Goal of this lecture note

- Attacker vs Honest Nodes
- From Hash Rate Ratio to Mining Probabilities
- Number of Blocks Minded during an Interval is Poisson
- Double Spending Attack
- Gambler's Ruin Problem
- Attack Success Probability

Attacker vs Honest Nodes

- Recall honest network guards the blockchain.
- Honest network's hash rate is published in the blockchain in the form of Target.
- Block generation speed is 1 block/600 sec.
- Suppose attacker's hash rate is slightly greater than honest network's.
- Then, the attacker can launch a 51\% attack.
- We aim to calculate the probability of

Double Spending success.

1 Attacker vs Honest Nodes

- From Target, the hash rate of honest network can be obtained.
- Lambda is 1 block/10 min.
- Given attacker's hash rate, attacker's lambda can be determined.
- Once we obtained the two parameters, given a new block mined, we can assign probability to which network the new block belongs.

2 From Hash Rate Ratio to Mining Probabilities

- Suppose Honest network hash rate $R_{H}=30 \mathrm{E}$ hash $/ \mathrm{sec}$.
- Attacker's hash rate $R_{A}=10 \mathrm{E}$ hash $/ \mathrm{sec}$.
- Let p be the probability that given a new block is formed, the new block belongs to Honest chain.
- Let q be the probability that given a new block is formed, the new block belongs to Attacker's chain.

2 From Hash Rate Ratio to Mining Probabilities

- Overall hash rate $=40 \mathrm{E}$ hash/sec.
- Overall block generation speed is (4/3) block/10-min.

$$
\lambda_{\text {all }}=\lambda_{H}+\lambda_{A}
$$

- $\lambda_{H}=1$ block/10-min
$-\lambda_{A}=\frac{1}{3}$ block $/ 10-\mathrm{min}$

2 From Hash Rate Ratio to Mining Probabilities

- Each time a new block is formed, it belongs either to the Attacker's chain or to the Honest chain.
- The probability is given by

$$
\begin{aligned}
& q=\frac{\lambda_{A}}{\lambda_{H}+\lambda_{A}} \\
& p=\frac{\lambda_{H}}{\lambda_{H}+\lambda_{A}} \\
& p+q=1
\end{aligned} \quad \text { (Note also } \frac{q}{p}=\frac{R_{A}}{R_{H}} \text {) }
$$

3 Number of Blocks Minded during an Interval is Poisson

- We now aim to know the distribution of number of blocks generated within a given time $t>0$.

$$
T_{k}^{S}:=\sum_{i=1}^{k} S_{i}
$$

- We now aim to know the distribution of number of blocks generated within a given time $t>0$.

$$
\begin{aligned}
\mathrm{P}_{\lambda}\{k \text { blocks in interval } t\}= & \mathrm{e}^{-\lambda t} \frac{(\lambda t)^{k}}{k!} \\
& k=1,2,3, \ldots
\end{aligned}
$$

4 Double Spending Race Attack

-Definition Double Spending Race Attack

- Suppose A is the attacker.
$-B$ is the recipient.
- B waits for z blocks. (Block confirmation)
- Honest network's hash rate R_{H}
- Attacker's hash rate R_{A}

4 Double Spending Race Attack

-Definition Double Spending Race Attack

- Let $z=5$ be block confirmation number.
- A announces a TX showing A sends $B 1$ BTC at time t_{0}.
- This TX gets into a block (1 confirmation) at t_{1}.
- B waits until he gets 5 th confirmation which occurs at t_{5}.
- A starts preparation in secret for his double spend attack at t_{0}.
- Namely, A grows its own chain. His chain has replaced the TX A ->B 1BTC with a fake TX, $A->A_{1} 1$ BTC. A_{1} is another public key of A.
- At t_{5}, A has mined 3 blocks and needs to decide if he continues to grow his own chain or not.

4 Double Spending Race Attack

- Double Spending Race Attack: Race begins.

4 Double Spending Race Attack

- Double Spending Race Attack: Success

Chain is announced!

4 Double Spending Race Attack
-Definition Double Spending Race Attack

- The probability calculation has two phases.
- First phase is the time interval in which the honest node mines z blocks.
- Assume that the attacker has added k blocks to his chain.
- Attacker's chain is thus z - k blocks behind the honest chain.

4 Double Spending Race Attack
-Definition Double Spending Race Attack

- The probability calculation has two phases.
- First phase is the time interval in which the honest node mines z blocks.
- Second phase begins at the end of the first phase.
- We aim to calculate the probability that the attacker catches up with the honest chain.

4 Double Spending Race Attack

- Race begins with $z-k$ blocks behind.
- When a new block mined belongs to the attacker with prob. q, move left.

5 Gambler's Ruin Problem

- Gambler's Ruin Problem
- Feller's Gambler ruin result(Feller, vol.1, page 347)
- Let z be the starting asset of the Gambler.

5 Gambler's Ruin Problem

- Feller's Gambler ruin result(Feller, vol.1, page 347)
- There is a gambler who wins a dollar with probability p and loses with probability q in a game, i.e., $p+q=1$.
- Gambler starts with z dollars.
- Gambler plays the game repeatedly against the dealer who has $a-z$ dollars, i.e., $a \geq z$.

5 Gambler's Ruin Problem

- Feller's Gambler ruin result(Feller, vol.1, page 347)
- The probability q_{z} of the gambler's ultimate ruin (loses all his money).
- Let p_{z} the probability of the gambler's ultimate winning.
- Note $p_{z}+q_{z}=1$.

5 Gambler's Ruin Problem

- Attack on the Mining Pool of Bitcoin and How to avoid?
- Figure 1: The Gambler's Ruin Problem
- The gambler starts with z dollars and the dealer with $a-z$ dollars.
- Gambler wins a trial with probability p and loses with $q=1-p$.

1 After the first trial, the gambler's fortune is either increased by $1, z+1$, or decreased by $1, z-1$ Thus, we have

$$
\begin{align*}
& q_{z}=p q_{z+1}+q q_{z-1} \text { for } 0<z<a \tag{1.1}\\
& \text { (with } q_{0}=1 \text { and } q_{a}=0 \text {) }
\end{align*}
$$

5 Gambler's Ruin Problem

- Attack on the Mining Pool of Bitcoin and How to avoid?
- Figure 1: The Gambler's Ruin Problem

2 Solving the difference equation Eq. (1.1), the result is obtained as

$$
\begin{equation*}
q_{z}=\frac{(q / p)^{a}-(q / p)^{z}}{(q / p)^{a}-1} \tag{1.2}
\end{equation*}
$$

5 Gambler's Ruin Problem

- Attack on the Mining Pool of Bitcoin and How to avoid?
- Figure 1: The Gambler's Ruin Problem

3 Letting $a \rightarrow \infty$,

$$
\begin{align*}
q_{z} & =\lim _{a \rightarrow \infty} \frac{(q / p)^{a}-(q / p)^{z}}{(q / p)^{a}-1} \\
& =\lim _{a \rightarrow \infty} \frac{1-(q / p)^{z}(q / p)^{-a}}{1-(q / p)^{-a}} \tag{1.3}\\
& =\lim _{a \rightarrow \infty} \frac{1-(q / p)^{z-a}}{1-(q / p)^{-a}}=\left\{\begin{array}{cc}
1 & \text { if } q \geq p \\
(q / p)^{z} & \text { if } q<p
\end{array}\right.
\end{align*}
$$

5 Gambler's Ruin Problem

- During z blocks added by the honest nodes, the number of blocks k mined by the attacker is Poisson.
- Given z - k blocks behind, the attack can catch up in $2^{\text {nd }}$ phase.
- Let $z \rightarrow z-k$ in (1.3).

$$
\sum_{k=0}^{\infty} \frac{\lambda^{k} e^{-\lambda}}{k!} \cdot\left\{\begin{array}{cc}
(q / p)^{(z-k)} & \text { if } k \leq z \\
1 & \text { if } k>z
\end{array}\right\}
$$

5 Gambler's Ruin Problem

- Given z blocks added by the honest nodes, what is the average number of blocks mined by the attacker?
- The ratio is $z: p=?: q$.

$$
\lambda=\mathrm{z} \frac{q}{p}
$$

Attack Success Probability

- Gambler's ruin(z) \rightarrow Replace $z=z-k$ for Attack Success Probability ($q, z-k$)

$$
\sim \sum_{k=0}^{\infty}\left\{\begin{array}{cc}
(q / p)^{z-k} & k<z \\
1 & k \geq z
\end{array}\right\} \text { Poisson }(\lambda=z q / p)
$$

λ is the average number of blocks that the attacker mines in z unit of time.

$$
=\sum_{k=0}^{\infty}\left\{\begin{array}{cc}
(q / p)^{z-k} & k<z \\
1 & k \geq z
\end{array}\right\} \frac{(z q / p)^{k} e^{-z q / p}}{k!}
$$

6) Attack Success Probability

- Rearranging to avoid summing the infinite tail of the distribution...

$$
1-\sum_{k=0}^{z} \frac{\lambda^{k} e^{-\lambda}}{k!}\left(1-(q / p)^{(z-k)}\right)
$$

- Converting to C code...

6) Attack Success Probability

6) Attack Success Probability

- Double Spending Attacks are possible even if hash rate of the attacker does not overpower (51\% attack) that of the honest network.
- The DS success probability decreases rapidly with diminishing q.
- DS success probability decreases rapidly with growing z.

