= 10X
EEI{I?{EI‘ Addresses, Signs and Transactions | G I ST
O[2fAL]

‘ Goal of this lecture note

» Mastering Bitcoin
e Elliptic Curve Signatures
e Bitcoin Addresses

« Unspent Transaction Outputs (UTXOs)

%Ex_“?_ll—'-l_ TOXIA|

Addresses, Signs and Transactions

O[2fiAfe]

0 Mastering Bitcoin

R '] /
(Y

Mastering

ElElgg

- e

Refer to M.B. for materials:
Elliptic Curve Signatures
Transactions

Scripts

OP Codes

Example Scripts

Smart Contracts

OUARWN=

MMastering Bitcoins, Antonopoulos, Andreas M., O'Reilly Media, £ 1 K| &

GIST

= 10X
EEX‘"?{EI‘ Addresses, Signs and Transactions | G I ST
O[2fAL]

6 Elliptic Curve Signatures

» Elliptic Curve Digital Signature Algorithms
- Additions and multiplications on some curves.
- Fifteen curves defined in a NIST standard.
- But Bitcoin uses the curves def'd in Secp256k1.
- Asymmetric cryptography, pub and priv keys.
- A public key is used to give a Bitcoin address.
- A private key is to sign the transfer of right.

[http://en.wikipedia.org/wiki/Elliptic Curve Digital Signature Algorithm]
http://www.secg.org/sec2-v2.pdf

http://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
http://www.secg.org/sec2-v2.pdf

10XFA]
Addresses, Signs and Transactions |

=52t
Oj2tiAfe]
@ Elliptic Curve Signatures

* Elliptic Curve Digital Signature Algorithm
- Public domain info

1. Use a designated hash function H(*)

2. Acurve is collection of the roots of y2=x3+ ax
+ b over a finite field F(p) with prime p.

3. G =(X,Y), apoint on the curve.

4. N the multiplicative order of G .

[http://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm]

GIST

10XFA]
Addresses, Signs and Transactions |

EETT
njaiAfe]

6 Elliptic Curve Signatures

* Elliptic Curve Digital Signature Algorithm
- Key Generation

Out: &k (private key), K (public key)
1. Select an integer k in [0, n-1].

2. Compute K=k G.

3. K and G ~ points on the curve

4. The key-pair is (k, K).

It is an asymmetric cryptography.

Results: Alice’s pair (k,, K,) and Bob's pair (kz, Ky).

[http://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm]

GIST

EETT
njaiAfe]

6 Elliptic Curve Signatures

T0XA|

Addresses, Signs and Transactions |

* Elliptic Curve Digital Signature Algorithm
- Elliptic Curve

15

14 ®

13
12
11
10

Ne]

O R, N WS U1V

17
16 L

r

®
1 273456 ¥ 8 9 1011121314 151617

* The points are the roots (X, y) of the
curve equation defined by.

y?2 =x3+7mod 17

» Figure 4-3. Elliptic Curve Cryptography:
Visualizing an elliptic curve over A(p), with p=17

GIST

= 10X
EEX{I?{EI‘ Addresses, Signs and Transactions | G I ST
O[2fAL]

@ Elliptic Curve Signatures

* Elliptic Curve Digital Signature Algorithm
- How many points are on the curve?
* Observation:
» For each X, there are O, 1, or 2 possible Y-point(s).
* There are total 17 (X, y)-points.

* Facts:
* The set of finite points on the curve forms a group
which is closed under a binary operation.

10XFA]
Addresses, Signs and Transactions |

=52t
Oj2tiAfe]
@ Elliptic Curve Signatures

* Elliptic Curve Digital Signature Algorithm
- Addition of any two points on elliptic curve

* There are three cases:
Case 1) Adding two points where x, neq to x,:

(x1ay1)+(x2>y2):(x3>y3)
((x,—x))-m) mod p =1
S=(,—0)-m
X, =(s"—x,—x,) mod p

Vs =(s-(x,—x;)—y,) mod p

GIST

= 10X
EEI{I?{EI‘ Addresses, Signs and Transactions | G I ST
O[2fAL]

@ Elliptic Curve Signatures

* Elliptic Curve Digital Signature Algorithm
- Addition of any two points on elliptic curve

» There are three cases:
Case 2) Adding two points where x, =x, and y, =,

(x17y])+(x27y2):(x37y3)
(2y,-m) mod p=1
s=Cx’+a) m
X, =(s’-x,—x,) mod p

V; =(s-(x,—x;)—y) mod p

= 10X
EEI{I?{EI‘ Addresses, Signs and Transactions | G I ST
O[2fAL]

@ Elliptic Curve Signatures

* Elliptic Curve Digital Signature Algorithm
- Addition of any two points on elliptic curve

* There are three cases:
Case 3) Adding two points where x;, =x, and » =,

(X, 1) +(x,1,)=0
The identity element

SN2zt

O[2HARS

10XFA]
Addresses, Signs and Transactions |

e Elliptic Curve Signatures

o Elliptic Curve Digital Signature Algorithm
- Table of point additions for y* = x*+7 mod 17

+

oo

(1.5

(112)

(2.7

(2.10)

(3.0)

(5.8)

(5.9)

(6.6)

(6.11)

(8.3

(8.14)

(10.2)

(10.15)

(12.1)

(12 16)

(15.4)

(15.13)

oo

oo

(1.5)

(112)

(27

(2.10)

(3.0

(5.8)

(5.9)

(6.8)

(6.11)

83

(8.14)

(10.2)

(10.15)

(121}

(12 16)

(15.4)

(15.13)

(1.5)

(1.5)

(2.10)

5]

(112)

(5.9)

(15.13)

(2.7

(12.1)

(8.14)

(6.6)

6,11

(10.15)

8.3)

(15.4)

(12 16)

(5.8)

(3.0)

(10.2)

(112)

(112)

]

(2.7

(5.8)

L5

(15.4)

(12.16)

(2,10)

(6.11)

8.3

(102)

(6.6)

(15,13)

(8.14)

(5.9)

{121

(10.15)

(3.0)

(27

(27

(1.12)

(5.8)

(12 16)

5]

(10.15)

(12.1)

(1.5)

83

(10.2)

(15.13)

(6.11)

(3.0

(6,6)

(210)

(5.9

(8.14)

(15.4)

(2.10)

(2.10)

(5.9)

(1.5)

L]

(12.1)

(10.2)

(1.12)

(12 16)

(10.15)

(8.14)

(6.6)

(15.4)

(6.11)

(3.0)

(5.8)

(2.7

(15.13)

83

(3.0)

(3.0)

(15.13)

(15.4)

(10.15)

(10.2)

]

(8.14)

2.3

(12.16)

(12,1

(5.9)

(5.8)

(2.10)

(27

(6,11)

(6.6)

(112)

(1.5)

(5.8)

(5.8)

(27

(12 16)

(121

(1.12)

(8.14)

(5.9)

-]

(10.2)

(15.13)

(3.0

8.3

(15.4)

(6.11)

(1.5)

(2.10)

(6,6)

(10.15)

(5.9)

(5.9)

(12.1)

(2.10)

(1.5)

(12 16)

(8.3

o0

(5.8)

(15.4)

(10.15)

(8.14)

(3.0)

(6.:6)

(15.13)

27

(112)

(10.2)

(6.11)

6.6)

(66)

18.14)

6.11)

2.3

(10.15)

(12.16)

(10.:2)

(15.4)

(1.5

oo

(112)

(2,10}

27)

(5.9)

(3.0)

(15.13)

(12.1)

(5.8)

(6.11)

(6.11)

(6.,6)

8.3

(10.2)

(8.14)

(12.1)

(15.13)

(10.15)

]

(1.12)

(27

(1.5)

(5.8)

(2.10)

(15.4)

(3.0

(5.9

(12 16)

8.3)

(8.3

B.11)

(10.2)

(15.13)

(6.:8)

(5.9)

(2.0)

(8.14)

(1.12)

(27

(5.8)

o0

(12 16)

(1.5

(10.15)

(15.4)

(2.10)

(12.1)

(8.14)

(8.14)

(10.15)

(6.6)

(6.11)

(15.4)

(5.8)

(8.3

(3.0

(2.10)

(1.5

oo

(5.9)

(112)

(12.1)

(15.13)

(10.2)

(12 16)

(27

(10.2)

(10.2)

(8.3)

(15.13)

(3.0)

6.11)

(2.10)

(15.4)

6.6)

27

(5.8)

(12 16)

(1.12)

(12.1)

-]

(8.14)

(10.15)

(1.5)

(5.9)

(10.15)

(10.15)

(15,4)

(8.14)

(6.6)

(3.0)

(27

6,11

(15,13)

(5.9)

(2,10)

(1.5

{12,1)

L]

(12.16)

(10,2

8.3

(5.8)

(1.12)

(12.1)

(12.1)

(12 16)

(5.9

(2.10)

(5.8)

(6.11)

(1.5

(27

(3.0

(15.4)

(10 15)

(15.13)

(8.14)

(10.2)

(112}

o

83

(6,6)

(12.16)

(1216}

(5.8)

(12.1)

(5.9)

(27)

(6.6)

(210)

(112)

(15.13)

(3.0)

{15.4)

(10.2)

(10.15)

(8.3

5]

(1.5)

(6.12)

(8.14)

(15.4)

(15.4)

(3.00

(10.15)

(8.14)

(15,13

(1.12)

(5.6)

(10,2

(12,1)

(5.9)

(210)

(12 16)

(1.5

(5.8)

(8.3)

(6,11)

27

L

(15.13)

(15.13)

(10.2)

(3.0)

(15.4)

83

(1.5)

(10.15)

(B.11)

(5.8)

(12 16)

(12.1)

(2.7

(5.9)

(1.12)

(6.6}

(8.14)

]

(2.10)

GIST

[https://graui.de/code/elliptic2/]

10XFA]
Addresses, Signs and Transactions |

=52t
Oj2tiAfe]
@ Elliptic Curve Signatures

* Elliptic Curve Digital Signature Algorithm
- Example to find a point on a curve

eletp=17.
 Let the curve be y?=x3+ 7 mod 17.
* Find a point on the curve
Letx=3. Theny=7?
y2=27+7=34=0
y>=0
y=0
* Thus, (3, 0) is a point on the curve.

GIST

= 10XHA|
ng'"?{ﬂl' Addresses, Signs and Transactions | G I ST
O[2fAL]

e Elliptic Curve Signatures

B Anaconda Powershell Prompt

= 10X
EEX{I?{EI‘ Addresses, Signs and Transactions | G I ST
O[2fAL]

@ Elliptic Curve Signatures

* Elliptic Curve Digital Signature Algorithm
- Example to find a point on a curve

 Let us continue to find another point.
* This time, let us start with an y element.
e Lety =12 and find x.
y2 =122
= 144 — floor(144/17)x17
=8
%X =8
% =
Xx=1
* Thus, (1, 12) is a point on the curve.

= oL _10%RAI I T
EE*" IT!_J'I' Addresses, Signs and Transactions |
OjzHAKS]

9 Elliptic Curve Signatures

B Anaconda Powershell Prompt

= (v _square — 7)%

= 10X
ng'"?{ﬂl' Addresses, Signs and Transactions | G I ST
O[2fAL]

e Elliptic Curve Signatures

* Elliptic Curve Digital Signature Algorithm
- Let us add two points.

Given two points (x,Y;) =(3,0) and (x,,Y,) =(112).
Find (X3, Y;) = (X, Y1) + (X, ¥2)-
Note this is Case 1.
(1-3)m) %17 =1
m=_8
s = (,—y)m = (12-0)-8 = 96 = 11
Xy=5"—x—-x, =5 =-3-1=121-4 = 117%17 = 15
Y, =85(x,—x)-y, =11-3-15)-0 = 132 = —132%17 = 4
(%3, ;) =(15,4)

= 10X
ng'"?{ﬂl' Addresses, Signs and Transactions | G I ST
O[2fAL]

e Elliptic Curve Signatures

* Elliptic Curve Digital Signature Algorithm
- Let us add two points.

Given two points (x,,y,)=(6,11) and (x,,y,)=(6,11).

Find (X, Y5) = (X, V1) + (%5, ¥,)-
Note this is Case 2.

(2:-11'm)% 17 =1

m="

s = 3x +a)ym = 3-6+0)-7 = 756 = 8

X, =5 —x,-x, = 8-6-6 = 52%17 =1

V; =85(x,—x;)—y, = 8(6-1)—-11 = 29%17 = 12
(x5, 13) = (1,12)

= 10X
EEX‘"?{EI‘ Addresses, Signs and Transactions |
Oj2iAl]

e Elliptic Curve Signatures
* Elliptic Curve Digital Signature Algorithm
- Let us add two points.
Given two points (x,,y,) =(10,2) and (x,,y,) =(10,15),

Find (X, Y5) = (X, V1) + (%5, ¥,)-
Note this is Case 3.

(10,2)+(10,15)= O
The identity element

GIST

= 10X
ngﬂ?{ﬂl' Addresses, Signs and Transactions | G I ST
Oj2iAl]

6 Elliptic Curve Signatures

* Elliptic Curve Digital Signature Algorithm
- A scalar multiplication example

» Take any point P = (x, y) on the curve and multiply it by a scalar k.
» The resulting point can be obtained by adding P k times, i.e.,

kP=P+P+..+P

= oL _10%RAI
E'Ex'" IT!_J'I' Addresses, Signs and Transactions |
O|2hA =]

9 Elliptic Curve Signatures

* We may use Python for computations.
- A point P(x, p) is point on the secp256k1 curve.
- You can check our results using Python.

B Anaconda Powershell Prompt - O X

L 17013:21) MSC v, 1915 B4 bit (AMDBA)] @ Anaconda, Inc. on wind?
ight", "credits" or "license" for more information.

10XFA]
Addresses, Signs and Transactions |

=52t
Oj2tiAfe]
@ Elliptic Curve Signatures

* We may use Python libraries at github.

- One example is
https://github.com/vbuterin/pybitcointools.

- It offers pybitcointools library which allows us
to generate and display keys and addresses.

- The other one is at
https://github.com/warner/python-ecdsa which
offers ECDSA implementation in Python.

GIST

https://github.com/vbuterin/pybitcointools
https://github.com/warner/python-ecdsa

= 10X
EEX‘"?{EI‘ Addresses, Signs and Transactions | G I ST
O[2fAL]

6 Elliptic Curve Signatures

* From private key k, obtain public key by K = k*G.
- A 256 bit string is shown as 64 hexadecimal string.

k= 1E99423A4ED2T60BA15A2616A2BOESES2CED330ACS3BEDCCIZCAFFCEAS26AEDD

G= (% y) = (55066263022277343669578718895168534326250603453777594175 500187360389116729246,
32670510826758816578083685130507043184471273380659243275938904335757337482424)

- Multiply the private key k with the generator point G
to obtain the public key K.

K= 1E99423A4ED27608A15A2616A2BOESES52CED330ACS30EDCC32CBFFCE6A526AEDD *G
K= (x, y)
where,

Xx= FO28892BAD...DC341A
y= OTCF33DA18...505BDB

10XFA]
Addresses, Signs and Transactions |

SN2}
Oj2tiAfe]
@ Elliptic Curve Signatures

* Elliptic Curve Digital Signature Algorithm

- We now know how to generate keys.
- Next is how to sign and validate it.

http://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm

GIST

EETT
njaiAfe]

10XFA]
Addresses, Signs and Transactions |

6 Elliptic Curve Signatures

* Elliptic Curve Digital Signature Algorithm
- SignGenerate

8l Alice’ signature (1,)

1.
2.

N ook ow

mthe message, Alice’s private key k,

Calculate the message hash e=H(m)

Let z be the L, leftmost bits of e where L, is the bit length of the
group order n

Select an integer d from [1, n—1]

Calculate the curve point (x,, y,)=dG

Calculate r=x, mod n, If r=0, go to step 3

Calculate s= k,1(z+7k,) mod n, If s=0, go to step 3

The signature is the pair (r, s)

GIST

= 10X
Esx'“?{ﬂl' Addresses, Signs and Transactions | G I ST
O[2fAL]

6 Elliptic Curve Signatures

* Elliptic Curve Digital Signature Algorithm
- IsSignatureValid

m a message, Alice’s signature (r, s), and K,
Valid or invalid

1. Verify if K, is a valid curve point as follows:

1. Check to see if K, is not equal to the identity element O
2. Check to see if K, lies on the curve
3. Check thatn x K, =0
2. Verify that r and s are integers in [1, n—1]
If not, the signature is invalid
3. Calculate the message hash e =H(m)

[EX: http://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm]

EETT
njaiAfe]

6 Elliptic Curve Signatures

10XFA]
Addresses, Signs and Transactions |

* Elliptic Curve Digital Signature Algorithm
- IsSignatureValid

m the message, Alice’s signature (r, s), and K,

Valid or invalid

4.
S.
6.
7.

8.

Let z be the L, leftmost bits of e where L, is the bit length of the
group order n

Calculate w = st mod n

Calculate u;=z w mod n and u,=r *w mod n

Calculate the curve point (X, y;)= u;*G+u,*Q,

If X;, y,=0, then the signature is invalid

The signature is valid if r = x, mod n, invalid otherwise

[EX: http://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm]

GIST

= 10X
EEX{I?{EI‘ Addresses, Signs and Transactions G I ST
Oj2iAl]

6 Bitcoin Addresses

* An example Bitcoin Address is
TthMjrt546nngXqyPEz53258fLwbozud8.
- BTCs belong to a Bitcoin address.
- We aim to know how they are generated.
- An address is generated from a public key.

- It goes through several mappings such as
SHA256, RIPEMD160, and Base58Check.

= 10X
EEX‘"?{EI‘ Addresses, Signs and Transactions G I ST
Oj2iAl]

6 Bitcoin Addresses

» Making a Bitcoin address from a public key
- Private key k (32 bytes)
- Public key K = G *k
* Uncompressed one is 65 bytes (0x04 + x +).

* Compressed one is 33 bytes
(0x02+ x, use 02 for even y; 0x03+x for odd y).

- Public Key Hash = RIPEMD160(SHA256(K))
* 160 bit (20 byte)
- Baseb8Str

= Base58Check(PKH + 4Byte_checksum)
34 1PMycacnJaSgwwJgjawXBErnLsZ7RkXUAs

10XFA]
Addresses, Signs and Transactions

g=xola}
AER

@ Bitcoin Addresses

* What is Base58Check and why?

- Base58Check is mapping a PKH into a
more readable format.

- Base58 is similar to Base64 but with 6
characters removed.

- Baseb4 uses A-Z, a-z, 0-9, + and /.

- Removed are +,/,0, O, l and I,

- These symbols are prone to confusion.

- A Bitcoin address is of between 27 and
34 characters long!

GIST

SN2zt

OlfiAz]
6 Bitcoin Addresses

10KIA|

Addresses, Signs and Transactions

» Base58 Value-to-Character Mapping Table

GIST

Value Character Value Character Value Character Value Character

0 1 1 2 2 3 3 4
4 5 5 6 6 7 7 8
8 9 9 A 10 B 11 C
12 D 13 E 14 F 15 G
16 H 17 J 18 K 19 L
20 M 21 N 22 P 23 Q
24 R 25 S 26 T 27 U
28 v 29 w 30 X 31 Y
32 7 33 a 34 b 35 c
36 d 37 e 38 f 39 g
40 h 41 [42 i 43 k
44 m 45 n 46 o] 47 p
48 q 49 r 50 s 51 t
52 u 53 Y 54 w 55 X
56 Y 57 z

10XFA|

I=0—% d([e] |
= —lx'“ '—IJ'I- Addresses, Signs and Transactions

Oj2HAR]
6 Bitcoin Addresses

« Example of Base58Check Mapping

12437,, = 3x582 + 40x58! + 25

= 340 25,

GIST

= oL _10%RAI
ng'“ '—IJ'I' Addresses, Signs and Transactions

OlfiAz]
6 Bitcoin Addresses

A version prefix is appended to Base58Str
- Table 4-1. Version Prefixes

Type Version prefix (hex) Base-58 prefix
Bitcoin Address 0x00 1
Pay-to-Script-Hash Address 0x05 3
Bitcoin Testnet Address Ox6F m or n
Private Key WIF 0x80 5 KorlL
BIP38 Encrypted Private Key 0x0142 6P
BIP32 Extended Public Key 0x0488B21E Xpub

= 10X
EEX{I?{EI‘ Addresses, Signs and Transactions G I ST
D2ALS]

& Bitcoin Addresses

e The richest Bitcoin address on 2019/10/14 is
34xXp4vRoCGJym3xR7yCVPFHoOCNxv4Twseo

e It holds 160,333.03 BTCs.

Bitcoin Address 34xp4vRoCGJym3xR7yCVPFHoCNxv4Twseo

Share: 723 W & f
block, address, transaction Search
160,333.035553458 BTC
Balance: 1,306,271,197.16 USD wallet: Binance-coldwallet E - E
Received: 538,375.7552 BTC (269 ins) first: 2018-10-18 21:59:18 last: 2019-10-04 16:08:37 ﬁ i
Sent: 378,042.7196 BTC (188 outs) first: 2018-10-18 22:19:26 last: 2019-09-12 10:50:01 ?ﬁ.
-

Unspent outputs: 81 E

https://bitinfocharts.com/bitcoin/address/34xp4vRoCGJym3xR7yCVPFHoCNxv4Twseo

https://bitinfocharts.com/bitcoin/address/34xp4vRoCGJym3xR7yCVPFHoCNxv4Twseo

= 10X
EEX‘"?{EI‘ Addresses, Signs and Transactions | G I ST
O[2fAL]

& Unspent Transaction Outputs (UTXOs)

« UTXO is an unspent transaction output.
e Given an address, one can obtain all the
UTXOs belonging to that address by
going through the ledger.
* We are interested in
Creating, signing and submitting
Transactions based on UTXOs.

= 10X
EEX‘"?{EI‘ Addresses, Signs and Transactions |
Oj2iAl]

e Unspent Transaction Outputs (UTXOs)

e How to obtain UTXO0s?

- When you download/install Bitcoin core,
you run the Bitcoin client.

- Mastering Bitcoin has a detailed
procedure for installation (see Ch.3)

- One can use the Bitcoin client to find all
the UTXOs.

- The command listunspent can list out
all UTXOs which belong to address.

- Once UTXOs are figured out, they can be
spent.

IrMastering Bitcoing, Antonopoulos, Andreas M., O'Reilly Media

GIST

EEX[Q12t gy

Addresses, Signs and Transactions |

O[2iAf2]
& Unspent Transaction Outputs (UTXOs)

« UTXOs

- First, use the listunspent command to

show all the unspent confirmed outputs to
each address in our wallet.

¢ bitcoin-cli listunspent

[
{
"exid"
"vout" : @,
"address" : "1hvzSofGwT8cjbB8JUTNBsCSTEVQX5u9CL”,
"account"™ : "

"scriptPubKey" : "76a91407bdb518fazes@89fd810235cf1100c9c13d1fd288ac”,
"amount™ : @.85800000,

"confirmations" : 7

: "9caBf969bd3efSec2afoBse60Tdbf7aBbd365524c2elfecbbe3b9acbae2cidaei”,

GIST

= 10X
EEX{I?{EI‘ Addresses, Signs and Transactions | G I ST
O[iAL]

& Unspent Transaction Outputs (UTXOs)

* UTXOs

- When you want to spend an UTXO, you
make a transaction in which an UTXO is
used as an input by referring to the
previous txid and vout index.

- You need to create a new transaction that
will spend the Oth vout of the txid
9ca8f10... asitsinputandassignittoa

new output address.

= 10X
EEX{I?{EI‘ Addresses, Signs and Transactions | G I ST
O[iAL]

& Unspent Transaction Outputs (UTXOs)

* Closer look at a UTXO with txid 9ca8.., voutO
- Use the gettxout command.
- Transaction outputs are always referenced
by txid and vout, and they are the parameters
we pass to gettxout.

10XFA|

I=0—% d([e] |
E—lx.“ '—IJ'I- Addresses, Signs and Transactions | G | ST

Oj2iAfe]
& Unspent Transaction Outputs (UTXOs)

e Closer look at txid 9ca8.. voutO

$ bitcoin-cli gettxout 9ca8f969bd3efSec2aB685660fdbf7aB8bd365524c2e1fch6c309achae2c14ael @

{
"bestblock" : "0PAROEAEAAAARER1485ce69bd4ceebedfdb537749cebe8dd3T1eb37e13899Fd9",

"confirmations" : 7,
"wvalue" : 0.05000000,
"scriptPubKey” : {
"asm" : "OP_DUP OP_HASH160 87bdb518fa2e60B9fd810235cf1100c9c13d1fd2)
OP_EQUALVERIFY OP_CHECKSIG",
"hex" : "76a91407bdb518fa2e6089fd810235cf1100c9c13d1fd288ac”,
"reqsigs" : 1,
"type" : "pubkeyhash",
"addresses" : [
"1hvzSofGwT8cjb&IU7nBsCSTEVQXSuaCL”
]
1

"version" : 1,
"coinbase" : false

10XFA]
Addresses, Signs and Transactions |

g=xola}
AER

& Unspent Transaction Outputs (UTXOs)

* Closer look at txid 9ca8.., voutO
- What we see above is the output that has 0.05
BTC to our address 1hvz. . ..
- To spend this output we shall create a new
transaction.
- For this, we need to get an address to which we
will send the money:

GIST

=| _" IJ_I' T0XHA| I T
=7 Addresses, Signs and Transactions |
Oj2iAl]

& Unspent Transaction Outputs (UTXOs)

» Making a new transaction
- There is a Bitcoin client command
createrawtransaction.
- It can be used to generate a raw transaction.
- Suppose you want to make a new transaction
» A payment of 0.030 BTC to a recipient with address 1LTz9---1cP.

» A change of is given back to an address of yours,
* The rest, 0.050-0.030-0.015 = 0.005 BTC, is given to miners as TX fee

= 10X
EEX‘"?{EI‘ Addresses, Signs and Transactions | G I ST
O[iAL]

e Unspent Transaction Outputs (UTXOs)

TXID 7957a35--f18
-)

In0: VoutO:

TXID 9ca8. ae3 ScriptPK1 0.030 BTC
vout O -

Sign Vout1:

0.050 BTC ScriptPK2 0.015 BTC

\2 /

= 10X
EEI{I?{J—'.I' Addresses, Signs and Transactions | G I ST
O[iAL]

& Unspent Transaction Outputs (UTXOs)

« Each TX is locked. To unlock, you need the private key.
- AlZF1: A's Signature (Key)— B (Locked to B) 2BTC.
- A[2F 2: B's Signature (Key)— C (Locked to C) 1BTC.
- A2} 3: C's Signature (Key)— D (Locked to D) 0.5BTC.

10XFA]
Addresses, Signs and Transactions |

EETT
njaiAfe]

& Unspent Transaction Outputs (UTXOs)

» Making a new transaction
- Inputs given to createrawtransaction
include:

» UTXO's TXID vout O
e 1LTz9---1cP 0.030 BTC
* 1Bts8--2Ps 0.015 BTC

- Then, a chuck of script code is generated.

GIST

	슬라이드 번호 1
	슬라이드 번호 2
	슬라이드 번호 3
	슬라이드 번호 4
	슬라이드 번호 5
	슬라이드 번호 6
	슬라이드 번호 7
	슬라이드 번호 8
	슬라이드 번호 9
	슬라이드 번호 10
	슬라이드 번호 11
	슬라이드 번호 12
	슬라이드 번호 13
	슬라이드 번호 14
	슬라이드 번호 15
	슬라이드 번호 16
	슬라이드 번호 17
	슬라이드 번호 18
	슬라이드 번호 19
	슬라이드 번호 20
	슬라이드 번호 21
	슬라이드 번호 22
	슬라이드 번호 23
	슬라이드 번호 24
	슬라이드 번호 25
	슬라이드 번호 26
	슬라이드 번호 27
	슬라이드 번호 28
	슬라이드 번호 29
	슬라이드 번호 30
	슬라이드 번호 31
	슬라이드 번호 32
	슬라이드 번호 33
	슬라이드 번호 34
	슬라이드 번호 35
	슬라이드 번호 36
	슬라이드 번호 37
	슬라이드 번호 38
	슬라이드 번호 39
	슬라이드 번호 40
	슬라이드 번호 41
	Blank Page
	Blank Page
	Blank Page
	Blank Page

