Goal of this lecture note

- Mastering Bitcoin
- Elliptic Curve Signatures
- Bitcoin Addresses
- Unspent Transaction Outputs (UTXOs)

GIST

Mastering Bitcoin

Refer to M.B. for materials:

1. Elliptic Curve Signatures
2. Transactions
3. Scripts
4. OP Codes
5. Example Scripts
6. Smart Contracts
${ }^{『}$ Mastering Bitcoin』, Antonopoulos, Andreas M., O'Reilly Media, 교보문고 제공

2 Elliptic Curve Signatures

- Elliptic Curve Digital Signature Algorithms
- Additions and multiplications on some curves.
- Fifteen curves defined in a NIST standard.
- But Bitcoin uses the curves def'd in Secp256k1.
- Asymmetric cryptography, pub and priv keys.
- A public key is used to give a Bitcoin address.
- A private key is to sign the transfer of right.

2 Elliptic Curve Signatures

- Elliptic Curve Digital Signature Algorithm
- Public domain info

1. Use a designated hash function $H\left({ }^{*}\right)$
2. A curve is collection of the roots of $y^{2}=x^{3}+a x$ $+b$ over a finite field $F(p)$ with prime p.
3. $G=(x, y)$, a point on the curve.
4. n the multiplicative order of G.

2 Elliptic Curve Signatures

- Elliptic Curve Digital Signature Algorithm
- Key Generation

Out: k (private key), K (public key)

1. Select an integer k in $[0, n-1]$.
2. Compute $K=k G$.
3. K and $G \sim$ points on the curve
4. The key-pair is (k, K).

Results: Alice's pair $\left(k_{A}, K_{A}\right)$ and Bob's pair $\left(k_{B}, K_{B}\right)$.
It is an asymmetric cryptography.

미래사호

2 Elliptic Curve Signatures

- Elliptic Curve Digital Signature Algorithm

- Elliptic Curve

- The points are the roots (x, y) of the curve equation defined by:
$y^{2}=x^{3}+7 \bmod 17$

Figure 4-3. Elliptic Curve Cryptography:
Visualizing an elliptic curve over $F(p)$, with $p=17$

2 Elliptic Curve Signatures

- Elliptic Curve Digital Signature Algorithm
- How many points are on the curve?
- Observation:
- For each x, there are 0,1 , or 2 possible y-point(s).
- There are total $17(x, y)$-points.
- Facts:
- The set of finite points on the curve forms a group which is closed under a binary operation.

2 Elliptic Curve Signatures

- Elliptic Curve Digital Signature Algorithm
- Addition of any two points on elliptic curve
- There are three cases:

Case 1) Adding two points where x_{1} neq to x_{2} :

$$
\begin{gathered}
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right) \\
\left(\left(x_{2}-x_{1}\right) \cdot m\right) \bmod p=1 \\
s=\left(y_{2}-y_{1}\right) \cdot m \\
x_{3}=\left(s^{2}-x_{1}-x_{2}\right) \bmod p \\
y_{3}=\left(s \cdot\left(x_{1}-x_{3}\right)-y_{1}\right) \bmod p
\end{gathered}
$$

2 Elliptic Curve Signatures

- Elliptic Curve Digital Signature Algorithm
- Addition of any two points on elliptic curve
- There are three cases:

Case 2) Adding two points where $x_{1}=x_{2}$ and $y_{1}=y_{2}$

$$
\begin{gathered}
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right) \\
\left(2 y_{1} \cdot m\right) \bmod p=1 \\
s=\left(3 x_{1}^{2}+a\right) \cdot m \\
x_{3}=\left(s^{2}-x_{1}-x_{2}\right) \bmod p \\
y_{3}=\left(s \cdot\left(x_{1}-x_{3}\right)-y_{1}\right) \bmod p
\end{gathered}
$$

2 Elliptic Curve Signatures

- Elliptic Curve Digital Signature Algorithm
- Addition of any two points on elliptic curve
- There are three cases:

Case 3) Adding two points where $x_{1}=x_{2}$ and $y_{1} \neq y_{2}$

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)+\left(x_{1}, y_{2}\right)=O \\
& \text { The identity element }
\end{aligned}
$$

2 Elliptic Curve Signatures

- Elliptic Curve Digital Signature Algorithm
- Table of point additions for $y^{2}=x^{3}+7 \bmod 17$

+	∞	(1.5)	(1.12)	(2.7)	(2.10)	(3.0)	(5.8)	(5.9)	(6.6)	(6.11)	(8.3)	(8.14)	(10.2)	10.15)	(12.1)	(12.16)	(15.4)	(15.13)
∞	∞	(1.5)	(1.12)	(2.7)	(2.10)	(3.0)	(5.8)	(5.9)	(6.6)	(6.11)	(8.3)	(8.14)	(10.2)	(10.15)	(12.1)	(12.16)	(15.4)	(15.13)
(1.5)	(1.5)	(2.10)	∞	(1.12)	(5.9)	(15.13)	(2.7)	(12.1)	(8.1	(6.6)	(6,11)	(10.15)	(8.3)	(15.4)	(12.16)	(5.8)	(3.0)	$(10,2)$
(1.	(1.1	∞	(2.7)	(5.8)	(1.5)	(15	(12.1	(2	(6	(8.3)	(10,2)	(6.6)	(15.13)	(8,14)	(5.9)	(12.1)	(10.15)	(3.0)
(2.7)	(2.7)	(1.12)	(5.8)	(12.1	∞	(10.15	(12.1)	(1.5)	(8.3)	(10.2)	(15.13)	(6.11)	(3.0)	(6.6)	(2.10)	(5.9)	(8.14)	(15.4)
(2	(2.	(5.3)	(1.5)	∞	(12.1)	(10	(1	(12	(10	(8	(6.6)	(15	(6	(3.0)	(5.8)	(2.7)	(15.13)	3)
(3)	(3	(15	(15	(10	(10	∞	(8	(8	(12.16)	(12	(5	(5	(2	(2.7)	(6.11)	(6.6)	(1.12)	(1.5)
(5	(5.8)	(2.7)	(12.1	$(12,1)$	(1.12)	(8)	(5.9)		(10,2)	(15.1	(3.0)	(8.3)	(15.4)	(6.11)	(1.5)	(2.10)	6)	10.15)
(5	(5	(12.1)	(2	(1	(12	(8	∞	(5.8)	(15	(10	(8	(3)	(6.6)	(15	(2.7)	2)	$(10,2)$	$(6,11)$
(6)	(6,6)	(8.	(6,	(8)	(10.1	(12	(10,2)	(15	(1.5)	∞	(1.12)	(2.10)	(2	(5.9)	(3.0)	(15.13)	$(12,1)$	(5
(6.11)	(6,11)	(6	(8.3)	(10.2)	(8.14	(12.1)	(15.13)	(10.1	∞	(1.12)	(2.7)	(1.5)	(5.8)	(2.10)	(15.4)	(3.0)	(5.9)	
(8.3)	(8.3)	(6	(10.2)	(15.13)	(6	(5	(3	(8	(1.	(2	(5.8)	∞	(1	(1,5)	(10.15)	(15.4)	(2,10)	(1
(8.14)	(8.	(10.15	(6,6)	(6	(15.4)	(5	(8	(3)	(2.10	(1	∞	(5	(1.12)	(12.1)	(15.13)	(10,2)	(12.16)	(2.7)
(10.2)	(10.2)	(8.3)	(15.13	(3.0)	(6.11)	(2,10)	(15.4)	(6.6)	(2	(5.8)	(12.16)	(1.12)	(12.1)	∞	(8.14)	(10.15	(1.5)	(5.9)
(10.15	(10.15	(15.4)	(8,14)	(6.6)	(3.0)	(2.7)	(6.11)	(15.13)	(5.9)	(2.10)	(1.5)	(12.1)	∞	(12.16)	(10.2)	(8.3)	(5.8)	(1.12)
(12.1)	(12.1)	(12.16)	(5.9)	(2.10)	(5.8)	(6,11)	(1.5)	(2.7)	(3.0)	(15.4)	(10.15)	(15.13)	$(8,14)$	(10,2)	$(1,12)$	∞	(8.3)	(6.6)
(12.16	(12.16)	(5.8)	(12.1)	(5.9)	(2.7)	(6,6)	(2.10)	(1.12)	(15.13)	(3.0)	(15.4)	$(10,2)$	(10.15	(8.3)	∞	(1.5)	(6,11)	(8.14)
(15.4)	(15.4)	(3.0)	(10.15)	(8,14)	(15.13)	(1.12)	(6.6)	$(10,2)$	(12.1)	(5.9)	(2.10)	(12.16)	(1.5)	(5.8)	(8.3)	$(6,11)$	(2.7)	∞
(15.13)	(15.13)	(10.2)	(3.0)	(15.4)	(8.3)	(1.5)	(10.15)	$(6,11)$	(5.8)	(12.16)	(12.1)	(2.7)	(5.9)	(1.12)	(6.6)	(8.14)	∞	(2.10)

2 Elliptic Curve Signatures

- Elliptic Curve Digital Signature Algorithm
- Example to find a point on a curve
- Let $p=17$.
- Let the curve be $y^{2}=x^{3}+7 \bmod 17$.
- Find a point on the curve

$$
\begin{aligned}
& \text { Let } x=3 \text {. Then } y=? \\
& y^{2}=27+7=34=0 \\
& y^{2}=0 \\
& y=0
\end{aligned}
$$

- Thus, $(3,0)$ is a point on the curve.

2 Elliptic Curve Signatures

2 Elliptic Curve Signatures

- Elliptic Curve Digital Signature Algorithm
- Example to find a point on a curve
- Let us continue to find another point.
- This time, let us start with an y element.
- Let $y=12$ and find x.

$$
\begin{aligned}
y^{2} & =12^{2} \\
& =144-\text { floor(144/17) } \times 17 \\
& =8 \\
x^{3} & +7=8 \\
x^{3} & =1 \\
x & =1
\end{aligned}
$$

- Thus, $(1,12)$ is a point on the curve.

2 Elliptic Curve Signatures

Anaconda Powershell Prompt
>> $\mathrm{y}=12$
y_square $=y^{* * 2}$
y_square
144
y_square = y_square\%p
y_square
x_3rd_power = (y_square - 7)\%p
x_3rd_power

2 Elliptic Curve Signatures

- Elliptic Curve Digital Signature Algorithm
- Let us add two points.

Given two points $\left(x_{1}, y_{1}\right)=(3,0)$ and $\left(x_{2}, y_{2}\right)=(1,12)$.
Find $\left(x_{3}, y_{3}\right)=\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)$.
Note this is Case 1.

$$
\begin{aligned}
& ((1-3) \cdot m) \% 17=1 \\
& m=8 \\
& s=\left(y_{2}-y_{1}\right) \cdot m=(12-0) \cdot 8=96=11 \\
& x_{3}=s^{2}-x_{1}-x_{2}=s^{2}-3-1=121-4=117 \% 17=15 \\
& y_{3}=s \cdot\left(x_{1}-x_{3}\right)-y_{1}=11 \cdot(3-15)-0=-132=-132 \% 17=4 \\
& \left(x_{3}, y_{3}\right)=(15,4)
\end{aligned}
$$

2 Elliptic Curve Signatures

- Elliptic Curve Digital Signature Algorithm
- Let us add two points.

Given two points $\left(x_{1}, y_{1}\right)=(6,11)$ and $\left(x_{2}, y_{2}\right)=(6,11)$.
Find $\left(x_{3}, y_{3}\right)=\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)$.
Note this is Case 2.

$$
\begin{aligned}
& (2 \cdot 11 \cdot m) \% 17=1 \\
& m=7 \\
& s=\left(3 x_{1}^{2}+a\right) \cdot m=\left(3 \cdot 6^{2}+0\right) \cdot 7=756=8 \\
& x_{3}=s^{2}-x_{1}-x_{2}=8^{2}-6-6=52 \% 17=1 \\
& y_{3}=s \cdot\left(x_{1}-x_{3}\right)-y_{1}=8 \cdot(6-1)-11=29 \% 17=12 \\
& \left(x_{3}, y_{3}\right)=(1,12)
\end{aligned}
$$

2 Elliptic Curve Signatures

- Elliptic Curve Digital Signature Algorithm
- Let us add two points.

Given two points $\left(x_{1}, y_{1}\right)=(10,2)$ and $\left(x_{2}, y_{2}\right)=(10,15)$.
Find $\left(x_{3}, y_{3}\right)=\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)$.
Note this is Case 3.

$$
(10,2)+(10,15)=O
$$

The identity element

2 Elliptic Curve Signatures

- Elliptic Curve Digital Signature Algorithm
- A scalar multiplication example
- Take any point $P=(x, y)$ on the curve and multiply it by a scalar k.
- The resulting point can be obtained by adding $P k$ times, i.e.,

$$
k P=P+P+\ldots+P
$$

2 Elliptic Curve Signatures

- We may use Python for computations.
- A point $P(x, y)$ is point on the secp256k1 curve.
- You can check our results using Python.

Anaconda Powershell Prompt


```
Python 3.7.3 (default, Mar 27 2019, 17:13:21) [MSC v.1915 64 bit (AML64)] :: Anaconda, Inc. on win32
```

Type "help", "copyright", "credits" or "license" for more information.
$\gg p=17$
>> $x=1$
》) $y=5$
$\gg\left(x * * 3+7-y^{* * 2}\right) \% p$
0

2 Elliptic Curve Signatures

- We may use Python libraries at github.
- One example is https://github.com/vbuterin/pybitcointools.
- It offers pybitcointools library which allows us to generate and display keys and addresses.
- The other one is at https://github.com/warner/python-ecdsa which offers ECDSA implementation in Python.

2 Elliptic Curve Signatures

- From private key k, obtain public key by $K=k^{*} G$.
- A 256 bit string is shown as 64 hexadecimal string.

```
k=1E99423A4ED27608A15A2616A2B0E9E52CED330AC530EDCC32C8FFC6A526AEDD
G=(x,y)=(55066263022277343669578718895168534326250603453777594175500187360389116729240,
    32670510020758816978083085130507043184471273380659243275938904335757337482424)
```

- Multiply the private key k with the generator point G to obtain the public key K.
$K=1$ E99423A4ED27608A15A2616A2B0E9E52CED330AC530EDCC32C8FFC6A526AEDD * G
$K=(\mathrm{x}, \mathrm{y})$
where,
$x=$ F028892BAD...DC341A
$y=07 C F 33 D A 18 \ldots 505 B D B$

2 Elliptic Curve Signatures

- Elliptic Curve Digital Signature Algorithm
- We now know how to generate keys.
- Next is how to sign and validate it.

2 Elliptic Curve Signatures

- Elliptic Curve Digital Signature Algorithm

- SignGenerate

In m the message, Alice's private key k_{A}
Out Alice' signature (r, s)

1. Calculate the message hash $e=H(m)$
2. Let z be the L_{n} leftmost bits of e where L_{n} is the bit length of the group order n
3. Select an integer d from [1, $n-1$]
4. Calculate the curve point $\left(x_{1}, y_{1}\right)=d G$
5. Calculate $r=x_{1} \bmod n$, If $r=0$, go to step 3
6. Calculate $s=k_{\mathrm{A}}^{-1}\left(z+r k_{\mathrm{A}}\right) \bmod n$, If $s=0$, go to step 3
7. The signature is the pair (r, s)

2 Elliptic Curve Signatures

- Elliptic Curve Digital Signature Algorithm

- IsSignatureValid

In ma message, Alice's signature (r, s), and K_{A} Out Valid or invalid

1. Verify if K_{A} is a valid curve point as follows:
2. Check to see if K_{A} is not equal to the identity element O
3. Check to see if K_{A} lies on the curve
4. Check that $n \times K_{A}=0$
5. Verify that r and s are integers in $[1, n-1]$

If not, the signature is invalid
3. Calculate the message hash $e=H(m)$

2 Elliptic Curve Signatures

- Elliptic Curve Digital Signature Algorithm

- IsSignatureValid

In m the message, Alice's signature (r, s), and K_{A} Out Valid or invalid
4. Let z be the L_{n} leftmost bits of e where L_{n} is the bit length of the group order n
5. Calculate $w=s^{-1} \bmod n$
6. Calculate $u_{1}=z w \bmod n$ and $u_{2}=r * w \bmod n$
7. Calculate the curve point $\left(x_{1}, \mathrm{y}_{1}\right)=u_{1} * \mathrm{G}+u_{2}{ }^{*} Q_{\mathrm{A}}$ If $x_{1}, y_{1}=0$, then the signature is invalid
8. The signature is valid if $r=x_{1} \bmod n$, invalid otherwise

3 Bitcoin Addresses

- An example Bitcoin Address is 1thMjrt546nngXqyPEz532S8fL wbozud8.
- BTCs belong to a Bitcoin address.
- We aim to know how they are generated.
- An address is generated from a public key.
- It goes through several mappings such as SHA256, RIPEMD160, and Base58Check.

3 Bitcoin Addresses

- Making a Bitcoin address from a public key
- Private key k (32 bytes)
- Public key $K=G$ *k
- Uncompressed one is 65 bytes (0x04 + $x+y$).
- Compressed one is 33 bytes ($0 x 02+x$, use 02 for even y; 0x03 $+x$ for odd y).
- Public Key Hash = RIPEMD160(SHA256(K))
- 160 bit (20 byte)
- Base58Str
= Base58Check(PKH + 4Byte_checksum)
Ex1PMycacnJaSqwwJqjawXBErnLsZ7RkXUAs

3 Bitcoin Addresses

-What is Base58Check and why?

- Base58Check is mapping a PKH into a more readable format.
- Base58 is similar to Base64 but with 6 characters removed.
- Base64 uses A-Z, a-z, 0-9, + and /.
- Removed are +, /, 0, 0, I and I.
- These symbols are prone to confusion.
- A Bitcoin address is of between 27 and 34 characters long!

(3) Bitcoin Addresses

- Base58 Value-to-Character Mapping Table

Value	Character	Value	Character	Value	Character	Value	Character
0	1	1	2	2	3	3	4
4	5	5	6	6	7	7	8
8	9	9	A	10	B	11	C
12	D	13	E	14	F	15	G
16	H	17	J	18	K	19	L
20	M	21	N	22	P	23	Q
24	R	25	S	26	T	27	U
28	V	29	W	30	X	31	Y
32	Z	33	a	34	b	35	C
36	d	37	e	38	f	39	g
40	h	41	i	42	j	43	k
44	m	45	n	46	0	47	p
48	q	49	r	50	s	51	t
52	u	53	v	54	w	55	x
56	y	57	Z				

3 Bitcoin Addresses

- Example of Base58Check Mapping

$$
\begin{aligned}
12437_{10} & =3 \times 58^{2}+40 \times 58^{1}+25 \\
& =34025_{58} \\
& =4 \mathrm{hS}_{58}
\end{aligned}
$$

(3) Bitcoin Addresses

- A version prefix is appended to Base58Str
- Table 4-1. Version Prefixes

Type	Version prefix (hex)	Base-58 prefix
Bitcoin Address	0×00	1
Pay-to-Script-Hash Address	0×05	3
Bitcoin Testnet Address	$0 \times 6 \mathrm{~F}$	m or n
Private Key WIF	0×80	$5, \mathrm{~K}$ or L
BIP38 Encrypted Private Key	0×0142	6 P
BIP32 Extended Public Key	$0 \times 0488 \mathrm{~B} 21 \mathrm{E}$	xpub

(3) Bitcoin Addresses

- The richest Bitcoin address on 2019/10/14 is 34xp4vRoCGJym3xR7yCVPFHoCNxv4Twseo - It holds 160,333.03 BTCs.

[^0]
4 Unspent Transaction Outputs (UTXOs)

- UTXO is an unspent transaction output.
- Given an address, one can obtain all the

UTXOs belonging to that address by going through the ledger.

- We are interested in

Creating, signing and submitting Transactions based on UTXOs.

4 Unspent Transaction Outputs (UTXOs)

- How to obtain UTXOs?
- When you download/install Bitcoin core, you run the Bitcoin client.
- Mastering Bitcoin has a detailed procedure for installation (see Ch.3)
- One can use the Bitcoin client to find all the UTXOs.
- The command listunspent can list out all UTXOs which belong to address.
- Once UTXOs are figured out, they can be spent.

4 Unspent Transaction Outputs (UTXOs)

- UTXOs
- First, use the listunspent command to show all the unspent confirmed outputs to each address in our wallet.

```
$ bitcoin-cli listunspent
[
    {
            "txid" : "9ca8f969bd3ef5ec2a8685660fdbf7a8bd365524c2e1fc66c309acbae2c14ae3",
            "vout" : 0,
            "address" : "1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL",
            "account" : "",
            "scriptPubKey" : "76a91407bdb518fa2e6089fd810235cf1100c9c13d1fd288ac",
            "amount" : 0.05000000,
            "confirmations" : 7
    }
]
```

4 Unspent Transaction Outputs (UTXOs)

- UTXOs
- When you want to spend an UTXO, you make a transaction in which an UTXO is used as an input by referring to the previous txid and vout index.
- You need to create a new transaction that will spend the Oth vout of the txid 9ca8f0. . . as its input and assign it to a new output address.

4 Unspent Transaction Outputs (UTXOs)

- Closer look at a UTXO with txid 9ca8..., vout0
- Use the gettxout command.
- Transaction outputs are always referenced by txid and vout, and they are the parameters we pass to gettxout.
- Closer look at txid 9ca8... vout0

```
$ bitcoin-cli gettxout 9ca8f969bd3ef5ec2a8685660fdbf7a8bd365524c2e1fc66c309acbae2c14ae3 0
{
    "bestblock" : "0000000000000001405ce69bd4ceebcdfdb537749cebe89d371eb37e13899fd9",
    "confirmations" : 7,
    "value" : 0.05000000,
    "scriptPubKey" : {
        "asm" : "OP_DUP OP_HASH160 07bdb518fa2e6089fd810235cf1100c9c13d1fd2\
            OP_EQUALVERIFY OP_CHECKSIG",
            "hex" : "76a91407bdb518fa2e6089fd810235cf1100c9c13d1fd288ac",
            "reqSigs" : 1,
            "type" : "pubkeyhash",
            "addresses" : [
            "1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL"
        ]
    },
    "version" : 1,
    "coinbase" : false
}
```

4 Unspent Transaction Outputs (UTXOs)
-Closer look at txid 9ca8..., vout0

- What we see above is the output that has 0.05 BTC to our address 1hvz. . . .
- To spend this output we shall create a new transaction.
- For this, we need to get an address to which we will send the money:

4 Unspent Transaction Outputs (UTXOs)

- Making a new transaction
- There is a Bitcoin client command createrawtransaction.
- It can be used to generate a raw transaction.
- Suppose you want to make a new transaction
- A payment of 0.030 BTC to a recipient with address 1LTz9… 1cP.
- A change of 0.015 BTC is given back to an address of yours, 1Bts8 $\cdots 2$ Ps.
- The rest, $0.050-0.030-0.015=0.005$ BTC, is given to miners as TX fee.

4 Unspent Transaction Outputs (UTXOs)

TXID 7957a35‥f18

| InO: |
| :--- | :--- | :--- |
| TXID 9ca8....ae3
 vout 0
 Sign
 O.050 BTC |\quad| Vout0:
 ScriptPK1
 Vout1:
 ScriptPK2 | 0.030 BTC |
| :--- | :--- |
| | |

4 Unspent Transaction Outputs (UTXOs)

- Each TX is locked. To unlock, you need the private key.
- 시간 1: A's Signature (Key) \rightarrow B (Locked to B) 2BTC.
- 시간 2: B's Signature (Key) \rightarrow C (Locked to C) 1BTC.
- 시간 3: C's Signature (Key) \rightarrow D (Locked to D) 0.5BTC.

4 Unspent Transaction Outputs (UTXOs)

- Making a new transaction
- Inputs given to createrawtransaction include:
- UTXO's TXID vout 0
-1LTz9…1cP 0.030 BTC
- 1Bts8…2Ps 0.015 BTC
- Then, a chuck of script code is generated.

[^0]: https://bitinfocharts.com/bitcoin/address/34xp4vRoCGJym3xR7yCVPFHoCNxv4Twseo

