11X

EETT
njaiAfe]

6 Goal of this lecture note

GIST

* Bitcoin Script

 Tables of OP Codes

e Easy Script

 Pay-to-Public Key Hash (P2PKH) Script

e Multisignature and Smart Contracts Scripts



11X

EETT
njaiAfe]

ﬁ Bitcoin Script

* Bitcoin Script

- Bitcoin uses a scripting language for transactions.

- A script is simple, stack-based, and processed
from left to right.

- It is intentionally not Turing-complete, with no
loops.

- A script is a list of instructions.

- The payer locks the vout value to a payee’s public
address.

- The payee unlocks the lock by providing the
signature.

GIST



SEXQID} GIST

Ol2iA2]
ﬁ Bitcoin Script

* Bitcoin Script
- Payer uses a lock script to lock the vout value to a destination
Bitcoin address and payee uses an unlock script to spend it.

1. The vout value transferred to a destination
address mapped from a public key is locked into
the locking script, and

2. A signature is embedded in the unlocking script
which proves the ownership of the private key
corresponding to the locked value.

- Further reading from
https://en.bitcoin.it/wiki/Script



https://en.bitcoin.it/wiki/Script

= 11KRA|
ng'“?{ﬂl' Bitcoin Scripts
Oj2iARR]

“ Bitcoin Script

* See if scriptSig unlocks scriptPubKey!
- Script Construction (Unlock+Lock)

» The locking script is called a scriptPubKey,
because it contains a public key or a
Bitcoin address.

» The unlocking script is called scriptSig
because it contains a digital signature.

* When a correct unlocking script is
provided to the locking script, the
execution of the complete script comes
out TRUE.

» Then, the provider of scriptSig can spend
the value.

GIST



= 11KRA|
ng'“?{nl' Bitcoin Scripts
Oj2iARR]

ﬁ Bitcoin Script
* Pay to Public Key Hash

- A[2F1: A’s Sign (Priv. Key)— Lock to Pub. Key of B 2.0BTC.
- A|2F2: B's Sign (Priv. Key)— Lock to Pub. Key of C 1.0BTC.
- A|2F3: C's Sign (Priv. Key)— Lock to Pub. Key of D 0.5BTC.

Unlocking Script Locking Script
(scriptSig) + (scriptPubKey)

<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG

J
Y Y

Sign to PubK Generate_Sign with PubKHash

GIST



SEXQID} GIST

AER

0 Bitcoin Script

» Values provided by users are given in < >,
 DUP, HASH160, EQUALVERIFY, CHECKSIG are Operations.

Unlocking Script Locking Script
(scriptSig) + (scriptPubKey)

<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG

J
Y Y

Sign to PubK Generate_Sign with PubKHash




= S0} LA
=] —lx'“ I—IJ'I- Bitcoin Scripts

O[2tiAfe]

6 Tables of OP Codes
» Table C-7. Cryptographic and Hashing Operations

Symbol Value(hex) Description
OP_RIPEMD160 Oxab Return RIPEMD160 hash of top item
OP_SHA1 Oxa7 Return SHA1 hash of top item
OP_SHA256 Oxa8 Return SHA256 hash of top item
OP_HASH160 Oxa9 Return RIPEMD160(SHA256(x)) hash of top item
OP_HASH256 Oxaa Return SHA256(SHA256(x)) hash of top item
OP_CODESEPARATOR Oxab Mark the beginning of signature-checked data

Appendix C of Mastering Bitcoin



= S0} LA
=] —lx'“ I—IJ'I- Bitcoin Scripts

Oj2HARR]
6 Tables of OP Codes

e Table C-7. Cryptographic and Hashing Operations

Symbol Value(hex) Description
Pop a public key and signature and validate the signature for the
OP_CHECKSIG Oxac transaction’s hashed data, return TRUE if matching
OP_CHECKSIGVERIFY Oxad Same as CHECKSIG, then OP_VERIFY to halt if not TRUE

Run CHECKSIG for each pair of signature and public key provided.
OP_CHECKMULTISIG Oxae All must match. Bug in implementation pops an extra value, prefix
with OP_NOP as workaround

OP_CHECKMULTISIGVERIFY Oxaf Same as CHECKMULTISIG, then OP_VERIFY to halt if not TRUE

Appendix C of Mastering Bitcoin



SEXQID} GIST

O[2fiAfe]

@ Tables of OP Codes
* Table C-3. Stack Operations
Symbol Value(hex) Description
OP_TOALTSTACK Ox6b Pop top item from stack and push to alternative stack
OP_FROMALTSTACK 0x6c¢ Pop top item from alternative stack and push to stack
OP_2DROP Ox6d Pop top two stack items
OP_2DUP Ox6e Duplicate top two shack items
OP_3DUP Ox6f Duplicate top three shack items
OP_20VER 0x70 Copies the third and fourth items in the stack to the top
OP_2ROT 0x71 Moves the fifth and sixth items in the stack to the top
OP_2SWAP 0x72 Swap the two top pairs of items in the stack
OP_IFDUP 0x73 Duplicate the top item in the stack if it is not O
OP_DEPTH Ox74 Count the items on the stack and push the resulting count

Appendix C of Mastering Bitcoin



SEXQID} GIST

O[2fiAfe]

@ Tables of OP Codes
* Table C-3. Stack Operations
Symbol Value(hex) Description
OP_DROP 0x75 Pop the top item in the stack
OP_DUP 0x76 Duplicate the top item in the stack
OP_NIP Ox77 Pop the second item in the stack
OP_OVER 0x78 Copy the second item in the stack and push it on to the top
OP_PICK 0x73 Pop value N from top, then copy the Nth item to the top of the stack
OP_ROLL Ox7a Pop value N from top, then move the Nth item to the top of the stack
OP_ROT 0x7b Rotate the top three items in the stack
OP_SWAP 0x7c Swap the top three items in the stack
OP_TUCK O0x7d Copy the top item and insert it between the top and second item

Appendix C of Mastering Bitcoin



= S0} LA
=] —lx'“ I—IJ'I- Bitcoin Scripts

D2hAle]
6 Tables of OP Codes
* Table C-6. Numeric Operators
Symbol Value(hex) Description

OP_1ADD 0x8b Add 1 to the top item
OP_1SUB 0x8c Subtract 1 from the top item
OP_2MUL 0x8d Disabled (Multiply top item by 2)
OP_2DIV Ox8e Disabled (Divide top item by 2)
OP_MEGATE Ox8f Flip the sign of top item
OP_ABS 0x90 Change the sign of the top item to positive
OP_NOT 0x91 If top item is 0 or 1 boolean flip it, otherwise return 0
OP_ONOTEQUAL 0x92 If top item is O return O, otherwise return 1
OP_ADD 0x93 Pop top two items, add them and push result

Appendix C of Mastering Bitcoin

GIST




= 11KRA|
ng'“?{nl- Bitcoin Scripts
Oj2iARR]

GIST

e Tables of OP Codes
* Table C-2. Conditional Flow Control
Symbol Value(hex) Description
OP_NOP 0x61 Do nothing
OP_VER 0x62 Halt - Invalid transaction unless found in an unexecuted OP-IF clause
OP_IF 0x63 Execute the statements following if top of stack is not 0
OP_NOTIF Ox64 Execute the statements following if top of stack is O
OP_VERIF 0x65 Halt - Invalid transaction
OP_VERMPTIF 0x66 Halt - Invalid transaction
OP_ELSE 0x67 Execute only if the previous statements were not executed
OP_ENDIF 0x68 Ends the OP_IF, OP_NOTIF, OP_ELSE block
OP_VERIFY 0x69 Check the top of the stack, Halt and Invalidate transaction if not TRUE

Appendix C of Mastering Bitcoin



T1XHA|
Bitcoin Scripts

EETT
njaiAfe]

6 Easy Script

e Example script: 2+3 =5

GIST

SCRIPT
2 3 ADD 5 EQUAL

1

EXECUTION
POINTER

Execution starts from the left
2 Constant value “2" is pushed to the top of the stack

STACK



SEXQID} GIST

O[2fiAfe]

6 Easy Script
e Example script: 2+3 =5

SCRIPT
2 3 ADD 5 EQUAL

1

EXECUTION
POINTER

Execution continues, moving to the right with each step
2 Constant value “3" is pushed to the top of the stack

STACK



SEXQID} GIST

AER

@ Easy Script
e Example script: 2+3 =5

SCRIPT
2 3 ADD 5 EQUAL

1

EXECUTION
POINTER

Operator ADD pops the top two items out of the stack and
5 adds them together (3 add 2));
then Operator ADD pushes the result (5) the top of the stack

STACK



= 11KpA|
ng'“?{ﬂl' Bitcoin Scripts G I ST
DlEiAFR]

é Easy Script
e Example script: 2+3 =5

SCRIPT
2 3 ADD 5 EQUAL

1

EXECUTION
v POINTER
U 5 u "
|<£ Constant value “5" is pushed to the top of the stack
5
n



SN2zt

AER

11X

@ Easy Script

e Example script: 2+3 =5

STACK

TRUE

SCRIPT
2 3 ADD 5 EQUAL

1

EXECUTION
POINTER

Operator EQUAL pops the top two items out of the stack and
compares the values (5 and 5)

and if they equal, EQUAL pushes TRUE (TRUE=1) to the top
of the stack

GIST



SEXQID} GIST

EAER

e Easy Script

* Unlock + Lock Pair, shows a proof of ownership
- Use a part of the arithmetic example script as the locking script:

3 OP_ADD 5 OP_EQUAL

- Which can be satisfied by a transaction
containing an input with the unlocking script:

2
- Put them together, we have the complete script.

2 3 OP_ADD 5 OP_EQUAL

- This pair will produce an outcome of TRUE.



11KIA|

EETT
njaiAfe]

& P2PkH Script

* Now let us make a more realistic pair focusing on B.
- A|ZF1: A's Sign (Priv. Key)— Lock to Pub. Key of B 2.0BTC.
- A2t 2: B's Sign (Priv. Key)— Lock to Pub. Key of C 1.0BTC.
- the signature.

GIST

Unlocking Script Locking Script
(scriptSig) + (scriptPubKey)
<sig> <PubK> DUP HASH160 <PubKHash of B> EQUALVERIFY CHECKSIG

Y Y

Sign to PubK Check_Sign with PubKHash




SEXQID} GIST

OZAES]

€Y p2rxH script

* P2PKH of B
- Unspent value belongs to Pay to Public Key
Hash(P2PKH) script.

OP_DUP OP_HASH160 <Public Key Hash of B> OP_EQUAL OP CHECKSIG

- Unlocking script is a digital sign created by
corresponding private key.

<sig of B> <PubK of B>



e Gicon s GIST

DjaiAs)
€Y p2rxH script

 Locking script with a single <input>
- One input, four operations
- OP_DUP: duplicate
- OP_Hash160(x)= RIPEMD(SHA256(x))
- <Public Key Hash of B>
- OP_EQUAL: return TRUE if the two top most
values are equal
- OP_CHECKSIG: checks to see if the provided
sign and pubkey are valid




= 11KRA|
ng'“?{ﬂl' Bitcoin Scripts
Oj2iARz]

€Y p2rxH script

* Locking script with <input>

GIST

SCRIPT
<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG

1

EXECUTION
POINTER

Execution starts
Value <sig> is pushed to the top of the stack.

STACK

Sign_A <sig>
Figure 5-3.

Evaluating a script for a
Pay-to-Public-Key-Hash
transaction (Part 1 of 2)



SExjolat gt

GIST

OZAES]

€Y p2rxH script

* Locking script with <input>

PubK_A
Sign_A

<PubK>
<sig>

STACK

SCRIPT
<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG

1

EXECUTION
POINTER

Execution continues, moving to the right with each step

Value <Pubk> is pushed to the top of the stack, on the top of

<sig>. Figure 5-3.
Evaluating a script for a
Pay-to-Public-Key-Hash
transaction (Part 1 of 2)




SEXQID} GIST

OZAES]

€Y p2rxH script

* Locking script with <input>

SCRIPT
<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG

1

EXECUTION
PUubK_A &é <PubK> | DUP operator duplicates the top item in the stack,
Sign_A 5 <sig> the resulting value is pushed to the top of the stack.

Figure 5-3.

Evaluating a script for a
Pay-to-Public-Key-Hash
transaction (Part 1 of 2)



SN2zt

T1XHA|
Bitcoin Scripts

GIST

OZAES]

€Y p2rxH script

e See if two PubKH_As match

PubKH_A
PubK_A
Sign_A

STACK

<PubK
Hash>

<PubK>
<sig>

SCRIPT

<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG

1

EXECUTION
POINTER

HASH160 operator hashes the top item in the stack with
RIPEMD160(SHA256(PubK)).
the resulting value (PubKHash) is pushed to the top of the stack.



SEN|Q10} pr—— GIST

OZAES]

€Y p2rxH script
e See if the two PubKH_As match

SCRIPT
<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG
PubKH_A <PubK 1
= ab3813c Hash>
PUbKH_A_ | 753 e
PubK_A

<PubK> | The value PubKHash from the script is pushed on top of the value
<sig> PubKHash calculated previously from the HASH160 of the PubK.

STACK

Sign_A



SExjolat gt

GIST

OZAES]

€Y p2rxH script
» Check Signature

PubK_A
Sign_A

<PubK>
<sig>

STACK

SCRIPT
<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG

1

EXECUTION
POINTER

The EQUALVERIFY operator compares the PubKHash

encumbering the transaction with the PubkHash calculated

from the user’s <Pubk>. If they match, both are removed and | Figyre 5-4.

execution continues. Evaluating a script for a

Pay-to-Public-Key-Hash
transaction (Part 2 of 2)



= 11KpA|
ng'“?{ﬂl' Bitcoin Scripts G I ST
DlEiAFR]

€Y p2rxH script

* Recall SignGenerate and 1sSignatureVal id routines
- m = {TXID, output [n] = {value, a locking script with PKH_A}}
- Sign_A = SignGenerate (m, k_A);
- i1sSignatureValid(m, Sign_A, PK_A) = TRUE/False




SExjolat gt

GIST

OZAES]

€Y p2rxH script

» Check Signature

STACK

TRUE

SCRIPT
<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG

1

EXECUTION
POINTER

The CHECKSIG operator checks that the signature <sig>

matches the public key <PubK> and pushes TRUE to the top of

the stack if true. Figure 5-4.
Evaluating a script for a
Pay-to-Public-Key-Hash
transaction (Part 2 of 2)



11X

EETT
njaiAfe]

6 Multisignature and Smart Contracts Scripts

e Other Scripts
- Pay to Public Key (P2PK), introduced in the Bitcoin white paper.
- Pay to Public Key Hash (P2PKH), used in the code by Satoshi
Nakamoto.
- Pay to Script Hash (P2SH), introduced winter of 2012.
- These Bitcoin addresses are beginning with 3.
- Hash of a script is the beneficiary.
- It can be used for a multisignature script.
- M out of N keys are needed to spend the value.
- Useful for joint accounts

GIST




= 11KRA|
ng'“?{ﬂl' Bitcoin Scripts
Oj2iARz]

& Multisignature and Smart Contracts Scripts

* Bitcoin uses scripts for Smart Contracts

= There are many different possibilities that can
be expressed with this scripting language.

= Smart contracts can be programmed in to code
which expresses more complex conditions for
spending and how these conditions can be
satisfied by unlocking scripts.

» This language allows for a nearly infinite
variety of conditions to be expressed.

= This is how bitcoin gets the power of
‘brogrammable money.” (Mastering Bitcoin)

GIST



SEXQID} GIST

AER

& Multisignature and Smart Contracts Scripts

* Bitcoin does not allow any loop

for stable operations.
e Ethereum does.
- Jump and JumpTo are used in
the list of OP codes.
- https://github.com/crytic/evm-
opcodes.
* Bitcoin is more prudent and focuses
on safety.



https://github.com/crytic/evm-opcodes

	슬라이드 번호 1
	슬라이드 번호 2
	슬라이드 번호 3
	슬라이드 번호 4
	슬라이드 번호 5
	슬라이드 번호 6
	슬라이드 번호 7
	슬라이드 번호 8
	슬라이드 번호 9
	슬라이드 번호 10
	슬라이드 번호 11
	슬라이드 번호 12
	슬라이드 번호 13
	슬라이드 번호 14
	슬라이드 번호 15
	슬라이드 번호 16
	슬라이드 번호 17
	슬라이드 번호 18
	슬라이드 번호 19
	슬라이드 번호 20
	슬라이드 번호 21
	슬라이드 번호 22
	슬라이드 번호 23
	슬라이드 번호 24
	슬라이드 번호 25
	슬라이드 번호 26
	슬라이드 번호 27
	슬라이드 번호 28
	슬라이드 번호 29
	슬라이드 번호 30
	슬라이드 번호 31
	슬라이드 번호 32

