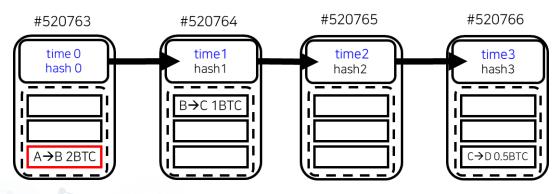


• How to Put Digital Signature to a Message


GIST

• Secure Hash Function

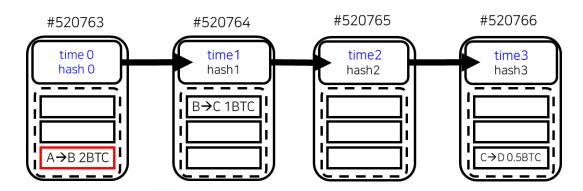
GIST

How to Put Digital Signature to a Message

- Time 0: A (Sign of A) gives B two coins
- Time 1: B (Sign of B) gives C one coin
- Time 2: Empty

체이가

미래사회

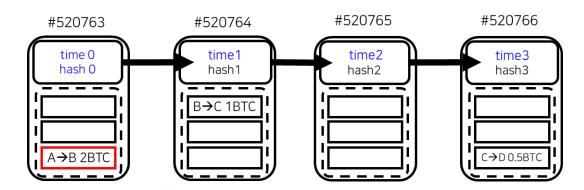

• Time 3: C (Sign of C) gives D 0.5 coin

인과

미래사회

GIST

How to Put Digital Signature to a Message

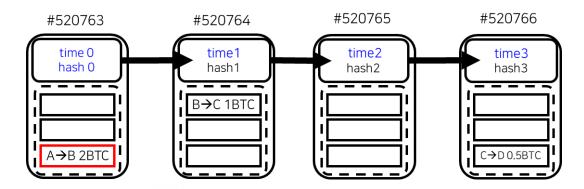

• This is one of the essential charts for understanding how a message transfer to someone can work as a value transfer using a Blockchain.

체인과

미래사회

How to Put Digital Signature to a Message

GIST


 Namely, the sender shall put his digital signature in order to show the ownership of his coin.

로체 ? ! 과

미래사회

How to Put Digital Signature to a Message

GIST

• Now we aim to show an example how a digital signature is created.

GIST

How to Put Digital Signature to a Message

- Public key and private key
 - In cryptography, any person can create as many number of pairs of keys.
 - Each pair comes with a public key and a private key.
 - Encryption
 - With one key, a message can be locked.
 - Decryption
 - With the other key, the locked message can be unlocked.
 - Alice can send Bob a private message.

How to Put Digital Signature to a Message

- Generation of a key pair
 - Consider two individuals, Alice and Bob.

Alice generates her keys, Pub₄ and Pri₄

- Each person keeps the private key in secret, while lets the public key widely known.
- Using them, one can send a private message and put a digital signature to it.

블록체인과 Intro

Introduction to Bitcoin with Cryptography (2)

How to Put Digital Signature to a Message

- Encryption and Decryption
 - Define a message *m*.
 - Define a pair of functions, ENC()and DEC().
 - These functions are publicly known functions.
 - Cyphered message or encrypted message is created with ENC(), i.e.,

$y = ENC(m, Pub_B)$

- Cyphered message can only be deciphered using Pri_{B} , i.e.,

 $m = DEC(y, Priv_B)$

How to Put Digital Signature to a Message

- RSA Example of ENC and DEC functions
 - Let *e*, *m* and *n* be known positive integers. Is it easy to find *d*?

 $(m^e)^d = m \bmod n \dashrightarrow (1)$

• Once *d* known, it is easy to check

 $(m^d)^e = m \mod n ---$ (2)

Let *d* be private key and *e* public key.

✓ Modulo란? 대상 숫자의 나머지를 구하는 연산

GIST

How to Put Digital Signature to a Message

• EX1 Alice would like to send a private message "I love you Bob." to Bob.

	Private key d	Public key e
Alice	d _A	e _A
Bob	d _B	e _B

- Alice encrypts her message *m* with Bob's public key, i.e., *y* = ENC(*m*, *e*_B).
- The encrypted message y is transferred to Bob
- Only can Bob decipher encrypted Alice's message, i.e., $m = DEC(y, d_B)$.

블록체인과 ^{03차시} Introduction to Bitcoin with Cryptography (2)

How to Put Digital Signature to a Message

• EX2 Alice attaches a digital signature to her encrypted message *m* sent to Bob.

GIST

- Alice hashes her message *m* and get *h*(*m*).
- She puts her signature to the digital message *m*.
- The digital signature to her message is

$Sign(m)=h(m)^{d_A}$

- Alice uses her pri_key d_A to generate Sign(m).
- Using Alice's pub_key e_A , Bob recovers h(m) via (2).

블록체인과 ^{03차시} Introdu 미래사회

Introduction to Bitcoin with Cryptography (2)

How to Put Digital Signature to a Message

- EX2 Alice attaches a digital signature to her encrypted message *m* sent to Bob
 - Using the Alice's message *m* deciphered from Ex1), Bob generates its hash, *h*(*m*).

GIST

- Bob checks if the two hash values match.

블록체인과 ^{03차시} Intro 미래사회 -

Introduction to Bitcoin with Cryptography (2)

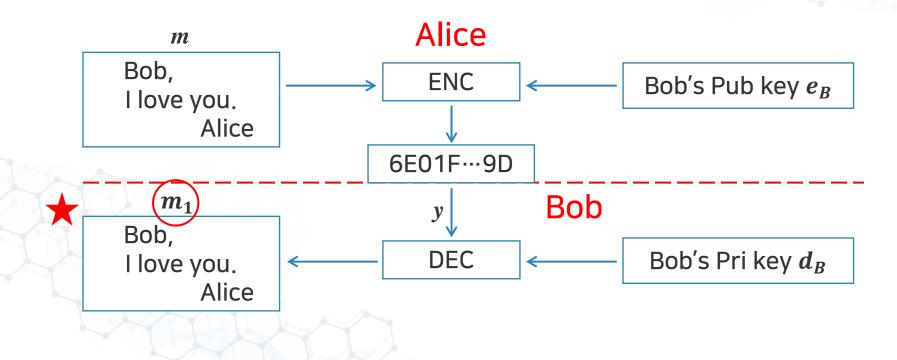
How to Put Digital Signature to a Message

• Note

- Bitcoin does not use RSA but Elliptic Curve Signatures.

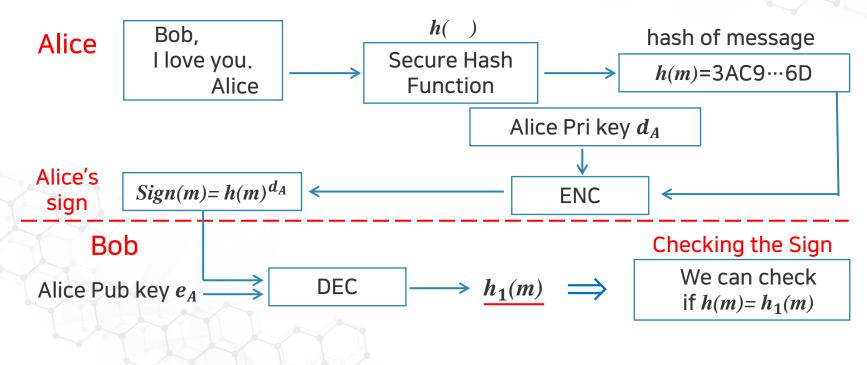
GIST

- Our purpose of showing how to put digital signature to a message can be served with RSA as well.


"We may use RSA because it is more familiar to us."

How to Put Digital Signature to a Message

• Alice sends a private message to Bob.



GIST

How to Put Digital Signature to a Message

• Digital Sign and Validation

How to Put Digital Signature to a Message

GIST

• Let m be "A \rightarrow B 2 BTC"

이과

미래사회

- Alice sends the message *m*.
- Alice attaches her digital signature to it.
- Together it shall look like:

$A \rightarrow B 2BTC Sign_by_A$

- Ownership verification is done by checking the sign.
- Balance can be checked by looking at the address A.
- Transaction is complete if this is recorded into the book.

GIST

How to Put Digital Signature to a Message

- Anonymity
 - A is an address of Bitcoin made from a public key of Alice.
 - B is an address of Bitcoin made from a public key of Bob.

- What is a Hash Function?
 - Definition
 - A hash function is a function, represented with H(input) = output, which takes a text message as its input and gives as its output a fixed number of binary bits.

Secure Hash Functions

03차시

이과

미래사회

- What is a Hash Function?
 - Bitcoin uses the Secure Hash Function 256.
 - The length of output bit string is 256.
 - The input to a hash function is a text message or a file.

GIST

Ex Input-Output of Hash function *H*

- Message = [Bob, I love you. Alice.]
- H(Message) =
 [2FE442157E2025AB75F3856F09238E2CD78A3B 396BC25F128B95D04AD6252634]
- A string of 64 hexadecimals or a string of 256 bits.

GIST

Secure Hash Functions

- Conditions for Good Hash Function
 - One way
 - With a little change in the input, the output is completely different.
 - Input distance has no relation to output distance.
 - Collision free
 - Given y = H(x), finding $x_1 \neq x$ such that
 - $H(x_1) = y$ shall be almost impossible!
 - Collision free stronger

Finding an input pair of different messages xand x_1 which leads to $H(x) = H(x_1)$ shall be almost impossible!

GIST

- $x_1 = [Bob, I love you. Alice.]$
- $H(x_1) =$ [2FE442157E2025AB75F3856F09238E2CD78A3B 396BC25F128B95D04AD6252634]
 - Illustration of Onewayness
 - Ex1
 - $x_1 = [Bob, I love you. Alice.]$
 - $H(x_1) =$ [2FE442157E2025AB75F3856F09238E2CD78A3B 396BC25F128B95D04AD6252634]

Ex2

- $x_2 = [Bob, I love you. Alice]$
- H(x₂) =
 [B1316ED8BA74AD416C8E966574CD584AD447B8 11B722FB9230C71B047C71B825]

블록체인과 미래사회

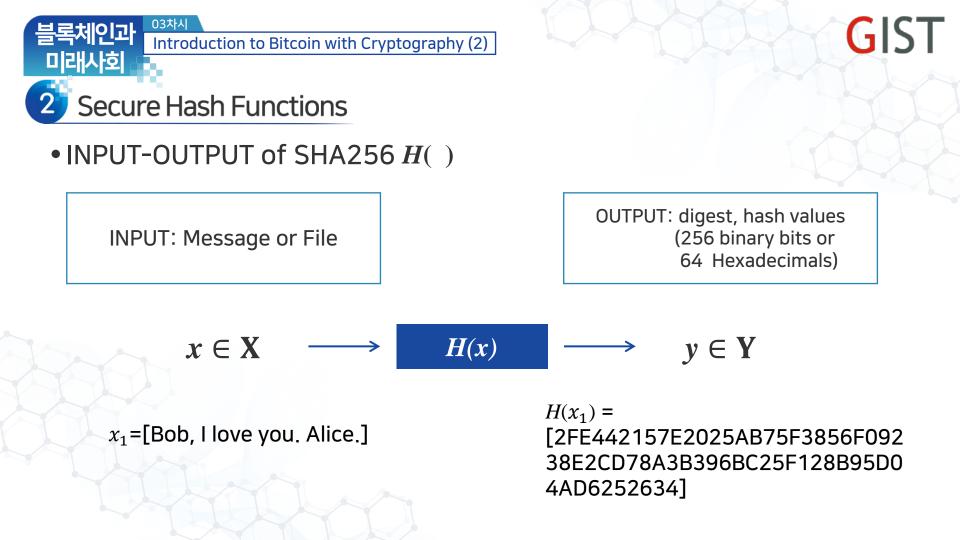
Introduction to Bitcoin with Cryptography (2)

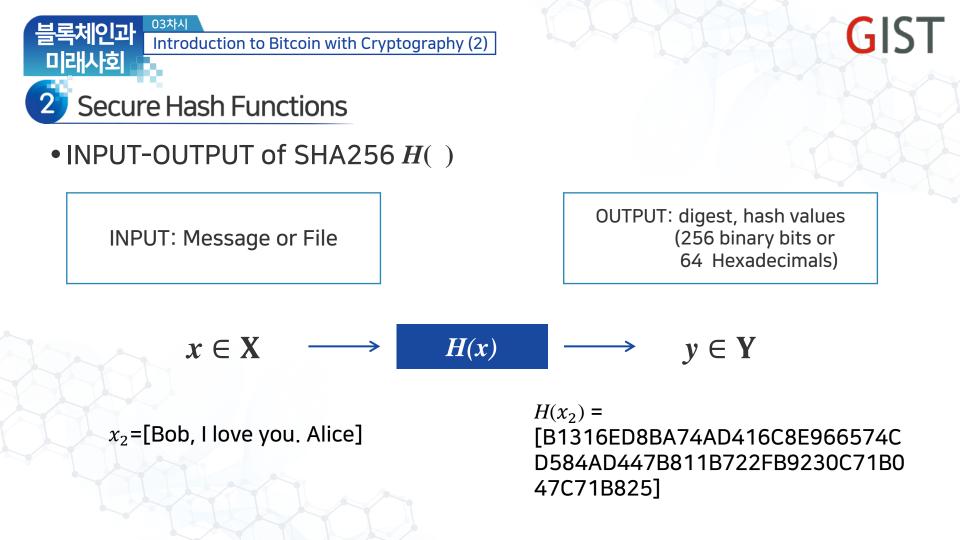
GIST

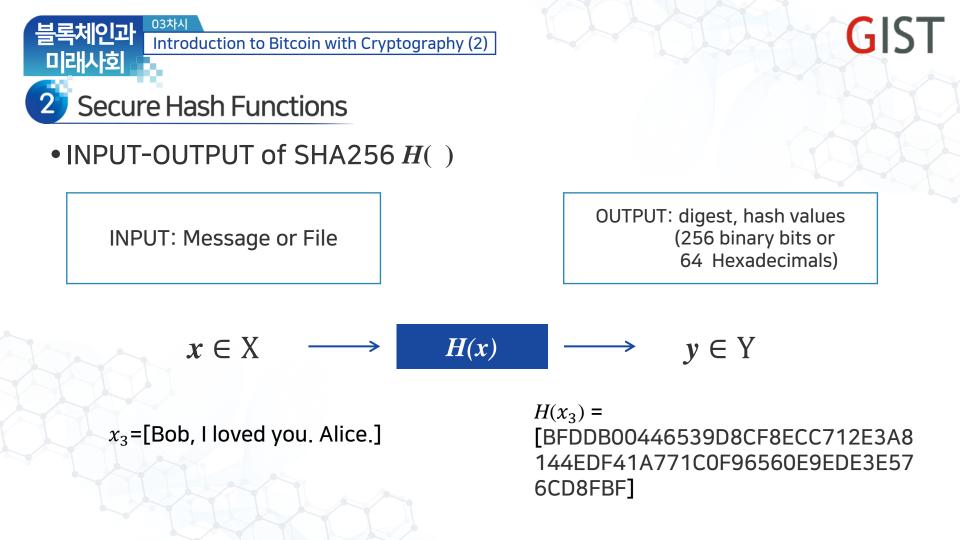
03차시

- Illustration of Onewayness Ex3
 - $x_3 =$ [Bob, I loved you. Alice.]
 - *H*(*x*₃) = [BFDDB00446539D8CF8ECC712E3A8144EDF41A7 71C0F96560E9EDE3E576CD8FBF]

GIST


Introduction to Bitcoin with Cryptography (2)


Secure Hash Functions


03차시

미래사회

- Tiny difference → Big difference
 - Note that there is a very small difference between x_1 and x_2 .
 - But the difference in the output is huge.
 - This property can be utilized to spot out a tiny alteration made to an original input file.
 - A tiny unnoticeable alteration, and thus is difficult to be detected by human eyes, but can be magnified into easily discernable hash difference.

로처이고 ^{03차시}

미래사회

Introduction to Bitcoin with Cryptography (2)

Secure Hash Functions

• SHA-256 Algorithm

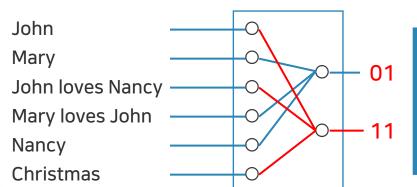
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

SHA-256(M): (* Let M be the message to be hashed *) for each 512-bit block B in M do $W = f_{exp}(B);$ (* Initialize the registers with the constants. *) $a = H_0; b = H_1; c = H_2; d = H_3; e = H_4; f = H_5; g = H_6; h = H_7;$ for i = 0 to 63 do (* Apply the 64 rounds of mixing. *) $T_1 = h + \Sigma_1(e) + f_{if}(e, f, g) + K_i + W_i;$ $T_2 = \Sigma_0(a) + f_{mai}(a, b, c);$ $h = g; g = f; f = e; e = d + T_1; d = c; c = b; b = a; a = T_1 + T_2;$ (* After all the rounds, save the values in preparation of the next data block. *) $H_0 = a + H_0$; $H_1 = b + H_1$; $H_2 = c + H_2$; $H_3 = d + H_3$; $H_4 = e + H_4$; $H_5 = e + H_5$; $H_6 = e + H_6$; $H_7 = e + H_7$; (* After all 512-bit blocks have been processed, return the hash. *) return concat $(H_0, H_1, H_2, H_3, H_4, H_5, H_6, H_7)$;

Algorithm 1.3: The SHA-256 Algorithm.

National Institute of Standard and Technology 미국 국립 표준 연구소 GIST

Wouter Penardand and Timvan Werkhoven, "On the Secure Hash Algorithm family," Cryptography in Context, 2002


Introduction to Bitcoin with Cryptography (2)

Secure Hash Functions

Collision free

록체인과

미래사회

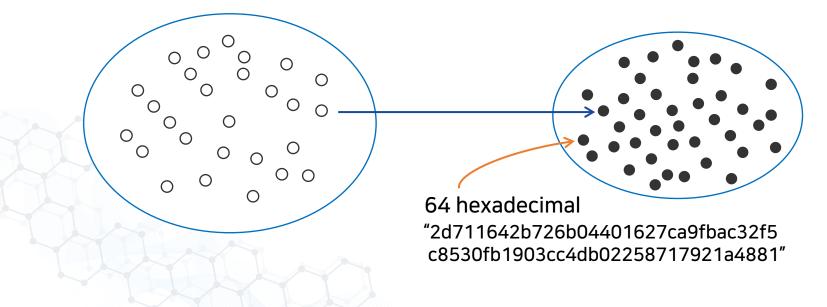
SHA H()

Note H(John) =H(Christmas) =H(John loves Nancy)

GIST

- Collision free implies there surely are collisions but one can hardly encounter one.

블록체인과 Intro


Introduction to Bitcoin with Cryptography (2)

Secure Hash Functions

• Input-Output of SHA-256, i.e., H(x) = y

 $X := \{x | x \text{ is a message up to 1 Mbyte in size}\}$

 $Y := \{y | y \text{ is a 256bit string}\}$

Secure Hash Functions

03차시

이고

미래사회

- Cardinality of the Input file set
 - Bitcoin allows an input file whose size is up to a 1Mbyte.
 - What is the cardinality of the set of all possible input file sets?
 - All possible input files can be enumerated from small files to large files, such as noting, 0, 1, 10, 11, 100, 101, 110, 111, ….
 - Thus, there are $2^{8000000}$ different files. - The cardinality of x is about $10^{2400000}$.

Secure Hash Functions

03차시

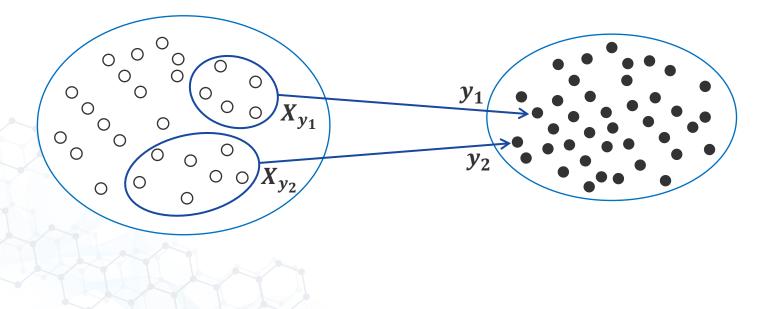
미래사회

- Cardinality of Output Hash Set
 - Each input file produces a 256 bit output.
 - The cardinality of the set of all output hash values is $2^{256} \sim 10^{77}$.
 - For each y in y, how many input files x in X are there such that each H(x) = y?

GIST

Secure Hash Functions

03차시


이과

미래사회

• Preimage of y is a subset of X

$$X_{y} := \{x \in X | H(x) = y\}$$

 $Y := \{y | y \text{ is a 256bit string}\}$

GIST

Secure Hash Functions

03차시

이과

- Size of Input Set per Hash Output
 - What is the average size of the input file set whose element leads to the same hash output?
 - For each output hash y in y, the preimage of y can be defined as

 $X_y:=\{x:H(x)=y\}$

– WLOG, assume the same size for any y_1 and y_2 :

 $\left|X_{y_{1}}\right| = \left|X_{y_{2}}\right|$

미래사회

Introduction to Bitcoin with Cryptography (2)

Secure Hash Functions

- There are 2²⁵⁶ preimage sets.
 - There are 2^{256} distinct y's in y.
 - There are 2^{256} preimages of y in X.
 - These are mutually non-overlapping sets.
 - The size of a preimage of a point y is

$$log_{10}|X_y| = log_{10}\frac{|X|}{|Y|} = 2400000 - 77 = 2399923$$

Secure Hash Functions

03차시

인과

미래사회

- Collisions are abound, but can you find one?
 - Collisions must occur, even abundantly.
 - Consider any two different files x_1 and x_2 in X_y , i.e., the two hashes are the same $H(x_1) = H(x_2)$

GIST

- For any file x_3 in X but not in X_y , we note,

 $H(x_3) \neq y$

- What do you mean by Collision Free then?

Secure Hash Functions

• What is the meaning of Collision Free?

Small problem

- Suppose the input *x* is a file of size up to 1 Kilobyte and the SHA output is truncated to 10 bit.
- Bob has found that the input file x_0 has the hash value y_0 .

(a) What is the size of the input file set?

(b) What is the size of the output file set?

(c) Bob selects a file x_1 at random from his desktop computer, size smaller than 1 Kilobyte, and runs it thought the truncated to the first 10 bit, say SHA-10.

GIST

What is the probability that this output is the same as the first output y_0 ?

블록체인과 O3차시

Introduction to Bitcoin with Cryptography (2)

2 Secure Hash Functions

• Solution 1

미래사회

- The set sizes are

 $s_X := \log_{10}|X| = \log_{10} 2^{8000} = 8e3 \times 0.3010 \sim 2.40e3$

$$s_Y := \log_{10} 2^{10} = 10 \times 0.3010 = 3.01$$

$$s_{X_y} := \log_{10} \frac{|X|}{|Y|} = s_X - s_Y \sim 2400 - 3 = 2397$$

Introduction to Bitcoin with Cryptography (2)

GIST

2 Secure Hash Functions

• Solution 2

블록체인과

미래사회

- Let p_c^1 be the prob. of selecting $x_1 \neq x_0$ leading to hash collision.

$$p_c^1 := Pr\{x_1 : H(x_1) = H(x_0)\} = Pr\{x_1 \in X_y\}$$
$$= \frac{|X_y| - 1}{|X| - 1} \approx \frac{1}{|Y|}$$

Introduction to Bitcoin with Cryptography (2)

Secure Hash Functions

• Solution 3

미래사회

- Suppose there were no hash collisions for two x_0 and x_1 . Now select another file x_2 .
- Let p_c^2 be the prob. that the hash of x_2 is equal to either of the two previous hashes, leading to hash collision. Find it.

$$p_c^2 := Pr\{x_2 : H(x_2) = H(x_0)\} \cup \{x_2 : H(x_2) = H(x_1)\}$$
$$= Pr\{x_2 \in X_y\} + Pr\{x_2 \in X_{y_1}\}$$
$$= \frac{2(|X_y| - 1)}{|X| - 2} \approx \frac{2}{|Y|}$$

Introduction to Bitcoin with Cryptography (2)

GIST

Secure Hash Functions

• Solution 3

미래사회

Suppose there were no hash collisions up to three selections of files x₀, x₁ and x₂. Now select another file x₃. Let p_c³ be the prob. that the hash of x₃ is equal to any of the three previous hashes, leading to hash collision. Find it.

$$p_{c}^{3} = Pr\{x_{3} \in X_{y}\} + Pr\{x_{3} \in X_{y_{1}}\} + Pr\{x_{3} \in X_{y_{2}}\}$$
$$= \frac{3(|X_{y}| - 1)}{|X| - 3} \approx \frac{3}{|Y|}$$

Introduction to Bitcoin with Cryptography (2)

GIST

Secure Hash Functions

• Solution 4

미래사회

- Suppose there were no hash collisions up to m selections of files x_0 , x_1 and x_{m-1} . Now select an m-th file x_m
- Let p^m_c be the prob. that the hash of x_m is equal to any of the previous hashes, leading to hash collision. Find it.

$$p_c^m = Pr\{x_m \in X_y\} + \dots + Pr\{x_m \in X_{y_{m-1}}\}$$
$$= \frac{m(|X_y| - 1)}{|X| - m} \approx \frac{m}{|Y|}$$

Introduction to Bitcoin with Cryptography (2)

GIST

Secure Hash Functions

• Solution 5

록체인과

미래사회

- The hash collision probability increases as *m* grows, i.e.,

Secure Hash Functions

• What is the meaning of Collision Free?

Large problem

- Here the input *x* is a file of size up to 1 Megabyte.
- Bob has found that the input file x_0 has the hash value y_0
 - (a) What is the size of the input file set?
 - (b) He selects a file x_1 at random from his desktop computer and runs it thought SHA-256. What is the probability that this output is the same as the first output y_0 ?

GIST

Secure Hash Functions

Solution

록체이과

미래사회

- The collision probability is so small no matter how many files are selected.

$$p_{c}^{m} = Pr\{x_{m} \in X_{y}\} + \dots + Pr\{x_{m} \in X_{y_{m-1}}\}$$
$$= \frac{m(|X_{y}| - 1)}{|X| - m} \approx \frac{m}{|Y|} = \frac{m}{10^{77}}$$

Secure Hash Functions

03차시

미래사회

- Bitcoin hash cycles per second is huge. No collision thus far for 10 years?
 - Bitcoin hash power has reached 10²⁰ cycles/sec. Suppose it's been that way for the past 10 years.

- What is the probability of collision occurred?
- Given m=O(10²⁹) distinct hashes generated in 10 years,

$$p_c^m = \frac{m}{|Y|} = \frac{10^{29}}{10^{77}} = 10^{-48}$$

Secure Hash Functions

03차시

미래사회

- What is the meaning of Collision Free?
 - Size of the hash output set is so huge.
 - One knows there are large number of collisions, but one cannot come across any collision.
 - How larger is this number $10^{77}\,$
 - The number of cells in a human body is $O(10^{13})$.
 - The number of cells in all human body is $O(10^{23})$.
 - The number of stars in the observable universe is $O(10^{22})$.
 - The number of atoms in the observable universe is $O(10^{80})$.

GIST

https://en.wikipedia.org/wiki/Large_numbers