , see P2.11.
* Ex) Suppose $\mathrm{Y}=\mathrm{X}$, then $\mathrm{H}(\mathrm{X} \mid \mathrm{Y})=0$ (no uncertainty). \rightarrow Self-mutual information is entropy.
- Thus, knowing Y means knowing X exactly (the full information $\mathrm{H}(\mathrm{X})=\mathrm{H}(\mathrm{Y})$ is obtained)
* Ex) Suppose Y and X independent, then $H(X \mid Y)=H(X)$, then $\mathrm{I}(\mathrm{X} ; \mathrm{Y})=\mathrm{H}(\mathrm{X})-\mathrm{H}(\mathrm{X})=0$.
- Knowing Y cannot tell anything about X .
- Can you show that if $\mathrm{I}(\mathrm{X} ; \mathrm{Y})=0$, then X and Y independent?

Relationships

* $\mathrm{I}(\mathrm{X} ; \mathrm{Y})=\mathrm{H}(\mathrm{X})-\mathrm{H}(\mathrm{X} \mid \mathrm{Y})=\mathrm{H}(\mathrm{Y})-\mathrm{H}(\mathrm{Y} \mid \mathrm{X})$

Thus, $\mathrm{I}(\mathrm{X} ; \mathrm{Y})=\mathrm{H}(\mathrm{X})+\mathrm{H}(\mathrm{Y})-\mathrm{H}(\mathrm{X}, \mathrm{Y})$
--- use $H(X, Y)=H(X)+H(Y \mid X)$

Conditioning reduces entropy

* $\mathrm{H}(\mathrm{X} \mid \mathrm{Y}) \leq \mathrm{H}(\mathrm{X})$, with equality iff X and Y independent
$-\quad \mathrm{I}(\mathrm{X} ; \mathrm{Y})=\mathrm{H}(\mathrm{X})-\mathrm{H}(\mathrm{X} \mid \mathrm{Y}) \geq 0$
cf) $\mathrm{I}(\mathrm{X} ; \mathrm{Y})=0$ iff X and Y independent.

Chain Rules

Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ drawn from $\mathrm{p}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$. Then,

$$
\begin{aligned}
& H\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)=\mathrm{H}\left(\mathrm{X}_{1}\right)+\mathrm{H}\left(\mathrm{X}_{2} \mid \mathrm{X}_{1}\right) \\
& \mathrm{H}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}\right)=\mathrm{H}\left(\mathrm{X}_{1}\right)+\mathrm{H}\left(\mathrm{X}_{2}, \mathrm{X}_{3} \mid \mathrm{X}_{1}\right) \\
& \quad=\mathrm{H}\left(\mathrm{X}_{1}\right)+\mathrm{H}\left(\mathrm{X}_{2} \mid \mathrm{X}_{1}\right)+\mathrm{H}\left(\mathrm{X}_{3} \mid \mathrm{X}_{1}, \mathrm{X}_{2}\right)
\end{aligned}
$$

$\mathrm{H}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right)=\sum_{\mathrm{i}=1}{ }^{\mathrm{n}} \mathrm{H}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i}-1}, \ldots, \mathrm{X}_{1}\right\}$
Watch out for the notation

Results in previous page lead to

$\left.H_{\left(X_{1}, X_{2}\right.}, \ldots, \mathrm{X}_{\mathrm{n}}\right) \leq \sum_{\mathrm{i}=1}{ }^{\mathrm{n}} \mathrm{H}\left(\mathrm{X}_{\mathrm{i}}\right)$
with equality iff X_{i} are independent

Conditional Mutual Information

($\mathrm{X} ; \mathrm{Y} \mid \mathrm{Z})=\mathrm{H}(\mathrm{X} \mid \mathrm{Z})-\mathrm{H}(\mathrm{Y} \mid \mathrm{X}, \mathrm{Z})$

$$
=\mathrm{E}\{\log [\mathrm{p}(\mathrm{X}, \mathrm{Y} \mid \mathrm{Z}) / \mathrm{p}(\mathrm{X} \mid \mathrm{Z}) \mathrm{p}(\mathrm{Y} \mid \mathrm{Z})]\}
$$

Can we say this?
$-\mathrm{I}(\mathrm{X} ; \mathrm{Y} \mid \mathrm{Z})=0$ IFF X and Y indep. given Z .

Chain Rule for Information

\& $\mathrm{I}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3} ; \mathrm{Y}\right)$

$$
\begin{aligned}
= & \mathrm{E}\left\{\log \left[\mathrm{p}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{Y}\right) / \mathrm{p}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}\right) \mathrm{p}(\mathrm{Y})\right]\right\} \\
= & \mathrm{H}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}\right)-\mathrm{H}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3} \mid \mathrm{Y}\right) \\
= & \mathrm{H}\left(\mathrm{X}_{1}\right)+\mathrm{H}\left(\mathrm{X}_{2} \mid \mathrm{X}_{1}\right)+\mathrm{H}\left(\mathrm{X}_{3} \mid \mathrm{X}_{1}, \mathrm{X}_{2}\right) \\
& \quad-\mathrm{H}\left(\mathrm{X}_{1} \mid \mathrm{Y}\right)-\mathrm{H}\left(\mathrm{X}_{2} \mid \mathrm{X}_{1}, \mathrm{Y}\right)-\mathrm{H}\left(\mathrm{X}_{3} \mid \mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{Y}\right) \\
= & \mathrm{I}\left(\mathrm{X}_{1} ; \mathrm{Y}\right)+\mathrm{I}\left(\mathrm{X}_{2} ; \mathrm{Y} \mid \mathrm{X}_{1}\right)+\mathrm{I}\left(\mathrm{X}_{3} ; \mathrm{Y} \mid \mathrm{X}_{1}, \mathrm{X}_{2}\right)
\end{aligned}
$$

In general, we have

$$
\mathrm{I}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}} ; \mathrm{Y}\right)=\sum_{\mathrm{i}=1}{ }^{\mathrm{n}} \mathrm{I}\left(\mathrm{X}_{\mathrm{i}} ; \mathrm{Y} \mid \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{i}-1}\right)
$$

Concavity of log: Log Sum Inequality

*For non-negative $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$

$$
\sum_{i=1}{ }^{n} a_{i} \log \left(a_{i} / b_{i}\right) \geq\left(\sum_{i=1}{ }^{n} a_{i}\right) \log \left[\sum a_{i} / \sum b_{i}\right]
$$

with equality iff $\mathrm{a}_{\mathrm{i}} / \mathrm{b}_{\mathrm{i}}$ constant.
Note, sum of numbers \geq a single number.
Proof:

- $\mathrm{f}(t)=t \log t, t>0$, is strictly convex $\left(\mathrm{f}^{\prime}(t)=1 / t>0\right.$ for $\left.t>0\right)$
- Use the Jensen's Inequality: avg. of maps \geq map of avg.
$-\sum_{i=1}{ }^{n} \alpha_{i} \mathrm{f}\left(t_{\mathrm{i}}\right) \geq \mathrm{f}\left(\sum \alpha_{\mathrm{i}} t_{\mathrm{i}}\right)$ for $\alpha_{\mathrm{i}} \geq 0$ and $\sum_{\mathrm{i}} \alpha_{\mathrm{i}}=1, t_{\mathrm{i}}>0$
- Substitute $\alpha_{\mathrm{i}}=\mathrm{b}_{\mathrm{i}} / \sum_{\mathrm{i}} \mathrm{b}_{\mathrm{i}}$, and $t_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}} / \mathrm{b}_{\mathrm{i}}$
- Equality iff a_{i} / b_{i} constant

Use the \log Sum Inequality to show $\mathrm{D}(\mathrm{p} \| q) \geq 0$

- $\mathrm{D}(\mathrm{p} \| \mathrm{q})=\sum \mathrm{p}(\mathrm{x}) \log [\mathrm{p}(\mathrm{x}) / \mathrm{q}(\mathrm{x})]$

$$
\begin{aligned}
& \geq \sum \mathrm{p}(\mathrm{x}) \log \left[\sum \mathrm{p}(\mathrm{x}) / \sum \mathrm{q}(\mathrm{x})\right] \\
& \quad=1 \log (1 / 1)=0
\end{aligned}
$$

$D(p \| q)$ is convex in the pair (p, q)

- Mixing distributions decreases the relative entropy

Consider two pairs $\left(\mathrm{p}_{1}, \mathrm{q}_{1}\right)$ and $\left(\mathrm{p}_{2}, \mathrm{q}_{2}\right)$ of distributions
*Which one is bigger?

- Avg. of relative entropies, $0.5\left(\mathrm{D}\left(\mathrm{p}_{1} \| \mathrm{q}_{1}\right)+\mathrm{D}\left(\mathrm{p}_{2} \| \mathrm{q}_{2}\right)\right)-(1)$
- Relative entropy of avg. distribution: $\mathrm{D}\left(0.5\left(\mathrm{p}_{1}+\mathrm{p}_{2}\right) \| 0.5\left(\mathrm{q}_{1}+\mathrm{q}_{2}\right)\right)$ (2)
(1)': $\mathrm{p}_{1}(\mathrm{x}) \log \left(\mathrm{p}_{1}(\mathrm{x}) / \mathrm{q}_{1}(\mathrm{x})\right)+\mathrm{p}_{2}(\mathrm{x}) \log \left[\mathrm{p}_{2}(\mathrm{x}) / \mathrm{q}_{2}(\mathrm{x})\right]$
(2) $:\left(\mathrm{p}_{1}(\mathrm{x})+\mathrm{p}_{2}(\mathrm{x})\right) \log \left[\left(\mathrm{p}_{1}(\mathrm{x})+\mathrm{p}_{2}(\mathrm{x})\right) /\left(\mathrm{q}_{1}(\mathrm{x})+\mathrm{q}_{2}(\mathrm{x})\right)\right]$
(1)' \geq (2)' - the Log Sum Inequality
- Summing over all x , we have (1) \geq (2)

Concavity of Entropy

Recall the proof that entropy is maximum when the distribution is uniform.

* Let $\mathrm{u}(\mathrm{x})$ be uniform on \boldsymbol{X}

$$
\begin{aligned}
\mathrm{H}(\mathrm{p}) & =\sum_{\mathrm{x}} \mathrm{p}(\mathrm{x}) \log (1 / \mathrm{p}(\mathrm{x})) \\
& =\sum_{\mathrm{x}} \mathrm{p}(\mathrm{x})\{\log (1 / \mathrm{p}(\mathrm{x}))+\log (\mathrm{u}(\mathrm{x}))-\log (\mathrm{u}(\mathrm{x}))\} \\
& =-\log (\mathrm{u}(\mathrm{x}))+\sum_{\mathrm{x}} \mathrm{p}(\mathrm{x})\{\log [\mathrm{u}(\mathrm{x}) / \mathrm{p}(\mathrm{x})] \\
& =\log |\mathcal{X}|-\mathrm{D}(\mathrm{p} \| \mathrm{u})
\end{aligned}
$$

* Not only is entropy maximum for uniform distribution but also a concave function of $\mathrm{p}(\mathrm{x})$.

Concavity of Entropy
 (other approach)

* $\mathrm{H}(\mathrm{p})$ is a concave function of a distribution $\mathrm{p}(\mathrm{x})$

This means if you mix distributions, the entropy increases.
Let $\mathrm{X}_{1} \sim \mathrm{p}_{1}(\mathrm{x})$ and $\mathrm{X}_{2} \sim \mathrm{p}_{2}(\mathrm{x})$
Let $Z=X_{\theta}$ where $\theta=1$ with prob. λ and 2 with $1-\lambda$
Thus, the distr. of Z is $\lambda p_{1}(x)+(1-\lambda) p_{2}(x)$

* We know $\mathrm{H}(\mathrm{Z}) \geq \mathrm{H}(\mathrm{Z} \mid \theta)$
--- conditioning reduces entropy
Thus, we have $\mathrm{H}\left[\lambda \mathrm{p}_{1}(\mathrm{x})+(1-\lambda) \mathrm{p}_{2}(\mathrm{x})\right] \geq \lambda \mathrm{H}\left[\mathrm{p}_{1}(\mathrm{x})\right]+(1-\lambda) \mathrm{H}\left[\mathrm{p}_{2}(\mathrm{x})\right]$.
- This shows $f(\mathrm{E}) \geq \mathrm{E}(f)$. Thus, entropy is a concave function of distribution.

Concavity of $\mathrm{I}(\mathrm{X} ; \mathrm{Y})$ over $\mathrm{p}(\mathrm{x})$ given $\mathrm{p}(\mathrm{y} \mid \mathrm{x})$

($\mathrm{I}(\mathrm{X} ; \mathrm{Y})=\mathrm{H}(\mathrm{Y})-\mathrm{H}(\mathrm{Y} \mid \mathrm{X})$

* $\mathrm{H}(\mathrm{Y})$ is a concave function of $\mathrm{p}(\mathrm{y})$.
- Note $p(y)=\sum p(x) p(y \mid x)$ is a linear function of $p(x)$.
- Thus, $\mathrm{H}(\mathrm{Y})$ is a concave function of $\mathrm{p}(\mathrm{x})$.
* $H(Y \mid X)=\sum p(x) H(Y \mid X=x)$, is a linear function of $p(x)$.

Thus, $\mathrm{I}(\mathrm{X} ; \mathrm{Y})$ is a concave function of $\mathrm{p}(\mathrm{x})$ given $\mathrm{p}(\mathrm{y} \mid \mathrm{x})$.

Sequence of results so far

Relative entropy is non negative. Proved!
Relative entropy is zero IFF the two distributions are identical. Proved!
Entropy $\mathrm{H}(\mathrm{X})$ is maximum with $\mathrm{X} \sim$ uniform distribution.

* Mutual information is a relative entropy.
* Mutual information is thus non negative.

MI I(X; Y) $=0$ IFF X and Y independent.
Conditioning reduces entropy.
Entropy is a concave function of distribution.

* MI $I(X ; Y)$ is a concave function of $p(x)$ given $p(y \mid x)$.

HW\#1

* Cover \& Thomas: Ch2: 1, 2, 5, 8, 12, 14, 18,

Showing the convexity of $f(x)=\mathrm{e}^{x}$ is easy. Use the Calculus: Take the derivatives twice and show that it's positive everywhere. Now, prove the convexity of $f(x)$ using the general convexity proving technique learned in this lecture.
(Challenge; Optional) Consider arbitrary random variables X_{1}, X_{2}, and

$$
\binom{Y_{1}}{Y_{2}}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\binom{X_{1}}{X_{2}}+\binom{N_{1}}{N_{2}}
$$

where the matrix elements $\left[a_{i j}\right]$ are arbitrary non zero constants and N_{1} and N_{2} are independent random variables. Let's denote $\mathbf{X}:=\binom{x_{1}}{X_{2}}$.
Prove or disprove $\mathrm{I}\left(\mathbf{X} ; \mathrm{Y}_{1}, \mathrm{Y}_{2}\right) \leq \mathrm{I}\left(\mathbf{X} ; \mathrm{Y}_{1}\right)+\mathrm{I}\left(\mathbf{X} ; \mathrm{Y}_{2}\right)$.

HW\#1

* $\mathrm{I}\left(\mathrm{X}_{1}, \mathrm{X}_{2} ; \mathrm{Y}\right)$ and $\mathrm{I}(\mathbf{X} ; \mathrm{Y})$. Are they different?
* Recall the HW\#0 problem on the joint distribution of U and V.
(a) For the first case where $\mathrm{p}_{1}=0.1$ and $\mathrm{p}_{2}=0.2$, find the following measures: $\mathrm{H}(\mathrm{U}), \mathrm{H}(\mathrm{V})$, $\mathrm{H}\left(\mathrm{U} \mid \theta_{1}\right), \mathrm{H}\left(\mathrm{V} \mid \theta_{2}\right), \mathrm{H}(\mathrm{U} \mid \mathrm{V}), \mathrm{H}(\mathrm{V} \mid \mathrm{U}), \mathrm{H}(\mathrm{U}, \mathrm{V}), \mathrm{I}(\mathrm{U} ; \mathrm{V}), \mathrm{I}(\mathrm{U} ; \theta), \mathrm{I}(\mathrm{V} ; \theta)$.
(b) Repeat for $\mathrm{p}_{1}=0.01$ and $\mathrm{p}_{2}=0.02$.
(c) Note there is a notable change in $\mathrm{I}(\mathrm{U} ; \mathrm{V})$ between (a) and (b). Describe this change and make qualitative statements explaining the change. What would happen to $I(U ; V)$ when p_{1} and p_{2} approach zero? What would happen if they both approach $1 / 2$.

