Information Theory

2nd Module

© 200x Heung-No Lee

Agenda

- Markov Chain and Entropy
- Sufficient Statistics
- Fano's Inequality
- Different Types of Convergences
- Asymptotic Equipartition Property
- High Probable Set vs. Typical Set
- Homeworks

Markov Chain

- Consider random variables X, Y, and Z.
- ♦ A chain of random variables X → Y → Z is called Markov chain if

p(z | x, y) = p(z | y) .

* Note it implies p(x, z|y) = p(x|y) p(z|x, y) = p(x|y) p(z|y)

- The first equality is due to conditional probability.
- The second is due to Markov chain.
- Thus, a MC $X \rightarrow Y \rightarrow Z$ implies, conditional independence between X and Z knowing Y.

* Conditioning on current, future and past are independent.

Data Processing Inequality

• If
$$X \rightarrow Y \rightarrow Z$$
, then $I(X; Y) \ge I(X; Z)$

Proof:

I(X; Y, Z) = I(X; Y) + I(X; Z|Y)

or = I(X; Z) + I(X; Y|Z)

- We know I(X; Z|Y) = 0 and $I(X; Y|Z) \ge 0$ (why?)

- Thus, $I(X; Y) \ge I(X; Z)$
- Equality *iff* I(X; Y|Z) = 0, i.e., $X \rightarrow Z \rightarrow Y$ is a Markov chain.

 \clubsuit Let's use Z:=g(Y), a function of Y.

The function implies an arbitrary data processing on Y.

The inequality implies then any data processing will not help us understand X any better.

Markov Chain

* Consider a Markov chain, $X_0, X_2, ..., X_n$

- Transition matrix $\mathbf{P} = [1-pq; p1-q]$
- Initial distr. $\boldsymbol{\pi} = [\alpha; 1-\alpha];$
- Stationary distr. $s_0 = q/(p+q)$, $s_1 = p/(p+q)$, $s = [s_0; s_1]$
- [Pr{X₁=0}; Pr{X₁=1}] = $\mathbf{P} \pi$
- $Pr\{X_1=0\} = Pr\{X_1=0|X_0=0\}Pr\{X_0=0\}+Pr\{X_1=0|X_0=1\}Pr\{X_0=1\}$
- $Pr\{X_1=1\} = Pr\{X_1=1|X_0=0\}Pr\{X_0=0\} + Pr\{X_1=1|X_0=1\}Pr\{X_0=1\}$

© 200x Heung-No Lee

Markov Chain and Entropy

- Distr. at any n is $\mathbf{t}_n := [\Pr{\{X_n=0\}}; \Pr{\{X_n=1\}}] = \mathbf{P}^n \pi$
- ***** The stationary distr. is $\mathbf{s} = \lim_{n \to \infty} \mathbf{t}_n$
 - Or, simply solve $\mathbf{s} = \mathbf{P}\mathbf{s}$.
- ★ Ex) p = 0.1, q=0.3, $P = [0.9 \ 0.3; 0.1 \ 0.7]$, $P^{\infty} = [0.75 \ 0.75; 0.25 \ 0.25]$, s = [0.75; 0.25]
- Consider the following cases
 - π ~ uniform, s ~ non-uniform: H(t_n) is decreasing toward H(s)
 - $\pi \sim$ non-uniform, s ~ uniform: H(t_n) is increasing toward H(s)

The Second Law of Thermodynamics

- Entropy of an isolated system is non-decreasing.
- This comes from the notion that the micro states in a thermodynamic system reach equally likely states in equilibrium (uniform stationary distr.)
 - If started off with non-uniform initial distr., then, entropy increases.
 - If started off with uniform initial distr. \rightarrow then, entropy stays the same.

Sufficient Statistics

- Suppose an index set $\{\theta: 1, 2, ..., n\}$ and a family of pmf's parameterized by θ , $\{f_1(x), f_2(x), ..., f_n(x)\}$.
- Let
 - X be a sample from *a* distribution in this family and
 - T(X) be a function of the sample (a statistic) for inference of θ .
- $\stackrel{\bullet}{\bullet} MC: \theta \rightarrow X \rightarrow T(X)$
- ♦ Thus, in general $I(\theta; X) ≥ I(\theta; T(X))$.
- * When the equality is achieved, we call T(X)
 - a sufficient statistic for inference on θ .
 - Basically, it implies that T(X) contains all the information for θ .
 - No loss of information for θ .

Example on Sufficient Statistics

- ♦ Consider a sequence of coin tosses, $X_1, X_2, ..., X_n$, iid with $X_i \in \{0,1\}$, with an unknown parameter $\theta = Pr\{X_i = 1\}$.
- Siven *n*, the number of 1's in *n*-trials is a *sufficient statistic* for θ .

$$- T(X_{1}, ..., X_{n}) = \sum_{i=1}^{n} X_{i}$$

$$- Pr\{X_{1}=1, X_{2}=1, ..., X_{n}=0, i.e. \ k \ 1's\} = \theta^{k} \ (1-\theta)^{n-k}, \text{ for any } k \in \{0, 1, ..., n\}$$

$$Also \ \hat{\theta} = \frac{T}{n} \text{ is the sufficient statistic for } \theta.$$

$$Thus, we note that Pr\{X_{1}=x_{1}, X_{2}=x_{2}, ..., X_{n}=x_{n} \mid T=k\}$$

$$= \begin{cases} 1/(n \ choose \ k) \text{ if } \sum_{i=1}^{n} x_{i} = k \\ 0 \text{ o.w.} \end{cases}$$

♦ θ is independent of the sequence $\{X_i\}$ given T. Thus, $\theta \rightarrow T \rightarrow \{X_i, i=1,...,n\}$ forms a MC. Thus, T is sufficient statistic for θ.

**

Sufficient Statistics (2nd Ex)

Other examples of sufficient statistics

Fano's Inequality

- Consider the problem of "send X, observe Y, and make a guess g(Y) on X."
- * Note that $X \rightarrow Y \rightarrow X'=g(Y)$ forms a MC.
- ♦ FI relates the $P_e := Pr\{X':=g(Y) \neq X\}$ with H(X|Y).
- ✤ We already know H(X|Y) ≥ 0 with "=" iff X is a func. of Y:

- $\Pr{\{X'(Y) \neq X\}} = 0 \text{ iff } H(X|Y) = 0$

* Thus, we expect "small P_e for small H(X|Y)."

Fano's Inequality

- A thought experiment
 y₁ observed: two possibilities on X

 P_e is 1/2

 y₂ observed: 4
 - y_2 observed. 4 possibilities on X
 - $P_e is \frac{3}{4}$
- We can divide the set {X = x} into two disjoint sets

$$- \{X' = X\} = \{1, 3, 7, 8\}$$

$$- \{X' \neq X\} = \{2, 4, 5, 6\}$$

corrects

Fano's Inequality (2)

Fano's Inequality (3)

$$\begin{split} \textbf{H}(X \mid Y) + \textbf{H}(E \mid X, Y) &= \textbf{H}(E \mid Y) + \textbf{H}(X \mid Y, E) \\ &\leq \textbf{H}(E) = \textbf{H}(\textbf{P}_{e}) \leq 1.0 \end{split}$$

The last term can be bounded as $H(X|Y, E) = Pr\{E=1\} H(X|Y, E=1\} + Pr\{E=0\} H(X|Y, E=0\}$ $= P_e \sum_{y} p(y) H(X|Y=y, E=1)$ $---- But, we know H(X|Y=y, E=1) \le \log(|\mathcal{X}| - 1)$ for any y (There is at least one $\omega X'(\omega) = X(\omega)$) $\le P_e \log(|\mathcal{X}| - 1)$ Therefore

Therefore,

 $H(X|Y) \le H(P_e) + P_e \log(|\mathcal{X}| - 1) \le 1 + P_e \log(|\mathcal{X}| - 1) \qquad Q.E.D.$

Types of Convergences

* *In distribution*: $X_n \Rightarrow X$ in distribution if

 $F_n(x) = Pr\{X_n \le x\} \to F(x) = Pr\{X \le x\} \text{ as } n \to \infty$

- *Ex*) Let X_1, X_2, \dots iid fair binary {-1,+1} rvs. Then, $S_n = (1/\text{sqrt}(n)) \sum_{i=1}^n X_i$. Then, $F_n(y) := \Pr(S_n \le y) \rightarrow \mathcal{N}(0, 1)$ (C.L.T.)
- $\begin{array}{l} \diamondsuit \quad In \ probability: X_n \Rightarrow X \ in \ probability \ as \ n \to \infty \ if \ \forall \ \epsilon > 0 \\ \\ Pr\{\omega: |X_n(\omega) X(\omega)| > \epsilon\} \to 0 \ as \ n \to \infty \end{array}$

In almost sure, almost everywhere sense, or with prob. 1:

$$\begin{split} X_n &\Rightarrow X \text{ a.s. as } n \to \infty, \text{ if} \\ & -- \Pr\{\omega: \lim X_n(\omega) = X(\omega)\} = 1, \text{ or} \\ & -- \text{ For } \forall \epsilon, \Pr\{\omega: |X_n(\omega) - X(\omega)| > \epsilon, \text{ i.o.}\} = 0, \text{ as } n \to \infty \\ & \bigstar In \ L^2: X_n \Rightarrow X \text{ in } L^2, \text{ if } E\{|X_n - X|^2\} \to 0, \text{ as } n \to \infty \end{split}$$

Relationship Between Different Types

Richard Durrett, Probability: Theory and Examples, 1991, Wadsworth

"
$$X_n \Rightarrow X \text{ a.s.}$$
" \Rightarrow " $X_n \Rightarrow X \text{ in prob.}$ "

* Taking the limit on both sides,

$$\lim_{k\to\infty} \Pr\{|X_k - X| > \epsilon\} \le \lim_{k\to\infty} \Pr(\bigcup_{n \ge k} \{|X_n - X| > \epsilon\}) = 0$$
Q.E.D.

$$X_n \Rightarrow X \text{ in prob.} \ X_n \Rightarrow X \text{ a.s.}$$

(Converse is not true)

 \diamond Consider a series of r.v.'s $X_n := 1_{An}$ where A_n are defined as $A_1 = [0, 1];$ $A_2 = [0, 1/2), A_3 = [1/2, 1];$ $A_4 = [0, 1/4), A_5 = [1/4, 1/2), A_6 = [1/2, 1/2)$ 3/4), $A_7 = [3/4, 1]$; . . . $\stackrel{\bullet}{\bullet} \text{ Let } \Pr\{X_n = 1\} = \text{length}(A_n) \text{ (Lebesque)}$ \diamond Now, let X = 0. Then, ♦ For $\forall \varepsilon > 0$, $\Pr(|X_n - X| > \varepsilon) \rightarrow 0$ as $n \rightarrow \infty$ • But, { ω : lim $X_n(\omega) = X(\omega)$ } = \emptyset Thus, $Pr\{\omega: \lim X_n(\omega) = X(\omega)\} = 0.$ Q.E.D.

Example for both "in prob." and "a.s."

- * Consider a series of r.v. $X_n = 1_{An}$ where $A_1 = [0 \ 1]$; $A_n = [0, 1/n]$, with the Lebesque measure as the prob.
- **:**Let X = 0.
- ♦ With this example, we note that $X_n \Rightarrow X$ in both "in prob" and "a.s." senses

Laws of Large Numbers

Weak Law of Large Numbers: Let X₁, X₂, ... be i.i.d. with E|X₁| < ∞ and E{X₁} = µ, and as n → ∞, S_n/n ⇒ µ *in probability* where S_n = X₁ + X₂ + ... + X_n.
Strong Law of Large Numbers: S_n/n ⇒ µ a.s. as n → ∞. – That is, it is in fact a.s.

 $\stackrel{\bullet}{\leftarrow} L^2 \text{ Weak Law: Let } X_1, X_2, \dots, X_n \text{ be uncorrelated r.v.'s} \\ \text{ with } E\{X_i\} = \mu \text{ and } \text{var}(X_i) \leq C < \infty. \text{ Then, as } n \to \infty \\ S_n/n \Rightarrow \mu \text{ in } L^2$

Surface Hardening

- A high-dimensional cube [-1, 1]ⁿ is almost the boundary of a ball.
- Let X₁, X₂, ... be independent uniformly distributed on [-1, 1].
 - Then, $EX_i^2 = 1/3$.
- Then, the WLLN implies

 $(X_1{}^2+\ldots+X_n{}^2)/n\to 1/3$ in probability as $n\to\infty$

- Consider an *n*-dimensional random vector $\mathbf{X}:=(X_1, \dots, X_n)$, and its length $||\mathbf{X}|| = \operatorname{sqrt}(X_1^2 + \dots + X_n^2)$
- ★ Thus, for ∀ ε > 0, you can always find a large enough *n*, such that Pr{| ||**X**||²/n−1/3 | > ε} ≈ 0
- $\mathbf{Pr}\{\mathbf{X} \in \mathbf{R}^{n}: 1/3 \varepsilon < ||\mathbf{X}||^{2}/n < 1/3 + \varepsilon\} \approx 1$

$$Pr\{\mathbf{X} \in \mathbb{R}^n : \sqrt{n(1/3 - \epsilon)} < ||\mathbf{X}|| < \sqrt{n(1/3 + \epsilon)}\} \approx \mathbf{1}$$

Length² = norm² = $\sum x_i^2$

© 200x Heung-No Lee

Asymptotic Equi-partition Property

- $\bigstar \text{ Let } X_1, X_2, \dots, \text{ i.i.d. with } p(x).$
- The sample entropy

- $H_n' = -(1/n) \log p(X_1 = x_1, ..., X_n = x_1) = -(1/n) \sum_i \log p(X_i = x_i)$

Converges in prob. to

the true entropy $H(X) = -\sum_{i} p(x_i) \log p(X_1 = x_i)$.

- As $n \to \infty$, Ω can be divided into two mutually exclusive sets: The typical set and the non-typical set.
 - The sequences in the typical set have the sample entropy $\approx H(X)$
 - Those in the non-typical set have the sample entropy $\neq H(X)$
- ♦ From WLLN, $Pr{Typical set} \approx 1.0 \text{ as } n \rightarrow \infty$

Asymptotic Equi-partition Property (2)

★ AEP: If X₁, X₂, ... iid with p(x), then $H_{n}':= -(1/n) \log p(X_{1}, X_{2}, ..., X_{n}) = -(1/n) \sum_{i} \log p(X_{i})$ $\Rightarrow - E(\log p(X_{1})) = H(X) \text{ in prob.}$ (due to WLLN)

- This means, for $\forall \epsilon > 0$
 - $Pr\{(x_1, ..., x_n): | H_n' H(X) | > \epsilon \} \rightarrow 0 \text{ as } n \rightarrow 0$
 - Prob. of the *atypical* set goes to zero
 - Prob. of the *typcial* set goes to 1
- * We can divide the entire set Ω, the set of all possible sequences of length *n*, into two mutually exclusive sets
 - Typical set $A_{\epsilon}^{(n)} := \{(x_1, ..., x_n): | H_n' H(X_1) | \le \epsilon \}$
 - Atypical set $\Omega A_{\epsilon}^{(n)}$

© 200x Heung-No Lee

A sequence in the Typical Set $A_{\epsilon}^{(n)}$

★ For any sequence $(x_1, ..., x_n) \in A_{\varepsilon}^{(n)} := \{(x_1, ..., x_n): |-(1/n) \log p(x_1, ..., x_n) - H(X) | \le \varepsilon \}$, the prob. of the sequence must have the following property $|-(1/n) \log p(x_1, ..., x_n) - H(X)| \le \varepsilon$ $H(X) - \varepsilon \le -(1/n) \log p(x_1, ..., x_n) \le H(X) + \varepsilon$ $2^{-n(H(X)+\varepsilon)} \le p(x_1, ..., x_n) \le 2^{-n(H(X)-\varepsilon)}$

Since we can choose a very small ε , the prob. of a sequence can be made very close to $2^{-nH(X)}$, as $n \to \infty$.

$Pr{A_{\varepsilon}^{(n)}} > 1 - \varepsilon$, for *n* sufficiently large

★ For any ε >0 and δ > 0, there exists an n_o such that n > n_o, Pr{ |−(1/n) log[p(x₁, ..., x_n)] - H(X) | ≤ ε } > 1 - δ.
★ Choose δ = ε.

The Size of the Typical Set $A_{\epsilon}^{(n)}$

The size of the typical set satisfies
1.
$$|A_{\epsilon}^{(n)}| \leq 2^{n(H(X) + \epsilon)}$$
2. $(1-\epsilon) 2^{n(H(X) - \epsilon)} \leq |A_{\epsilon}^{(n)}|$
Proof of 1: $1 = \sum_{\mathbf{x} \in \mathcal{X}} p(\mathbf{x})$
 $\geq \sum_{\mathbf{x} \in A\epsilon} p(\mathbf{x})$
 $\geq \sum_{\mathbf{x} \in A\epsilon} 2^{-n(H(X)+\epsilon)}$
 $= |A_{\epsilon}^{(n)}| 2^{-n(H(X)+\epsilon)}$ Q.E.D.
Proof of 2: $1 - \epsilon \leq Pr(A_{\epsilon}^{(n)}) \leq |A_{\epsilon}^{(n)}| 2^{-n(H(X)+\epsilon)}$

♦ Proof of 2: 1 - $ε ≤ Pr\{A_ε^{(n)}\} ≤ |A_ε^{(n)}| 2^{-n(H(X)-ε)}$

Example

- ❖ X₁ ~ binary r.v. taking 1 or 0, with prob. p and (1-p)
 ❖ Let X₁, X₂, ..., X_n i.i.d.
- ***** Ex. with n=6, p=2/3
 - The most typical sequences have 4 ones (np = 6*2/3 = 4).
 - The prob. of any sequence with 4 ones is p⁴ (1-p)². There are (6 choose 4) number of such sequences.
 - There are total of 2^6 possible sequences.
- We can divide the complete set into the typical and the non-typical sets.
- In a trial, the sequences in the non-typical set occur rarely while those in the typical set occur very often.

H(p)

© 200x Heung-No Lee

Example (2)

• Consider p = 0.5

- Then, we note H(X) = 1; the size of typical set is 2^6 ; each and every sequences happens equally likely with prob. $1/2^6$

Example (3) at n=6

- * Consider p = 0.061, H(0.061) = 0.33; the size of typical set is $2^{6*(0.33+1/6)} = 7.88$; compared to $2^6 = 64$
- * A sequence in the typical set is expected to have np = 0.061*6=0.37 number of 1's
- Exact calculation:
 - a seq. with no 1: $(1-p)^6 = 0.6855$

(The most probable sequence and also most typical)

- seq.'s with a single 1: $C_{1}^{6}(1-p)^{5} p = (6) 0.0445 = 0.2672$
- These two kinds of sequences (7 seq's) account for 95% occurrences.

Example (4): n=10

* Consider n = 10 with p = 0.14. Then, H(0.14) = 0.58; nH =5.8; the size of typical set is $2^{10*(0.58+1/10)} \approx 111$; prob.= $(1/111) = 0.009; 2^{10} = 1024$ Most probable Exact calculation: $(1-p)^{10} = 0.22$ - a seq. with no 1: - seq.'s with a single 1: $C_{10}^{10} (1-p)^9 p = 0.036 (x \ 10) = 0.36$ - seq's with two 1's: $C_{2}^{10}(1-p)^8 p^2 = (45) \ 0.0059 = 0.$ 85% - seq's with three 1's: $C_{3}^{10}(1-p)7 p^{3} = (120) 9.5e-4(120) = 0.11$ 96% - size of the 96% occurrence set is 1 + 10 + 45 + 120 = 176

Most typical set

Example (5): n = 100

☆ Consider n = 100 with p = 0.02. Then, H(0.02) = 0.1414; nH ≈ 14; the size of typical set is 2¹⁴ ≈ 18054; prob.=1/(18K) = 5.538e-5; 2¹⁰⁰ =(1024)¹⁰

Consequences of AEP: Data Compression

- * The size of the typical set is $2^{n(H(X) + \varepsilon)}$
- Data Compression Scheme:
- Seq.'s in typical set: In general, we need (nH(X)+ε)
 - + 1 bits to represent them
 - Let's use 0 as prefix to denote membership to the typical set
 - $n(H(X) + \varepsilon) + 2$ bits in total
- Seq.'s in atypical set:
 - $n \log_2 |\mathcal{X}| + 1$ bits (Use prefix 1)

High Probability Sets and the Typical Sets

- Typical set is a small set that accounts for the most of the probability.
- But, is there a set smaller than the typical set, that accounts for the most of the probability?
- Theorem 3.3.1 states that the size of the typical set is the same as the size of the high probability set, to the first order in the exponent
 - The proof is easy, and outlined in prob. 3.11

High Probability Sets and the Typical Sets

High Probability Set B_δ⁽ⁿ⁾ ⊂ 𝔅ⁿ is defined as a set Pr{B_δ⁽ⁿ⁾} ≥ 1 - δ, for 1/2 > δ > 0.
 The theorem indicates that the size of this set is lim_{n→∞} (1/n) log (| B_δ⁽ⁿ⁾ |/|A_δ⁽ⁿ⁾|) = 0
 At a finite n, (1/n) log (| B_δ⁽ⁿ⁾ |/|A_δ⁽ⁿ⁾|) = ε > 0 | B_δ⁽ⁿ⁾ | = |A_δ⁽ⁿ⁾ | 2^{nε}

- Both sizes grow exponentially fast

- But the exponent of the growth is linear, nH

Using Example (5), we note that the most probable set must include the all 0 sequence by definition; but the typical set may not include it (the most typical set include all the sequences with two ones).

Homework #2, #3

✤ HW#2

- P2.6 (Conditional vs. unconditional mutual information)
- P2.23 (Conditional MI)
- P2.26 (Relative entropy is non negative)
- P2.29 (Inequalities)
- P2.34 (Entropy of initial condition)
- P2.40 (Discrete Entropies)
- P2.43 (MI of heads and tails)
- P2.48 (Sequence length)

✤ HW#3

- P2.21 (Markov inequality)
- P2.30 (Maximum entropy)
- P2.32, P2.33 (Fano's inequality)
- P3.1 (Markov and Chebyshev inequalities)
- P3.2 (AEP and MI)
- P3.4 (AEP)
- P3.10 (Random box size)
- P3.13 (Calculation of typical set) Note the table on pg. 69 might have some errors. Generate your own and do the problem.