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Markov Chain 

 Consider random variables X, Y, and Z.  

 A chain of random variables X  Y  Z is called Markov 

chain if 

  p(z |x, y) = p(z |y) . 

 Note it implies p(x, z|y) = p(x|y) p(z|x, y) = p(x|y) p(z|y)  

– The first equality is due to conditional probability. 

– The second is due to Markov chain. 

– Thus, a MC XY Z implies, conditional independence between 

X and Z knowing Y. 

 Conditioning on current, future and past are independent. 
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Data Processing Inequality 

 If X  Y  Z, then I(X; Y) ¸  I(X; Z) 

 Proof: 

  I(X; Y, Z) = I(X ; Y) + I(X; Z| Y) 

 or  = I(X; Z) + I(X; Y| Z) 

– We know I(X; Z| Y) = 0 and I(X; Y | Z) ¸  0 (why?) 

– Thus, I(X; Y) ¸  I(X; Z) 

– Equality iff I(X; Y|Z) = 0, i.e., X  Z  Y is a Markov chain. 

 Let’s use Z:=g(Y), a function of Y.  

 The function implies an arbitrary data processing on Y. 

 The inequality implies then any data processing will not 

help us understand X any better. 

 
© 200x Heung-No Lee 



111 

Markov Chain 

 Consider a Markov chain, X0, X2, …, Xn 

– Transition matrix P = [1-p q ; p 1-q] 

– Initial distr.  = [; 1-]; 

– Stationary distr. s0 = q/(p+q), s1 = p/(p+q), s = [s0; s1] 

– [Pr{X1=0}; Pr{X1=1}] = P  

– Pr{X1=0} = Pr{X1=0|X0=0}Pr{X0=0}+Pr{X1=0|X0=1}Pr{X0=1} 

– Pr{X1=1} = Pr{X1=1|X0=0}Pr{X0=0}+Pr{X1=1|X0=1}Pr{X0=1} 

 

0 1 

p 

q 

1-q 1- p 
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Markov Chain and Entropy 

 Distr. at any n is tn := [Pr{Xn=0}; Pr{Xn=1}] = Pn 

 The stationary distr. is s = limn ! 1 tn 

– Or, simply solve s = Ps. 

 Ex) p = 0.1, q=0.3, P = [0.9 0.3;0.1 0.7], P1 = [0.75 

0.75;0.25 0.25], s = [0.75; 0.25] 

 Consider the following cases 

–   ~ uniform, s ~ non-uniform: H(tn) is decreasing toward H(s) 

–   ~ non-uniform, s ~ uniform: H(tn) is increasing toward H(s) 
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The Second Law of Thermodynamics 

 Entropy of an isolated system is non-decreasing. 

 This comes from the notion that the micro states in a 

thermodynamic system reach equally likely states in 

equilibrium (uniform stationary distr.) 

– If started off with non-uniform initial distr., then, entropy increases. 

– If started off with uniform initial distr.  then, entropy stays the 

same. 
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Sufficient Statistics 

 Suppose an index set {: 1, 2, …, n} and a family of pmf’s 

parameterized by , {f1(x), f2(x), …, fn(x)}.  

 Let  

– X be a sample from a distribution in this family and 

– T(X) be a function of the sample (a statistic) for inference of . 

MC:   X  T(X) 

 Thus, in general I(; X) ¸  I(; T(X)). 

When the equality is achieved, we call T(X) 

 a sufficient statistic for inference on .  

– Basically, it implies that T(X) contains all the information for . 

– No loss of information for .  
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Example on Sufficient Statistics 

 Consider a sequence of coin tosses, X1, X2, …, Xn, iid with Xi 2{0,1}, 
with an unknown parameter  = Pr{Xi = 1}. 

 Given n, the number of 1’s in n-trials is a sufficient statistic for .  

– T(X1, …, Xn) = i=1
n Xi 

– Pr{X1=1, X2=1, …, Xn=0, i.e. k 1’s} = k (1-)n-k , for any k 2 {0, 1, …, n}  

 Also            is the sufficient statistic for .  

 Thus, we note that Pr{X1=x1, X2=x2, …, Xn=xn | T = k}  

   =    1/(n choose k)  if i=1
n xi = k 

          0  o.w. 

 

  is independent of  the sequence {Xi} given T.  Thus,   T  {Xi, 
i=1,…,n} forms a MC.  Thus, T is sufficient statistic for . 

ˆ T

n
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Sufficient Statistics (2nd Ex) 

 Other examples of sufficient statistics 
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Fano’s Inequality 

 Consider the problem of ―send X, observe Y, and make a 

guess g(Y) on X.‖ 

 Note that X  Y  X’=g(Y) forms a MC.  

 FI relates the Pe := Pr{X’:=g(Y)  X} with H(X|Y). 

We already know H(X|Y) ¸  0 with ―=― iff X is a func. of 

Y: 

– Pr{X’(Y)  X} = 0 iff H(X|Y) = 0 

 Thus, we expect ―small Pe  for small H(X|Y).‖  
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Fano’s Inequality 

 A thought experiment 

 y1 observed: two 
possibilities on X 

– Pe is 1/2 

 y2 observed: 4 
possibilities on X 

– Pe is ¾  

We can divide the set 
{X = x} into two 
disjoint sets 

– {X’ = X} = {1, 3, 7, 8} 

– {X’ X} = {2, 4, 5, 6} 

X  Y 

y1 

y2 

X’=g(Y) 

Two sets: 

errors and 

corrects 

1 2 

3 4 

5 6 

7 

8 
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Fano’s Inequality (2) 

 H(Pe) + Pe log(|X| - 1) ¸  H(X|Y) 

 Or a weaker version is  

  1 + Pe log|X| ¸  H(X|Y) or  

  Pe ¸  (H(X|Y) – 1)/log|X| 

 Proof: 

 Consider E :=    1  if X’  X 

          0   o.w. 

 Chain rule gives H(E, X| Y) = H(X | Y) + H(E |X, Y)  

       = H(E | Y) + H(X |Y, E) 
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Fano’s Inequality (3) 

 H(X | Y) + H(E |X, Y) = H(E| Y) + H(X|Y, E) 

 

The last term can be bounded as 

 H(X|Y, E) = Pr{E=1} H(X|Y, E=1}+Pr{E=0} H(X|Y, E=0} 

  = Pe y p(y) H(X|Y=y, E=1) 

   ---- But, we know H(X|Y=y, E=1) ·  log(|X| - 1)  

          for any y (There is at least one  X’() =X() ) 

  ·  Pe log(|X| - 1) 

Therefore, 

 H(X|Y) ·  H(Pe) + Pe log(|X| - 1) ·  1 + Pe log(|X| - 1)  Q.E.D. 

0 

·  H(E) = H(Pe) ·  1.0 

0 
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Types of Convergences 

 In distribution: Xn ) X in distribution if 

  Fn(x) = Pr{Xn ·  x} ! F(x) = Pr{X ·  x} as n ! 1 

– Ex) Let X1, X2, … iid fair binary {-1,+1} rvs. Then, Sn = (1/sqrt(n)) i=1
n 

Xi. Then, Fn(y): = Pr(Sn ·  y) ! N(0, 1) (C.L.T.) 

 In probability: Xn ) X in probability as n ! 1 if 8  > 0 

  Pr{: |Xn() – X()| > } ! 0 as n ! 1 

 In almost sure, almost everywhere sense, or with prob. 1:  

 Xn ) X a.s. as n ! 1, if  

 -- Pr{: lim Xn() = X()} = 1, or 

 -- For 8 , Pr{: |Xn() – X()| > , i.o.} = 0,  as n ! 1 

 In L2 : Xn ) X in L2, if E{|Xn – X|2} ! 0, as n ! 1 

© 200x Heung-No Lee 



122 

Relationship Between Different Types 

Xn ) X a.s. Xn ) X in Lp, p>0 

Xn ) X in prob. 

Richard Durrett, Probability: Theory and Examples, 1991, Wadsworth 
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―Xn ) X a.s.‖ V ―Xn ) X in prob.‖ 

 Xn ) X a.s. implies that for 8  > 0 

  limk ! 1 P{n¸  k [|Xn – X| > ]} = 0 

 Since {|Xk – X| > } µ  n ¸  k {|Xn – X| > },  

  Pr{|Xk – X| > } ·  Pr(n ¸  k {|Xn – X| > }) 

 Taking the limit on both sides, 

 limk! 1 Pr{|Xk – X| > } ·  limk ! 1 Pr(n ¸  k {|Xn – X| > }) = 0 

 Q.E.D. 
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Xn ) X in prob. V Xn ) X a.s. 

(Converse is not true) 

 Consider a series of r.v.’s Xn := 1An where 
An are defined as 

 A1 = [0, 1]; 

 A2 = [0, 1/2), A3=[1/2, 1]; 

 A4 = [0, 1/4), A5 = [1/4, 1/2), A6 = [1/2, 
3/4), A7 = [3/4, 1]; 

 … 

 Let Pr{Xn = 1} = length(An) (Lebesque)  

 Now, let X = 0. Then, 

 For 8  >0, Pr(|Xn – X| > ) ! 0 as n ! 1 

 But, {: lim Xn() = X()} = ; 

 Thus, Pr{: lim Xn() = X()} = 0. 

 Q.E.D. 

X1 

X2 
X3 

X4 

0 1 

X7 
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Example for both ―in prob.‖ and ―a.s.‖ 

 Consider a series of r.v. Xn = 1An where A1 = [0 1]; An = [0, 

1/n],  with the Lebesque measure as the prob. 

 Let X = 0. 

With this example, we note that Xn ) X in both ―in prob‖ 

and ―a.s.‖ senses 
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Laws of Large Numbers 

Weak Law of Large Numbers: Let X1, X2, … be i.i.d. with 

E|X1| < 1 and E{X1} = , and as n ! 1,  

  Sn/n )  in probability 

 where Sn = X1 + X2 + …+ Xn . 

 Strong Law of Large Numbers: Sn/n )  a.s. as n ! 1. 

– That is, it is in fact a.s.  

 

 L2 Weak Law: Let X1, X2, …, Xn be uncorrelated r.v.’s 

with E{Xi} =  and var(Xi) ·  C < 1.  Then, as n ! 1 

  Sn/n )  in L2  
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Surface Hardening 

 A high-dimensional cube [-1, 1]n is almost the 

boundary of a ball. 

 Let X1, X2, … be independent uniformly 

distributed on [-1, 1]. 

– Then, EXi
2 = 1/3. 

 Then, the WLLN implies 

  (X1
2 + … + Xn

2)/n ! 1/3 in probability as n ! 1 

 Consider an n-dimensional random vector X:=(X1, 

…, Xn), and its length ||X|| = sqrt(X1
2+…+Xn

2) 

 Thus, for 8  > 0, you can always find a large 

enough n, such that Pr{| ||X||2/n– 1/3 | > } ¼  0 

 Pr{X2 Rn: 1/3- < ||X||2/n < 1/3+} ¼  1 

 

Length2 = norm2 

 =  xi
2 

x 

y 

z radius 

sqrt(n/3) 

¼  1 
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Asymptotic Equi-partition Property 

 Let X1, X2, …, i.i.d. with p(x). 

 The sample entropy 

– Hn’ = - (1/n) log p(X1=x1, …, Xn=x1) = - (1/n) i log p(Xi=xi) 

 Converges in prob. to  

 the true entropy H(X) = - i p(xi) log p(X1=xi). 

 As n ! 1,  can be divided into two mutually exclusive 

sets: The typical set and the non-typical set. 

– The sequences in the typical set have the sample entropy ¼  H(X) 

– Those in the non-typical set have the sample entropy  H(X) 

 From WLLN, Pr{Typical set} ¼  1.0 as n ! 1 
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Asymptotic Equi-partition Property (2) 

 AEP: If X1, X2, … iid with p(x), then 

  Hn’:= - (1/n) log p(X1, X2, …, Xn) = - (1/n) i log p(Xi)  

    ) - E(log p(X1)) = H(X) in prob.  

   (due to WLLN) 

 This means, for 8  > 0 

 Pr{(x1, …, xn): | Hn’ –H(X) | >  }! 0 as n ! 0  

– Prob. of the atypical set goes to zero 

– Prob. of the typcial set goes to 1 

 We can divide the entire set , the set of all possible 
sequences of length n, into two mutually exclusive sets 
– Typical set A

(n) :={(x1, …, xn): | Hn’ - H(X1) | ·   } 

– Atypical set  – A
(n) 
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A sequence in the Typical Set A
(n) 

 For any sequence (x1, …, xn) 2 A
(n) :={(x1, …, xn):  

 | –(1/n) log p(x1, …, xn) – H(X) | ·   }, the prob. of 
the sequence must have the following property 

  | –(1/n) log p(x1, …, xn) – H(X) | ·    

  H(X) -  ·  – (1/n) log p(x1, …, xn) ·  H(X) +  

   2-n(H(X)+) ·  p(x1, …,xn) ·  2-n(H(X) - )  

 Since we can choose a very small , the prob. of a 
sequence can be made very close to 2-nH(X), as n ! 1. 

H(X) -(1/n) log(x1, …,xn) H(X) -  H(X) +  
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Pr{A
(n)} > 1 - ,  for n sufficiently large 

 For any  >0 and  > 0, there exists an no such that n > no, 

 Pr{ | –(1/n) log[p(x1, …, xn)] - H(X) | ·   } > 1 - .  

 Choose  = .  
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The Size of the Typical Set A
(n) 

 The size of the typical set satisfies  

1. |A
(n)| ·  2n(H(X) + ) 

2. (1-) 2n(H(X) - ) ·  |A
(n)| 

 Proof of 1:   1 = x 2 X
n

 p(x) 

        ¸  x 2 A p(x)  

        ¸  x 2 A 2
-n(H(X)+)  

        = |A
(n)|  2

-n(H(X)+) Q.E.D. 

  Proof of 2: 1 -  ·  Pr{A
(n)} ·  |A

(n)| 2-n(H(X)-)   
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Example 

 X1 ~ binary r.v. taking 1 or 0, with prob. p and (1-p) 

 Let X1, X2, …, Xn i.i.d.  

 Ex. with n=6, p=2/3 

– The most typical sequences have 4 ones (np = 6*2/3 = 4).  

– The prob. of any sequence with 4 ones is p4 (1-p)2. There are (6 

choose 4) number of such sequences.  

– There are total of 26 possible sequences. 

We can divide the complete set into the typical and the 

non-typical sets. 

 In a trial, the sequences in the non-typical set occur rarely 

while those in the typical set occur very often. 
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H(p) 
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p 
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Example (2) 

 Consider p = 0.5 

– Then, we note H(X) = 1; the size of typical set is 26; each and 

every sequences happens equally likely with prob. 1/26 
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Example (3) at n=6 

 Consider p = 0.061, H(0.061) = 0.33; the size of typical set 

is 26*(0.33+1/6) = 7.88; compared to 26 = 64 

 A sequence in the typical set is expected to have np = 

0.061*6 =0.37  number of 1’s 

 Exact calculation: 

 - a seq. with no 1:   (1-p)6 = 0.6855  

(The most probable sequence and also most typical) 

 - seq.’s with a single 1:  C6
1(1-p)5 p = (6) 0.0445 = 

0.2672 

 - These two kinds of sequences (7 seq’s) account for 95% 

occurrences.  
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Example (4): n=10 

 Consider n = 10 with p = 0.14. Then, H(0.14) = 0.58; nH = 

5.8; the size of typical set is 210*(0.58+1/10) ¼  111; 

prob.=(1/111) = 0.009; 210 = 1024 

 Exact calculation: 

 - a seq. with no 1:   (1-p)10 = 0.22 

 - seq.’s with a single 1:  C10
1 (1-p)9 p = 0.036 (x 10) = 0.36 

 - seq’s with two 1’s:  C10
2 (1-p)8 p2 = (45) 0.0059 = 0.27 

 - seq’s with three 1’s:  C10
3 (1-p)7 p3 = (120) 9.5e-4 (120) = 0.11  

 - size of the 96% occurrence set is 1 + 10 + 45 + 120 = 176 

 

 

96% 

85% 

Most probable 

Most typical set 
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Example (5): n = 100 

 Consider n = 100 with p = 0.02. Then, H(0.02) = 0.1414; 

nH ¼  14; the size of typical set is 214 ¼  18054; 

prob.=1/(18K) = 5.538e-5; 2100 =(1024) 10 

 Exact calculation: 

 - a seq. with no 1:       (1-p)100 = 0.1326 

 - seq.’s with a single 1:      (1-p)99 p = 0.0027, (x 100) = 0.27 

 - seq’s with two 1’s:       (1-p)98 p2 = 5.25e-5, (x 4950) = 0.2734 

 - seq’s with three 1’s:       (1-p)97 p3 = 1.12e-6, (x 161700) = 0.1823 

 - seq’s with four 1’s:       (1-p)96 p4 = 2.3e-8, (x 3.9M) = 0.09 

 - size of the 95% occurrence set is about 4 Million 

95% 

Most probable 

Most typical set 
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Consequences of AEP: Data Compression 

 The size of the typical set is 

2n(H(X) + ) 

 Data Compression Scheme: 

 Seq.’s in typical set: In 

general, we need (nH(X)+) 

+ 1 bits to represent them 

–  Let’s use 0 as prefix to denote 

membership to the typical set 

– n(H(X) + ) + 2 bits in total 

 Seq.’s in atypical set: 

– n log2 |X| + 1 bits (Use prefix 1) 

|X|n elements 

Typical 

Non-typical set 

Happens most of  

the time; smaller 
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High Probability Sets and the Typical Sets 

 Typical set is a small set that accounts for the most of 

the probability. 

 But, is there a set smaller than the typical set, that 

accounts for the most of the probability? 

 Theorem 3.3.1 states that the size of the typical set is 

the same as the size of the high probability set, to the 

first order in the exponent 

– The proof is easy, and outlined in prob. 3.11 
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High Probability Sets and the Typical Sets 

 High Probability Set B
(n) ½  Xn is defined as a set 

  Pr{B
(n) } ¸  1 - ,  for 1/2 >  > 0. 

 The theorem indicates that the size of this set is  

  limn ! 1 (1/n) log (| B
(n) |/|A

(n)|) = 0 

 At a finite n, (1/n) log (| B
(n) |/|A

(n)|) =  > 0 

   | B
(n) | = |A

(n)| 2n 

– Both sizes grow exponentially fast 

– But the exponent of the growth is linear, nH 

 Using Example (5), we note that the most probable set 
must include the all 0 sequence by definition; but the 
typical set may not include it (the most typical set include 
all the sequences with two ones).  
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Homework #2, #3 

 HW#2 

– P2.6 (Conditional vs. unconditional mutual information) 

– P2.23 (Conditional MI) 

– P2.26 (Relative entropy is non negative) 

– P2.29 (Inequalities) 

– P2.34 (Entropy of initial condition) 

– P2.40 (Discrete Entropies) 

– P2.43 (MI of heads and tails) 

– P2.48 (Sequence length) 

 HW#3 

– P2.21 (Markov inequality) 

– P2.30 (Maximum entropy) 

– P2.32, P2.33 (Fano’s inequality)  

– P3.1 (Markov and Chebyshev inequalities)  

– P3.2 (AEP and MI) 

– P3.4 (AEP) 

– P3.10 (Random box size)  

– P3.13 (Calculation of typical set)  Note the table on pg. 69 might have some errors.  Generate 
your own and do the problem. 
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