Hamming Codes

Heung-No Lee 2020-11-08

Binary Waves Carry Your Voice

- Sound waves \rightarrow Analog Digital Conversion \rightarrow Bit stream
- Electro magnetic waves are used to present a bit.
- The most simple one is ON-OFF communications.
- Bit Flip Errors occur during transmission and reception process.

Internet Channel ~ erasures occur!

- Idea inception, 1960s, USA.
 - ARPANET
- Researchers @UCLA, UCSB, SRI, U-UTAH
 - 1969, 4 computers
 - The 1st remote login success (UCLA Professor Kleinrock)
 - Information packets are used.
 - Packets may be dropped, if congested.

Hamming Codes (1950)

- Length 7 Bit Pattern
- Four bits are *information* bits
- Three bits are *check* bits
- Together is a codeword.
- Check bits are added to correct errors!
- **How**: make codeword bits related with each other!
- **Relation**: All numbers inside a circle should sum up to zero.

m ₁	m ₂	m ₃	m ₄	p ₁	p ₂	p ₃
----------------	----------------	----------------	----------------	----------------	----------------	-----------------------

Channel Coding

- Message
- Encoding: tx message \rightarrow codeword
- Channel: codeword \rightarrow Received codeword
- Decoding: received codeword → decoded codeword → decoded message
- Decoding error: tx message is not equal to dec message.

Hamming Codes (1950) : Encoding Ex 1

Info bits are
 (1, 0, 1, 1)

- What is the codeword?
- (1, 0, 1, 1, p₁, p₂, p₃)?
 p₁ = ?
 p₂ = ?
 p₃ = ?

Hamming Codes (1950) : Codeword

- Info bits are
 (1, 0, 1, 1)
- What is the codeword?
- (1, 0, 1, 1, p₁, p₂, p₃)?
 p₁ = 1
 p₂ = 0
 - $p_3 = 0$

Hamming Codes (1950) : Encoding Ex 2

Hamming Codes (1950) : Codeword

Decoding Ex 1

- Suppose the transmitted word is (0, 0, 0, 1, 1, 1, 1)
- Suppose the 2nd bit is flipped.
- Namely, received is (0, 1, 0, 1, 1, 1, 1).
- Let's write the results into the diagram and try to decode it.
- 1st circle is O.K.
- 2nd, 3rd circles are NG.
- Note m2 = 0 makes both OK.
- Error corrected!

Decoding Exercise 2:

Decoding Exercise 3:

Correctable?

One bit correction \rightarrow No

Two bit correction \rightarrow (0 0 0 0 0 0 0) (1 0 1 1 1 0 0) ... not unique

- Let Tx codeword be (0, 0, 0, 1, 1, 1, 1)
- 1st and 2nd erased
- Rx codeword be (x, x, 0, 1, 1, 1, 1).
- Let us decode it.
- 2nd circle has two erasures.
- Set $m_1 = 0$, at 1^{st} circle.
- Set $m_2 = 0$, at 3^{rd} circle.

- 받은 비트 패턴이 (x, 1, x, 1, 1, 1, 1).
- 1st circle: 2 erasures \rightarrow wait
- 2^{nd} circle: $m_1 = 1$.
- 3^{rd} circle: $m_3=1$.

- Three erasures
- Decoding possible?

- Two possible answers are (1, 1, 1) and (0,0,0).
- Not uniquely decodable!

- Three erasures occurred!
- Decodable or not?

Challenges

20

• How many bit flip errors can be corrected?

• Up to how many erasures can be corrected?

Check Equations

- Three check equations
 - $m_1 + m_3 + m_4 + p_1 = 0$
 - $m_1 + m_2 + m_4 + p_2 = 0$
 - $m_2 + m_3 + m_4 + p_3 = 0$
- Relation among bits
 - Use this relation to encode
 - Use this relation to decode

• With simple simultaneous relations, we have learned that errors across a wireless channel or an Internet channel can be corrected at the receiver.

Parity Check Matrix \mathcal{M}_1 m_{2} $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \begin{vmatrix} m_3 \\ m_4 \\ p_1 \end{vmatrix}$ p_2 0 = Hc

Parity check matrix H
 Hc = 0
 Hr = H(c + e)

 He
 s

 4. s is called syndrome.
 For a single error pattern, syndrome is unique.

Graph Representation vs. Matrix Equation

Standard Array

No error + 7 single error patterns All 2^3 patterns

	m	р	0000000	0000001	0000010	0000100	0001000	0010000	0100000	1000000	
All 2^4	0000	000	0000000	0000001	0000010	0000100	0001000	0010000	0100000	1000000	
codewords	0001	111	0001111	0001110	0001101	0001011	0000111	0011111	0101111	1001111	
r = c + e	0010	101	0010101	0010100	0010111	0010001	0011101	0000101	0110101	1010101	
	0011										
All 2^7 rec.	0100										
words	0101										
	0110										
Each received	0111										
word appears	1000										
	1001										
once.	10										
Figure out the											
error pattern											
	1111	111									

Hamming Code HW Problems

- 1. Find all single error patterns of (7, 4) Hamming codes. Show each error pattern is correctable.
- 2. Find all double error patterns of (7, 4) Hamming codes. Prove/disprove. Some double error patterns are correctable.
- 3. Find all single and double erasure patterns of (7, 4) Hamming codes. Prove/disprove. All up to double erasures can be corrected.
- 4. Prove/disprove. There are some triple erasures that can be corrected.

Hamming Code HW Problems

• (Bit flip channel) Consider a binary symmetric channel. Input set is {0, 1} and output set is {0, 1}. The conditional probability p(y|x) is given by

P(y x)	y=0	y=1
x=0	1 – p	р
x=1	р	1 – p

- The channel introduces bit error probability of p = 0.1.
- Suppose using the (7, 4) Hamming code over the channel.
- Find the probability of *information* bit error using (7, 4) Hamming code. Assume the message bits are equi-probable.