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6 Goal of this lecture note

GIST

* Bitcoin Script

 Tables of OP Codes

e Easy Script

 Pay-to-Public Key Hash (P2PKH) Script

e Multisignature and Smart Contracts Scripts
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ﬁ Bitcoin Script

* Bitcoin Script

- Bitcoin uses a scripting language for transactions.

- A script is simple, stack-based, and processed
from left to right.

- It is intentionally not Turing-complete, with no
loops.

- A script is a list of instructions.

- The payer locks the vout value to a payee’s public
address.

- The payee unlocks the lock by providing the
signature.

GIST
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ﬁ Bitcoin Script

* Bitcoin Script
- Payer uses a lock script to lock the vout value to a destination
Bitcoin address and payee uses an unlock script to spend it.

1. The vout value transferred to a destination
address mapped from a public key is locked into
the locking script, and

2. A signature is embedded in the unlocking script
which proves the ownership of the private key
corresponding to the locked value.

- Further reading from
https://en.bitcoin.it/wiki/Script
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“ Bitcoin Script

* See if scriptSig unlocks scriptPubKey!
- Script Construction (Unlock+Lock)

» The locking script is called a scriptPubKey,
because it contains a public key or a
Bitcoin address.

» The unlocking script is called scriptSig
because it contains a digital signature.

* When a correct unlocking script is
provided to the locking script, the
execution of the complete script comes
out TRUE.

» Then, the provider of scriptSig can spend
the value.

GIST
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ﬁ Bitcoin Script
* Pay to Public Key Hash

- A[2F1: A’s Sign (Priv. Key)— Lock to Pub. Key of B 2.0BTC.
- A|2F2: B's Sign (Priv. Key)— Lock to Pub. Key of C 1.0BTC.
- A|2F3: C's Sign (Priv. Key)— Lock to Pub. Key of D 0.5BTC.

Unlocking Script Locking Script
(scriptSig) + (scriptPubKey)

<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG

J
Y Y

Sign to PubK Generate_Sign with PubKHash

GIST
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» Values provided by users are given in < >,
 DUP, HASH160, EQUALVERIFY, CHECKSIG are Operations.

Unlocking Script Locking Script
(scriptSig) + (scriptPubKey)

<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG

J
Y Y

Sign to PubK Generate_Sign with PubKHash
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6 Tables of OP Codes
» Table C-7. Cryptographic and Hashing Operations

Symbol Value(hex) Description
OP_RIPEMD160 Oxab Return RIPEMD160 hash of top item
OP_SHA1 Oxa7 Return SHA1 hash of top item
OP_SHA256 Oxa8 Return SHA256 hash of top item
OP_HASH160 Oxa9 Return RIPEMD160(SHA256(x)) hash of top item
OP_HASH256 Oxaa Return SHA256(SHA256(x)) hash of top item
OP_CODESEPARATOR Oxab Mark the beginning of signature-checked data

Appendix C of Mastering Bitcoin
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6 Tables of OP Codes

e Table C-7. Cryptographic and Hashing Operations

Symbol Value(hex) Description
Pop a public key and signature and validate the signature for the
OP_CHECKSIG Oxac transaction’s hashed data, return TRUE if matching
OP_CHECKSIGVERIFY Oxad Same as CHECKSIG, then OP_VERIFY to halt if not TRUE

Run CHECKSIG for each pair of signature and public key provided.
OP_CHECKMULTISIG Oxae All must match. Bug in implementation pops an extra value, prefix
with OP_NOP as workaround

OP_CHECKMULTISIGVERIFY Oxaf Same as CHECKMULTISIG, then OP_VERIFY to halt if not TRUE

Appendix C of Mastering Bitcoin
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@ Tables of OP Codes
* Table C-3. Stack Operations
Symbol Value(hex) Description
OP_TOALTSTACK Ox6b Pop top item from stack and push to alternative stack
OP_FROMALTSTACK 0x6c¢ Pop top item from alternative stack and push to stack
OP_2DROP Ox6d Pop top two stack items
OP_2DUP Ox6e Duplicate top two shack items
OP_3DUP Ox6f Duplicate top three shack items
OP_20VER 0x70 Copies the third and fourth items in the stack to the top
OP_2ROT 0x71 Moves the fifth and sixth items in the stack to the top
OP_2SWAP 0x72 Swap the two top pairs of items in the stack
OP_IFDUP 0x73 Duplicate the top item in the stack if it is not O
OP_DEPTH Ox74 Count the items on the stack and push the resulting count

Appendix C of Mastering Bitcoin
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@ Tables of OP Codes
* Table C-3. Stack Operations
Symbol Value(hex) Description
OP_DROP 0x75 Pop the top item in the stack
OP_DUP 0x76 Duplicate the top item in the stack
OP_NIP Ox77 Pop the second item in the stack
OP_OVER 0x78 Copy the second item in the stack and push it on to the top
OP_PICK 0x73 Pop value N from top, then copy the Nth item to the top of the stack
OP_ROLL Ox7a Pop value N from top, then move the Nth item to the top of the stack
OP_ROT 0x7b Rotate the top three items in the stack
OP_SWAP 0x7c Swap the top three items in the stack
OP_TUCK O0x7d Copy the top item and insert it between the top and second item

Appendix C of Mastering Bitcoin
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6 Tables of OP Codes
* Table C-6. Numeric Operators
Symbol Value(hex) Description

OP_1ADD 0x8b Add 1 to the top item
OP_1SUB 0x8c Subtract 1 from the top item
OP_2MUL 0x8d Disabled (Multiply top item by 2)
OP_2DIV Ox8e Disabled (Divide top item by 2)
OP_MEGATE Ox8f Flip the sign of top item
OP_ABS 0x90 Change the sign of the top item to positive
OP_NOT 0x91 If top item is 0 or 1 boolean flip it, otherwise return 0
OP_ONOTEQUAL 0x92 If top item is O return O, otherwise return 1
OP_ADD 0x93 Pop top two items, add them and push result

Appendix C of Mastering Bitcoin

GIST
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GIST

e Tables of OP Codes
* Table C-2. Conditional Flow Control
Symbol Value(hex) Description
OP_NOP 0x61 Do nothing
OP_VER 0x62 Halt - Invalid transaction unless found in an unexecuted OP-IF clause
OP_IF 0x63 Execute the statements following if top of stack is not 0
OP_NOTIF Ox64 Execute the statements following if top of stack is O
OP_VERIF 0x65 Halt - Invalid transaction
OP_VERMPTIF 0x66 Halt - Invalid transaction
OP_ELSE 0x67 Execute only if the previous statements were not executed
OP_ENDIF 0x68 Ends the OP_IF, OP_NOTIF, OP_ELSE block
OP_VERIFY 0x69 Check the top of the stack, Halt and Invalidate transaction if not TRUE

Appendix C of Mastering Bitcoin
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6 Easy Script

e Example script: 2+3 =5

GIST

SCRIPT
2 3 ADD 5 EQUAL

1

EXECUTION
POINTER

Execution starts from the left
2 Constant value “2" is pushed to the top of the stack

STACK
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6 Easy Script
e Example script: 2+3 =5

SCRIPT
2 3 ADD 5 EQUAL

1

EXECUTION
POINTER

Execution continues, moving to the right with each step
2 Constant value “3" is pushed to the top of the stack

STACK
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@ Easy Script
e Example script: 2+3 =5

SCRIPT
2 3 ADD 5 EQUAL

1

EXECUTION
POINTER

Operator ADD pops the top two items out of the stack and
5 adds them together (3 add 2));
then Operator ADD pushes the result (5) the top of the stack

STACK
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é Easy Script
e Example script: 2+3 =5

SCRIPT
2 3 ADD 5 EQUAL

1

EXECUTION
v POINTER
U 5 u "
|<£ Constant value “5" is pushed to the top of the stack
5
n
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@ Easy Script

e Example script: 2+3 =5

STACK

TRUE

SCRIPT
2 3 ADD 5 EQUAL

1

EXECUTION
POINTER

Operator EQUAL pops the top two items out of the stack and
compares the values (5 and 5)

and if they equal, EQUAL pushes TRUE (TRUE=1) to the top
of the stack

GIST
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e Easy Script

* Unlock + Lock Pair, shows a proof of ownership
- Use a part of the arithmetic example script as the locking script:

3 OP_ADD 5 OP_EQUAL

- Which can be satisfied by a transaction
containing an input with the unlocking script:

2
- Put them together, we have the complete script.

2 3 OP_ADD 5 OP_EQUAL

- This pair will produce an outcome of TRUE.
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& P2PkH Script

* Now let us make a more realistic pair focusing on B.
- A|ZF1: A's Sign (Priv. Key)— Lock to Pub. Key of B 2.0BTC.
- A2t 2: B's Sign (Priv. Key)— Lock to Pub. Key of C 1.0BTC.
- the signature.

GIST

Unlocking Script Locking Script
(scriptSig) + (scriptPubKey)
<sig> <PubK> DUP HASH160 <PubKHash of B> EQUALVERIFY CHECKSIG

Y Y

Sign to PubK Check_Sign with PubKHash
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€Y p2rxH script

* P2PKH of B
- Unspent value belongs to Pay to Public Key
Hash(P2PKH) script.

OP_DUP OP_HASH160 <Public Key Hash of B> OP_EQUAL OP CHECKSIG

- Unlocking script is a digital sign created by
corresponding private key.

<sig of B> <PubK of B>
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 Locking script with a single <input>
- One input, four operations
- OP_DUP: duplicate
- OP_Hash160(x)= RIPEMD(SHA256(x))
- <Public Key Hash of B>
- OP_EQUAL: return TRUE if the two top most
values are equal
- OP_CHECKSIG: checks to see if the provided
sign and pubkey are valid
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€Y p2rxH script

* Locking script with <input>

GIST

SCRIPT
<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG

1

EXECUTION
POINTER

Execution starts
Value <sig> is pushed to the top of the stack.

STACK

Sign_A <sig>
Figure 5-3.

Evaluating a script for a
Pay-to-Public-Key-Hash
transaction (Part 1 of 2)
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€Y p2rxH script

* Locking script with <input>

PubK_A
Sign_A

<PubK>
<sig>

STACK

SCRIPT
<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG

1

EXECUTION
POINTER

Execution continues, moving to the right with each step

Value <Pubk> is pushed to the top of the stack, on the top of

<sig>. Figure 5-3.
Evaluating a script for a
Pay-to-Public-Key-Hash
transaction (Part 1 of 2)
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€Y p2rxH script

* Locking script with <input>

SCRIPT
<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG

1

EXECUTION
PUubK_A &é <PubK> | DUP operator duplicates the top item in the stack,
Sign_A 5 <sig> the resulting value is pushed to the top of the stack.

Figure 5-3.

Evaluating a script for a
Pay-to-Public-Key-Hash
transaction (Part 1 of 2)
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€Y p2rxH script

e See if two PubKH_As match

PubKH_A
PubK_A
Sign_A

STACK

<PubK
Hash>

<PubK>
<sig>

SCRIPT

<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG

1

EXECUTION
POINTER

HASH160 operator hashes the top item in the stack with
RIPEMD160(SHA256(PubK)).
the resulting value (PubKHash) is pushed to the top of the stack.
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€Y p2rxH script
e See if the two PubKH_As match

SCRIPT
<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG
PubKH_A <PubK 1
= ab3813c Hash>
PUbKH_A_ | 753 e
PubK_A

<PubK> | The value PubKHash from the script is pushed on top of the value
<sig> PubKHash calculated previously from the HASH160 of the PubK.

STACK

Sign_A
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€Y p2rxH script
» Check Signature

PubK_A
Sign_A

<PubK>
<sig>

STACK

SCRIPT
<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG

1

EXECUTION
POINTER

The EQUALVERIFY operator compares the PubKHash

encumbering the transaction with the PubkHash calculated

from the user’s <Pubk>. If they match, both are removed and | Figyre 5-4.

execution continues. Evaluating a script for a

Pay-to-Public-Key-Hash
transaction (Part 2 of 2)
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€Y p2rxH script

* Recall SignGenerate and 1sSignatureVal id routines
- m = {TXID, output [n] = {value, a locking script with PKH_A}}
- Sign_A = SignGenerate (m, k_A);
- i1sSignatureValid(m, Sign_A, PK_A) = TRUE/False
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€Y p2rxH script

» Check Signature

STACK

TRUE

SCRIPT
<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG

1

EXECUTION
POINTER

The CHECKSIG operator checks that the signature <sig>

matches the public key <PubK> and pushes TRUE to the top of

the stack if true. Figure 5-4.
Evaluating a script for a
Pay-to-Public-Key-Hash
transaction (Part 2 of 2)
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6 Multisignature and Smart Contracts Scripts

e Other Scripts
- Pay to Public Key (P2PK), introduced in the Bitcoin white paper.
- Pay to Public Key Hash (P2PKH), used in the code by Satoshi
Nakamoto.
- Pay to Script Hash (P2SH), introduced winter of 2012.
- These Bitcoin addresses are beginning with 3.
- Hash of a script is the beneficiary.
- It can be used for a multisignature script.
- M out of N keys are needed to spend the value.
- Useful for joint accounts

GIST
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& Multisignature and Smart Contracts Scripts

* Bitcoin uses scripts for Smart Contracts

= There are many different possibilities that can
be expressed with this scripting language.

= Smart contracts can be programmed in to code
which expresses more complex conditions for
spending and how these conditions can be
satisfied by unlocking scripts.

» This language allows for a nearly infinite
variety of conditions to be expressed.

= This is how bitcoin gets the power of
‘brogrammable money.” (Mastering Bitcoin)

GIST
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& Multisignature and Smart Contracts Scripts

* Bitcoin does not allow any loop

for stable operations.
e Ethereum does.
- Jump and JumpTo are used in
the list of OP codes.
- https://github.com/crytic/evm-
opcodes.
* Bitcoin is more prudent and focuses
on safety.



https://github.com/crytic/evm-opcodes
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