Goal of this lecture note

- Need for Proof-of-Work (PoW)
- PoW Puzzles
- Difficulty Level of Puzzles
- Probability of Mining Success
- AI-IM-To-Po Theory

Need for Proof-of-Work (PoW)

- Blockchain
is a ledger and a technology.
- A digital file it is.
- Content can be copied and altered easily.
- A novel way is to resolve the problem of forgery and unwanted alterations:
- Each block is summarized.
- This summary shall be good enough.
- Only the block with the proof of work included can be connected to the existing chain of blocks.

1 Need for Proof-of-Work (PoW)

- Blockchain
- Revolutionary new idea!
- Any single computer cannot find a good block summary within a given amount of computing time.
- If the number of computers is large enough and all are simultaneously working on finding good summary of a block, one computer among them can come out successful within the desired time.

1 Need for Proof-of-Work (PoW)

- Blockchain
- Revolutionary new idea!
- A reward is given to this computer which has found a good block summary.
- Once completed, a new race is set and started again for a new block formation.
- The more computers are gathered and participate in the race, the safer the system becomes.

Need for Proof-of-Work (PoW)

- Content in the blockchain cannot be changed.
- What happens when any alteration is made?
- Any small alteration is easily noticeable!
- An unnoticeable change is possible, but it requires a complete alteration.
- The complete job is to redo all the hashes of the following blocks.
- PoW is imposed in each block and thus the whole job cannot be made easily.

1 Need for Proof-of-Work (PoW)

- Content in the blockchain cannot be changed, why?

PoW Puzzles

- Making PoW puzzles
- Bitcoin uses SHA256
- Recall SHA is oneway and collision free.

2 PoW Puzzles

- SHA256, $F(x)=y$

$$
X=\{x \mid x \text { is a message up to } 1 \text { Mbyte in size }\} \quad Y=\{y \mid y \text { is a 256bit string }\}
$$

GIST

2 PoW Puzzles

- Finding Good Block Summary
- Function F takes x and gives output y

$$
y=F(x)
$$

$-x$ is block header (BH), i.e., $F(\mathrm{BH})=$ hash.

- Then, it can be written as

$$
F(\text { B.H.: nonce) < Target PoW Ineq. }
$$

- For a block, find a nonce that satisfies the above inequality (Work)
- Record the nonce in the block header. (Proof)

미래시횔

2 PoW Puzzles

- Toy puzzle
- White and black balls.
- There are 2^{6} black balls.
- Balls are numbered, i.e., hashes.
- Let Target be $2^{3}=8$.
- Pick a nonce and run SHA-256.

Total no. of balls $2^{6}=64$
Target $=2^{3} \quad 001000$
A $=$ \{Balls $<$ Target $\}$
$2^{3}-1=7 \quad 000111$
$6 \quad 000110$
$5 \quad 000101$

2 PoW Puzzles

- Bitcoin puzzle
- Hashes are strings of 256 bits.
- There are 2^{256} hashes in Y.
- Let Target be $2^{256-16}=2^{240}$.

What is the probability that the hash satisfies the PoW?

$$
\begin{aligned}
p & =2^{240 / 256} \\
& =2^{-16} \\
& =1 / 64000
\end{aligned}
$$

$Y=\{y \mid y$ is a 256bit string $\}$

White balls are
64 hexadecimals with 4 leading zeros
"00001642b726b04401627ca9fbac32f5 c8530fb1903cc4db02258717921a4881"

3 Difficulty Level of Puzzles

- The probability p that a CPU solves (PoW) in a single cycle, given the first four strings are zeros?
- Any hash value looks line this:
"2d711642b726b04401627ca9fbac32f5c 8530fb1903cc4Db02258717921a4881"
- A good hash value looks like this:
"0000f727854b50bb95c054b39c1fe5c92 e5ebcfa4bcb5dc279f56aa96a365e5a"
- $c=$ the size of Y the set of all hash values $=2^{256}$
- $a=$ the size of A the set of wanted hash values
$=2^{(256-16)}=2^{240}$
- $p=a / c=2^{-16}=1 / 2^{16} \sim 1 / 64000$

3 Difficulty Level of Puzzles

- Proof of Work is a ALone IMpossible Together Possible (AI-IM-To-Po) Problem!
- Let there be a CPU which can take one input and gives one output.
- What is the probability that this CPU finds a good summary in a single hash cycle?

$$
p=a / c=2-16=1 / 64000
$$

- Difficulty of the PoW puzzle can be adjusted by varying the size of a.
- Thus, prepresents a difficulty of the puzzle.

Probability of Mining Success

- Given the difficulty p, we aim to find Probability of Mining Success.

4 Probability of Mining Success

- Definition: Success Random Variable K. Let $K=1,2,3, \cdots$, denote the index of the hash at which PoW success occurs.
- For example, $K=4$ means that PoW success comes exactly at the $4^{\text {th }}$ hash.
- This is a random variable since the draw of a successful hash value is a random experiment.

4 Probability of Mining Success

- Definition: Hash Rate of CPU.
- The hash rate of a CPU is defined as number hashes in a unit time.
- For example, the hash rate of a CPU which can do 100 hash cycles in 1 second is 100 hashes/sec.

04차시
PoW Success Probability and AI-IM-To-Po Theory

4 Probability of Mining Success

- ASIC Mining Hardware

Bitcoin Mining Hardware Comparison				
Pic	Miner	Hash Power	Price	Buy
	Antminer S9	$14.0 \mathrm{TH} / \mathrm{s}$	\$3,000	\square
\%	Antminer R4	8.6 TH/s	\$1,000	\square

출처: https://www.buybitcoinworldwide.com/mining/hardware/

4 Probability of Mining Success

- Definition: Success Random Variable K. Let $K=1,2,3, \cdots$, denote the index of the hash values at which the PoW success occurs - What is the probability that this CPU with rate 100 hashes/sec solves PoW in 1 second? Use $p=10^{-6}$.

$$
\begin{aligned}
P_{p}\{K \leq k\} & =: P_{\text {Geom }}(p, k=100) \\
& =p+(1-p) p+\cdots+(1-p)^{k-1} p \\
& \sim 100^{*} p \\
& =10^{-4}(2.384 \mathrm{e}-5 \text { exact })
\end{aligned}
$$

4 Probability of Mining Success

- (PMF) What is the probability that a CPU solves PoW exactly at the k-th hash?

$$
\begin{aligned}
P_{p m f}(p, k): & =P_{p}\{K \leq k\}-P_{p}\{K \leq k-1\} \\
= & P_{p}\{K=k\} \\
= & p+(1-p) p+(1-p)^{2} p+\cdots+(1-p)^{k-1} p \\
& \quad-\left(p+(1-p) p+(1-p)^{2} p+\cdots+(1-p)^{k-2} p\right) \\
= & (1-p)^{k-1} p \quad \text { for any } k=1,2,3, \cdots
\end{aligned}
$$

4 Probability of Mining Success

- Average no. of hashes for a PoW success
- What is the average number of hashes for a PoW success for a given puzzle difficulty p ?

$$
\begin{aligned}
\mathbb{E}\{K\} & =\sum_{k=1}^{\infty} P_{p m f}(p, k) k \\
& =\sum_{k=1}^{\infty}(1-p)^{k} p k \\
& =\frac{1}{p} \\
& =10^{6} \quad \text { [hashes/block] }
\end{aligned}
$$

4 Probability of Mining Success

- $P_{\text {geom }}(p, k)$ is the CDF of PoW success in k (hash) hashes.
- Consider the distribution of no success in k hashes.

$$
\begin{aligned}
P_{p}\{K>k\} & =1-P_{p}\{K \leq k\} \\
& =\sum_{j=1}^{k}(1-p)^{j-1} p \\
& =\sum_{j=k+1}^{\infty}(1-p)^{j-1} p \\
& =(1-p)^{k} \sum_{j=1}^{\infty}(1-p)^{j-1} p \\
& =(1-p)^{k}
\end{aligned}
$$

Al-IM-To-Po Theory

- Theorem 1. (Alone) The CDF $P_{\text {geom }}(p, k)$, the probability of PoW success in k hashes, can be expressed as

$$
\begin{aligned}
P_{p}\{K \leq k\} & =1-P_{p}\{K>k\} \\
& =1-(1-p)^{k} .
\end{aligned}
$$

5 Al-IM-To-Po Theory

- Let $P_{1}(p, k)$ be the probability that a CPU solves a PoW with p in k hashes.
- What is the probability that at least one CPU out of N CPUs finds a good block hash?

5 Al-IM-To-Po Theory

- Theorem 2. There are N CPUs working independently on the PoW puzzle with difficulty p. The probability P_{2} that at least one CPU out of N finds a good block summary in k hashes is given by

$$
\begin{aligned}
& P_{2}(N, p, k)=\operatorname{Pr}\{\text { at least one CPU success }\} \\
& \quad=1-\operatorname{Pr}\{\text { no CPU success }\} \\
& \quad=1-\left[1-P_{1}(p, k)\right]^{N}
\end{aligned}
$$

5 AI-IM-To-Po Theory

- Corollary 3. (All Together) There are $N=k$ CPUs which work independently on the PoW puzzle with difficulty p. The probability $P_{\text {all }}$ that at least one CPU out of N finds a good block hash in a single hash is given by

$$
\begin{aligned}
& P_{\text {all }}(N=k, p)=\mathrm{P}_{2}(N, p, k=1) \\
& =1-\operatorname{Pr}\{\text { no CPU success }\} \\
& =1-[1-p]^{N} . \\
& \begin{aligned}
P_{p}\{K \leq k\} & =1-P_{p}\{K>k\} \\
& =1-(1-p)^{k} .
\end{aligned}
\end{aligned}
$$

5 Al-IM-To-Po Theory

- From the Alone theorem and All-together corollary, one can notice that the distributions are the same, given $N=k$.

$$
\begin{aligned}
& P_{\text {geom }}(p, k)=P_{\text {all }}(N=k, p) \\
& \quad=1-\operatorname{Pr}\{\text { no CPU success }\} \\
& \quad=1-[1-p]^{N}
\end{aligned}
$$

5 AI-IM-To-Po Theory

- Let the difficulty of puzzle be given with $p=10^{-20}$.
- Assume a mining chip with hash rate $R_{\text {chip }}=10^{12}$ hashes $/ \mathrm{sec}$.
- Give answers on the average numbers.

1. How many hashes does it take for this chip to make a success?
2. How long does it take for this chip to make a success?
3. How many chips do you need to make a success in a single unit of time?

5 Al-IM-To-Po Theory

- Let the difficulty of puzzle be given with $p=10^{-20}$.
- Assume a mining chip with hash rate $R_{\text {chip }}=10^{12}$ hashes $/ \mathrm{sec}$.

1. How many cycles does it take for this chip to make a success?

$$
\mathrm{E}\{K\}=10^{20} \text { [hashes/block]. }
$$

5 Al-IM-To-Po Theory

- Let the difficulty of puzzle be given with $p=10^{-20}$.
- Assume a mining chip with hash rate $R_{\text {chip }}=10^{12}$ hashes $/ \mathrm{sec}$.

2. How long time $T_{\text {block }}$ for this chip to make a success?

$$
\begin{aligned}
T_{\text {block }} & =E\{K\} / R_{\text {chip }} \\
& =10^{20} / 10^{12}[\text { sec } / \text { block }] \\
& =10^{8}[\mathrm{sec} / \mathrm{block}] \\
& =3.15[\text { year } / \text { block }]
\end{aligned}
$$

5 Al-IM-To-Po Theory

- Let the difficulty of puzzle be given with $p=10^{-20}$.
- Assume a mining chip with hash rate $R_{\text {chip }}=10^{12}$ hashes $/ \mathrm{sec}$.

3. How many chips do you need to make a success in a second?

$$
\begin{aligned}
T_{\text {block }} & =E\{K\} /\left(R_{\text {chip }} \times N_{\text {chip }}\right) \\
N_{\text {chip }} & =E\{K\} /\left(R_{\text {chip }} \times T_{\text {block }}\right) \\
& =10^{20} /\left(10^{12} \times 1\right) \\
& =10^{8} \\
& =100 \text { Million }
\end{aligned}
$$

- From previous examples, we now understand what we mean by the AI-IM-ToPo theory.
- The Alone-theorem shows that it takes about 3.15 years to a single PoW success, if a single chip is used.
- The All-together corollary indicates that it takes 100 Million such chips working together for a single PoW success.

