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‘ Goal of this lecture note

» Mastering Bitcoin
e Elliptic Curve Signatures
e Bitcoin Addresses

« Unspent Transaction Outputs (UTXOs)
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0 Mastering Bitcoin
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Mastering
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Refer to M.B. for materials:
Elliptic Curve Signatures
Transactions

Scripts

OP Codes

Example Scripts

Smart Contracts
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MMastering Bitcoins, Antonopoulos, Andreas M., O'Reilly Media, £ 1 K| &

GIST
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6 Elliptic Curve Signatures

» Elliptic Curve Digital Signature Algorithms
- Additions and multiplications on some curves.
- Fifteen curves defined in a NIST standard.
- But Bitcoin uses the curves def'd in Secp256k1.
- Asymmetric cryptography, pub and priv keys.
- A public key is used to give a Bitcoin address.
- A private key is to sign the transfer of right.

[http://en.wikipedia.org/wiki/Elliptic Curve Digital Signature Algorithm]
http://www.secg.org/sec2-v2.pdf
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@ Elliptic Curve Signatures

* Elliptic Curve Digital Signature Algorithm
- Public domain info

1. Use a designated hash function H(*)

2. Acurve is collection of the roots of y2=x3+ ax
+ b over a finite field F(p) with prime p.

3. G =(X,Y), apoint on the curve.

4. N the multiplicative order of G .

[http://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm]

GIST
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6 Elliptic Curve Signatures

* Elliptic Curve Digital Signature Algorithm
- Key Generation

Out: &k (private key), K (public key)
1. Select an integer k in [0, n-1].

2. Compute K=k G.

3. K and G ~ points on the curve

4. The key-pair is (k, K).

It is an asymmetric cryptography.

Results: Alice’s pair (k,, K,) and Bob's pair (kz, Ky).

[http://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm]

GIST
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6 Elliptic Curve Signatures
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* Elliptic Curve Digital Signature Algorithm
- Elliptic Curve
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* The points are the roots (X, y) of the
curve equation defined by.

y?2 =x3+7mod 17

» Figure 4-3. Elliptic Curve Cryptography:
Visualizing an elliptic curve over A(p), with p=17

GIST
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@ Elliptic Curve Signatures

* Elliptic Curve Digital Signature Algorithm
- How many points are on the curve?
* Observation:
» For each X, there are O, 1, or 2 possible Y-point(s).
* There are total 17 (X, y)-points.

* Facts:
* The set of finite points on the curve forms a group
which is closed under a binary operation.
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@ Elliptic Curve Signatures

* Elliptic Curve Digital Signature Algorithm
- Addition of any two points on elliptic curve

* There are three cases:
Case 1) Adding two points where x, neq to x,:

(x1ay1)+(x2>y2):(x3>y3)
((x,—x))-m) mod p =1
S=(,—0)-m
X, =(s"—x,—x,) mod p

Vs =(s-(x,—x;)—y, ) mod p

GIST
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@ Elliptic Curve Signatures

* Elliptic Curve Digital Signature Algorithm
- Addition of any two points on elliptic curve

» There are three cases:
Case 2) Adding two points where x, =x, and y, =,

(x17y])+(x27y2):(x37y3)
(2y,-m) mod p=1
s=Cx’+a) m
X, =(s’-x,—x, ) mod p

V; =(s-(x,—x;)—y ) mod p
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@ Elliptic Curve Signatures

* Elliptic Curve Digital Signature Algorithm
- Addition of any two points on elliptic curve

* There are three cases:
Case 3) Adding two points where x;, =x, and » =,

(X, 1) +(x,1,)=0
The identity element
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e Elliptic Curve Signatures

o Elliptic Curve Digital Signature Algorithm
- Table of point additions for y* = x*+7 mod 17
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[https://graui.de/code/elliptic2/]
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@ Elliptic Curve Signatures

* Elliptic Curve Digital Signature Algorithm
- Example to find a point on a curve

eletp=17.
 Let the curve be y?=x3+ 7 mod 17.
* Find a point on the curve
Letx=3. Theny=7?
y2=27+7=34=0
y>=0
y=0
* Thus, (3, 0) is a point on the curve.

GIST
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e Elliptic Curve Signatures

B Anaconda Powershell Prompt
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@ Elliptic Curve Signatures

* Elliptic Curve Digital Signature Algorithm
- Example to find a point on a curve

 Let us continue to find another point.
* This time, let us start with an y element.
e Lety =12 and find x.
y2 =122
= 144 — floor(144/17)x17
=8
%X =8
% =
Xx=1
* Thus, (1, 12) is a point on the curve.
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9 Elliptic Curve Signatures

B Anaconda Powershell Prompt

= (v _square — 7)%
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e Elliptic Curve Signatures

* Elliptic Curve Digital Signature Algorithm
- Let us add two points.

Given two points (x,Y;) =(3,0) and (x,,Y,) =(112).
Find (X3, Y;) = (X, Y1) + (X, ¥2)-
Note this is Case 1.
(1-3)m) %17 =1
m=_8
s = (,—y)m = (12-0)-8 = 96 = 11
Xy=5"—x—-x, =5 =-3-1=121-4 = 117%17 = 15
Y, =85(x,—x)-y, =11-3-15)-0 = 132 = —132%17 = 4
(%3, ;) =(15,4)




= 10X
ng'"?{ﬂl' Addresses, Signs and Transactions | G I ST
O[2fAL]

e Elliptic Curve Signatures

* Elliptic Curve Digital Signature Algorithm
- Let us add two points.

Given two points (x,,y,)=(6,11) and (x,,y,)=(6,11).

Find (X, Y5) = (X, V1) + (%5, ¥,)-
Note this is Case 2.

(2:-11'm )% 17 =1

m="

s = 3x +a)ym = 3-6+0)-7 = 756 = 8

X, =5 —x,-x, = 8-6-6 = 52%17 =1

V; =85(x,—x;)—y, = 8(6-1)—-11 = 29%17 = 12
(x5, 13) = (1,12)
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e Elliptic Curve Signatures
* Elliptic Curve Digital Signature Algorithm
- Let us add two points.
Given two points (x,,y,) =(10,2) and (x,,y,) =(10,15),

Find (X, Y5) = (X, V1) + (%5, ¥,)-
Note this is Case 3.

(10,2)+(10,15)= O
The identity element

GIST
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6 Elliptic Curve Signatures

* Elliptic Curve Digital Signature Algorithm
- A scalar multiplication example

» Take any point P = (x, y) on the curve and multiply it by a scalar k.
» The resulting point can be obtained by adding P k times, i.e.,

kP=P+P+..+P
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9 Elliptic Curve Signatures

* We may use Python for computations.
- A point P(x, p) is point on the secp256k1 curve.
- You can check our results using Python.

B Anaconda Powershell Prompt - O X

L 17013:21) MSC v, 1915 B4 bit (AMDBA)] @ Anaconda, Inc. on wind?
ight", "credits" or "license" for more information.
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@ Elliptic Curve Signatures

* We may use Python libraries at github.

- One example is
https://github.com/vbuterin/pybitcointools.

- It offers pybitcointools library which allows us
to generate and display keys and addresses.

- The other one is at
https://github.com/warner/python-ecdsa which
offers ECDSA implementation in Python.

GIST
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6 Elliptic Curve Signatures

* From private key k, obtain public key by K = k*G.
- A 256 bit string is shown as 64 hexadecimal string.

k= 1E99423A4ED2T60BA15A2616A2BOESES2CED330ACS3BEDCCIZCAFFCEAS26AEDD

G= (% y) = (55066263022277343669578718895168534326250603453777594175 500187360389116729246,
32670510826758816578083685130507043184471273380659243275938904335757337482424)

- Multiply the private key k with the generator point G
to obtain the public key K.

K= 1E99423A4ED27608A15A2616A2BOESES52CED330ACS30EDCC32CBFFCE6A526AEDD *G
K= (x, y)
where,

Xx= FO28892BAD...DC341A
y= OTCF33DA18...505BDB
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@ Elliptic Curve Signatures

* Elliptic Curve Digital Signature Algorithm

- We now know how to generate keys.
- Next is how to sign and validate it.

http://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm

GIST
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6 Elliptic Curve Signatures

* Elliptic Curve Digital Signature Algorithm
- SignGenerate

8l Alice’ signature (1, )

1.
2.

N ook ow

mthe message, Alice’s private key k,

Calculate the message hash e=H(m)

Let z be the L, leftmost bits of e where L, is the bit length of the
group order n

Select an integer d from [1, n—1]

Calculate the curve point (x,, y,)=dG

Calculate r=x, mod n, If r=0, go to step 3

Calculate s= k,1(z+7k,) mod n, If s=0, go to step 3

The signature is the pair (r, s)

GIST
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6 Elliptic Curve Signatures

* Elliptic Curve Digital Signature Algorithm
- IsSignatureValid

m a message, Alice’s signature (r, s), and K,
Valid or invalid

1. Verify if K, is a valid curve point as follows:

1. Check to see if K, is not equal to the identity element O
2. Check to see if K, lies on the curve
3. Check thatn x K, =0
2. Verify that r and s are integers in [1, n—1]
If not, the signature is invalid
3. Calculate the message hash e =H(m)

[EX: http://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm]
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6 Elliptic Curve Signatures
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* Elliptic Curve Digital Signature Algorithm
- IsSignatureValid

m the message, Alice’s signature (r, s), and K,

Valid or invalid

4.
S.
6.
7.

8.

Let z be the L, leftmost bits of e where L, is the bit length of the
group order n

Calculate w = st mod n

Calculate u;=z w mod n and u,=r *w mod n

Calculate the curve point (X, y;)= u;*G+u,*Q,

If X;, y,=0, then the signature is invalid

The signature is valid if r = x, mod n, invalid otherwise

[EX: http://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm]

GIST
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6 Bitcoin Addresses

* An example Bitcoin Address is
TthMjrt546nngXqyPEz53258fLwbozud8.
- BTCs belong to a Bitcoin address.
- We aim to know how they are generated.
- An address is generated from a public key.

- It goes through several mappings such as
SHA256, RIPEMD160, and Base58Check.
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6 Bitcoin Addresses

» Making a Bitcoin address from a public key
- Private key k (32 bytes)
- Public key K = G *k
* Uncompressed one is 65 bytes (0x04 + x + ).

* Compressed one is 33 bytes
(0x02+ x, use 02 for even y; 0x03+x for odd y).

- Public Key Hash = RIPEMD160(SHA256(K))
* 160 bit (20 byte)
- Baseb8Str

= Base58Check(PKH + 4Byte_checksum)
34 1PMycacnJaSgwwJgjawXBErnLsZ7RkXUAs
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@ Bitcoin Addresses

* What is Base58Check and why?

- Base58Check is mapping a PKH into a
more readable format.

- Base58 is similar to Base64 but with 6
characters removed.

- Baseb4 uses A-Z, a-z, 0-9, + and /.

- Removed are +,/,0, O, l and I,

- These symbols are prone to confusion.

- A Bitcoin address is of between 27 and
34 characters long!

GIST
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» Base58 Value-to-Character Mapping Table

GIST

Value Character Value Character Value Character Value Character

0 1 1 2 2 3 3 4
4 5 5 6 6 7 7 8
8 9 9 A 10 B 11 C
12 D 13 E 14 F 15 G
16 H 17 J 18 K 19 L
20 M 21 N 22 P 23 Q
24 R 25 S 26 T 27 U
28 v 29 w 30 X 31 Y
32 7 33 a 34 b 35 c
36 d 37 e 38 f 39 g
40 h 41 [ 42 i 43 k
44 m 45 n 46 o] 47 p
48 q 49 r 50 s 51 t
52 u 53 Y 54 w 55 X
56 Y 57 z
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6 Bitcoin Addresses

« Example of Base58Check Mapping

12437,, = 3x582 + 40x58! + 25

= 340 25,

GIST
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A version prefix is appended to Base58Str
- Table 4-1. Version Prefixes

Type Version prefix (hex) Base-58 prefix
Bitcoin Address 0x00 1
Pay-to-Script-Hash Address 0x05 3
Bitcoin Testnet Address Ox6F m or n
Private Key WIF 0x80 5 KorlL
BIP38 Encrypted Private Key 0x0142 6P
BIP32 Extended Public Key 0x0488B21E Xpub
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& Bitcoin Addresses

e The richest Bitcoin address on 2019/10/14 is
34xXp4vRoCGJym3xR7yCVPFHoOCNxv4Twseo

e It holds 160,333.03 BTCs.

Bitcoin Address 34xp4vRoCGJym3xR7yCVPFHoCNxv4Twseo

Share: 723 W & f
block, address, transaction Search
160,333.035553458 BTC
Balance: 1,306,271,197.16 USD wallet: Binance-coldwallet E - E
Received: 538,375.7552 BTC (269 ins)  first: 2018-10-18 21:59:18 last: 2019-10-04 16:08:37 ﬁ i
Sent: 378,042.7196 BTC (188 outs) first: 2018-10-18 22:19:26 last: 2019-09-12 10:50:01 ?ﬁ.
-

Unspent outputs: 81 E

https://bitinfocharts.com/bitcoin/address/34xp4vRoCGJym3xR7yCVPFHoCNxv4Twseo
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& Unspent Transaction Outputs (UTXOs)

« UTXO is an unspent transaction output.
e Given an address, one can obtain all the
UTXOs belonging to that address by
going through the ledger.
* We are interested in
Creating, signing and submitting
Transactions based on UTXOs.
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e Unspent Transaction Outputs (UTXOs)

e How to obtain UTXO0s?

- When you download/install Bitcoin core,
you run the Bitcoin client.

- Mastering Bitcoin has a detailed
procedure for installation (see Ch.3)

- One can use the Bitcoin client to find all
the UTXOs.

- The command listunspent can list out
all UTXOs which belong to address.

- Once UTXOs are figured out, they can be
spent.

IrMastering Bitcoing, Antonopoulos, Andreas M., O'Reilly Media

GIST
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& Unspent Transaction Outputs (UTXOs)

« UTXOs

- First, use the listunspent command to

show all the unspent confirmed outputs to
each address in our wallet.

¢ bitcoin-cli listunspent

[
{
"exid"
"vout" : @,
"address" : "1hvzSofGwT8cjbB8JUTNBsCSTEVQX5u9CL”,
"account"™ : "

"scriptPubKey" : "76a91407bdb518fazes@89fd810235cf1100c9c13d1fd288ac”,
"amount™ : @.85800000,

"confirmations" : 7

: "9caBf969bd3efSec2afoBse60Tdbf7aBbd365524c2elfecbbe3b9acbae2cidaei”,

GIST
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& Unspent Transaction Outputs (UTXOs)

* UTXOs

- When you want to spend an UTXO, you
make a transaction in which an UTXO is
used as an input by referring to the
previous txid and vout index.

- You need to create a new transaction that
will spend the Oth vout of the txid
9ca8f10... asitsinputandassignittoa

new output address.
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& Unspent Transaction Outputs (UTXOs)

* Closer look at a UTXO with txid 9ca8.., voutO
- Use the gettxout command.
- Transaction outputs are always referenced
by txid and vout, and they are the parameters
we pass to gettxout.
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& Unspent Transaction Outputs (UTXOs)

e Closer look at txid 9ca8.. voutO

$ bitcoin-cli gettxout 9ca8f969bd3efSec2aB685660fdbf7aB8bd365524c2e1fch6c309achae2c14ael @

{
"bestblock" : "0PAROEAEAAAARER1485ce69bd4ceebedfdb537749cebe8dd3T1eb37e13899Fd9",

"confirmations" : 7,
"wvalue" : 0.05000000,
"scriptPubKey” : {
"asm" : "OP_DUP OP_HASH160 87bdb518fa2e60B9fd810235cf1100c9c13d1fd2)
OP_EQUALVERIFY OP_CHECKSIG",
"hex" : "76a91407bdb518fa2e6089fd810235cf1100c9c13d1fd288ac”,
"reqsigs" : 1,
"type" : "pubkeyhash",
"addresses" : [
"1hvzSofGwT8cjb&IU7nBsCSTEVQXSuaCL”
]
1

"version" : 1,
"coinbase" : false
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& Unspent Transaction Outputs (UTXOs)

* Closer look at txid 9ca8.., voutO
- What we see above is the output that has 0.05
BTC to our address 1hvz. . ..
- To spend this output we shall create a new
transaction.
- For this, we need to get an address to which we
will send the money:

GIST
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& Unspent Transaction Outputs (UTXOs)

» Making a new transaction
- There is a Bitcoin client command
createrawtransaction.
- It can be used to generate a raw transaction.
- Suppose you want to make a new transaction
» A payment of 0.030 BTC to a recipient with address 1LTz9---1cP.

» A change of is given back to an address of yours,
* The rest, 0.050-0.030-0.015 = 0.005 BTC, is given to miners as TX fee
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e Unspent Transaction Outputs (UTXOs)

TXID 7957a35--f18
- )

In0: VoutO:

TXID 9ca8. ae3 ScriptPK1 0.030 BTC
vout O -

Sign Vout1:

0.050 BTC ScriptPK2 0.015 BTC

\2 /
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& Unspent Transaction Outputs (UTXOs)

« Each TX is locked. To unlock, you need the private key.
- AlZF1: A's Signature (Key)— B (Locked to B) 2BTC.
- A[2F 2: B's Signature (Key)— C (Locked to C) 1BTC.
- A2} 3: C's Signature (Key)— D (Locked to D) 0.5BTC.
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& Unspent Transaction Outputs (UTXOs)

» Making a new transaction
- Inputs given to createrawtransaction
include:

» UTXO's TXID vout O
e 1LTz9---1cP 0.030 BTC
* 1Bts8--2Ps 0.015 BTC

- Then, a chuck of script code is generated.

GIST
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