
Independence of Two Random Variables 

 

Definition. We define two random variables X  and Y  to be independent if  

 Pr( , ) Pr( ) Pr( )X x Y y X x Y y= = = = =  for all x∈  and y∈   (1.1) 

where   and   are the alphabet of the random variable X and that of Y  respectively.  

 

Example) Let ~ ( )X p x   for {0,1}=   and ~ ( )Y p y   for {0,1}=  . Let ( 0) 0.4p x = =  
and ( 1) 0.6p x = = . Let ( 0) 0.3p y = =  and ( 1) 0.7p y = = . Let the joint distribution be  
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Q1. Are X  and Y  independent? 

We note that the joint distribution ( , )p x y   is equal to the product distribution 
( ) ( )p x p y  for all x∈  and y∈ . Thus, the two are independent. 

Q2. What is the mutual information ( ; )I X Y ? 

Since the mutual information is the relative distance ( ( , ) || ( ) ( ))D p x y p x p y  , it is 
equal to zero.  

  



Independence of Two Random Variables iff Zero 
Mutual Information 

 

Now consider two different random variables U  and V . We know that ( ; ) 0I U V = .  

Q3. Can we say that the two random variables U  and V are independent with each other?  

The answer is YES. 

Proof: Let us use the definition of mutual information, i.e., 
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It is not obvious to say that ( , ) ( ) ( )p u v p u p v=  for all u∈  and v∈ . Why? 

Now let us try to use the Jenson’s inequality: 
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 (1.4) 

For the second line, we have used the Jensen’s inequality. Note that the logarithm is a strictly 
concave function. For the strictly concave functions, the only way the equality is met is the 
case when the function is evaluated at a single fixed point.  

The proof for the equality part is left to the readers, not explicitly given in the text by Cover 
and Thomas. See Theorem 2.6.2 of Cover and Thomas. The equality at the second line holds 

only if ( ) ( )
( , )

p u p v
p u v

 is a constant for all for all u∈  and v∈ . But the constant has to be 

1.0, since otherwise the result in the fourth line cannot be met.   

Thus, we have proved the following theorem.  

 

Theorem. ( ; ) 0.0I U V =  if and only if U and V are independent with each other.  

 

  



Jensen’s Inequality 

Definition. Jensen’s inequality is one of the fundamental tools very frequently used in 
information theory.  

A function ( )f x is said to be convex over an interval ( , )a b , if for every 1x , 2x ( , )a b∈  and 
0.0 1.0λ≤ ≤ ,  

 ( )1 2 1 2(1 ) ( ) (1 ) ( )f x x f x f xλ λ λ λ+ − ≤ + − . (1.5) 

It is said strictly convex if the equality holds only if 1.0λ =  or 0.0λ = .  

A function f is concave if f− is convex.  

Examples of convex functions include 2x  and x .  

Examples of concave functions include log( ),x x  over 0x ≥ .  

 

Theorem. (Jensen’s Inequality) If f is a convex function and X is a random variable,  

 ( ) ( )f X f X≥  .  (1.6) 

In addition, if f is strictly convex, the equality in (1.6) implies that X is degenerate such 
that ( )X X=   with probability 1.  

Proof. The inequality part is easy. Just apply the definition of convex function (1.5) repeatedly. 
That’s the approach taken in the proof of Theorem 2.6.2 by Cover and Thomas. But the equality 
part was not given there. It was left as a reader’s exercise.  

Proof of the equality part or the meaning of it. Take a look at the convex function again. When 
the function is strictly convex, the equality part shall be removed. That is, for a strictly convex 
function, ( )1 2 1 2(1 ) ( ) (1 ) ( )f x x f x f xλ λ λ λ+ − < + −   for every 1x  , 2x ( , )a b∈  . The equality 

part holds only if ( )X X=  is a constant, i.e., ( )Pr ( ) 1.0X X= = .   

  



Typographical Correction IN HW#1 

1. In HW#1, the last problem. 1θ  should be 1e . 2θ  should be 2e . 

  



Example on Sufficient Statistics 
 
Setting: Consider a sequence of coin tosses 1X , 2X , …, nX , independent and identically 
distributed (i.i.d.) with {0,1}iX ∈  with an unknown parameter : Pr{ 1}iXθ = = .  

Statement: Given the total number n   of coin tosses, the number of 1s in n-tosses is a 
sufficient statistic for inference on θ .   

Is the statement True or False? 

 

Sketch of Proof:  

Let 1 2
1

( , ,..., ) :
n

n i
i

T X X X X
=

=∑ .  

To show that T is a sufficient statistic for θ , we need to show ( ; ) ( ; )I X I Tθ θ= . 

It can be also proven by showing T Xθ → →  MC. This relation T Xθ → →  can be 
proven by showing that the following holds:  

 ( )Pr | , Pr( | )X x T t c X x T tθ= = = = = =  (1.7) 

where 1 2: ( , ,..., )nx x x x= , {0,1}ix ∈ , {0,1,2,..., }t n∈  and (0,1]c∈ .   

 

There are two parts: 

1. Show X Tθ → →  

To show this, we will show Pr{ | , } Pr( | )T X T Xθ =  

 

2. Show T Xθ → →  

To show this, we will show Pr{ | , } Pr( | )X T X Tθ =  

 

The first part: Show X Tθ → →  
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   Q.E.D. 

 

 

The second part: Show T Xθ → → : 

First, note that  
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Second, note that 
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Third, note that  



 

( ){ } ( ){ }

( ){ }
( )

1 2
1 2

1 2

1 2

1

Pr , ,..., , |
Pr , ,..., | ,

Pr{ | }
Pr , ,..., , |

Pr{ , ,..., , | }

(1 )    if 
(1 )

0.0                        o.w.

1

n
n

n

n
x

t n t n

i
it n t

X x x x T t c
X x x x c T t

T t c
X x x x T t c

X x x x T t c

c c x t
n

c c
t

n
t

θ
θ

θ

θ
θ

−

=−

= = =
= = = =

= =

= = =
=

= = =

 −
=  −=  

 



=

∑

∑

1
   if 

0.0              o.w.

n

i
i

x t
=


= 

 
 



∑

 (1.11) 

Fourth, we consider ( ){ }1 2Pr , ,..., |nX x x x T t= =   but this will result in the same. What 

matters the case where the sum satisfies
1

n

i
i

x t
=

=∑ . Thus, we focus on such event. Namely, we 

have  
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 (1.12) 

 

Q.E.D. 


