Goal of this lecture note

- How to Put Digital Signature to a Message
- Secure Hash Function

1 How to Put Digital Signature to a Message

\#520763

\#520765

\#520766

- Time 0: A (Sign of A) gives B two coins
- Time 1: B (Sign of B) gives C one coin
- Time 2: Empty
- Time 3: C (Sign of C) gives D 0.5 coin

How to Put Digital Signature to a Message

\#520763

\#520765

\#520766

- This is one of the essential charts for understanding how a message transfer to someone can work as a value transfer using a Blockchain.

How to Put Digital Signature to a Message
\#520763

\#520765

\#520766

- Namely, the sender shall put his digital signature in order to show the ownership of his coin.

How to Put Digital Signature to a Message

- Now we aim to show an example how a digital signature is created.

How to Put Digital Signature to a Message

- Public key and private key
- In cryptography, any person can create as many number of pairs of keys.
- Each pair comes with a public key and a private key.
- Encryption
- With one key, a message can be locked.
- Decryption
- With the other key, the locked message can be unlocked.
- Alice can send Bob a private message.

How to Put Digital Signature to a Message

- Generation of a key pair
- Consider two individuals, Alice and Bob.

Alice generates
her keys,
$\mathrm{Pub}_{\mathrm{A}}$ and $\mathrm{Pri}_{\mathrm{A}}$

- Each person keeps the private key in secret, while lets the public key widely known.
- Using them, one can send a private message and put a digital signature to it.

1 How to Put Digital Signature to a Message

- Encryption and Decryption
- Define a message m.
- Define a pair of functions, ENC()and DEC().
- These functions are publicly known functions.
- Cyphered message or encrypted message is created with ENC() , i.e.,

$$
y=\operatorname{ENC}\left(m, \operatorname{Pub}_{\mathrm{B}}\right)
$$

- Cyphered message can only be deciphered using Pri_{B}, i.e.,

$$
m=\operatorname{DEC}\left(\mathrm{y}, \operatorname{Priv} \mathrm{~B}_{\mathrm{B}}\right)
$$

1 How to Put Digital Signature to a Message
-RSA Example of ENC and DEC functions

- Let e, m and n be known positive integers. Is it easy to find d ?

$$
\left(m^{e}\right)^{d}=m \bmod n--(1)
$$

- Once d known, it is easy to check

$$
\left(m^{d}\right)^{e}=m \bmod n--(2)
$$

\checkmark Modulo란?
대상 숫자의 나머지를 구하는 연산

- Ex) Modulo-3: 5\%3=5-3*floor(5/3) = 2 .
- Let d be private key and e public key.

How to Put Digital Signature to a Message

-EX1 Alice would like to send a private message "I love you Bob." to Bob.

	Private key d	Public key \boldsymbol{e}
Alice	$\boldsymbol{d}_{\mathbf{A}}$	$\boldsymbol{e}_{\mathbf{A}}$
Bob	$\boldsymbol{d}_{\mathbf{B}}$	$\boldsymbol{e}_{\mathbf{B}}$

- Alice encrypts her message m with Bob's public key, i.e., $y=\operatorname{ENC}\left(m, e_{B}\right)$.
- The encrypted message y is transferred to Bob
- Only can Bob decipher encrypted Alice's message, i.e., $m=\operatorname{DEC}\left(y, d_{B}\right)$.

1 How to Put Digital Signature to a Message
-EX2 Alice attaches a digital signature to her encrypted message m sent to Bob.

- Alice hashes her message m and get $h(m)$.
- She puts her signature to the digital message m.
- The digital signature to her message is

$$
\operatorname{Sign}(m)=h(m)^{d_{A}}
$$

- Alice uses her pri_key d_{A} to generate $\operatorname{Sign(m)}$.
- Using Alice's pub_key e_{A}, Bob recovers $h(m)$ via (2).

1 How to Put Digital Signature to a Message
-EX2 Alice attaches a digital signature to her encrypted message m sent to Bob

- Using the Alice's message m deciphered from Ex1), Bob generates its hash, $h(m)$.
- Bob checks if the two hash values match.

1 How to Put Digital Signature to a Message

- Note
- Bitcoin does not use RSA but Elliptic Curve Signatures.
- Our purpose of showing how to put digital signature to a message can be served with RSA as well.
"We may use RSA because it is more familiar to us."

How to Put Digital Signature to a Message

- Alice sends a private message to Bob.

How to Put Digital Signature to a Message

- Digital Sign and Validation

(1) How to Put Digital Signature to a Message
- Let \boldsymbol{m} be "A \rightarrow B 2 BTC"
- Alice sends the message m.
- Alice attaches her digital signature to it.
- Together it shall look like:

A \rightarrow B 2BTC Sign_by_A

- Ownership verification is done by checking the sign.
- Balance can be checked by looking at the address A.
- Transaction is complete if this is recorded into the book.

1 How to Put Digital Signature to a Message

- Anonymity
- A is an address of Bitcoin made from a public key of Alice.
- B is an address of Bitcoin made from a public key of Bob.

Secure Hash Functions

-What is a Hash Function?

- Definition
- A hash function is a function, represented with H (input) = output, which takes a text message as its input and gives as its output a fixed number of binary bits.

2 Secure Hash Functions

-What is a Hash Function?

- Bitcoin uses the Secure Hash Function 256.
- The length of output bit string is 256 .
- The input to a hash function is a text message or a file.

Ex Input-Output of Hash function H

- Message = [Bob, I love you. Alice.]
- $\mathrm{H}($ Message $)=$
[2FE442157E2025AB75F3856F09238E2CD78A3B 396BC25F128B95D04AD6252634]
- A string of 64 hexadecimals or a string of 256 bits.

GIST

2 Secure Hash Functions

- Conditions for Good Hash Function
- One way

With a little change in the input, the output is completely different.

- Input distance has no relation to output distance.
- Collision free

Given $y=H(x)$, finding $x_{1} \neq x$ such that $H\left(x_{1}\right)=y$ shall be almost impossible!

- Collision free stronger Finding an input pair of different messages x and x_{1} which leads to $H(x)=H\left(x_{1}\right)$ shall be almost impossible!

```
03차시
Introduction to Bitcoin with Cryptography (2)
-대사혀
```

- $x_{1}=$ [Bob, I love you. Alice.]
- $H\left(x_{1}\right)=$
[2FE442157E2025AB75F3856F09238E2CD78A3B 396BC25F128B95D04AD6252634]

- Illustration of Onewayness

Ex1

- $x_{1}=$ [Bob, I love you. Alice.]
- $H\left(x_{1}\right)=$
[2FE442157E2025AB75F3856F09238E2CD78A3B 396BC25F128B95D04AD6252634]

Ex2

- $x_{2}=[$ Bob, I love you. Alice $]$
- $H\left(x_{2}\right)=$
[B1316ED8BA74AD416C8E966574CD584AD447B8
11B722FB9230C71B047C71B825]

2 Secure Hash Functions

- Illustration of Onewayness

Ex3

- $x_{3}=$ [Bob, I loved you. Alice.]
- $H\left(x_{3}\right)=$
[BFDDB00446539D8CF8ECC712E3A8144EDF41A7 71C0F96560E9EDE3E576CD8FBF]

2 Secure Hash Functions

- Tiny difference \rightarrow Big difference
- Note that there is a very small difference between x_{1} and x_{2}.
- But the difference in the output is huge.
- This property can be utilized to spot out a tiny alteration made to an original input file.
- A tiny unnoticeable alteration, and thus is difficult to be detected by human eyes, but can be magnified into easily discernable hash difference.

2 Secure Hash Functions

- INPUT-OUTPUT of SHA256 H()

OUTPUT: digest, hash values (256 binary bits or 64 Hexadecimals)

$x_{1}=[B o b$, I love you. Alice.]
$H\left(x_{1}\right)=$
[2FE442157E2025AB75F3856F092 38E2CD78A3B396BC25F128B95DO 4AD6252634]

2 Secure Hash Functions

- INPUT-OUTPUT of SHA256 H()

OUTPUT: digest, hash values (256 binary bits or 64 Hexadecimals)
$x_{2}=[B o b$, I love you. Alice $]$
$H\left(x_{2}\right)=$
[B1316ED8BA74AD416C8E966574C D584AD447B811B722FB9230C71B0 47C71B825]

2 Secure Hash Functions

- INPUT-OUTPUT of SHA256 H()

$x_{3}=$ [Bob, I loved you. Alice.]
$H\left(x_{3}\right)=$
[BFDDB00446539D8CF8ECC712E3A8 144EDF41A771C0F96560E9EDE3E57 6CD8FBF]

2 Secure Hash Functions

- SHA-256 Algorithm

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

```
SHA-256(M)
    (* Let M be the message to be hashed *)
    for each 512-bit block B in M do
        W=ferp (B);
        (* Initialize the registers with the constants. *)
        a= H0;b=H1;c=\mp@subsup{H}{2}{};d=\mp@subsup{H}{3}{};e=\mp@subsup{H}{4}{};f=\mp@subsup{H}{5}{\prime};g=\mp@subsup{H}{6}{};h=\mp@subsup{H}{7}{};
        for i=0 to 63 do
            * Apply the 64 rounds of mixing. *
            T}=h+\mp@subsup{\Sigma}{1}{(e)}+\mp@subsup{f}{if}{}(e,f,g)+\mp@subsup{K}{i}{}+\mp@subsup{W}{i}{}
            T}=\mp@subsup{\Sigma}{0}{}(a)+\mp@subsup{f}{maj}{}(a,b,c)
            h=g;g=f;f=e;e=d+T1;d=c;c=b;b=a;a=T1+T2;
        (* After all the rounds, save the values in preparation of the next data block. *)
        H0}=a+\mp@subsup{H}{0}{};\mp@subsup{H}{1}{}=b+\mp@subsup{H}{1}{};\mp@subsup{H}{2}{}=c+\mp@subsup{H}{2}{\prime;}\mp@subsup{H}{3}{}=d+\mp@subsup{H}{3}{}
            H
    (* After all 512-bit blocks have been processed, return the hash. *)
    return concat( (H0, H1, H2, H3, H4, H5, H6,H7);
            Algorithm 1.3: The SHA-256 Algorithm.
Algorithm 1.3: The SHA-256 Algorithm.
```


National

Institute of Standard and Technology 미국 국립 표준 연구소

2 Secure Hash Functions

- Collision free

- Collision free implies there surely are collisions but one can hardly encounter one.

2 Secure Hash Functions

- Input-Output of SHA-256, i.e., $\boldsymbol{H (x)}=\boldsymbol{y}$
$X:=\{x \mid x$ is a message up to 1 Mbyte in size $\}$
$Y:=\{y \mid y$ is a 256 bit string $\}$

2 Secure Hash Functions

- Cardinality of the Input file set
- Bitcoin allows an input file whose size is up to a 1Mbyte.
- What is the cardinality of the set of all possible input file sets?
- All possible input files can be enumerated from small files to large files, such as noting, $0,1,10$, 11, 100, 101, 110, 111, \cdots.
- Thus, there are $2^{8000000}$ different files.
- The cardinality of x is about $10^{2400000}$.

2 Secure Hash Functions

- Cardinality of Output Hash Set
- Each input file produces a 256 bit output.
- The cardinality of the set of all output hash values is $2^{256} \sim 10^{77}$.
- For each y in y, how many input files x in x are there such that each $H(x)=y$?

2 Secure Hash Functions

- Preimage of y is a subset of \boldsymbol{X}

$$
\boldsymbol{X}_{\boldsymbol{y}}:=\{\boldsymbol{x} \in X \mid \boldsymbol{H}(\boldsymbol{x})=\boldsymbol{y}\} \quad \boldsymbol{Y}:=\{y \mid y \text { is a 256bit string }\}
$$

2 Secure Hash Functions

- Size of Input Set per Hash Output
- What is the average size of the input file set whose element leads to the same hash output?
- For each output hash y in y, the preimage of y can be defined as

$$
X_{y}:=\{x: H(x)=y\}
$$

- WLOG, assume the same size for any y_{1} and y_{2} :

$$
\left|x_{n}\right|=\left|x_{0}\right|
$$

2 Secure Hash Functions

- There are 2^{256} preimage sets.
- There are 2^{256} distinct y^{\prime} s in y.
- There are 2^{256} preimages of y in X.
- These are mutually non-overlapping sets.
- The size of a preimage of a point y is

$$
\log _{10}\left|X_{y}\right|=\log _{10} \frac{|X|}{|Y|}=2400000-77=2399923 .
$$

2 Secure Hash Functions

- Collisions are abound, but can you find one?
- Collisions must occur, even abundantly.
- Consider any two different files x_{1} and x_{2} in X_{y}, i.e., the two hashes are the same $H\left(x_{1}\right)=H\left(x_{2}\right)$
- For any file x_{3} in X but not in X_{y}, we note,

$$
H\left(x_{3}\right) \neq y
$$

- What do you mean by Collision Free then?

2 Secure Hash Functions

- What is the meaning of Collision Free?

Small problem

- Suppose the input x is a file of size up to 1 Kilobyte and the SHA output is truncated to 10 bit.
- Bob has found that the input file x_{0} has the hash value y_{0}.
(a) What is the size of the input file set?
(b) What is the size of the output file set?
(c) Bob selects a file x_{1} at random from his desktop computer, size smaller than 1 Kilobyte, and runs it thought the truncated to the first 10 bit, say SHA-10. What is the probability that this output is the same as the first output y_{0} ?

2 Secure Hash Functions

- Solution 1
- The set sizes are

$$
s_{X}:=\log _{10}|X|=\log _{10} 2^{8000}=8 e 3 \times 0.3010 \sim 2.40 e 3
$$

$$
s_{Y}:=\log _{10} 2^{10}=10 \times 0.3010=3.01
$$

$$
s_{X_{y}}:=\log _{10} \frac{|X|}{|Y|}=s_{X}-s_{Y} \sim 2400-3=2397
$$

2 Secure Hash Functions

- Solution 2
- Let p_{c}^{1} be the prob. of selecting $x_{1} \neq x_{0}$ leading to hash collision.

$$
\begin{aligned}
p_{c}^{1} & :=\operatorname{Pr}\left\{x_{1}: H\left(x_{1}\right)=H\left(x_{0}\right)\right\}=\operatorname{Pr}\left\{x_{1} \in X_{y}\right\} \\
& =\frac{\left|X_{y}\right|-1}{|X|-1} \approx \frac{1}{|Y|}
\end{aligned}
$$

(2) Secure Hash Functions

- Solution 3
- Suppose there were no hash collisions for two x_{0} and x_{1}. Now select another file x_{2}.
- Let p_{c}^{2} be the prob. that the hash of x_{2} is equal to either of the two previous hashes, leading to hash collision. Find it.

$$
\begin{aligned}
& p_{c}^{2}: \\
&=\operatorname{Pr}\left\{x_{2}: H\left(x_{2}\right)=H\left(x_{0}\right)\right\} \cup\left\{x_{2}: H\left(x_{2}\right)=H\left(x_{1}\right)\right\} \\
&=\operatorname{Pr}\left\{x_{2} \in X_{y}\right\}+\operatorname{Pr}\left\{x_{2} \in X_{y_{1}}\right\} \\
&=\frac{2\left(\left|X_{y}\right|-1\right)}{|X|-2} \approx \frac{2}{|Y|}
\end{aligned}
$$

2 Secure Hash Functions

- Solution 3
- Suppose there were no hash collisions up to three selections of files x_{0}, x_{1} and x_{2}. Now select another file x_{3}. Let p_{c}^{3} be the prob. that the hash of x_{3} is equal to any of the three previous hashes, leading to hash collision. Find it.

$$
\begin{aligned}
p_{c}^{3} & =\operatorname{Pr}\left\{x_{3} \in X_{y}\right\}+\operatorname{Pr}\left\{x_{3} \in X_{y_{1}}\right\}+\operatorname{Pr}\left\{x_{3} \in X_{y_{2}}\right\} \\
& =\frac{3\left(\left|X_{y}\right|-1\right)}{|X|-3} \approx \frac{3}{|Y|}
\end{aligned}
$$

2 Secure Hash Functions

- Solution 4
- Suppose there were no hash collisions up to m selections of files x_{0}, x_{1} and x_{m-1}. Now select an m-th file x_{m}
- Let p_{c}^{m} be the prob. that the hash of x_{m} is equal to any of the previous hashes, leading to hash collision. Find it.

$$
\begin{aligned}
p_{c}^{m} & =\operatorname{Pr}\left\{x_{m} \in X_{y}\right\}+\cdots+\operatorname{Pr}\left\{x_{m} \in X_{y_{m-1}}\right\} \\
& =\frac{m\left(\left|X_{y}\right|-1\right)}{|X|-m} \approx \frac{m}{|Y|}
\end{aligned}
$$

2 Secure Hash Functions

- Solution 5
- The hash collision probability increases as m grows, i.e.,

$$
\begin{aligned}
& p_{c}^{1}=\frac{1}{1024} \\
& p_{c}^{2}=\frac{2}{1024} \\
& p_{c}^{3}=\frac{3}{1024} \\
& \cdots \\
& p_{c}^{512}=\frac{512}{1024}
\end{aligned}
$$

2 Secure Hash Functions

-What is the meaning of Collision Free?
Large problem

- Here the input x is a file of size up to 1 Megabyte.
- Bob has found that the input file x_{0} has the hash value y_{0}
- (a) What is the size of the input file set?
- (b) He selects a file x_{1} at random from his desktop computer and runs it thought SHA-256.
What is the probability that this output is the same as the first output y_{0} ?

2 Secure Hash Functions

- Solution
- The collision probability is so small no matter how many files are selected.

$$
\begin{aligned}
p_{c}^{m} & =\operatorname{Pr}\left\{x_{m} \in X_{y}\right\}+\cdots+\operatorname{Pr}\left\{x_{m} \in X_{y_{m-1}}\right\} \\
& =\frac{m\left(\left|X_{y}\right|-1\right)}{|X|-m} \approx \frac{m}{|Y|}=\frac{m}{10^{77}}
\end{aligned}
$$

2 Secure Hash Functions

- Bitcoin hash cycles per second is huge. No collision thus far for 10 years?
- Bitcoin hash power has reached 10^20 cycles/sec. Suppose it's been that way for the past 10 years.
- What is the probability of collision occurred?
- Given $m=\mathrm{O}\left(10^{29}\right)$ distinct hashes generated in 10 years,

$$
p_{c}^{m}=\frac{m}{|Y|}=\frac{10^{29}}{10^{77}}=10^{-48}
$$

2 Secure Hash Functions

-What is the meaning of Collision Free?

- Size of the hash output set is so huge.
- One knows there are large number of collisions, but one cannot come across any collision.
- How larger is this number 10^{77}
- The number of cells in a human body is $\mathrm{O}\left(10^{13}\right)$.
- The number of cells in all human body is $\mathrm{O}\left(10^{23}\right)$.
- The number of stars in the observable universe is $\mathrm{O}\left(10^{22}\right)$.
- The number of atoms in the observable universe is $\mathrm{O}\left(10^{80}\right)$.
- https://en.wikipedia.org/wiki/Large_numbers

