Information Theory

$2^{\text {nd }}$ Module

Agenda

- Markov Chain and Entropy
- Sufficient Statistics
* Fano's Inequality
* Different Types of Convergences
* Asymptotic Equipartition Property
* High Probable Set vs. Typical Set
* Homeworks

Markov Chain

Consider random variables X, Y, and Z .
A chain of random variables $\mathrm{X} \rightarrow \mathrm{Y} \rightarrow \mathrm{Z}$ is called Markov chain if

$$
\mathrm{p}(\mathrm{z} \mid \mathrm{x}, \mathrm{y})=\mathrm{p}(\mathrm{z} \mid \mathrm{y}) .
$$

* Note it implies $p(x, z \mid y)=p(x \mid y) p(z \mid x, y)=p(x \mid y) p(z \mid y)$
- The first equality is due to conditional probability.
- The second is due to Markov chain.
- Thus, a MC X $\rightarrow \mathrm{Y} \rightarrow \mathrm{Z}$ implies, conditional independence between X and Z knowing Y .
Conditioning on current, future and past are independent.

Data Processing Inequality

If $\mathrm{X} \rightarrow \mathrm{Y} \rightarrow \mathrm{Z}$, then $\mathrm{I}(\mathrm{X} ; \mathrm{Y}) \geq \mathrm{I}(\mathrm{X} ; \mathrm{Z})$
Proof:

$$
\begin{gathered}
\mathrm{I}(\mathrm{X} ; \mathrm{Y}, \mathrm{Z})=\mathrm{I}(\mathrm{X} ; \mathrm{Y})+\mathrm{I}(\mathrm{X} ; \mathrm{Z} \mid \mathrm{Y}) \\
\text { or } \quad \\
=\mathrm{I}(\mathrm{X} ; \mathrm{Z})+\mathrm{I}(\mathrm{X} ; \mathrm{Y} \mid \mathrm{Z})
\end{gathered}
$$

- We know $\mathrm{I}(\mathrm{X} ; \mathrm{Z} \mid \mathrm{Y})=0$ and $\mathrm{I}(\mathrm{X} ; \mathrm{Y} \mid \mathrm{Z}) \geq 0$ (why?)
- Thus, I(X; Y) $\geq \mathrm{I}(\mathrm{X} ; \mathrm{Z})$
- Equality iff $\mathrm{I}(\mathrm{X} ; \mathrm{Y} \mid \mathrm{Z})=0$, i.e., $\mathrm{X} \rightarrow \mathrm{Z} \rightarrow \mathrm{Y}$ is a Markov chain.
* Let's use $\mathrm{Z}:=\mathrm{g}(\mathrm{Y})$, a function of Y .
* The function implies an arbitrary data processing on Y.
*The inequality implies then any data processing will not help us understand X any better.

Markov Chain

Consider a Markov chain, $\mathrm{X}_{0}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$

- Transition matrix $\mathbf{P}=[1-\mathrm{p} \mathrm{q} \mathrm{;} \mathrm{p} \mathrm{1-q]}$
- Initial distr. $\pi=[\alpha ; 1-\alpha]$;
- Stationary distr. $\mathrm{s}_{0}=\mathrm{q} /(\mathrm{p}+\mathrm{q}), \mathrm{s}_{1}=\mathrm{p} /(\mathrm{p}+\mathrm{q}), \mathbf{s}=\left[\mathrm{s}_{0} ; \mathrm{s}_{1}\right]$
$-\left[\operatorname{Pr}\left\{\mathrm{X}_{1}=0\right\} ; \operatorname{Pr}\left\{\mathrm{X}_{1}=1\right\}\right]=\mathbf{P} \boldsymbol{\pi}$
$-\operatorname{Pr}\left\{\mathrm{X}_{1}=0\right\}=\operatorname{Pr}\left\{\mathrm{X}_{1}=0 \mid \mathrm{X}_{0}=0\right\} \operatorname{Pr}\left\{\mathrm{X}_{0}=0\right\}+\operatorname{Pr}\left\{\mathrm{X}_{1}=0 \mid \mathrm{X}_{0}=1\right\} \operatorname{Pr}\left\{\mathrm{X}_{0}=1\right\}$
$-\operatorname{Pr}\left\{\mathrm{X}_{1}=1\right\}=\operatorname{Pr}\left\{\mathrm{X}_{1}=1 \mid \mathrm{X}_{0}=0\right\} \operatorname{Pr}\left\{\mathrm{X}_{0}=0\right\}+\operatorname{Pr}\left\{\mathrm{X}_{1}=1 \mid \mathrm{X}_{0}=1\right\} \operatorname{Pr}\left\{\mathrm{X}_{0}=1\right\}$

Markov Chain and Entropy

Distr. at any n is $\mathbf{t}_{\mathrm{n}}:=\left[\operatorname{Pr}\left\{\mathrm{X}_{\mathrm{n}}=0\right\} ; \operatorname{Pr}\left\{\mathrm{X}_{\mathrm{n}}=1\right\}\right]=\mathbf{P}^{\mathrm{n}} \boldsymbol{\pi}$
The stationary distr. is $\mathbf{s}=\lim _{\mathrm{n} \rightarrow \infty} \mathbf{t}_{\mathbf{n}}$

- Or, simply solve $\mathbf{s}=\mathbf{P s}$.
* Ex) $\mathrm{p}=0.1, \mathrm{q}=0.3, \mathrm{P}=[0.90 .3 ; 0.10 .7], \mathrm{P}^{\infty}=[0.75$
$0.75 ; 0.250 .25], \mathbf{s}=[0.75 ; 0.25]$
Consider the following cases
$-\pi \sim$ uniform, $\mathbf{s} \sim$ non-uniform: $\mathrm{H}\left(\mathbf{t}_{\mathbf{n}}\right)$ is decreasing toward $\mathrm{H}(\mathbf{s})$
$-\pi \sim$ non-uniform, $\mathbf{s} \sim$ uniform: $\mathrm{H}\left(\mathbf{t}_{\mathbf{n}}\right)$ is increasing toward $\mathrm{H}(\mathbf{s})$

The Second Law of Thermodynamics

* Entropy of an isolated system is non-decreasing.

This comes from the notion that the micro states in a thermodynamic system reach equally likely states in equilibrium (uniform stationary distr.)

- If started off with non-uniform initial distr., then, entropy increases.
- If started off with uniform initial distr. \rightarrow then, entropy stays the same.

Sufficient Statistics

* Suppose an index set $\{\theta: 1,2, \ldots, n\}$ and a family of pmf's parameterized by $\theta,\left\{\mathrm{f}_{1}(\mathrm{x}), \mathrm{f}_{2}(\mathrm{x}), \ldots, \mathrm{f}_{\mathrm{n}}(\mathrm{x})\right\}$.
Let
- X be a sample from a distribution in this family and
- $T(X)$ be a function of the sample (a statistic) for inference of θ.
- MC: $\theta \rightarrow \mathrm{X} \rightarrow \mathrm{T}(\mathrm{X})$

Thus, in general $\mathrm{I}(\theta ; \mathrm{X}) \geq \mathrm{I}(\theta ; \mathrm{T}(\mathrm{X}))$.

* When the equality is achieved, we call $\mathrm{T}(\mathrm{X})$
a sufficient statistic for inference on θ.
- Basically, it implies that $\mathrm{T}(\mathrm{X})$ contains all the information for θ.
- No loss of information for θ.

Example on Sufficient Statistics

© Consider a sequence of coin tosses, $X_{1}, X_{2}, \ldots, X_{n}$, iid with $X_{i} \in\{0,1\}$, with an unknown parameter $\theta=\operatorname{Pr}\left\{\mathrm{X}_{\mathrm{i}}=1\right\}$.

* Given n, the number of 1 's in n-trials is a sufficient statistic for θ.
- $T\left(X_{1}, \ldots, X_{n}\right)=\sum_{i=1}{ }^{n} X_{i}$
- $\operatorname{Pr}\left\{\mathrm{X}_{1}=1, \mathrm{X}_{2}=1, \ldots, \mathrm{X}_{n}=0\right.$, i.e. $k 1$'s $\}=\theta^{k}(1-\theta)^{\mathrm{n}-k}$, for any $k \in\{0,1, \ldots, \mathrm{n}\}$
* Also $\hat{\theta}=\frac{T}{n}$ is the sufficient statistic for θ.
*Thus, we note that $\operatorname{Pr}\left\{\mathrm{X}_{1}=\mathrm{x}_{1}, \mathrm{X}_{2}=\mathrm{x}_{2}, \ldots, \mathrm{X}_{n}=\mathrm{x}_{\mathrm{n}} \mid \mathrm{T}=k\right\}$

$$
=\left\{\begin{array}{l}
1 /(n \text { choose } k) \text { if } \sum_{\mathrm{i}=1}{ }^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}=\mathrm{k} \\
0 \quad \text { o.w. }
\end{array}\right.
$$

* θ is independent of the sequence $\left\{X_{i}\right\}$ given T. Thus, $\theta \rightarrow T \rightarrow\left\{X_{i}\right.$, $\mathrm{i}=1, \ldots, \mathrm{n}\}$ forms a MC. Thus, T is sufficient statistic for θ.

Sufficient Statistics (2 ${ }^{\text {nd }}$ Ex)

Other examples of sufficient statistics

Fano's Inequality

Consider the problem of "send X , observe Y , and make a guess $\mathrm{g}(\mathrm{Y})$ on X ."
Note that $\mathrm{X} \rightarrow \mathrm{Y} \rightarrow \mathrm{X}^{\prime}=\mathrm{g}(\mathrm{Y})$ forms a MC.

* FI relates the $\mathrm{P}_{\mathrm{e}}:=\operatorname{Pr}\left\{\mathrm{X}^{\prime}:=\mathrm{g}(\mathrm{Y}) \neq \mathrm{X}\right\}$ with $\mathrm{H}(\mathrm{X} \mid \mathrm{Y})$.

We already know $\mathrm{H}(\mathrm{X} \mid \mathrm{Y}) \geq 0$ with "=" iff X is a func. of Y:
$-\operatorname{Pr}\left\{\mathrm{X}^{\prime}(\mathrm{Y}) \neq \mathrm{X}\right\}=0$ iff $\mathrm{H}(\mathrm{X} \mid \mathrm{Y})=0$
*Thus, we expect "small P_{e} for small $\mathrm{H}(\mathrm{X} \mid \mathrm{Y})$."

Fano's Inequality

* A thought experiment
y_{1} observed: two possibilities on X
- P_{e} is $1 / 2$
y_{2} observed: 4 possibilities on X
- P_{e} is $3 / 4$
* We can divide the set $\{X=x\}$ into two

Two sets: errors and corrects disjoint sets
$-\left\{\mathrm{X}^{\prime}=\mathrm{X}\right\}=\{1,3,7,8\}$
$-\left\{X^{\prime} \neq X\right\}=\{2,4,5,6\}$

Fano's Inequality (2)

$\mathrm{H}\left(\mathrm{P}_{\mathrm{e}}\right)+\mathrm{P}_{\mathrm{e}} \log (|\mathcal{X}|-1) \geq \mathrm{H}(\mathrm{X} \mid \mathrm{Y})$
Or a weaker version is

$$
\begin{aligned}
& 1+\mathrm{P}_{\mathrm{e}} \log |X| \geq \mathrm{H}(\mathrm{X} \mid \mathrm{Y}) \text { or } \\
& \mathrm{P}_{\mathrm{e}} \geq(\mathrm{H}(\mathrm{X} \mid \mathrm{Y})-1) / \log |\mathcal{X}|
\end{aligned}
$$

Proof:
Consider $\mathrm{E}:= \begin{cases}1 & \text { if } \mathrm{X}^{\prime} \neq \mathrm{X} \\ 0 & \text { o.w. }\end{cases}$
Chain rule gives $\mathrm{H}(\mathrm{E}, \mathrm{X} \mid \mathrm{Y})=\mathrm{H}(\mathrm{X} \mid \mathrm{Y})+\mathrm{H}(\mathrm{E} \mid \mathrm{X}, \mathrm{Y})$

$$
=\mathrm{H}(\mathrm{E} \mid \mathrm{Y})+\mathrm{H}(\mathrm{X} \mid \mathrm{Y}, \mathrm{E})
$$

Fano's Inequality (3)

$$
\begin{aligned}
H(X \mid Y)+H(E \mid X, Y) & =H(E \mid Y)+H(X \mid Y, E) \\
& \leq H(E)=H\left(P_{e}\right) \leq 1.0
\end{aligned}
$$

The last term can be bounded as

$$
\begin{gathered}
\mathrm{H}(\mathrm{X} \mid \mathrm{Y}, \mathrm{E})=\operatorname{Pr}\{\mathrm{E}=1\} \mathrm{H}(\mathrm{X} \mid \mathrm{Y}, \mathrm{E}=1\}+\operatorname{Pr}\{\mathrm{E}=0\} \mathrm{H}(\mathrm{X} \mid \mathrm{Y}, \mathrm{E}=0\} \\
=\mathrm{P}_{\mathrm{e}} \sum_{\mathrm{y}} \mathrm{p}(\mathrm{y}) \mathrm{H}(\mathrm{X} \mid \mathrm{Y}=\mathrm{y}, \mathrm{E}=1) \\
--- \text { But, we know } \mathrm{H}(\mathrm{X} \mid \mathrm{Y}=\mathrm{y}, \mathrm{E}=1) \leq \log (|\mathcal{X}|-1) \\
\left.\quad \text { for any y (There is at least one } \omega \mathrm{X}^{\prime}(\omega)=\mathrm{X}(\omega)\right) \\
\leq \mathrm{P}_{\mathrm{e}} \log (|X|-1)
\end{gathered}
$$

Therefore,

$$
\mathrm{H}(\mathrm{X} \mid \mathrm{Y}) \leq \mathrm{H}\left(\mathrm{P}_{\mathrm{e}}\right)+\mathrm{P}_{\mathrm{e}} \log (|X|-1) \leq 1+\mathrm{P}_{\mathrm{e}} \log (|\mathcal{X}|-1) \quad \text { Q.E.D. }
$$

Types of Convergences

- In distribution: $\mathrm{X}_{\mathrm{n}} \Rightarrow \mathrm{X}$ in distribution if

$$
\mathrm{F}_{\mathrm{n}}(\mathrm{x})=\operatorname{Pr}\left\{\mathrm{X}_{\mathrm{n}} \leq \mathrm{x}\right\} \rightarrow \mathrm{F}(\mathrm{x})=\operatorname{Pr}\{\mathrm{X} \leq \mathrm{x}\} \text { as } \mathrm{n} \rightarrow \infty
$$

- Ex) Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots$ iid fair binary $\{-1,+1\}$ rvs. Then, $\mathrm{S}_{\mathrm{n}}=(1 / \mathrm{sqrt}(\mathrm{n})) \sum_{\mathrm{i}=1}{ }^{\mathrm{n}}$ X_{i}. Then, $\mathrm{F}_{\mathrm{n}}(\mathrm{y}):=\operatorname{Pr}\left(\mathrm{S}_{\mathrm{n}} \leq \mathrm{y}\right) \rightarrow \mathcal{N}(0,1)$ (C.L.T.)
* In probability: $\mathrm{X}_{\mathrm{n}} \Rightarrow \mathrm{X}$ in probability as $\mathrm{n} \rightarrow \infty$ if $\forall \varepsilon>0$

$$
\operatorname{Pr}\left\{\omega:\left|\mathrm{X}_{\mathrm{n}}(\omega)-\mathrm{X}(\omega)\right|>\varepsilon\right\} \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty
$$

- In almost sure, almost everywhere sense, or with prob. 1:
$\mathrm{X}_{\mathrm{n}} \Rightarrow \mathrm{X}$ a.s. as $\mathrm{n} \rightarrow \infty$, if
$--\operatorname{Pr}\left\{\omega: \lim X_{n}(\omega)=X(\omega)\right\}=1$, or
-- For $\forall \varepsilon, \operatorname{Pr}\left\{\omega:\left|\mathrm{X}_{\mathrm{n}}(\omega)-\mathrm{X}(\omega)\right|>\varepsilon\right.$, i.o. $\}=0$, as $\mathrm{n} \rightarrow \infty$
In $L^{2}: \mathrm{X}_{\mathrm{n}} \Rightarrow \mathrm{X}$ in L^{2}, if $\mathrm{E}\left\{\left|\mathrm{X}_{\mathrm{n}}-\mathrm{X}\right|^{2}\right\} \rightarrow 0$, as $\mathrm{n} \rightarrow \infty$

Relationship Between Different Types

Richard Durrett, Probability: Theory and Examples, 1991, Wadsworth

" $X_{n} \Rightarrow X$ a.s." $\Rightarrow " X_{n} \Rightarrow X$ in prob."

- $X_{n} \Rightarrow X$ a.s. implies that for $\forall \varepsilon>0$

$$
\lim _{k \rightarrow \infty} P\left\{\bigcup_{n \geq k}\left[\left|X_{n}-X\right|>\varepsilon\right]\right\}=0
$$

Since $\left\{\left|X_{k}-X\right|>\varepsilon\right\} \subseteq \bigcup_{n \geq k}\left\{\left|X_{n}-X\right|>\varepsilon\right\}$,

$$
\operatorname{Pr}\left\{\left|X_{k}-X\right|>\varepsilon\right\} \leq \operatorname{Pr}\left(\bigcup_{n} \geq \mathrm{k}\left\{\left|\mathrm{X}_{\mathrm{n}}-\mathrm{X}\right|>\varepsilon\right\}\right)
$$

Taking the limit on both sides, $\lim _{\mathrm{k} \rightarrow \infty} \operatorname{Pr}\left\{\left|\mathrm{X}_{\mathrm{k}}-\mathrm{X}\right|>\varepsilon\right\} \leq \lim _{\mathrm{k} \rightarrow \infty} \operatorname{Pr}\left(\mathrm{U}_{\mathrm{n} \geq \mathrm{k}}\left\{\left|\mathrm{X}_{\mathrm{n}}-\mathrm{X}\right|>\varepsilon\right\}\right)=0$ Q.E.D.

$X_{n} \Rightarrow X$ in prob. $\geqslant X_{n} \Rightarrow X$ a.s.
 (Converse is not true)

* Consider a series of r.v.'s $X_{n}:=1_{A n}$ where A_{n} are defined as
$\mathrm{A}_{1}=[0,1]$;
$\mathrm{A}_{2}=[0,1 / 2), \mathrm{A}_{3}=[1 / 2,1] ;$
$\mathrm{A}_{4}=[0,1 / 4), \mathrm{A}_{5}=[1 / 4,1 / 2), \mathrm{A}_{6}=[1 / 2$, $3 / 4), \mathrm{A}_{7}=[3 / 4,1]$;

Let $\operatorname{Pr}\left\{\mathrm{X}_{\mathrm{n}}=1\right\}=$ length $\left(\mathrm{A}_{\mathrm{n}}\right)($ Lebesque $)$
Now, let $\mathrm{X}=0$. Then,
For $\forall \varepsilon>0, \operatorname{Pr}\left(\left|\mathrm{X}_{\mathrm{n}}-\mathrm{X}\right|>\varepsilon\right) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$

* But, $\left\{\omega: \lim X_{n}(\omega)=X(\omega)\right\}=\emptyset$ Thus, $\operatorname{Pr}\left\{\omega: \lim X_{n}(\omega)=X(\omega)\right\}=0$. Q.E.D.

Example for both "in prob." and "a.s."

- Consider a series of r.v. $\mathrm{X}_{\mathrm{n}}=1_{\mathrm{An}}$ where $\mathrm{A}_{1}=[01] ; \mathrm{A}_{\mathrm{n}}=[0$, $1 / n]$, with the Lebesque measure as the prob.
Let $\mathrm{X}=0$.
With this example, we note that $X_{n} \Rightarrow X$ in both "in prob" and "a.s." senses

Laws of Large Numbers

Weak Law of Large Numbers: Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots$ be i.i.d. with $\mathrm{E}\left|\mathrm{X}_{1}\right|<\infty$ and $\mathrm{E}\left\{\mathrm{X}_{1}\right\}=\mu$, and as $\mathrm{n} \rightarrow \infty$,

$$
\mathrm{S}_{\mathrm{n}} / \mathrm{n} \Rightarrow \mu \text { in probability }
$$

where $S_{n}=X_{1}+X_{2}+\ldots+X_{n}$.
Strong Law of Large Numbers: $\mathrm{S}_{\mathrm{n}} / \mathrm{n} \Rightarrow \mu$ a.s. as $\mathrm{n} \rightarrow \infty$.

- That is, it is in fact a.s.
* L2 Weak Law: Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ be uncorrelated r.v.'s with $\mathrm{E}\left\{\mathrm{X}_{\mathrm{i}}\right\}=\mu$ and $\operatorname{var}\left(\mathrm{X}_{\mathrm{i}}\right) \leq \mathrm{C}<\infty$. Then, as $\mathrm{n} \rightarrow \infty$

$$
\mathrm{S}_{\mathrm{n}} / \mathrm{n} \Rightarrow \mu \text { in } \mathrm{L}^{2}
$$

Surface Hardening

* A high-dimensional cube $[-1,1]^{\mathrm{n}}$ is almost the boundary of a ball.
* Let X_{1}, X_{2}, \ldots be independent uniformly distributed on $[-1,1]$.
- Then, $E X_{i}^{2}=1 / 3$.
* Then, the WLLN implies $\left(\mathrm{X}_{1}^{2}+\ldots+\mathrm{X}_{\mathrm{n}}^{2}\right) / \mathrm{n} \rightarrow 1 / 3$ in probability as $\mathrm{n} \rightarrow \infty$
* Consider an n-dimensional random vector $\mathbf{X}:=\left(\mathbf{X}_{1}\right.$,

Length ${ }^{2}=$ norm 2
$=\sum \mathrm{xi}^{2}$ $\left.\ldots, X_{n}\right)$, and its length $\|\mathbf{X}\|=\operatorname{sqrt}\left(X_{1}{ }^{2}+\ldots+X_{n}{ }^{2}\right)$

* Thus, for $\forall \varepsilon>0$, you can always find a large enough n, such that $\operatorname{Pr}\left\{\left|\|\mathbf{X}\|^{2} / n-1 / 3\right|>\varepsilon\right\} \approx 0$
* $\operatorname{Pr}\left\{\mathbf{X} \in \mathrm{R}^{\mathrm{n}}: 1 / 3-\varepsilon<\|\mathbf{X}\|^{2} / \mathrm{n}<1 / 3+\varepsilon\right\} \approx 1$

$$
\operatorname{Pr}\left\{\mathbf{X} \in R^{n}: \sqrt{n(1 / 3-\epsilon)}<\|\mathbf{X}\|<\sqrt{n(1 / 3+\epsilon)}\right\} \approx \mathbf{1}
$$

Asymptotic Equi-partition Property

Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots$, i.i.d. with $\mathrm{p}(\mathrm{x})$.
The sample entropy
$-\mathrm{H}_{\mathrm{n}}{ }^{\prime}=-(1 / \mathrm{n}) \log \mathrm{p}\left(\mathrm{X}_{1}=\mathrm{x}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}=\mathrm{x}_{1}\right)=-(1 / \mathrm{n}) \sum_{\mathrm{i}} \log \mathrm{p}\left(\mathrm{X}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}\right)$
Converges in prob. to the true entropy $\mathrm{H}(\mathrm{X})=-\sum_{\mathrm{i}} \mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right) \log \mathrm{p}\left(\mathrm{X}_{1}=\mathrm{x}_{\mathrm{i}}\right)$.
As $n \rightarrow \infty, \Omega$ can be divided into two mutually exclusive sets: The typical set and the non-typical set.

- The sequences in the typical set have the sample entropy $\approx H(X)$
- Those in the non-typical set have the sample entropy $\neq \mathrm{H}(X)$

From WLLN, $\operatorname{Pr}\{$ Typical set $\} \approx 1.0$ as $\mathrm{n} \rightarrow \infty$

Asymptotic Equi-partition Property (2)

AEP: If $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots$ iid with $\mathrm{p}(\mathrm{x})$, then

$$
\begin{gathered}
\mathrm{H}_{\mathrm{n}}^{\prime}:=-(1 / \mathrm{n}) \log \mathrm{p}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right)=-(1 / \mathrm{n}) \sum_{\mathrm{i}} \log \mathrm{p}\left(\mathrm{X}_{\mathrm{i}}\right) \\
\Rightarrow-\mathrm{E}\left(\log \mathrm{p}\left(\mathrm{X}_{1}\right)\right)=\mathrm{H}(\mathrm{X}) \text { in prob. }
\end{gathered}
$$

(due to WLLN)
This means, for $\forall \varepsilon>0$
$\operatorname{Pr}\left\{\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right):\left|\mathrm{H}_{\mathrm{n}}{ }^{\prime}-\mathrm{H}(\mathrm{X})\right|>\varepsilon\right\} \rightarrow 0$ as $\mathrm{n} \rightarrow 0$

- Prob. of the atypical set goes to zero
- Prob. of the typcial set goes to 1

We can divide the entire set Ω, the set of all possible sequences of length n, into two mutually exclusive sets

- Typical set $\mathrm{A}_{\varepsilon}{ }^{(\mathrm{n})}:=\left\{\left(\mathrm{x}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right):\left|\mathrm{H}_{\mathrm{n}}{ }^{\prime}-\mathrm{H}\left(\mathrm{X}_{1}\right)\right| \leq \varepsilon\right\}$
- Atypical set $\Omega-\mathrm{A}_{\varepsilon}^{(\mathrm{n})}$

A sequence in the Typical Set $\mathrm{A}_{\varepsilon}{ }^{(\mathrm{n})}$

* For any sequence $\left(x_{1}, \ldots, x_{n}\right) \in A_{\varepsilon}^{(n)}:=\left\{\left(x_{1}, \ldots, x_{n}\right)\right.$:
$\left.\left|-(1 / n) \log p\left(x_{1}, \ldots, x_{n}\right)-H(X)\right| \leq \varepsilon\right\}$, the prob. of the sequence must have the following property

$$
\begin{aligned}
& \left|-(1 / \mathrm{n}) \log \mathrm{p}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)-\mathrm{H}(\mathrm{X})\right| \leq \varepsilon \\
& \mathrm{H}(\mathrm{X})-\varepsilon \leq-(1 / \mathrm{n}) \log \mathrm{p}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \leq \mathrm{H}(\mathrm{X})+\varepsilon \\
& 2^{-\mathrm{n}(\mathrm{H}(\mathrm{X})+\varepsilon)} \leq \mathrm{p}\left(\mathrm{x}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right) \leq 2^{-\mathrm{n}(\mathrm{H}(\mathrm{X})-\varepsilon)}
\end{aligned}
$$

Since we can choose a very small ε, the prob. of a sequence can be made very close to $2^{-\mathrm{nH}(\mathrm{X})}$, as $\mathrm{n} \rightarrow \infty$.

$\operatorname{Pr}\left\{\mathrm{A}_{\varepsilon}{ }^{(\mathrm{n})}\right\}>1-\varepsilon$, for n sufficiently large

* For any $\varepsilon>0$ and $\delta>0$, there exists an n_{o} such that $\mathrm{n}>\mathrm{n}_{0}$, $\operatorname{Pr}\left\{\left|-(1 / \mathrm{n}) \log \left[\mathrm{p}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right]-\mathrm{H}(\mathrm{X})\right| \leq \varepsilon\right\}>1-\delta$.
- Choose $\delta=\varepsilon$.

The Size of the Typical Set $\mathrm{A}_{\varepsilon}{ }^{(\mathrm{n})}$

The size of the typical set satisfies

1. $\left|\mathrm{A}_{\varepsilon}^{(\mathrm{n})}\right| \leq 2^{\mathrm{n}(\mathrm{H}(\mathrm{X})+\varepsilon)}$
2. $(1-\varepsilon) 2^{\mathrm{n}(\mathrm{H}(\mathrm{X})-\varepsilon)} \leq\left|\mathrm{A}_{\varepsilon}{ }^{(\mathrm{n}}\right|$

- Proof of 1: $1=\sum_{\mathbf{x} \in x^{n}} p(\mathbf{x})$

$$
\geq \sum_{\mathbf{x} \in \mathrm{A}_{\varepsilon}} \mathrm{p}(\mathbf{x})
$$

$$
\geq \sum_{\mathbf{x} \in \mathrm{A} \varepsilon} 2-\mathrm{n}(\mathrm{H}(\mathrm{X})+\varepsilon)
$$

$$
=\left|\mathrm{A}_{\varepsilon}{ }^{(\mathrm{n}}\right| \mid 2^{-\mathrm{n}(\mathrm{H}(\mathrm{X})+\varepsilon)} \quad \text { Q.E.D. }
$$

Proof of 2: $1-\varepsilon \leq \operatorname{Pr}\left\{\mathrm{A}_{\varepsilon}{ }^{(\mathrm{n}}\right\} \leq\left|\mathrm{A}_{\varepsilon}{ }^{(\mathrm{n})}\right| 2^{-\mathrm{n}(\mathrm{H}(\mathrm{X})-\varepsilon)}$

Example

- X_{1} ~ binary r.v. taking 1 or 0, with prob. p and (1-p)

Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{n}$ i.i.d.

* Ex. with $n=6, p=2 / 3$
- The most typical sequences have 4 ones $(n p=6 * 2 / 3=4)$.
- The prob. of any sequence with 4 ones is $\mathrm{p}^{4}(1-\mathrm{p})^{2}$. There are (6 choose 4) number of such sequences.
- There are total of 2^{6} possible sequences.
* We can divide the complete set into the typical and the non-typical sets.
* In a trial, the sequences in the non-typical set occur rarely while those in the typical set occur very often.

$\mathrm{H}(\mathrm{p})$

$H(p)$

p

Example (2)

* Consider p $=0.5$
- Then, we note $H(X)=1$; the size of typical set is 2^{6}; each and every sequences happens equally likely with prob. $1 / 2^{6}$

Example (3) at $\mathrm{n}=6$

Consider $\mathrm{p}=0.061, \mathrm{H}(0.061)=0.33$; the size of typical set is $2^{6^{*}(0.33+1 / 6)}=7.88$; compared to $2^{6}=64$
A sequence in the typical set is expected to have $n p=$ $0.061 * 6=0.37$ number of 1 's

* Exact calculation:
- a seq. with no 1: $\quad(1-p)^{6}=0.6855$
(The most probable sequence and also most typical)
- seq.'s with a single 1 :
$\mathrm{C}_{1}^{6}(1-\mathrm{p})^{5} \mathrm{p}=(6) 0.0445=$ 0.2672
- These two kinds of sequences (7 seq's) account for 95% occurrences.

Example (4): n=10

Consider $\mathrm{n}=10$ with $\mathrm{p}=0.14$. Then, $\mathrm{H}(0.14)=0.58 ; \mathrm{nH}=$ 5.8 ; the size of typical set is $2^{10^{*}(0.58+1 / 10)} \approx 111$; prob. $=(1 / 111)=0.009 ; 2^{10}=1024$

* Exact calculation:

Most probable

- a seq. with no 1 :
$(1-p)^{10}=0.22$
- seq.'s with a single 1 :
$\mathrm{C}^{10}{ }_{1}(1-\mathrm{p})^{9} \mathrm{p}=0.036(\mathrm{x} \mathrm{10})=0.36$
- seq's with two 1's: $\quad \mathrm{C}^{10}{ }_{2}(1-\mathrm{p})^{8} \mathrm{p}^{2}=(45) 0.0059=0 \not 27$
- seq's with three 1 's: $\left.\quad \mathrm{C}^{10}{ }_{3}(1-\mathrm{p}) 7 \mathrm{p}^{3}=(120) 9.5 \mathrm{e}-4 / 120\right)=0.11$
- size of the 96% occurrence set is $1+10+45+\not 20=176$

Example (5): $\mathrm{n}=100$

Consider $\mathrm{n}=100$ with $\mathrm{p}=0.02$. Then, $\mathrm{H}(0.02)=0.1414$; $\mathrm{nH} \approx 14$; the size of typical set is $2^{14} \approx 18054$; prob. $=1 /(18 \mathrm{~K})=5.538 \mathrm{e}-5 ; 2^{100}=(1024)^{10}$

* Exact calculation:
- a seq. with no 1 :

$$
\begin{aligned}
& \left.\begin{array}{l}
(1-\mathrm{p})^{100}=0.1326 \\
(1-\mathrm{p})^{99} \mathrm{p}=0.0027,(\mathrm{x} 100)=0.27 \\
(1-\mathrm{p})^{98} \mathrm{p}^{2}=5.25 \mathrm{e}-5,(\mathrm{x} 4950)=0.2734 \\
(1-\mathrm{p})^{97} \mathrm{p}^{3}=1.12 \mathrm{e}-6,(\mathrm{x} 161700)=0.1823 \\
(1-\mathrm{p})^{96} \mathrm{p}^{4}=2.3 \mathrm{e}-8,(\times 3.9 \mathrm{M})=0.09
\end{array}\right\} 95 \% \\
& \text { nce set is about } 4 \text { Million } \\
& \text { Most typical set }
\end{aligned}
$$

- seq.'s with a single 1 :
- seq's with two 1's:
- seq's with three 1 's:
- seq's with four 1's:
- size of the 95% occurrence set is about 4 Million

Consequences of AEP: Data Compression

* The size of the typical set is $2^{\mathrm{n}(\mathrm{H}(\mathrm{X})+\varepsilon)}$
- Data Compression Scheme:
* Seq.'s in typical set: In general, we need $(\mathrm{nH}(\mathrm{X})+\varepsilon)$
+1 bits to represent them
- Let's use 0 as prefix to denote membership to the typical set
$-\mathrm{n}(\mathrm{H}(\mathrm{X})+\varepsilon)+2$ bits in total
- Seq.'s in atypical set:
$-\mathrm{n} \log _{2}|\mathcal{X}|+1$ bits (Use prefix 1)

Happens most of the time; smaller

High Probability Sets and the Typical Sets

Typical set is a small set that accounts for the most of the probability.

* But, is there a set smaller than the typical set, that accounts for the most of the probability?
Theorem 3.3.1 states that the size of the typical set is the same as the size of the high probability set, to the first order in the exponent
- The proof is easy, and outlined in prob. 3.11

High Probability Sets and the Typical Sets

High Probability Set $\mathrm{B}_{\delta}{ }^{(\mathrm{n})} \subset \mathcal{X}^{\mathrm{n}}$ is defined as a set

$$
\operatorname{Pr}\left\{\mathrm{B}_{\delta}^{(\mathrm{n})}\right\} \geq 1-\delta, \quad \text { for } 1 / 2>\delta>0
$$

The theorem indicates that the size of this set is

$$
\lim _{\mathrm{n} \rightarrow \infty}(1 / \mathrm{n}) \log \left(\left|\mathrm{B}_{\delta}{ }^{(\mathrm{n})}\right| /\left|\mathrm{A}_{\delta}{ }^{(\mathrm{n})}\right|\right)=0
$$

* At a finite $n,(1 / \mathrm{n}) \log \left(\left|\mathrm{B}_{\delta}{ }^{(\mathrm{n})}\right| /\left|\mathrm{A}_{\delta}{ }^{(\mathrm{n})}\right|\right)=\varepsilon>0$

$$
\left|\mathrm{B}_{\delta}{ }^{(\mathrm{n})}\right|=\left|\mathrm{A}_{\delta}{ }^{(\mathrm{n})}\right| 2^{\mathrm{n} \varepsilon}
$$

- Both sizes grow exponentially fast
- But the exponent of the growth is linear, $n H$

Using Example (5), we note that the most probable set must include the all 0 sequence by definition; but the typical set may not include it (the most typical set include all the sequences with two ones).

Homework \#2, \#3

* HW\#2
- P2.6 (Conditional vs. unconditional mutual information)
- P2.23 (Conditional MI)
- P2.26 (Relative entropy is non negative)
- P2.29 (Inequalities)
- P2.34 (Entropy of initial condition)
- P2.40 (Discrete Entropies)
- P2.43 (MI of heads and tails)
- P2.48 (Sequence length)
* HW\#3
- P2.21 (Markov inequality)
- P2.30 (Maximum entropy)
- P2.32, P2.33 (Fano's inequality)
- P3.1 (Markov and Chebyshev inequalities)
- P3.2 (AEP and MI)
- P3.4 (AEP)
- P3.10 (Random box size)
- P3.13 (Calculation of typical set) Note the table on pg. 69 might have some errors. Generate your own and do the problem.

