
  
Abstract—Our aim in this paper is to investigate the 

profitability of double-spending (DS) attacks that manipulate a 
priori mined transaction in a blockchain. Up to date, it was 
understood that the requirement for successful DS attacks is to 
occupy a higher proportion of computing power than a target 
network’s proportion; i.e., to occupy more than 51% 
proportion of computing power. On the contrary, we show that 
DS attacks using less than 50% proportion of computing power 
can also be vulnerable. Namely, DS attacks using any 
proportion of computing power can occur as long as the chance 
to making a good profit is there; i.e., revenue of an attack is 
greater than the cost of launching it. We have novel probability 
theory based derivations for calculating time finite attack 
probability. This can be used to size up the resource needed to 
calculate the revenue and the cost. The results enable us to 
derive sufficient and necessary conditions on the value of a 
target transaction which make DS attacks for any proportion of 
computing power profitable. They can also be used to assess the 
risk of one’s transaction by checking whether or not the 
transaction value satisfies the conditions for profitable DS 
attacks. Two examples are provided in which we evaluate the 
attack resources and the conditions for profitable DS attacks 
given 35% proportion of computing power against Syscoin and 
BitcoinCash networks, and quantitatively shown how 
vulnerable they are. 

Index Terms— Blockchain, Bitcoin, Double-Spending Attack, 
Profit, Gambler’s Ruin Theorem, Poisson Counting Process. 

I. INTRODUCTION 
blockchain is a distributed ledger which has originated 
from a desire to find a novel alternative to centralized 

ledgers such as transactions through third parties [1]. Besides 
the role as a ledger, a blockchain has been applied to many 
areas, e.g., managing the access authority to shared data in 
the cloud network [2] and averting collusion in e-Auction [3]. 
In a blockchain network based on the proof-of-work (PoW) 
mechanism, each peer node who ever has downloaded and 
installed the pertinent full blockchain protocol suite can join 
as a full node for the network. Full nodes, or the so-called 
miners, verify transactions, put them into a block, and mold 
the block to a chain by solving a cryptographic puzzle. 
Specifically, a transaction is put into a block by a single full 
node which solves the cryptographic puzzle for the first time 
among all full nodes in competition. The reward of minting a 
certain amount of coins and paid to its own address is given to 
the first puzzle solver as motivation to join and remain in the 
network. As a result, transactions are verified by many 
decentralized full nodes in the network. A number of other 
researchers [4], [5], [6] have analyzed the winning of rewards 
under various specific assumptions using game theory. 

A consensus mechanism is programmed for decentralized 
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peers in a network to share a common chain. If a full node 
succeeds in generating a new block, he/she has the latest 
version of the chain. All of the nodes in the network 
continuously communicate with each other to share the latest 
chain. If a node suffers from a conflict between two or more 
different chains, the consensus rule provides a rule that a 
single chain is selected. Satoshi Nakamoto suggested the 
longest chain consensus for Bitcoin protocol which conserves 
the longest chain among the conflictions [1]. There are also 
other consensus rules [7], e.g., GHOST [8]. 

Blockchains are motivated by the trust enabled by 
decentralized nodes. However, the decentralization 
mechanism is unfortunately prone to break down [9]. The 
PoW race is for a full node game of solving a cryptographic 
puzzle faster than others. As such, a node may form a pool of 
computing chips to increase the chance to win the PoW race. 
The problem is that a very limited number of pools occupy a 
major proportion of the computing power which operates the 
network. For example, the pie chart shown in Fig.  1 
illustrates the proportion of computing power in the Bitcoin 
network as of October 2018. In the chart, five pools such as 
BTC.com, AntPool, ViaBTC, F2Pool, and BTC.TOP occupy 
a dominant proportion of the computing power. That is to say, 
they have recentralized the Bitcoin network [10]. 

Double-spending (DS) is one type of attacks made easily 
probable in a recentralized network. Since a few full nodes 
can easily occupy a sufficient proportion of computing power 
of the blockchain network, they are able to manipulate 
already confirmed transactions. Suppose that a public chain 
contains a target transaction which transfers the ownership 
of a certain amount of cryptocurrency from the attacker to a 
merchant for the price of a certain goods and service. Before 
shipping the goods, a careful merchant will wait until the 
transaction has been verified in a number of block 
confirmations by normal peers. We call this process block 
confirmation. At the same time, an attacker with a high 
computing power confidentially develops a fraudulent chain 
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Fig.  1. Computation power distribution among the largest mining pools 
provided by blockchain.com (date accessed: 22 Oct. 2018). 



aimed at nullifying the target transaction in the public chain. 
After obtaining the block confirmation and making the 
fraudulent chain longer than the public one, the attacker then 
publicly announces the fraudulent chain. The consensus rule 
is to trust the longer chain, so the normal miners accept the 
fraudulent chain and discard the shorter public chain. Indeed, 
there have been a number of reports that cryptocurrencies 
such as BitcoinGold, ZenCash, Zcash, and Litecoin Cash 
suffered from DS attacks and millions of US dollars were lost 
in 2018 [11], [12], [13]. 

Recentralization is not the only concern for DS attacks. 
The advent of rental services which lend computing 
equipment for DS attacks can be a major concern as well [14]. 
Recently, rental services such as nicehash.com which provide 
a brokerage service between the suppliers and the consumers 
have indeed become available. The concern at hand is then to 
determine whether or not attacking with a rented computing 
power really returns a profit. The next concern is to find a 
strategy for such an attack. 

Success by making DS attacks is possible but is believed 
to be difficult for a public blockchain with a large pool of 
mining network support. Nakamoto and Rosenfield provided 
probabilistic results of DS attack success (AS) in [1] and [15], 
respectively, using gambler’s ruin analysis. They showed that 
the condition guaranteeing for making a successful DS attack 
is for the attacker to bring in a computing power more than 
the computing power which is already invested to operate the 
network; such an attack is thus called 51% attack. This result 
has been considered as the requirement for AS. This 
conclusion however shall be reconsidered given our result in 
the sequel that there are significant chances of making a good 
profit from DS attacks regardless of the proportion of 
computing power. 

In this paper, our aim is to include profitability and find 
the requirements for DS attacks to be profitable. In our model, 
a DS attack succeeds if three conditions are achieved: i) block 
confirmation should be realized; ii) the fraudulent chain 
should be longer than the public chain; and iii) both 
conditions i) and ii) should be satisfied within a cut time. 

A. Contributions 
We show that attackers can expect a profitable DS attack 

not only in the super-50% proportion regime but also in the 
sub-50% proportion regime where computing power invested 
by the attacker is smaller than that invested by a target 
network. A DS attack is profitable if and only if the 
expectation of a profit function defined in (38) is positive. 

To define a profit function, we introduce a novel set of 
mathematical tools. Specifically, we compute the probability 
distribution of the time spent for an AS. This AS time 
incorporates the probability of all possible AS within a cut 
time. The derivation of probability distribution enables us to 
draw results on expected revenue. Also, the expectation of 
AS time is used to compute expected expense spent for an 
attack attempt. As a result, the profit is the difference 
between the expected revenue and the expected expense. 

We show that for a DS attack in the sub-50% proportion 
regime to be profitable, it is necessary to set the cut time to be 
finite. Otherwise, if an AS never be achieved, infinite deficit 
can happen. Under any finite cut time, we provide a condition 
on the value of target transaction which suffices a profitable 
DS attack. 

Using these results, we provide examples of resources 
required for profitable attacks against BitcoinCash and 
Syscoin, as of December 2018 (see Section IV-B for details). 
Suppose that 35% proportion of computing powers is 
available, and the block confirmation number is 5. To 
compute the expected expense, we referred to the rental fee of 
computing power from nicehash.com. In the case of Syscoin, 
the expected expense is 1.810 BTC and the required value of 
the target transaction is 13.134 BTC. The expected AS time is 
around 9 minutes. In the case of BitcoinCash, the expected 
expense is 2.844 BTC and the required value of the target 
transaction is 20.639 BTC. The expected AS time is 1 hour 
31 minutes. 

B. Related Works 
References [15] and [16] have analyzed the profitability 

of DS attacks in terms of revenue and opportunity cost. 
Opportunity cost is the expected rewards that could be paid 
out from normal mining and is generally a function of the 
time spent for an attack attempt. However, Rosenfield 
assumed the attack time to be a fixed number for the simple 
calculation of opportunity cost [15], while to simplify the 
estimation of attack time, Bissias et al. included an 
assumption that the attack stops if either the normal peers or 
the attacker achieves the block confirmation first [16]. On the 
contrary, in our model, an attack can be continued 
indefinitely if it brings a profit, even if the normal peers 
achieve block confirmation before the attacker does. 

Budish conducted simulations on the profitability of DS 
attacks using more than 50% proportion of computing power 
[17]. He provided an empirical condition on the value of the 
target transaction that makes DS attacks not profitable. On 
the contrary, we consider not only the super-50% proportion 
regime but also the sub-50% proportion regime. We provide 
mathematical formulas for the required resources as 
functions of the computing power and block confirmation 
number. We also provide practical examples of profitable DS 
attacks against working blockchain networks. 

The web-site Crypto51.app lists hourly rental fees for 50% 
proportion of computing power for the purpose of estimating 
the profit from DS attacks. However, there is no estimation of 
the AS time, and thus the estimation of the total cost is absent. 

The probability distribution of AS time was analyzed in 
[18] and [19]. However, none of the results matched with our 
three conditions for AS. Specifically, neither analysis 
considered the first condition: i) block confirmation should 
be realized. We compare these results with ours in Section 
III-D in detail. 

C. Organization of the Paper 
Section II contains definitions of the three conditions 

required for a successful DS attack. DS attacks are modeled 
by the random walk of two independent Poisson counting 
processes (PCPs). Section III comprises the computation of 
the probabilities of DS AS and the stochastic behaviors of the 
first time when the DS attack is successful. In Section IV, we 
analyze the profitability of DS attacks, followed by providing 
the resources required to make them profitable. Finally, 
Section V concludes the paper with a summary. 

II. THE ATTACK MODEL 
Here, we define the conditions for a successful DS attack. 

DS attacks are modeled with two independent PCPs. The 
PCP events are carefully enumerated to account for the AS. 



A. Attack Scenario 
We consider blockchain networks which adopt the 

longest chain consensus. The longest one wins among all of 
the chains in competition. We assume there are two groups of 
miners, the normal group of miners and a single attacker. The 
normal group tends the public chain. 

When the attacker decides to launch a DS attack, he/she 
issues a target transaction for the payment of goods or 
services to transfer the ownership of the cryptocurrency from 
the attacker him/herself to the victimized counterpart (VC). 
However, the attacker does not announce the target 
transaction to the normal group immediately but waits for a 
new block generation in the public chain. We denote the time 
at which this new block is generated as 0t = . At time 0t = , 
the attacker announces the target transaction to normal group 
so that normal group starts to put it into the public chain. At 
the same time, the attacker makes a fork of the public chain 
which stems from the newest block generated at 0t =  and 
builds it in secret. We refer to this secret fork as fraudulent 
chain. In the fraudulent chain, the target transaction is altered 
in a way that deceives the counterpart and benefits the 
attacker; one such an example is to get rid of any record of the 
target transaction after receiving the goods or services. 

Before shipping goods or providing services to the attacker, 
the VC obviously chooses to wait for a few more blocks in 
addition to the block on which the target transaction has been 
entered. The number of blocks the VC chooses to wait for is 
referred to as the block confirmation number BCN +Î¢ in this 
paper. Note that the number BCN  includes the block on 
which the target transaction is entered. 

The attacker chooses to make the fraudulent chain public if 
his attack was successful. An attack is successful if the 
fraudulent chain is longer than the public chain after the 
moment the block confirmation is satisfied. This is possible 
because the public chain is always publicly open, while the 
fraudulent one is kept private by the attacker. However, the 
attacker will not wait for his success indefinitely since 
growing the attacker’s chain incurs the expense per time 
spent for operating the computing power. The attack thus 
stops if the attack does not succeed within a cut time cutt  to 
cut loss. 

To sum up, the AS of the DS attack is declared if all of the 
following conditions ( )1G , ( )2G , and ( )3G  are satisfied. 

Definition 1. A DS attack succeeds if 
1. ( )1G : the length of public chain counting from the 

moment  0t =  grows greater than or equal to BCN ,  

2. ( )2G : the length of fraudulent chain counting from 
the moment 0t =  grows longer than the public 
chain, and 

3. ( )3G : starting from 0t = , the duration ( ) ( )1 , 2T  at 

which both ( )1G  and ( )2G  are satisfied for the first 
time is less than cutt . 

When the cut time of attack is set to infinite cutt = ¥ , such an 
attack success is called attack success with the infinite cut 
time (AS-ICT). 

B. The Stochastic Model 
We model the length of the public chain and that of the 

fraudulent chain by two independent PCPs ( )H t  with 

parameter Hl  (blocks per second) and ( )A t  with parameter 

Al , respectively. Both processes start at the zero state 

( ) ( )0 0 0H A= =  and independently increase by at most 1 at a 
time. An increment of 1 in the counting process occurs when 
the pertinent network adds a new block to its chain and the 
chain length is grown by 1 unit with each new mining 
success. 

We rewrite the events AS and AS-ICT in terms of ( )H t  

and ( )A t . In Definition 1, the first two conditions ( )1G  and 
( )2G  are expressed by ( ) BCH t N³  and ( ) ( )A t H t> , 

respectively. It is convenient to define the time ( ) ( )1 , 2T  at 
which both ( )1G  and ( )2�G  are satisfied first as follow: 

 
 ( ) ( ) ( ) ( ) ( ) ( ){ } { }{ }1 , 2 : inf 0, : ; .BCT t H t N A t H t= Î ¥ ³ > ¥U  (1) 

 
From the last condition ( )3G , the event AS-ICT is declared if 

( ) ( )1 , 2T < ¥ . Similarly, for a finite cutt < ¥ , the event AS is 

declared if ( ) ( )1 , 2
cutT t< . 

To simplify ( )1G  and ( )2�G , we form a random walk that 
represents the difference between ( )A t  and ( )H t . For this 
purpose, we first define two continuous stochastic processes 

( )M t  and ( )S t , which are respectively defined as 
 
 ( ) ( ) ( ): ,M t H t A t= +  (2) 

and 
 

 ( ) ( ) ( ): .S t H t A t= -  (3) 
 
The first process ( )M t  is also a PCP [20] with the rate 
 

 ( ):  blocks per second ,T A Hl l l= +  (4) 
 
which corresponds to the sum of computing powers of the 
two mining groups. The second process ( )S t  is the 
continuous-time analog of a random walk. We define a 
random walk iS Î¢  for i +ÎZ  as  
 

 ( ): ,i iS S T=  (5) 
 
where iT  is the state progression time of iS  defined by 
 

 ( ){ }:= inf  :  .iT t M t i+Î =¡  (6) 
 
Random walk iS  is a stationary Markov chain starting from 

0 0S = . The state transition probabilities from 1iS -  to iS  
equals the probabilities that a point arrival of ( )M t  comes 



from either ( )H t  or ( )A t . Specifically, the state transition 
probabilities are written as 
 

 ( )1: Pr 1| ,A
A i i

T

p S n S n l
l-= = + = =  (7) 

and 

 ( )1: Pr 1| ,H
H i i

T

p S n S n l
l-= = - = =  (8) 

 
for all i +Î¢  and nÎ¢ . The state transition probabilities Hp  
and Ap  are the proportions of computing power occupied by 
the normal miners and that by the attacker, respectively.  

We define the independent and identically distributed (i.i.d.) 
state transition random variables { } ( )1 ~Bernoullii HpD Î ±  as 

 
 1: ,i i iS S -D = -  (9) 

for i +Î¢ . 
Using the random walk, we can rewrite ( ) ( )1 , 2T  as 
 

 ( ) ( ) ( ){ } { }{ }1 , 2 min : ; 0, .i i BC iT T H T N S i += ³ < " Î ¥¢ U  (10) 

 

C. Event sets of random walk 
We aim to construct the event sets of state transitions iD  

which imply the satisfaction of the two conditions in (10): 
( )i BCH T N³  (i.e., ( )1G ) and 0iS <  (i.e., ( )2G ). 
For the purpose, we define a DS attack as random 

experiment ( ), ;I A cut BCp t N=Δ A  which produces random 

binary sequence ( ) { }1: , , 1 I
I i= D D Î ±Δ L  of the state 

transitions in (9) with random length I +Î¢ . The 
experimental output is an element of universal set U  of 
sequences, which is defined as 

  

 { }
1 1

: 1 ,i
i

i i

¥ ¥

= =

= = ±U� UU U  (10) 

 
where { }: 1 i

i = ±U . We define ( )1: , ,i i id d= Îδ UL  as a 
binary sequence of length i , which is the realization of IΔ . 

We denote 
1

: k
k ll

s d
=

=å  for integer k +Î¢ , which comprises 

observations of the state variables kS  of the random walk. 
We denote the event sets  i iÌW U , for i +Î¢ , each of 

which satisfies ( )1G  and ( )2G  at the i-th state for the first time. 
The time ( ) ( )1 , 2T  in (10) then can be rewritten as 

 
 ( ) ( ) { } { }{ }1 , 2 min : , .i I iT T i += Î " Î ¥Δ W ¢ U  (11) 

 
To construct iW , we divide it into mutually exclusive sets 

( )1
jD  and ( ) ( )2 1

,j i
-D , for 1, ,j i= L . 

Set ( )1
jD  is a subset of iU  such that ( )1G  is satisfied 

exactly at the j -th state jS . One of the requirements on the 

binary sequences of ( )1
jD  is 2j BCs N j= -  since the first j  

transitions kd  for 1, ,k j= L  have BCN  number of 1+ ’s  
and BCj N-  number of 1- ’s.  

Set ( ) ( )2 1
,j i

-D  for j i£  is a subset of iU  such that ( )2G  is 

satisfied for the first time at the i -th state and ( )1G  is satisfied 
already at state j  prior or equal to state i . This set does not 
care about the first j  transitions kd  for 1, ,k j= L , but only 
focuses on the interim transitions from the 1j + -th to the i

-th, i.e. md , for 1, ,m j i= + L . Recall that satisfying ( )1G  at 
state j  implies 2j BCs N j= - . Thus, the requirement for the 

elements of ( ) ( )2 1
,j i

-D  is that the state changes from starting 

state 2j BCs N j= -   to  state 1is = - , while any interim state 

ks remains non-negative; i.e., 0ks ³  for each 
1, , 1k j i= + -L . 

The elements of joint set ( ) ( ) ( )1 2 1
,j j i

-D DI  for j i£  satisfy 

both ( )1G  at state j  and ( )2G  at state i . When j i> , the 

elements of ( ) ( ) ( )1 2 1
,j j i

-D DI  does not imply achieving ( )1G  and 
( )2G  at the i -th state, since no confirmation has been 

obtained yet. Namely, achieving ( )1G  and ( )2G  is possible at a 

state only posterior to the state at which ( )1G  is satisfied. 
When BCj N< , ( )1

j f=D  due to an insufficient number of 
state transitions for the block confirmation. Subsequently, 

iW  is written as 
 

 ( ) ( ) ( )1 2 1
, .

BC

i

i j j i
j N

-

=

=W D DIU  (12) 

 
We further explore (12). Remember that in the first j  

transitions of ( )1
jD , the number of 1+ ’s is fixed to BCN  and 

the rests of BCj N-  transitions are 1- ’s. This implies that 

for 2 BCj N> , js   in ( )1
jD  are already negative. Equivalently, 

for 2 BCj N> , elements in ( )1
jD  satisfy both ( )1G  and ( )2G  at 

state j . Analogously, ( ) ( )2 1
,j i f- =D  for 2 BCj N>  and j i< , 

since the state 2j BCs N j= -  contradicts the requirement of 
( ) ( )2 1
,j i

-D : the interim transactions between js  and is  should 

be non-negative. For 2 BCj N>  and j i= , set ( ) ( )2 1
,j i

-D  about 
interim states ks , for 1, , 1k j i= + -L , equals set iU  since 
there is no interim state to apply the requirement to. This 
implies ( ) ( ) ( )( ) ( )1 2 1 1

,j j i i
- =D D DI  for 2 BCj N>  and j i= . 

As a result, (12) becomes 
 

 
( ) ( ) ( ) ( )

2
1 2 1 1

, , for 2 ,

, for 2 .

BC

BC

N

j j i i BC
i j N

BC

i N

i Nf

-

=

ìæ ö
>ïç ÷ç ÷=íè ø

ï £î

D D D
W

I UU  (13) 

 



For example, suppose 2BCN = , then a sequence 

( )5 1, 1, 1, 1, 1= - + + - -Δ  satisfies ( )1G  at state index 3j = . 

After the 3-rd index, 5Δ  satisfies ( )2G  at 5i = , thus 
( ) ( ) ( )( )1 2 1

5 3 3,5 5
-Î ÌΔ D D WI . The other example is a sequence 

( )5 1, 1, 1, 1, 1= - - + - +Δ , which satisfies ( )1G  at 5j =  for the 
first time. In addition, at the same state index, the sequence 

5Δ  satisfies ( )2G  as well. Hence, ( )1
5 5 5Î ÌΔ D W . It is easy 

to check that for all 2 BCj N> , the sequences which satisfy 
( )1G  at the j -th state index for the first time satisfy ( )2G  as 

well at the same state index, and thus are the elements of iW . 
As a counterexample, a sequence ( )4 1, 1, 1, 1= - - + +Δ  

satisfies ( )1G  at the 4-th state index, but never satisfies ( )2G  
due to the number of state transitions being insufficient. 

The sets iW  for i +Î¢  are mutually exclusive since the 
lengths of the sequences comprising these differ by i . Thus, 
for DS attack ( ), ;I A cut BCp t N=Δ A , if i  exists such that 

I iÎΔ W , for i +ÎZ , then it is unique, which implies that the 

expression for ( ) ( )1 , 2T  in (11) can be rewritten as 
 

 ( ) ( )1 , 2 ,  : , ,
, .

i I iT if i iT
otherwise

+ì $ Î " Î=í¥î

Δ ZW   (14) 

III. AS PROBABILITIES 

For a DS attack task ( ), ;I A cut BCp t N=Δ A , we aim to 
compute the probability of AS, which equals the probability 
that the AS conditions ( )1G  and ( )2G  have met within the 
time duration cutt ; i.e., ( ) ( )1 , 2

cutT t< . This probability requires 

the probability density function (PDF) of ( ) ( )1 , 2T , which also 
enables to compute the expectation of the time at which a DS 
attack succeeds, i.e., expected AS time. 

The probabilities and expectations in this section will be 
used to evaluate the profitability of DS attacks in Section IV. 

A. AS-ICT Probability 
We first compute the probability of AS-ICT with cutt = ¥ . 

The probability of AS-ICT is the probability that the state 
index i  exists such that I iÎΔ W , and thus requires  

( )Pr I iÎΔ W . Note that no occurrence of AS-ICT with 
infinite cutt  implies no occurrence of AS with a finite cutt  as 
well. That is to say, the probability of AS-ICT is also needed 
to compute the probability of AS. 

In specific, from the mutual exclusiveness of iW  for 
i +Î¢ , the probability AS ICT-P  of AS-ICT equals the sum of 

( )Pr I iÎΔ W , for i +Î¢ . Since i f=W , for 2 BCi N£ , as 
given in (13), it can be computed as 

 

 ( ) ( )
2 1

; Pr .
BC

AS ICT A BC I i
i N

p N
¥

-
= +

= Îå ΔP W  (15) 

 
The following Proposition 2 gives the probability 

( )Pr I iÎΔ W  used in (15). 

Proposition 2. Consider DS attack task 
( ), ;I A cut BCp t N=Δ A , then the probability that  ( )Pr I iÎΔ W , 

for 2 BCi N> , can be computed as 
 

 

( )
1 12

2 2
1 ,2

2

Pr
1             1
1                       + ,1

BC

BC BC
BC

BC BC

I i
i ij N

i A HN N jBCj N

N i N
H A

BC

j C p pN
i p pN

+ -=

-
- -=

-

Î
-æ ö= ç ÷-è ø
-æ ö

ç ÷-è ø

å
Δ W

 (16) 

where  

 { }
,

1 2 , , 0 ,
1
0, ,

n m

m n m n mC nn m
otherwise

++ì +æ ö Îï ç ÷= + +í è ø
ïî

Z U  (17) 

 
and for 2 BCi N£ , ( )Pr 0I iÎ =Δ W . 

Proof: As given in (13), set iW  is the union of 
( ) ( ) ( )1 2 1

,j j i
-D DI ,

 
for , ,2BC BCj N N= L  and ( )1

iD . As sets ( )1
jD , 

for , ,2BC BCj N N= L , are mutually exclusive by definition, 

the probability of the union of ( ) ( ) ( )1 2 1
,j j i

-D DI , for 

, ,2BC BCj N N= L , and ( )1
iD  equals the sum of the respective 

probabilities. In addition, for every 2 1BCi N³ +  and j , ( )1
jD  

and ( ) ( )2 1
,j i

-D  are independent since the requirements for the 
two sets focus on the different indices of the state transitions. 
Thus, the probability of intersections ( ) ( ) ( )1 2 1

,j j i
-D DI  equals 

the product of the respective probabilities. As a result, from 
(13), ( )Pr I iÎΔ W  for 2 BCi N> can be computed as 

 

 
( ) ( )( ) ( ) ( )( )

( )( )

2
1 2 1

,

1

Pr Pr Pr

                     Pr .

BC

BC

j N

I i I j I j i
j N

I i

=
-

=

Î = Î Î

+ Î

åΔ Δ Δ

Δ

W D D

D
 (18) 

 
By definition, set ( )1

jD  picks 1BCN -  transitions among 
the first 1j-  transitions. The picked transitions are given 1+
s and the rests are given 1- s. The j -th transition is 1jD = . 

The probability ( )( )1Pr jD  equals the point mass function of a 

negative binomial distribution: 
 

 ( )( )1 1Pr .1
BC BCN j N

j H A
BC

j p pN
--æ ö=ç ÷-è ø

D  (19) 

 
Computing the probability ( ) ( )( )2 1

,Pr j i
-D  starts from 

counting the number of elements in ( ) ( )2 1
,j i

-D . Remember the 

requirements on every element of ( ) ( )2 1
,j i

-D , for 
, , 2BC BCj N N= L , are that the states change starting from 

state 2j BCs N j= -  and ending with state 0is <  while 
keeping 0ks ³ , for 1, , 1k j i= + -L . The i -th transition 

should be 1iD =- . The number of elements in ( ) ( )2 1
,j i

-D  equals 
the ballot number [21], which is the number of random walks 
that consist of 1i j- -  steps and never become negative, 



starting from point 2 BCN j-  at the j -th state and ending at 
the origin with the 1i - -th state. This number is given as 

,n mC  in (17) with relationships 2 1n m i j+ = - -  and 
2 BCm N j= - . As a result, by multiplying the probabilities of 

state transitions, the probability ( ) ( )( )2 1
,Pr j i

-D  is computed as 

 
 ( ) ( )( ) ( )2 1 1

, ,Pr .n m n
j i n m A HC p p- + +=D  (20) 

 
Finally, substituting (19) and (20) into (18) results in (16).

 ■ 
The following Corollary 3 gives an explicit formula of the 

probability AS ICT-P  of AS-ICT given in (15). 
Corollary 3. The probability AS ICT-P  has an algebraic 

expression 
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2
1

;
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1      1 , ,1
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jp p A p pN

-

+

=

=
£ì

ï -æ öí - >ç ÷ï -è øî
å

P

 (21) 

where 
 2 1 2 1.BC BCj N j N

j A HA p p- - - --@  (22) 
 
Proof: See Appendix A 

B. AS Probability 
By Definition 1, the probability of AS equals 
 

 ( ) ( ) ( )( )1 , 2, ; : Pr .AS A cut BC cutp t N T t= <P  (23) 

 
To compute ASP , we need the probability density function 

(PDF) of ( ) ( )1 , 2T . From the mutual exclusiveness of iW  for 
integers 2 BCi N>  and the relationship in (14), the PDF 

( ) ( )1 , 2T
f  can be computed as 

 

 
( ) ( ) ( ) ( ) ( )

( ) ( )
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¥
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-
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+ - - ¥

å Δ

P

W
 (24) 

 
where ( )td  is a Dirac delta function and ( )

iTf t  is the PDF 

of iT . The random variable iT  in (6) follows an Erlang 
distribution with shape parameter i  and rate Tl  [20]. The 
PDF of iT  is thus given as 
 

 ( ) ( )
( )

1

.
1 !

T

i
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Proposition 4. The PDF of time ( ) ( )1 , 2T  has a closed-form 

expression: 
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where ( ); ;p qF xa b  is the generalized hypergeometric 
function [22] defined in Appendix E with the parameter 
vectors 
 

 1 2
1 2 2

BC

BC

N j
N j

+ -é ù=ê ú+ -ë û
a  (27) 

and 

 
2 2
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BC

N j
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ê ú
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Proof: See Appendix B. 

 

C. Expected AS Times 
It will be shown to be convenient to define the AS time as 
 

 
( ) ( ) ( ) ( )1 , 2 1 , 2,  ,:

not defined, .
cut

AS
T if T tT

otherwise
ì <ï= í
ïî

 (29) 

 
The case for AS cutT t>  does not need to be defined since it is 
not useful. 

The PDF of AST  is just a scaled version of ( ) ( ) ( )1 , 2T
f t  for 

0 cutt t< < , which is given in (26), with a scaling factor of 
1

AS
-P  . Formally, the PDF ( )

ASTf t  equals 
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The expectation of AS time (EAST) is computed as 
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( ) ( ) ( )

( )
1 , 20, ; .
, ;

cut

AS
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T
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tf t dt
p t N

p t N
= òE P  (31) 

 
Similarly, we define AS-ICT time as the AS time with 

cutt =¥ . From the results (24) and (31), if cutt = ¥ , the 
expectation of the time for AS-ICT is computed as follow  
 



 

( )
( ) ( ) ( )

( )

[ ] ( )

( )

( )

( )

1 , 20

2 1

2 1

lim
;

;

Pr

;

Pr
,

;

cut

cut

AS ICT

BC

BC

t

Tt
T A BC

AS ICT A BC

i I i
i N

AS ICT A BC

I i
i N T

AS ICT A BC

tf t dt
p N

p N

T

p N

i

p N
l

-

-

®¥

-

¥

= +

-

¥

= +

-

=

Î
=

Î
=

ò

å

å

Δ

Δ

E P

E

P

P

W

W

 (32)   

where [ ] 1
i TE T il -=  [20]. 

The following Proposition 5 gives an explicit formula of 

AS ICTT -
E . 

Proposition 5. Let ( ): max ,M A Hp p p=  and 

( ): min ,m A Hp p p= , then the expectation 
AS ICTT -
E  has a 

closed-form expression: 
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where 
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Proof: See Appendix A. 

 

D. Comparison with Previous Works 
The AS-ICT probability AS ICT-P  (AS probability when 

indefinite cut time cutt =¥  is given) in Corollary 3 was 
computed by Nakamoto [1] and Rosenfield [15] using the 
gambler’s ruin theorem [23]. In [1], Nakamoto suggested an 
additional assumption not in our scenario: the time spent for 
the first BCN  blocks mined by the normal group is not 

random and is determined as the average time 1
H BCNl -

instead. In other words, the block confirmation process was 
not treated as the stochastic processes. In [15], Rosenfield 
removed the assumption proposed by Nakamoto to derive the 
result in Corollary 3. However, the result was still based on 
the gambler’s ruin theorem which only computes the 
asymptotical behavior of nS  as n®¥  by manipulating the 
recurrence relationship between two adjacent states. That is 
to say, he assumed that an indefinite number of attack 
chances are given to the attacker. There was no result related 
to the intermediate process such as Proposition 2. 

In this paper, we introduce cutt , which generalize the 
results by Nakamoto and Rosenfield, and compute the AS 
probability ASP  using Proposition 2. In practice, attack 
chances are limited since the amount of resources such as 
time and cost are limited, and therefore a cut time cutt  is 
needed to cut loss. 

Besides the probability 
AS ICTT -
P , the probability 

distribution of attack success time similar with ( ) ( )1 , 2T  was 

also analyzed in [16], [18], and [19]. However, none of the 
results matched with the AS conditions in Definition 1. 

In [18], Goffard considered the race between two PCPs 
( )H t  and ( )A t  with unfair initial states. Specifically, the 

initial states of the public chain ( )H t  and the fraudulent 

chain were set to ( )0H z=  and ( )0 0A =  for integer 0z > , 
respectively, then an implicit expression of the probability 
distribution of first time zt  at which ( ) ( )z zH At t=  was 
analyzed. Time zt  can be interpreted as the interval spent for 

( ) ( )2 1
,j i

-D ; i.e., the interval from the time at which ( )1G  alone is 

satisfied to the time at which both ( )1G  and ( )2G  are satisfied. 

This analysis did not consider the time for ( )1G . 
In [16], Bissias et al. also considered the race between 

two PCPs. To derive an explicit formula of the probability 
distribution of AS time, they put in other conditions to end an 
attack attempt: the attack stops if either ( )H t  or ( )A t  
reaches 1BCN + , whichever happens first. In other words, the 
only way to succeed in an attack is that the fraudulent chain 
should mine 1BCN +  blocks faster than the public chain. On 
the contrary, in our model and in reality, an attack can be 
continued even at a moment when the public chain is ahead of 
the fraudulent chain, if it will give any profit. 

In [19], Karame et al. analyzed the first AS time under a 
fast-payment model which removed the block confirmation 
process by omitting condition ( )1G . 

IV. THE EXPECTED PROFIT OF A DS ATTACK 
The previous probabilistic analyses in [1] and [15] show 

that the success of DS attacks is not guaranteed when 
0.5Ap < . However, DS attacks with 0.5Ap <  might be 

pursued if they bring profit. 

A. Profitable DS Attacks 
Here, we analyze the profitability of DS attacks and to 

this end, we define profit function P  of DS attack 
( ), , ;A cut BCC p t NA  in terms of value C  of a fraudulent 

transaction, the block mining reward, and the operating 
expense (OPEX) of the computing power. We compute the 
expected profit function ( ), ;P A cut BCp t NE , which is the 
expectation of P . 

Definition 6 (Profitable Attacks). DS attack 
( ), , ;A cut BCC p t NA  is said to be profitable if and only if 

0P >E .  
 
The OPEX (e.g. the rental fee for the computing power) 

and the block mining reward are increased by the average 
block mining speed Al  by the attacker and the time t  
consumed during an attack. Thus, the OPEX and block 
mining rewards are expressed as functions ( ),AX tl  and 

( ),AR tl , respectively, which can be any increasing function 
(e.g., linear, exponential, or log) with respect to Al  and t . 
We define X  and R , respectively, as follows: 

 

 ( ) ( ) ( )1 32 4, : log logA t

A A x xX t t x x
l

l gl=  (35) 



 
for real constants 0g > , 1 2, 1x x > , and 3 4, 1x x > , and 
 

 ( ) ( ) ( )1 32 4, : log logA t

A A r rR t t r r
l

l bl=  (36) 

 
for real constants b , 1 2, 1r r > , and 3 4, 1r r > . 

To sum up, if an attack succeeds, the income from the AS 
is C as it is double-spent and the block mining reward R for 
time duration AST . In this case, the cost is the OPEX for 
duration AST . If the attack fails, the cost is the OPEX for 
duration cutt  without revenue. Hence, profit P of a DS attack 
is the random variable 

 

 ( ) ( ) ( ) ( )
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:
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A AS A AS cut
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Subsequently, the expected profit function of a DS attack is 
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 (38) 
where A A Tpl l=  and XE  is the expected OPEX defined as 
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Definition 6 and (38) imply that for fixed Ap  and cutt , DS 

attack ( ), , ;A cut BCA C p t N  is profitable if and only if 

Req.C C> , where the required value of target transaction 

Req.C  is 

 
( )
( ) ( )Req.

, ;
, .

, ;
X A cut BC

A AS
AS A cut BC

p t N
C R T

p t N
l= - é ùë û

E� EP  (40) 

 
Theorem 7. Suppose 1 2x x=  and 3 4x x=  in (35), and 

1 2r r=  and 3 4r r=  in (36). DS attack ( ), , ;A cut BCC p t NA  for 

( )0,0.5Ap Î  is profitable only if cutt < ¥ . In addition, let 

cutt = ¥  and ( )0.5,1Ap Î , then the required value of target 
transaction in (40) becomes 
 

 ( ) ( )( )Req. max 0, ; .
AS ICTT A T A BCC p p Ng b l

-
= - E  (41) 

 
Proof: See Appendix C. 

 
By Theorem 7, setting cutt = ¥  and ( )0,0.5Ap Î  makes 

DS attack non-profitable. The following Theorem 8 shows 
that by setting a finite cutt , DS attacks ( ), , ;A cut BCC p t NA  

can be profitable not only for ( )0.5,1Ap Î , but also for 

( )0,0.5Ap Î . 
 
Theorem 8. Let 1 2x x=  and 3 4x x=  in (35), and 1 2r r=  

and 3 4r r=  in (36). Let ( );
AS ICTcut T A BCt c p N

-
=� E  for a positive 

real c , where 
AS ICTT -
E  is given in (33). A DS attack 

( ), , ;A cut BCC p t NA  is profitable for any ( )0,1Ap Î , if 

Suf .C C>  , where  
 

 ( )
( )

( )Suf.

;
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, ;
AS ICTT A T A BC

A
AS A cut BC

p p N
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p t N
l
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E
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and 
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Proof: See Appendix D. 

 

B. Profitable DS Attacks against Working Blockchain 
Networks 

As of 9th December 2018, we refer to blockchain 
explorers and nicehash.com (who provides the rental rates for 
borrowing computing power) to obtain block mining reward 
R  and OPEX X . The parameters 1 4, ,x xL  used in (35) are 
set to 1 2x x=  and 3 4x x= , which leads to a linear function 

TABLE I 
NUMERICAL COMPUTATIONS OF REQUIRED RESOURCES FOR PROFITABLE DS ATTACKS WHEN , FOR . 

Block Confirmation Number ( ) 1 3 5 7 9 

Computing Power ( ) 0.35 0.4 0.35 0.4 0.35 0.4 0.35 0.4 0.35 0.4 

Cut Time ( ) 
Scaled by 

 7.593 9.491 13.548 15.617 19.217 21.294 24.753 26.755 30.212 32.084 

AS Probability ( ) 0.389 0.523 0.286 0.440 0.217 0.380 0.167 0.332 0.130 0.292 

Expected AS Time 
( ) 

Scaled by 
 2.640 2.801 5.682 5.732 8.621 8.553 11.498 11.316 14.333 14.039 

Expected OPEX ( ) 
Scaled by 

 

3.050 3.993 6.085 7.513 9.110 10.973 12.135 14.423 15.153 17.874 

Required Value of Target 
Transaction ( ) 12.257 12.535 31.967 26.253 62.545 43.457 107.812 64.728 172.757 90.660 

 



X  with respect to Al  and AST . Analogously, the parameters 
for R  in (36) are set to 1 2r r=  and 3 4r r= , leading to a linear 
function R  with respect to Al  and AST . There are three 

more parameters: g , b , and 1
Hl - . Parameter g  is the 

expected cost spent per generating a block and required for 
computing the expected OPEX. Parameter b  is the reward 
per generating a block. Parameter 1

Hl -  is the average block 
generation time of the public chain. They are different by 
blockchain networks. 

We consider the Syscoin and BitcoinCash networks. The 
parameter g  is obtainable from nicehash.com. The two 
networks use the SHA-256 cryptographic puzzle for which 
the unit of computation is hash. The rental fee for 1P hashes 
per second for a day is around 0.04 BTC, which is around 

74.63 10-×  BTC per second. In other words, the rental fee is 
approximately 224.63 10-×  BTC per the computing of a hash. 

Once parameters b , g , and 1
Hl -  are obtained, the 

required attack resources can be evaluated using Table I. 
Table I lists the required attack resources for each 0.35Ap =  
and 0.4Ap =  when 

AS ICTcut Tt c
-

= E , for 2c = .  
1) The Syscoin Network Parameters 

The average block generation time is fixed at 1 60Hl - =  
seconds. Referring to poolexplorer.com, the network’s 
computing speed is 7.6E hashes per second; i.e., 
7.6E 60=456E× solutions are needed to mine one block on 
average. Then, the parameter g  is obtained as 

 

 
[ ]

[ ]
[ ]

224.63 10  BTC hash
  456E hashes block  mining
0.21 BTC block mining .

g -= ×
´

»
 (44) 

 
The reward b  per block mining is 38.5 SYS (without 

transaction fees), which is around 43.6 10-×  BTC per block 
mining. 
2) The BitcoinCash Network Parameters 

The average block generation time is fixed at 1 600Hl - =  
seconds. Referring to BTC.com, the network’s computing 
speed is 1.2E hashes per second; i.e., 1.2E 600=720E×  hashes 
are needed to generate one block on average. The parameter 
g  is obtained as 

 

 
[ ]

[ ]
[ ]

224.63 10  BTC hash
   720E hashes block  mining
0.33 BTC block mining .

g -= ×
´

»
 (45) 

 
The reward b  per block mining is 12.5 BCH (without 

transaction fees), which is around 0.57 BTC per block mining. 
By Theorem 7, the relationship b g>  implies that the 

required value Req. 0C =  for DS attack ( ), , ;A cut BCC p t NA  

with 0.5Ap >  and cutt =¥  to be profitable is 0; i.e., such DS 
attacks are always profitable regardless of the value C  of 
target transaction. 
3) DS Attack with a Finite Cut Time and 0.5Ap <  

In Table II, we evaluate the resources required for 
profitable DS attacks using 0.35Ap =  against the two 
blockchain networks. The values in Table II are obtained 
from the values in Table I multiplied by scaling parameters g  

and 1
Hl - . The results explain the importance of network 

parameter 1
Hl - . Remember that Syscoin has a greater 

network computing power (7.6E hashes per second) than 
BitcoinCash (1.2E hashes per second). This implies that 
Syscoin has a higher rental fee per unit time for a same 
proportion of computing power than BitcoinCash. 
Specifically, when 0.35Ap = , the rental fee for Syscoin is 
163.69 BTC per day whereas that for BitcoinCash is 25.84 
BTC per day. Nevertheless, BitcoinCash requires higher 
OPEX for profitable DS attacks than Syscoin, since the 
higher 1

Hl -  of BitcoinCash implies the higher g  (the 

average cost per block mining). In addition, a high 1
Hl -  

proportionally delays the expected AS time. 

V. CONCLUSIONS 
We showed that DS attacks using 50% or a less 

proportion of computing power can be profitable. For both 
the super-50% and the sub-50% proportion regimes, we 
provided quantitative resources required for profitable DS 
attacks. Specifically, we provided the probability for an AS 
success as well as the operating time and expense of mining 
rigs. We summarized the results in Table I, which enable the 
easy calculation of the minimum resources required for a 
profitable attack against any blockchain network. We showed 
examples of the calculations against working networks. 

Our results quantitatively show the importance of 
network policy. The less the average block mining period and 
block confirmation number, the less the minimum resources 
required for a profitable attack. That is to say, blockchain 
networks pursuing fast transaction speeds are risky. A way 
for developers of such networks to discourage DS attacks is, 
for example, to restrict the value of transactions depending on 
the network policy. If the value of the target transaction is 
limited below the minimum quantity we provided, attackers 
cannot expect to make a profit. 
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APPENDIX A  
PROOF OF COROLLARY 3 AND PROPOSITION 5 

A. Proof of Corollary 3 
We reduce the infinite summations in (15) into an 

algebraic form using generating functions.  

By substituting (16) into (15), the probability AS ICT-P  
becomes 

 
( )

2 1
2

1 ,22 1 2

2 1

1
1

1               .1

BC

BC BC
BC BC

BC

BC

N i

AS ICT A i A HN N jBCj N i N
N

iH
A

BCi NA

j p C p pN

p i pNp

¥ -

- -
- -= = +

¥

= +

-æ ö= ç ÷-è ø
æ ö -æ ö+ç ÷ ç ÷-è øè ø

å å

å

P
  

(46) 
By rearranging the indices i  in the summations, we can 
obtain 

 
( )

2

,2
0

2

1
1

1 1 .1 1

BC
BC

BC
BC

BC
BC

BC BC

N
i N

AS ICT A i N j A H
BCj N i

N N
i iH

A A
BC BCi N i NA

j p C p pN

p i ip pN Np

¥
+

- -
= =

¥

= =

-æ ö= ç ÷-è ø
æ öæ ö - -æ ö æ ö+ -ç ÷ç ÷ ç ÷ ç ÷ç ÷- -è ø è øè ø è ø

å å

å å

P
  

(47) 
We define two generating functions as 

 ( ) ,
0

: ,i
k i k

i
M x C x

¥

=

=å  (48) 

and 

 ( ): .i
k

i k

iG x x
k

¥

=

æ ö= ç ÷
è ø

å  (49) 

By substituting kM  and kG  into (47), we can write 

 
( ) ( )

( )

2

2

2

1

1
1

1 1

BC
BC

BC
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BC
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BC
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N
N

AS ICT A A H N j A H
BCj N
N N

iH
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BCi NA

j p p p M p pN

p ip G p pNp

- -
=

-
=

-æ ö= ç ÷-è ø
æ öæ ö -æ ö+ -ç ÷ç ÷ ç ÷ç ÷-è øè ø è ø

å

å

P

.

 (50) 

The function ( )kM x  is a generating function of the ballot 

numbers ,i kC , for which the algebraic expression given in [24] 
is 

 ( )
1

2 .
1 1 4

k

kM x
x

+
æ ö

=ç ÷
+ -è ø

 (51) 

Putting A Hx p p=  into ( )kM x  results in 

 

( )

( )

( )

1

1

1

1

2
1 1 4

2 , ,
1 1 4 1

2 ,
1 1 4 1

1 ,

k

k A H
A H

k

A H

A A

k

A H

H H
k

M

M p p
p p

p p
p p

p p
p p

p

+

+

+

+

æ ö
=ç ÷ç ÷+ -è ø

ìæ ö
ïç ÷ <ïç ÷+ - -ïè ø=í
æ öï
ç ÷ ³ï
ç ÷+ - -ïè øî

æ ö
=ç ÷

è ø

 (52) 

where ( ): max ,M H Ap p p= . 

( )kG x  is a generating function of binomial coefficients, 
and the algebraic expression for it is given in [25]: 

 ( )
( ) 1 .
1

k

k k

xG x
x +=

-
 (53) 

Putting Ax p=  into ( )kG x  results in 

 ( ) 1 .
k

A
k A H

H

pG p p
p

- æ ö
= ç ÷

è ø
 (54) 

Substituting (52) and (54) into (50) arrives at 



 
( ) ( )

2
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1
1

1          1 .1
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N
N N j
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BCj N
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A
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=

-æ ö= ç ÷-è ø
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å

å

P
 (55) 

We define ( ): min ,m A Hp p p= , then the relationship

A H m Mp p p p=  holds. By rearranging the order of operands, 
we can obtain 

 2 11 ,1

BC BC
BC

BC

AS ICT
N NN

j jmH A
A M

BCj N A M M

pp pj p pN p p p

-

=

=
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å

P
 (56) 

which is equal to (21). ■ 

B. Proof of Proposition 5 
We use the generating functions and their derivatives to 

compute the infinite summations in (32). 
By substituting (16) into (32) and rearranging the order of 

operands, we obtain 
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(57) 

By rearranging the indices of summations, we arrive at 

 

( ) ( )

( )

2
1

,2
0

1

2

1
1

               2 2 1

               1
1

1
               

1

BC
BC BC

AS ICT
BC

BC

BC

BC

B
BC BC

BC

N
N N

T T A H
j N BC

i
BC i N j A H

i
N

iH
A A

i N BCA

N
i N N

A H
i N BC

j
p p

N

i N C p p

ipp i p
Np

i
i p p

N

l
-

+

=

¥

-
=

¥

= -

-

=

-æ ö
= ç ÷-è ø

× + +

æ ö æ ö
+ +ç ÷ ç ÷-è øè ø

-æ ö
- ç ÷-è ø

å

å

å

E

.
C

å

 (58) 

By substituting generating functions ( )kM x  and ( )kG x  
defined respectively in (48) and (49), (58) becomes 
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(59) 
 
We use the following relationships, 

 ( ),
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i
i k k

i
iC x xM x

¥

=

¢=å  (60) 

and 
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i k

ii x xG x
k

¥

=
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å  (61) 

and their derivatives are given by 
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and 
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By substituting (60) and (61) into (59), we obtain 
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(64) 
Putting A Hx p p=  into ( )kM x¢  results in 
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Putting Ax p=  into ( )kG x¢  gives 
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2 .
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A A
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H

kp p
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p
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+

+
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By substituting (52), (54), (65), and (66) into (64), we finally 
obtain (33). ■ 

APPENDIX B  
PROOF OF PROPOSITION 4 

We use a generating function and generalized 
hypergeometric functions to compute the infinite summations 
in (24). 

By substituting ( )Pr I iÎΔ W  in (16) and ( )
iTf t  in (25) 

into (24), we arrive at 
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(67) 
By rearranging the indices of summations and the order of 
operands, we obtain 
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We can define two generating functions as  
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and 
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By substituting ( )B x  and ( )H x  into (68), we obtain 
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(71) 
 
We replace function ( )B x  in (69) with the generalized 

hypergeometric functions defined in Appendix E. For this 
purpose, we first denote the sequences in ( )B x  by 
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b
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=
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and 
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Next, the function ( )B x  can be rewritten as  
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The reformulated sequence in (74) is computed by 
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 (75) 

which has 2 polynomials in i  on the numerator and 3 
polynomials in i  on the denominator, except for ( )1i+ . By 
the definition of the generalized hypergeometric function 
[22], function ( )B x  can be expressed as 
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1  ; ; ,

2 !
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j j
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where vectors ja  and jb  respectively defined in (27) and 
(28) are the constants in the polynomials in i  of the 
numerator and denominator in (75), respectively. 

We use a closed-form expression of generating function 
( )H x  in (70) given by 
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where the following relationship is used [26]: 
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By substituting (76) and (77)  into (67), we arrive at 
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(79) 
We obtain (26) by rearranging the indices of the summations 
and the order of operands.  ■ 

APPENDIX C  
PROOF OF THEOREM 7 

When 1 2x x= , 3 4x x= , 1 2r r= , and 3 4r r= , the OPEX 
and block mining reward respectively turn into 

 ( ),A AS A ASX T Tl gl=  (80) 
and 

 ( ), .A AS A ASR T Tl bl=  (81) 

Combining these conditions implies that expected OPEX 
XE  defined in (39) becomes 

 
( )

( ) ( )
( )( )

, ;
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p t N
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p t N t
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=
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E
P E

P
 (82) 



For ( )0,0.5Ap Î , 1AS <P  always holds, since AS AS ICT-£P P  
by the definition and 1AS ICT- <P  by (21). Thus, if cutt = ¥ , 
the expected OPEX in (82) diverges to minus infinity. In 
other words, the expected profit PE  in (38) with 

( )0,0.5Ap Î  is positive only if cutt < ¥ . 
We next derive the sufficient and necessary condition (41) 

for ( )0.5,1Ap Î  and cutt = ¥ . When cutt = ¥ , AS AS ICTT T -=  
and AS AS ICT-=P P  by the definition of AS-ICT. In addition, 

( )0,0.5Ap Î  implies 1AS ICT- =P  by (21). In this case, by 
substituting (80) and (81), the expected profit PE  in (38) 
becomes 

 ( ) ( ) ( ), ; ; .
AS ICTP A BC A T A BCp N C p Nb g l

-
¥ = + -E E  (83) 

Hence, 0P >E  if and only if the value C  of target 

transaction is greater than Req.C  given in (41). ■ 

APPENDIX D  
PROOF OF THEOREM 8 

We obtain an upper bound Suf.C  of Req.C  in (40). If 

Suf.C C>  then Req.C C> , which implies that a DS attack 

( ), , ;
AS ICTA T BCC p c N

-
EA  for a positive real number c  is 

profitable. 
As ( ),A ASR Tlé ùë ûE in (40) is nonnegative by the definition 

of function R , we arrive at the upper bound: 
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By substituting 
AS ICTcut Tt c

-
= E , 1 2x x= , and 3 4x x= , the 

expected OPEX XE  in (84) becomes 
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 (85) 
We use the following relationship on the conditional 
expectation  
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-
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By substituting (85) and (86) into (84), we finally obtain the 
upper bound Suf.C  given in (42). ■ 

APPENDIX E  
THE GENERALIZED HYPERGEOMETRIC FUNCTION 

A generalized hypergeometric series [22] is a power 
series 

0
n

nn
zb

³å , where the ratio of coefficients are 

expressed by polynomials ( )A n  and ( )B n  in n  as follows: 

 
( )

( )( )
1 ,

1
n

n

A n
B n n

b
b

+ =
+

 (87) 

for all integers 0n ³ . The polynomials are written by 
 ( ) ( ) ( )1 pA n c a n a n= + +L  (88) 

and 
 ( ) ( ) ( )1 .qB n d b n b n= + +L  (89) 

 
The generalized hypergeometric series is denoted by 

 ( ); ; ,p qF za b  (90) 

where a  and b  are vectors of 1, , pa aL  and 1, , qb bL , 
respectively. 

A generalized hypergeometric series defines a 
generalized hypergeometric function if it converges. If 

1p q< + , then the ratio of coefficients (87) goes to zero as 
n ® ¥ , which implies that the series converges for any finite 
value z  and thus defines the function. 
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Abstract— The protocol for cryptocurrencies is largely divided 

into three parts, namely consensus, wallet, and networking over-
lay. Consensus deals with coming to an agreement among the 
participating nodes to the current status of their blockchain. The 
status of the blockchain is updated only through valid transac-
tions. This objective is achieved among trustless rational peer 
nodes. A proof-of-work (PoW) based consensus has been proven 
to be secure and robust owing to its simple rule and has served as 
a firm foundation for cryptocurrencies such as bitcoin and 
ethereum. However, the emergence of specialized mining devices 
for the existing PoW causes two problems: i) the re-centralization 
issue of the mining market and ii) the usage of a considerable 
amount of energy in mining. In this paper, we introduce a new 
PoW called Error-Correction Codes PoW in which the er-
ror-correction codes and their decoder can be utilized by con-
catenating the decoder with a hash function. In this new PoW, a 
puzzle can be intentionally made to change from block to block, 
leading to a time-variant property. This property is useful in 
repressing the emergence of specialized mining devices, which can 
be a solution to the problems that the existing PoWs face cur-
rently. 

Index Terms— Consensus, Cryptocurrency, Blockchain, Proof- 
of-Work, Error-Correction Codes, Hash Functions 

I. INTRODUCTION 
n cryptocurrencies, the consensus mechanism is considered 
to be the most innovative part because it prevents the double 

spending attack [1] in a peer-to-peer network without trusted 
third parties. In bitcoin [2], for example, more than ten thou-
sand of nodes randomly scattered across the world aim to reach 
a consensus in each block time. The Internet is the only way to 
connect them; communication packets are delayed and some-
times dropped though the Internet gives the best service. Also, 
cyberattacks frequently occur, which makes transactions over 
the Internet insecure. Nevertheless, bitcoin has shown secure 
peer-to-peer transactions over the past 10 years. This is possible 
with the help of proof-of-work (PoW) which is fundamental of 
the consensus mechanism. 

In bitcoin, each node scattered in the world does competitive 
work, called mining, to forge a block. The node which wins this 
competition has the right to mint a specified number of coins as 
this mining reward. If a node was re-forging all the block alone, 
it could spend the total amount of works done to all the blocks 
when they were forged. 

This work was supported by the “Practical Research and Development support 
program supervised by the GTI(GIST Technology Institute)" grant funded by 
GIST in 2019. This work was supported by IITP (Institute of Information & 
Communications Technology Planning & Evaluation) in 2019.  

Without PoW, anybody with a computer can alter the content 
of the blockchain, which can make unauthorized changes in any 
mined blocks. If PoW is attached to each mined block, attackers 
cannot make any unauthorized modifications without redoing 
all the works. No one thus can alter any mined blocks, meaning 
an immutability property of blockchain. 

In bitcoin, miners make a rational decision to maximize their 
profit. For this rational decision, the miners seek and extend the 
longest chain. To understand whether this decision is rational or 
not, we consider an example in which there are two chains. One 
chain is assumed to be longer than the other chain. The longer 
chain has to be adopted by miners because this has the maxi-
mum PoW, i.e., these miners select and extend the longer chain. 
Otherwise, the chance to get the mining reward can be proba-
bilistically smaller when the miners select a shorter chain. 

In bitcoin, for miners to get the chance, they spend compu-
tational resources to solve a puzzle which we generate using a 
secure hash algorithm 256 (SHA256) [3]. To solve this puzzle, 
the miners execute SHA256 many times by only varying nonce 
until they find a particular nonce. This particular nonce makes a 
hash of SHA256 begin with multiple zero bits. They attach the 
particular nonce into a mined block as a proof that the provided 
puzzle is correctly solved. Satoshi [2] intended for the miners to 
execute SHA256 using a central processing unit (CPU). But, as 
they competed to quickly do the mining work, there were needs 
to develop chips that can quickly run SHA256 rather than CPU 
can. In 2013, an Avalon company made the first mining device 
based on an application-specific integrated circuit (ASIC). 

Nowadays, miners equipped with ASIC devices have begun 
to dominate the mining business [4]. However, they cause two 
problems. The first problem is that the mining markets have 
become re-centralized [5]. These miners have a large portion of 
the total hash power, implying that the blockchain is left with a 
handful of these miners. It can be possible for them to modify 
the mined blocks, meaning that the immutability property can 
be broken. The use of a considerable amount of electrical en-
ergy to mine blocks is the second problem [6]. New models of 
ASIC devices can outperform old models with respect to the 
hash power. Each miner buys the new models to win the mining 
competition. As the new models are widely used in the mining 
work, the total hash power inevitably increases, making a puz-
zle difficult to be solved. The miners have to spend more elec-
trical energy to solve this puzzle whose difficulty gets larger as 
the new models are being used. 

Error-correction codes are widely used in modern commu-
nication systems to combat errors occurring over noisy chan-
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nels. Errors introduced over a noisy channel can be corrected by 
running a decoding algorithm. The codes have a plentiful his-
tory with numerous classes of codes having varying degrees of 
decoding complexity. 

Error-correction codes have been used to make hash func-
tions. This approach is categorized into a) the code-based one 
and b) the lattice-based one. We consider the code-based one 
because our solution for making ASIC devices useless is based 
on the usage of low-density parity check (LDPC) [7] codes and 
an error-correction decoding algorithm. 

The first code-based approach is back to the late of 1970. In 
1978, McEliece [8] proposed a McEliece cryptosystem where 
the private key consists of a generator matrix G, a binary Goppa 
code, a 1t-error-correction decoding algorithm of that code, a 
permutation matrix P and a nonsingular random matrix S. The 
public key is then a randomly permuted generator matrix, i.e., 
S×G×P. In this system, a hash of a given message is obtained as 
follows: a) a word is made by multiplying the given message 
with the public key and b) the hash is generated by adding this 
word to a binary random word whose number of ones is at most 
t. Peters et al. [9] used non-binary Goppa codes to extend the 
McEliece cryptosystem in 2010. By using the non-binary codes, 
the size of its public key was reduced. This cryptosystem with 
the non-binary codes could achieve the same security level as 
much as the McEliece cryptosystem could. Other codes such as 
low density generator matrix codes [10], LDPC codes [11][12], 
Reed-Solomon codes [13] and Reed-Muller codes [14] have 
been replaced with the Goppa codes in the McEliece cryp-
tosystem, respectively. The aim for using these codes is to solve 

1 For any Goppa code, there is a construction method which guarantees that 
the minimum distance d of that code is greater than a given number. Thus, the 
value of t can be known in advance using Theorem 1 [32]. 

a problem that the size of a given public key is too large, 
compared to that of an original message. 

Aside from the applications of the error-correction codes into 
the McEliece cryptosystem, the codes are used to make secure 
hash functions. Preneel [15] proposed the construction methods 
of hash functions and proved that they can be collision resistant 
under assumptions. The codes used in [15] are either maximum 
distance separable (MDS) codes or hamming codes. Selman et 
al. [16] used LDPC codes to construct a hash function proven to 
be an average universal hash function defined in [17]. 

In this paper, we aim to propose a new proof-of-work system 
that is resistant to ASIC mining devices. This system named as 
error-correction codes proof-of-work (ECCPoW) can consist of 
a set of SHA256s and a decoder of LDPC codes. We give Fig. 1 
to illustrate the structure of ECCPoW and address how it works. 

First, we get n-bit hash values using SHA256s. They are used 
to construct a hash vector r of size n. Second, we make a parity 
check matrix H using a hash value of the previous block. Third, 
we input r into the decoder and run a decoding algorithm to get 
an output n of size n. The decision is made on the basis of n, as 
we have shown in Fig. 1. Details on how to obtain r and H will 
be given in Section IV. 

We define a random variable that represents the number of 
hash cycles required to solve a given puzzle. We obtain both the 
mean and the variance of this random variable. We investigate 
how this mean behaves in terms of either the number of miners 
or the length of a hash vector, leading to the following results: 

 The mean value could be a decreasing function with re-
spect to the number of miners.  

 The mean value could be an increasing function with 
respect to the length n under assumptions given in Propo-

 
Fig. 1. A overall scheme of ECCPoW.  
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sition 1. 

Next, five properties of ECCPoW will be given in Section V. 
The unique property is time-variant, meaning that a puzzle can 
vary from block to block. This property prohibits the advent of 
ASIC mining devices, which can be a solution to the mentioned 
problems. 

We organize the rest of this paper as follows. Section II gives 
literature surveys regarding SHAs and PoWs. Section III elu-
cidates LDPC codes and a decoder. Section IV addresses how 
ECCPoW works, gives its pseudo codes, and presents the the-
oretical results of ECCPoW. Section V discusses the properties 
of ECCPoW and the reason for considering LDPC codes. Last, 
section VII presents the conclusions of this paper. 

II. LITERATURE SURVEY ON BLOCKCHAIN 

A. Secure hash standard and functions  
The secure hash standard was formulated by NIST [3]. The 

purpose of this standard is to offer the specifications of SHAs 
that yield a hash of a given message. If the message is changed 
even slightly, the hash can come out completely different. Thus, 
a hash can be used to detect whether an original message was 
altered or not. SHAs can be used for the generation and veri-
fication of digital signatures as well as of message authentica-
tion. In addition, SHAs can be used for the generation of ran-
dom numbers. 

A secure hash function takes an arbitrarily sized message and 
yields a fixed-size hash. Let a function h be 

 :h →   

which is said to be a cryptographically secure hash function if it 
satisfies the three requirements defined in [17]. 

(One-way function) Given any hash y which a corresponding 
message is not known, it is computationally infeasible to find a 
message x such that h(x) = y. 
(Weak collision resistance) Given an arbitrary message x, it is 
computationally infeasible to find any message x’ which has the 
same hashes h(x) = h(x’). 
(Strong collision resistance) It is computationally infeasible to 
find any two different messages x and x’ which make the same 
hashes h(x) = h(x’). 

Based on the NIST standard [3], there are many SHAs such 
as SHA1, SHA224, SHA256, SHA384, and SHA512. A mes-
sage of any size less than 264 bits can be given as an input for 
SHA1, SHA224, and SHA256, while that of less than 2128 bits 
for SHA384 and SHA512. The size of a hash ranges from 160 
to 512 bits, depending on the algorithm. 

B. PoW of Bitcoin 
In Table I, we provide routines to solve a puzzle in bitcoin. In 

Step 2, a miner puts a given set of the block header (BH) with a 
selected nonce through SHA256 to yield a hash of 256-bits. In 
Step 3, this puzzle is declared to be solved if this hash begins 
with L zero bits, where L is the difficulty of the given puzzle. 
Otherwise, the miner repeats the routines from Step 2 to Step 3 
by only varying the nonce.  

C. PoW of Ethereum 
In [18], Ethash is used to prevent the advent of ASIC miners. 

Operations to fetch data from a memory called directed acyclic 
graph (DAG) are regularly required, where the data of DAG are 
randomly re-generated every 30,000 blocks. The usage of these 
operations makes Ethash resistant to ASIC devices. 

Table II shows routines of Ethash. In Step 2, a given set of 
the current BH with a selected nonce is taken by SHA3 to get a 
hash. This hash is taken by a predefined function to yield mix0 
that is random. In Step 4, mix0 is used to determine which data 
from DAG are fetched. Since mix0 is random, no one predicts 
which data will be fetched. The mixer takes both the fetched 
data and mix0 to get a random value in Step 5. In Step 6, mix0 
is updated using this random value. The routines from Step 2 to 
Step 6 are repeated 63 times. The decision is conducted based 
upon this final mix0, as we have shown in Step 8. 

The reason for prohibiting the advent of ASIC devices is that 
the operation time for the mixer is shorter than that of the fetch 
operation, leading to bottleneck between the mixing operation 
and the fetching operation. Thus, there is no advantage of using 
ASIC devices unless this bottleneck is solved. 

Recently, in the Ethereum community, a Programmatic PoW 
(ProgPoW) has been proposed to improve the ASIC-resistance 
by randomly changing parameters of DAG from block to block. 
This modification makes the operation time related to the fetch 
operation increase, which intentionally generates the bottleneck. 
The foundation decided to replace ProgPoW with Ethash, but 
the development of ProgPoW is not completed. 

D. PoW of Dash 
X11 was proposed in 2014 by Duffield [19], the developer of 

Dash cryptocurrency. In Table III, we provide routines of X11, 
which consists of hash functions below: 

Blake, Bmw, Groestl, Jh, Keccak, Skein, Luffa, Cubehash, 
Shavite, Simd and Echo. 

Blake first takes a given set of the current BH with a selected 
nonce to get its hash. Next, Bmw takes this hash as its input to 
yield a hash. The same procedures are repeated until Echo, the 
last hash function, yields its hash. The decision is made on the 
basis of this last hash, as we have shown in Step 13. 

TABLE II. The routine of Ethash 
Inputs: BH, L and DAG 

Step 1: for nonce = 0, 1, 2, … 232 – 1 

Step 2: ( )( )mix0 SHA3 nonce,BHf=  

Step 3:  for i = 1, 2, …, 63 

Step 4:         ( )data1 Fetch DAG,mix0=  

Step 5:             ( )tmp Mixing mix0,data1=  

Step 6: ( )mix0 tmpf=  

Step 7:      end 

Step 8: If mix0 begins with L zero bits, then go to Step 10. 
Step 9:  end 

Step 10:  Block generation & broadcast 

where f is a predefined function. Details on f  is given in [18]. 
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However, the order of the hash functions in X11 is fixed over 
time. This fixed order makes the development of ASIC devices 
possible. To develop such a device, we need to implement these 
11 hash functions in this device. Logic gates to sequentially link 
these hash functions should be implemented as well. Until early 
2016, the manufacturing cost of developing such a device was 
expensive. X11 was successful before early 2016. However, in 
2016, an ASIC device called Antminer-D3 was developed. 

The concept behind X11 has been extended to provide other 
PoWs such as X13, X15, and X17. As these names suggest, 
they use 13, 15, and 17 hash functions, respectively. Currently, 
ASIC devices for both X13 and X15 are available while there is 
no ASIC device for X17. 

E. PoW of Raven 
In 2018, a new extension of X11 was proposed in [20]. This 

is called X16r. It uses multiple hash functions given in Table IV 
to get the last hash like to other extensions of X11 that we have 
considered. But, unlike to the others, the sequence of the hash 
functions in X16r can vary from block to block. This variation 
prevents the development of ASIC devices for X16r. 

We present an example to address how X16r works. First, the 
sequence is determined upon the last 16 bytes of the hash value 
of the previous block. Let the hash value of the previous block 
be 0000...04def2c3eff6da11542ffcdabce. The last 16 bytes are 
6da11542ffcdabce. Then, the sequence is decided on the basis 
of Table IV as follows:  

Luffa -> Shabal -> Echo -> Bmw -> Bmw -> Skein -> Keccak 
-> Groestl -> Sha512 -> Sha512 -> Fugue -> Shabal -> Echo -> 
Hamsi -> Fugue -> Whirlpool. 

A miner puts a given set of the BH with a selected nonce 
through Luffa to obtain the hash value taken by Shabal. This 
routine is repeated until the last hash is given. In this example, 
the last hash is provided by Whirlpool.  

No one has succeeded in making ASIC devices for X16r. But, 
Black and Weight [20] stated that reordering the sequence of 
the hash functions cannot make the development of ASIC de-
vices impossible. 

F. Short summary from C to E 
From subsection II.E to II.C, we have reviewed the existing 

ASIC-resistant PoWs which are categorized as follows: 

a. intentional memory access. 
b. multiple hash functions. 

Ethash and ProgPoW can belong to the first class while X11 

and its variants such as X13, X15, X17 and X16r can belong to 
the second class. The basic idea of the first class is to use the 
bottleneck intentionally caused by randomly fetching data from 
a memory. The basic idea of the second one is to use the mul-
tiple hash functions, which can make the development costs of 
ASIC devices expensive.  

At the present time of writing this manuscript, ASIC mining 
devices for Ethash, X11, X13 and X15 are available. The de-
velopment of ProgPoW is not completed. X17 and X16r can be 
resistant to ASIC mining devices. But, as the ASIC-resistant 
property of the PoWs such as X11, X13 and X15 are broken, 
that of X17 will be cracked in the near future when the hard-
ware development technology is improved. Also, according to 
the statements of the X16r developers [20], ASIC mining de-
vices for X16r will be developed in the near future. 

III. Literature Survey on LDPC 
In ECCPoW, a decoder of LDPC codes is used to randomly 

generate an output which is used to determine whether a puzzle 
is solved or not. We present the summaries of LDPC codes and 
a decoder in this section. 

In 1963, LDPC codes were proposed by Gallager [7]. But, 
the codes received no attention because the technology was not 
sufficiently mature to implement decoders. However, Mackay 
and Neal [22] reported that the codes could achieve the Shan-
non limit [21] when decoded using a belief propagation algo-
rithm. Extensive studies on the codes have been done. They are 
categorized as follows: i) constructing LDPC codes to approach 
the Shannon limit [21] and ii) implementing decoders based on 
either ASIC [23]–[26] or field programmable gate array (FPGA) 
[27]–[28] for supporting real-time processes. 

A. LDPC codes 
LDPC codes can be generalized to a non-binary alphabet for 

improving its error-correction capability. But, the aim of using 
these codes in ECCPoW is not to correct errors. This makes us 
consider LDPC codes consisting of the binary alphabet. A (n, k) 
LDPC code is a linear code constructed by supplementing each 
message m of size k with parity bits to get a codeword of size n. 
This code is defined in terms of a parity check matrix H of size 
m × n such that each element is either 0 or 1 and the number of 
1s is small, where m is the number of parity bits and m = n – k. 

The (n, k) LDPC code is either regular or irregular depending 
on the form of H. If H contains a constant number wc of 1s in 
each column and a constant number wr of 1s in each row, the 

TABLE IV. The map for X16r  
Value Hash Value Hash 

0 Blake 8 Shavite 
1 Bmw 9 Simd 
2 Groestl a Echo 
3 Jh b Hamsi 
4 Keccak c Fugue 
5 Skein d Shabal 
6 Luffa e Whirlpool 
7 Cubehash f Sha512 

 

TABLE III. The routine of X11 
Inputs: BH and L  

Step 1: for nonce = 0, 1, 2, … 232 – 1 

Step 2: ( )Blake nonce,BH=e  

Step 3: ( )Bmw=e e  

  …. 

Step 12: ( )Echo=e e  

Step 13:  If e begins with L zero bits, then go to Step 15. 
Step 14: end 
Step 15: Block generation & broadcast 
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code is regular. For a given regular LDPC code, the parameters 
such as n, k, wc, and wr satisfy the following: 

 ( ) .c rnw n k w= −  (1) 

If H contains a different number of 1s in both each column and 
each row, H is irregular. The error-correction performance of 
irregular codes is better than that of regular codes. However, we 
will consider regular codes because of the two reasons: i) it is 
much easier to implement a decoder of regular LDPC codes and 
ii) the aim of using this decoder is not to correct errors but to 
yield a random output. 

A bipartite graph is often used to represent an LDPC code, as 
we have shown in Fig. 1. The lower and upper nodes are called 
the variable nodes and the check nodes, respectively. Each edge 
shows the adjacency of the ith variable node and the jth check 
node and corresponds to a nonzero (i, j)th element in H. 

The error-correction capability of a given LDPC code relies 
on the minimum (Hamming) distance d. This is given by con-
sidering any pair of 2k codewords as follows: 
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k n
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∈
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where 
h

x is the number of 1s in x. 
Studies on the computation of the minimum distance have 

been reported in the literature. Keha and Duman [29] proposed 
a branch and cut algorithm to compute the minimum distance of 
LDPC codes. But, it requires a considerable amount of time and 
memory for computing the minimum distance; it is only useful 
if n is small. Hashemi and Banihashemi [30] proposed an al-
gorithm to find lower and upper bounds of the minimum dis-
tance of LDPC codes and obtained both of the bounds even 
when n > 64,000. For regular LDPC codes with a certain pair of 
wc and wr, the upper and lower bounds of a relative minimum 
distance which is the ratio between d and n are given in [31] and 
[7], respectively. We invoke the following theorem that states 
an error-correction capability of a given linear: 

Theorem 1 [32]: Let a linear code have a minimum distance d. 
The number of correctable errors is 

 ( )1 2t d= −    (3) 

where x    denotes the integer part of x. 

We will use this theorem to compute an expected value of the 
number of hash cycles required to solve a given puzzle, i.e., 
mine a block, in ECCPoW.  

Next, we consider how to encode a message m for a given H 
of size m × n. To this end, we build a generator matrix G of size 
n × k whose rows are orthogonal to the rows of H as follows: 

Step 1: Conduct the Gaussian elimination to rewrite H as 
follows: 

 T
n k− = − H A I  

where In–k is the identity matrix of size (n – k) × (n – k). 
Step 2: Form G of size n × k as follows: 

 [ ].k=G I A  

The message m is encoded to obtain a codeword c via c = Gm. 

A decoder takes both a parity check matrix H and a corrupted 
codeword r, which is r = c + e, where e is an error pattern. The 
decoder runs a message passing algorithm [32] known to be the 
standard decoding algorithm to remove e. 

The principle behind the algorithm is to iteratively propagate 
messages among the variable and check nodes. These iterations 
are terminated when either the number of iterations exceeds a 
given number or a decoded output is a codeword. Explanations 
on how it operates are given in [32], i.e., Algorithm 5.1 on page 
220. The algorithm takes parameters such as H, r, maxIter, and 
a crossover error probability ε, where H is a parity check matrix 
of size m × n, r is a vector of size n, and maxIter is the number 
of maximum iterations, and 0 < ε < 1 is used to determine the 
initial value of the algorithm. 

The error-correction performance of the algorithm depends 
on both maxIter and the crossover error probability. If maxIter 
is small, the algorithm fails to obtain a converged solution. If it 
is large, the algorithm may take a considerably long computa-
tional time to obtain its solution. In the literature, MaxIter is set 
from 10 to 20. Next, the crossover error probability is set if the 
transition probability of a binary symmetric channel is either 
given or estimated. If this is improperly set, two problems can 
occur: i) the performance degrades and ii) even if the perfor-
mance does not degrade, it takes a considerably large number of 
iterations to obtain a solution. In ECCPoW, the aim of using the 
decoder is to intentionally spend a considerable amount of time 
for finding a codeword. Hence, there is no need to set MaxIter 
and ε strictly. One condition that we have to satisfy is that all of 
miners in ECCPoW have to use the same values of these pa-
rameters. We then will give details on how to make the other 
parameters, such as H and r, in Section IV. 

B. FPGA and ASIC Implementation 
LDPC decoders based on ASIC, a.k.a. ASIC-LDPC decoders 

aim to achieve low power consumption and fast process. In the 
decoders, the connections among the check and variable nodes 
have to be physically linked depending on a given parity check 
matrix. These connections cause the limited flexibility on the 
designs of the decoders. Thus, the decoders only support either 
a given set of parity check matrices or structured parity check 
matrices. Here, we provide a set of existing ASIC-LDPC de-
coders below: 

The ASIC-LDPC decoder [23] supports quasi-cyclic parity 
check matrices decomposed into cyclic-shifted identity or zero 
matrices. The ASIC-LDPC decoder [24] supports parity check 
matrices included in the IEEE 802.16e system. In a survey 
paper regarding the state-of-the-art ASIC-LDPC [25], Hanzo et 
al., stated that ASIC-LDPC decoders have to take a bank of 
hardware to support many parity check matrices. Thus, addi-
tional components such as memories, complex controllers and 
switchable interconnections are required, resulting in that they 
occupy the most area in the decoders. For example, let consider 
the ASIC-LDPC decoder discussed in [26]. This decoder sup-
ports about 100 parity check matrices, but its additional com-
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ponents occupy 75% of the total area. This example shows that 
there is no practical implementation on ASIC-LDPC decoders 
that can support an infinite number of parity check matrices. 

FPGA-LDPC decoders, which are LDPC decoders based on 
FPGA, consume more power and occupy more area rather than 
ASIC-LPDC decoders do. However, it is much easier for us to 
reprogram the FPGA-LDPC decoders. Namely, they provide 
the more flexibility in the design compared to the ASIC-LDPC 
decoders. The FPGA-LDPC decoder discussed in [27] supports 
parity check matrices up to a code length of n = 65,000. But, we 
need to manually load the parity check matrix onto this decoder 
when the matrix varies, requiring additional time. In a survey 
paper published by Hanzo et al. [28], FPGA-LDPC decoders 
require additional routing and processing units to support many 
parity check matrices. The use of these additional units can lead 
to complex designs, increasing the cost of the decoders. 

IV. ERROR-CORRECTION CODES PROOF OF WORK 
In this section, we will give details regarding ECCPoW. First, 

we will show how to build both the hash vector r and the parity 
check matrix H taken by a decoder as its inputs. Next, we will 
present the corresponding pseudo codes of ECCPoW and their 
explanations, and end this section with the theoretical results of 
ECCPoW. 

Here, for simplicity, we refer to the parity check matrix, the 
current block header to be mined, and the previous block header 
as PCM, CBH, and PBH, respectively. The terminologies used 
are defined as follows. 

Definition 1 – Hash Vector: A hash vector r, which is a vector 
of concatenating outputs of SHA256s, of size n is as follows: 
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where 256l n=    , j = n – 256 × l,  

 ( ) { }256
1 : SHA256 nonce,CBH 0,1= ∈s  (5) 

and  

 ( ) { }256
1: SHA256 0,1u = ∈s s  (6) 

where u = 2, 3, …, l + 1. 

Definition 2 – Decoder: A PCM H of size m × n is constructed 
using the hash value of a PBH by following the pseudo codes 
given in Table VI. A hash vector r of size n is constructed using 
(4). A decoder MP takes both r and H as its inputs and runs the 
message passing algorithm given in [32] to yield a vector n of 
size n: 

 { } { } 1: , 0,1 .n
MP

×∈r H n  (7) 

Definition 3 – Puzzle: A puzzle is defined using the parameters 
such as a PCM H, a CBH, and a decoder defined in (7). Then, 
the puzzle is solved when a nonce makes the decoder yield a 
codeword: 

 { }, ,CBH : nonce
MPH n  (8) 

where n is the output of the decoder that satisfies 

 .m=Hn 0  (9) 

First, the construction of the hash vector is given in Defini-
tion 1. We input a nonce and a constant CBH into SHA256 to 
obtain its output s1, as we have shown in (5). We then construct 
s2, s3, …, sl+1 using (6). Last, we construct a hash vector r using 
all of these outputs, as we have shown in (4). 

Next, we use a given PBH to construct a PCM, which has to 
satisfy the following conditions: i) any verifiers can reconstruct 
the PCM that the miner used, and ii) the PCM varies from block 
to block. To meet these conditions, we use a method proposed 
by Gallager [7] that constructs H as follows: 

 
( )

( )

{ }1

1

0,1
c

r

c

nw
n

w

w

π

π

×

−

 
 
 = ∈ 
 
  

A
A

H

A


 (10) 

where ( )iπ A  is the ith matrix constructed by the column per-

mutation of A, iπ  is the ith permutation order, and 
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whose ith row has 1s in rows from (i  – 1)×wr to i×wr, and 

 [ ] 1: 1 1 1 .c

r

w
w

×= ∈1 1  

Each permutation order requires a seed value. In ECCPoW, 
we first generate the initial seed value as follows: 

 [ ] [ ] [ ]: PBHV 0 PBHV 1 PBHV 31S = + + +   (11) 

where PBHV is referred to as a hash value of a given PBH and 
the data type of PBHV is assumed to be 32bytes. The ith per-
mutation order is generated using S – i + 1. The pseudo code of 
the proposed method of PCM is given in Table VI. 

Next, we address how this pseudo code given in Table VI can 
satisfy the conditions mentioned earlier. In Step 4, the ith per-
mutation order is constructed using S – 1 + i. As any verifier can 
know PBHV, a verifier needs to obtain the same seed value S 
without any communications. Thus, the verifiers will be able to 
easily reconstruct the PCM that the miner used, confirming that 
the proposed method satisfies the first condition. Next, PBHV 
is random; i.e., the initial seed values are random. Then, all of 
the permutation orders are provided using the initial seed value. 
Thus, the orders vary from block to block, confirming that the 
proposed method satisfies the second condition. 

We show the pseudo codes of ECCPoW in Table V. In Step 1, 
a nonce is selected from 0 to 232 – 1. We construct a hash vector 
r using (4), as we have shown in Step 2. In Step 3, we execute 
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the decoder to give an output by taking both e and H into it. The 
decision is obtained using (9) in Step 4. If the output is not a 
codeword, we repeat the routines from Step 1 to Step 4. 

We have to try the routines from Step 1 to Step 4 many times 
until finding a particular nonce that makes the decoder gives a 
codeword. It is natural to study the number of trials for finding 
this nonce. For this end, we analyze ECCPoW to give answers 
to the following questions:  

Q1. How many the number of hash cycles is needed to solve 
a given puzzle? 

Q2. How does the number of miners affect the number of 
hash cycles?  

Q3. Which parameters affect the number of hash cycles? 

We begin to define hash cycle, success event, and mining game 
as follows. 

Definition 4 – Hash Cycle: A hash cycle is defined as the whole 
routines from Step 1 to Step 4, given in Table V. 

Definition 5 – Success Event: A success event occurs if a nonce 
such that the LDPC decoder defined in (7) can yield a codeword 
is found. 

Definition 6 – Mining Game: Let both a PCM H of size m × n 
and a CBH be given. There are M miners, and they use the same 
single computer. Then, a mining game (MG) 

 { }MG ,CBH, ,M pH  (12) 

is defined that the miners struggle against each other in a race to 
get a success event first, where p is the success probability of 
the LDPC decoder for the given PCM H: 

 { }Pr T
mp =Hn 0  (13) 

where n is the output of the decoder taking an arbitrary vector. 

Definition 7: For a given MG, XM is defined as a random var-
iable that represents the number of hash cycles to end this given 
MG. 

For a given PCM H of size m × n, there are 2k codewords: 

 { }1 2 3 2, , , , .c c c c  

Under an assumption that the decoder defined in (7) is optimal, 
this decoder can find a success event with a probability: 

 { } { }2 2

1 1 0
Pr Pr

k k t
i i hi i l

p l
= = =

= = = − =∑ ∑ ∑n c r c  (14) 

where r is a hash vector constructed in (4) and n is an output of 
the decoder. We define a sphere set for the given ith codeword 

 ( ) { }, :i i h
t t− ≤c r r c  (15) 

whose cardinality is 

 ( ) 0
, 1

1 2
t

i l

n n n n
t

t l=

       
= + + + + =       

       
∑c   (16) 

where t is a positive integer. Then, we assume that the decoder 

is optimal, implying that this decoder can yield the ith codeword 
when it takes a word belonging to the ith sphere. We then have 

 ( )
1

2 2
0 0

2 , 2 2
d d

k n k n k n
i l l

n n
p t

l l

−   
   − − −   
= =

   
= = ≤   

   
∑ ∑c  (17) 

where the second equality comes from (3). Now, we investigate 
both upper and lower bounds on this probability p with respect 
to n. This investigation leads to Proposition 1, showing that p 
increases with an increase in n. Then if the ratio between wc and 
wr satisfies (21), an increase in n decreases p. 

Proposition 1 – Let wc ≥ 3, wr > wc be constant and their ratio 
be 

 ( ): 0,1c rw w α= ∈  (18) 

which is also constant. Let the size of a PCM H be m × n. Then, 
for any 0 < δ < 1/2, we have  

 ( )( )22 2 n Hn p α δα − −− ≤ ≤  (19) 

where H(x) is the binary entropy defined as follows:  

 ( ) ( ) ( )2 2log 1 log 1 .H x x x x x= − − − −  (20) 

Indeed, let the ratio further satisfy the following: 

 ( )( )0.25 ,1 .Hα ∈  (21) 

Then, the success probability p can vanish with an increase in n. 
Proof: From (1) with (18), we infer that 

 .k n nα− = −  (22) 

The results of [7] state that the minimum distance of a regular 
LDPC code with constant wr and wc ≥ 3 can linearly increase 
with an increase in n, implying that for 0 < δ < 1/2, the distance 
is .d nδ=    Substituting (22) into (17) leads to 

TABLE V. The pseudo codes for ECCPoW 
Inputs: CBH and PCM H 

Step 1: A nonce is uniformly chosen from [0, 232 – 1 ] 

Step 2: Construct a HV r using (4) with a chosen nonce and the given 
CBH. 

Step 3: Obtain a vector n using (7) with the given PCM H. 
Step 4: If n can satisfy (9), then go to Step 5.  
Step 5: Block generation & broadcast 

 
TABLE VI. The pseudo codes to construct PCM 

Inputs: n, wc, wr and BHV  
Output: H 

Step 1: Construct S using (11). 
Step 2: Construct A by following the statements below (10) and H = A. 
Step 3: for i = 2 to wc – 1 
Step 4: Construct iπ  with the seed value S – i + 1. 

Step 5: ( ) .T
iπ =  H H A  

Step 6: end 
Step 7: .T=H H  
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=
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where the second inequality comes from the fact that any in-
tegers 1n k≥ ≥ with 1 2,k n ≤  

 ( )
0

2 .k nH k n
l

n
l=

 
≤ 

 
∑   

The lower bound is obtained by assuming t = 0 in (16); i.e., 

 ( ) ( )2 , 2 ,0 2 2k n k n k n n
i ip t α− − − −= ≥ = =c c    

which completes the proof. 

Next, for a given MG{H, CBH, M, p}, we let XM be j. Then, 
we ensure that all of the miners fail to find a success event from 
the 1th hash cycle to the (j – 1)th hash cycle, but one of them at 
least succeeds to find this event at the jth hash cycle. Thus, XM 
follows a geometric distribution as follows. 

Theorem 2: For a given MG{H, CBH, M, p}, we have 

 { } ( )1
failure,all failure,allPr X 1j

M j p p−= = × −   

which is a geometric distribution with the following parameter:  

 ( )failure,all : 1 .Mp p= −  (23) 

Then, we have 

 [ ] ( ) 1

failure,allX 1M p
−

= −  (24) 

and 

 [ ] ( ) 2

failure,all failure,allX 1 .M p p
−

= −   

Proof: The proof is clear, as the random variable XM follows a 
geometric distribution with (23). We thus omit it. 

We remind that for constant wc and wr, Proposition 1 shows 
that p decreases with an increase in n as long as (21) is satisfied. 
We then notice that the expected value given in (24) decreases 
with respect to n, which implies that a puzzle becomes difficult 
to be solved with an increase in n. 

We invoke the results of [31] and [7]. For a certain pair of wc 
and wr, the results show upper and lower bounds of a relative 
minimum distance δ, the ratio between the minimum distance d 
and the code length n. As an example, for wc = 4 and wr = 5, the 
upper and lower bounds are 0.3238 and 0.2111, respectively. 
For wc = 4 and wr = 8, they are 0.1765 and 0.0627, respectively. 
The results are given in an asymptotic analysis; i.e., n goes to 
infinity. By utilizing these results, we can obtain the lower band 
upper bounds on the expected value of the random variable as 
follows: 

 
( )( )

[ ]
( )( )1 2

1 1X
1 1 , , 1 1 , ,

MM M
g n k g n kδ δ

≤ ≤
− − − −

  (25) 

where δ1 and δ2 are the upper and lower bounds of the relative 

minimum distance and 
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Then, we consider the trends of (24) with respect to n and M by 
manipulating both of the bounds in (25). 

In Table VII, we provide the upper and lower bounds of (24) 
for constant wc = 4 and wr = 5. Although the ratio between wc 
and wr does not satisfy (21), we can see that the lower bound 
increases with an increase in n. That is, it increases from 1.58 × 
104 to 2.46 × 104 when n is increased from 80 to 160. This result 
implies that increasing n makes a puzzle more difficult to solve 
when (21) is not satisfied. For the other pairs of wc and wr given 
in [31], the same result is observed. 

Indeed, increasing the number of miners M can decrease the 
upper bound. As an example, we consider the upper bound for n 
= 120 and k = 24. This bound decreases from 6.69 × 1012 to 3.34 
× 1012 as M is increased from 1 to 20. Intuitively, this result is 
valid because a given MG ends early, as more miners are in-
volved in solving a puzzle. Then, there is another intuition that 
an MG ends at the 1st hash cycle if an infinite number of miners 
work. We confirm these intuitions by establishing Corollary 1. 

Corollary 1: Let MG{H, CBH, M, p} be given. The expected 
value given in (24) decreases with an increase in the number of 
miners M. In particular, this value can converge to 1 as M goes 
to infinity. 
Proof: It is immediately seen that 

[ ] failure,all

failure,all

logX
0M pd

dM p
= − ≤

  

implying that the expected value given in (24) is a decreasing 
function of M. As M goes to infinity, the parameter defined in 
(23) goes to zero. Thus, the expected value converges to one. 

The decoding process, i.e., Step 3 in Table V, can occupy the 
most computational time in a single hash cycle. In this decoding 
process, matrix-vector products are required, implying that the 
computational cost to run a single hash cycle can be modeled as 
O(mn). We remind that each miner uses the same single com-
puter in a given MG. Thus, we can assume that each miner only 
runs τ operations per second. This assumption makes us define 
an expected value of a block generation time as follows. 

Definition 10 – Block Generation Time: A MG{H, CBH, M, p} 
is given. Each miner is assumed to run τ operations per second. 
Then, the block generation time T can be defined as 

 [ ] ( )1: X .MT O mnτ −=   (26) 

We remind that proposition 1 states that i) the upper bound of 
the success probability p decreases with an increase in n and ii) 
the lower bound of p increases with a decrease in n. Then, the 
decrease in this upper bound makes a puzzle more difficult to 
be solved. In other words, more hash cycles are needed, leading 
to an increase in T. Similarly, it is seen that a puzzle becomes 
easy to be solved when we decrease n. As a result, we can vary 
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T by controlling n. 

Corollary 2: Let wc ≥ 3 and wr be constant, H of size m × n be 
given, and the ratio α between m and n satisfy (21). Then, for 
any 0 < δ < 1/2, we have 

 
( )

( )
( )

( )( )( )
1 2 1 2

21 1 2 1 1 2
M Mn n H

O n O n
T

α α δ

τ α τ α− −

− − −
≤ ≤

− − − −
  

where H(x) is defined in (20) and M is the number of miners. 
Proof: It is seen that  

 ( ) ( )2O mn O nα=   

because of both (18) and (1). Substituting (19) into (24) leads to 

 
( )

[ ]
( )( )( )2

1 1X
1 1 2 1 1 2

MM Mn n Hα α δ− − −
≤ ≤

− − − −
   

The proof is completed by combining this equation with (24). 

V. DISCUSSIONS ON ECCPOW 
In this section, we will consider the worth of ECCPoW as a 

new PoW. To this end, we begin to define general properties for 
PoWs and show how ECCPoW can satisfy these properties. We 
then define a property only belonging to ECCPoW as the most 
innovative part. This property makes ECCPoW a solution to the 
problems caused by ASIC mining devices, as we have stated in 
Section I. Here, we define the following properties as follows: 

P1. A puzzle has to be time-consuming, but it is easy to check 
whether a given solution is correct or not. 

P2. Any previous solution cannot be used to find a current 
solution. 

P3. The difficulty of a puzzle can be changed. 
P4. A puzzle can only be solved when miners follow the rou-

tines of PoW.  
P5. A puzzle can be time-variant from block to block. 

The existing PoWs can have the properties from P1 to P4. As 
an example, let us begin to consider bitcoin. First, each puzzle 
is designed to be solved per roughly 10 minutes. On the other 
hands, validation of a given solution can be immediately done. 
Second, the BH at the current block being mined are different to 
that of previously mined blocks. SHA256 takes both a nonce 
and a BH to yield a hash. Any modification on these inputs thus 
makes the hash completely different. Thus, it is extremely rare 
that the hash can begin with L zero bits even we use a solution 
to the previously mined blocks. Third, whenever 2016 blocks 
are mined, the difficulty is adjusted based on the ratio between 
20160 and the total spent time to mine these 2016 blocks. Last, 
the number of possible hash values is 2256, while the number of 
solutions is 2(256 – L), i.e., solutions beginning with L zero bits. A 
possibility that a randomly given nonce is a solution is 2L. In the 
567,657th block of bitcoin, L is 72. Thus, it is probabilistically 
impossible to obtain a solution without following the routines 
in Table I. 

We now use the results obtained in the previous section to 

show how ECCPoW has the properties from P1 to P5. 

Corollary 3: Let a puzzle defined in (8) be given. It is easy to 
verify whether a given solution is correct or not. But, solving 
this puzzle is time-consuming as compared to its verification. 
Proof: The verification of whether this solution is correct is 
done by only operating the procedures from Step 1 to Step 4 
given in Table V. Thus, it requires a single construction of a 
hash vector by following (4) and a single execution of the de-
coder in (7). In contrast, to solve the puzzle, the routines from 
Step 1 to Step 4 given in Table V have to be repeated several 
times, as we have shown in Theorem 2. Thus, the puzzle can be 
time-consuming as compared to the verification. 

Malicious miners can conduct cheats to make more profits as 
compared to honest miners who follow the routines in Table V. 
We consider two possible cheats as follows. First, the malicious 
miners report one of the previous solutions as a current solution. 
Second, the malicious miners report a randomly selected nonce 
as a current solution. We prepare corollaries to show that these 
cheats cannot be allowed. 

Corollary 4: Any previous solution cannot be used to find a 
current solution. 
Proof: We remind that a solution to a puzzle in ECCPoW is the 
value of nonce. The decoder takes a hash vector r and a PCM H 
to yield its output. This H varies from block to block. Then, for 
a fixed r, the decoder yields a different output if H varies. Even 
we succeed to construct the same hash vector, which we used in 
solving a previous puzzle, using the previous nonce, the de-
coder gives a different output. This is the reason that H taken by 
the decoder at the current puzzle is different to that taken by the 
decoder at the previous puzzle. 

Corollary 5: Miners have to follow the routines given in Table 
V to solve a puzzle defined in (8). 
Proof: We assume that the decision can be done without run-
ning the decoder. If this can be possible, two assumptions are 
required. The first one is that a hash vector r taken by the de-
coder is a codeword and the second one is that there is a table 
that shows a pair of inputs and outputs of the decoder. A pos-
sibility of the first assumption is zero because we declare a hash 
vector which is a codeword itself as an incorrect solution. Next, 
to construct the table for a given PCM H, we consider all of the 
possible hash vectors. Since the number of hash vectors is 2n, it 
is unrealistic to construct this table whenever n is large. Besides, 
even we succeed to make the table at a given H, this table be-
comes useless because H is intentionally designed to vary from 
block to block. 

Now, we consider examples by assuming that all the puzzles 
in ECCPoW have the same difficulty. If the number of miners 
M increases, the block generation time T defined in (26) is very 
small. On the other hands, if M decreases, T is very large. The 
considerable amount of variation of T makes ECCPoW unsta-
ble, as we have stated in Section IV. Thus, the difficulty must 
increase or decrease based on the number of miners. We remind 
Theorem 2 meaning that the difficulty can properly vary using 
the variation of n, leading to the following corollary. 
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Corollary 6: The difficulty of a puzzle is changeable. 
Proof: It is clear; we thus omit it. 

We show that a puzzle can be time-variant, which is useful in 
repressing the advent of ASIC devices. 

Corollary 7: A puzzle defined in (8) can be time-variant. 
Proof: A PCM H is used to define the puzzle and is constructed 
using a previous hash. That is, the ith PCM is constructed using 
a hash of the (i – 1)th block. Hence, the constructed PCM varies 
from block to block, immediately implying that the puzzle can 
be time-variant from block to block. 

An infinite number of PCMs must be constructed, as miners 
mine new blocks continuously. An example in [25] shows that 
there is no ASIC-LDPC decoder to support the infinite number 
of PCMs because of the limited flexibility. Hence, the decoder 
in ECCPoW has to be executed by either graphical processing 
units or central processing units. This is the fundamental reason 
that ECCPoW can preclude the development of ASIC mining 
devices, which can be a solution to the problems stated in Sec-
tion I: i) the re-centralization of mining markets and ii) the 
considerably high usage of electrical energy for mining. This is 
the most valuable contribution of ECCPoW. 

VI. CONCLUSIONS 
PoW is fundamental to blockchain, as it is used to prohibit an 

unauthorized modification of mined blocks. However, the us-
age of ASIC devices can cause the problems stated in Section I, 
namely i) the re-centralization of the mining markets and ii) a 
considerable amount of electrical energy spent to mine blocks. 

As a solution to the abovementioned problems, we proposed 
an ECCPoW, as we have shown in Fig. 1. To the best of our 
knowledge, this is the first study in which LDPCs are applied to 
PoW. We investigated the expected value of the number of hash 
cycles needed to solve a puzzle in ECCPoW. We showed that 
this value can be either increased or decreased as we vary the 
code length, the size of a hash vector taken by the decoder, and 
the number of miners. We also discussed how ECCPoW satis-
fies the five properties defined in Section V. The discussions 
show the value of ECCPoW as a general PoW. 

As we have reviewed in Section III, there is no ASIC decoder 
that supports an infinite number of LDPC codes. This result 
motivated us to intentionally vary the LDPC codes from block 
to block, leading to the last property that a puzzle defined in (8) 
is time-variant. This is the most innovative aspect of ECCPoW 
in repressing the advent of ASICs, implying that the problems 
caused by ASICs can be solved using our ECCPoW. 
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이미	“블록체인”이라는	용어는	더	이상	새롭거나	낯설지	않고,	인터넷과	웹처럼	친숙한	용어가	

되고	있습니다.	2년	전의	암호화폐의	열기를	거쳐	학계와	산업계에서는	블록체인	기술을	둘러싼	

많은	토론이	진행되고	있습니다.	그	중	일부는	블록체인	기술에	대한	무용론부터	시작하여	차세대	

인터넷	플랫폼에	대한	가능성까지	논의하고	있습니다.	중요한	것은	블록체인	기술은	아직	현재	

진행	중이며,	성능	및	보안성에	대한	많은	기술적인	난제들을	풀어야	하는	상황이라는	점입니다.

본	호에서는	현재	논의되고	있는	가장	중요한	블록체인	이슈인	보안성과	상호운용성에	대한	

연구	결과를	소개하고	있습니다.	블록체인의	특성상	발생할	수밖에	없는	이중	지불	문제와	이기종	

간의	블록체인	네트워크를	통합하기	위한	인터	체인	기술을	논의합니다.	블록체인의	중요한	응용	

분야인	ID	관리	기술	및	IoT	관리	기술에	대한	최신	연구	동향을	소개하고	있습니다.

첫	번째	논문은	이중	지불이라는	블록체인의	고전적인	보안	문제에	대한	논문으로서	이중	

지불에	대한	기존의	명제인	51%	이상의	컴퓨터	자원이	필요하다는	가정에	대한	의문을	제기하고	

있습니다.	현실	블록체인	네트워크에서는	공격자의	컴퓨터	자인이	50%	미만인	경우에도	여전히	

효과적인	이중	지불	공격이	가능하다는	것을	공격	성공률	및	공격자의	이윤을	모델링하여	

몬테카를로	시뮬레이션을	통하여	증명하고	있습니다.

두	번째	논문은	이기종	간	블록체인	트랜잭션	및	데이터를	상호	교환	관리할	수	있도록	제안되고	

있는	Inter-Chain	기술에	대해서	소개하고	있습니다.	현존하는	다양한	블록체인	네트워크	기술을	

고려했을	때,	상호	운용성을	위하여	서로	다른	블록체인간	데이터	교환을	가능하게	해주는	Inter-

Chain	기술은	향후	블록체인	기반	생태계를	구축하는데	중요한	이슈가	될	것이라	판단됩니다.

성균관대학교

김 형 식

블록체인의 보안 및 상호운용성 연구 동향
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세	번째	논문은	블록체인을	이용한	사용자	계정	관리	기술을	소개하고	있습니다.	기존의	

ID	관리	기술은	사용자의	개인	정보가	중앙의	특정	기관에서	관리되기	때문에	사용자의	자기	

정보	통제	기능이	미흡하고,	개인	정보가	유출되는	사고	등이	발생할	수	있는	문제를	가집니다.	

따라서	이러한	문제를	해결하기	위해서	사용자가	스스로	자신의	계정을	관리할	수	있는	방안이	

필요합니다.	본	논문에서는	블록체인을	이용하여	어떻게	이러한	문제를	해결하고	탈중앙화된	

사용자	계정	관리	시스템을	구축할	수	있는지를	소개하고	있습니다.

네번째	논문은	IoT	환경에서의	블록체인	기술에	대한	요구	사항을	분석하고,	요구	사항에	

적합한	다양한	프로젝트를	소개하고	있습니다.

본	특집호	발간을	위해	소중한	시간을	내어	원고를	집필해	주신	집필자분들과	편집에	수고해	

주신	학회지	편집	위원회	여러분께	깊은	감사를	드립니다.
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장의	성장과	함께	이중지불	공격	(double-spending	attack)

과	같은	보안성	공격을	통해	부당이득을	취하려는	시도가	끊

임없이	존재해	왔다.	이중지불공격은	공격자가	서비스	혹은	

재화의	대가로	지불한	가상화폐의	거래기록을	무효화하여	재

사용하는	공격이다.	예를	들어,	가상화폐	거래소에게	가상화

폐를	지불한	대가로	현금을	출금한	후,	이러한	거래	기록을	블

록체인상에서	지워버리는	것이다.	실제로	지난	2018년에는	

BitcoinCash,	Zcash,	ZenCash,	LitecoinCash와	같은	대규

모	가상화폐들이	이중지불	공격의	피해를	받았으며,	그	피해

액은	수백만	달러에	달한다	[2],	[3],	[4].

이중지불공격은	블록체인	합의	알고리즘을	역이용하면	가

능하다.	블록체인	합의	알고리즘은	통신지연	등의	이유로	노

드들이	보유한	블록체인이	서로	다를	때,	어느	것을	유지하고	

어느	것을	버릴지를	결정하는	알고리즘이다.	비트코인의	합의	

알고리즘인	longest	chain	consensus는	길이가	더	긴	블록

체인이	더	많은	노드들에게	검증	받았으며,	따라서	더	신뢰	할	

수	있다고	결정한다	[1].	결과적으로,	이중지불공격이	성공하

려면	전	세계에	분포된	노드들이	공동으로	생성한	블록체인보

다	길이가	더	긴	사기	블록체인을	생성하여	합의	알고리즘을	

속여야	한다.

Nakamoto	[1]와	Rosenfield	[5]는	이러한	합의	알고리즘

의	의의를	수학적으로	분석하였고,	이중지불	공격의	성공률

이	100%가	되기	위해서는	전	세계의	노드들이	보유한	컴퓨터	

자원보다	더	많은	컴퓨터	자원(51%)이	필요하다는	결론을	내

렸다.	이중지불	공격이	51%	공격으로	불리는	이유이다.	개인	

혹은	하나의	집단이	전	세계의	컴퓨터	자원보다	더	많은	자원

(51%)을	보유하는	것은	현실적으로	매우	어렵고,	따라서	비

트코인이	이중지불	공격으로부터	안전하다는	주장이다.	그러

나	만약	50%	미만의	컴퓨팅	자원을	사용하는	이중지불	공격,	

즉	50%미만	이중지불	공격이	공격자에게	큰	이윤을	가져다	

줄	수	있다면,	Nakamoto와	Rosenfield의	결론은	재검토되

어야	한다.

본	논문은	IEEE	Transactions	on	Information	Forensics	

and	Security	에	제출된	논문의	수학적	정리[6]를	바탕으로	

50%미만	이중지불	공격의	가능성을	시뮬레이션을	통해	보여

준다.	구체적으로는	이중지불	공격의	성공률이	아닌,	이중지

Abstract

블록체인은	전	세계에	분포된	수많은	네트워크	노드들이	하

나의	거래장부를	공동으로	기록,	관리하는	분산화	장부	시스

템이다.	블록체인	기술은	합의와	분산화를	바탕으로	거래	기

록의	위조가	불가능하도록	설계되었으나,	가상화폐	시장의	성

장과	함께	이중지불	공격	(double-spending	attack)을	통해	

장부를	위조하여	부당이득을	취하려는	시도가	끊임없이	존재

해	왔다.	본	논문에서는	이중지불	공격의	위험성을	분석한다.	

Satoshi	Nakamoto는	2008년	비트코인에	대한	이중지불	공

격의	성공을	위해서는	전	세계의	노드들이	보유한	컴퓨터	자

원보다	더	많은	컴퓨터	자원,	즉	51%	이상의	컴퓨터	자원이	

필요하다는	결론을	내렸다.	반면,	본	논문에서는	50%	미만의	

적은	컴퓨터	자원을	사용하는	이중지불공격도	위협적임을	보

였다.	이러한	결론은	이중지불	공격의	성공	확률이	아닌	기대	

이윤을	분석함으로써	얻을	수	있었다.	구체적으로는,	대규모	

시뮬레이션을	통해	실제	작동중인	블록체인	네트워크에	50%	

미만의	이중지불	공격을	행할	경우에	대한	공격자가	얻는	기

대	이윤을	측정하였으며,	이러한	공격을	방지	할	수	있는	방안

을	제시한다.

I. 서론

블록체인은	비트코인과	이더리움	등	현존	가상화폐의	핵심	

기술이며,	세계에	분포된	수많은	노드들이	하나의	거래장부를	

공동으로	기록,	관리하는	분산화	장부	시스템이다.	분산화	장부

는	은행,	국가	혹은	중개사가	거래를	관리	및	기록하는	중앙화	

장부	시스템과	대조적이며,	중앙화	장부에	비해	해킹	혹은	위

조	등에	강인하다.	그러나	거래내용을	전세계의	노드들에게	검

증	받아야	하기	때문에	거래속도가	상대적으로	느리다는	단점

이	있다.	블록체인과	비트코인은	2008년	Satoshi	Nakamoto

의	백서에서	소개되었으며	[1],	2019년	기준	약	60억	달러의	

유통	규모를	보유한	거대	가상화폐로	성장하였다.

블록체인	기술은	합의와	분산화의	개념을	바탕으로	거래기

록의	위	변조가	불가능하도록	설계되었다.	그러나	가상화폐시

50%미만 이중지불 공격

장재혁, 이흥노

광주과학기술원
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불	공격이	가져다	주는	기대	이윤을	분석하였다.	이러한	관점

은	Nakamoto와	Rosenfield의	결론과는	전혀	다른	결론을	

가져다	주었다.	시뮬레이션을	통해	50%	미만	이중지불	공격

의	성공이	보장되지	않더라도,	공격의	대상이	되는	거래의	가

치가	충분히	크면	공격자	입장에서	이중지불	공격의	기대	이

윤은	크다는	것을	보였다.	만약	한번의	공격이	실패하더라도,	

계속	시도하면	결국	그	동안의	지출을	모두	상쇄하고도	남는	

이윤이	돌아온다는	것이	기대	이윤의	의미다.	공격자가	이중

지불	공격을	수행하며	소요하는	지출은	공격시간	동안	소요한	

컴퓨터	자원의	운용	비용뿐인데,	이를	상쇄할	만큼	가치가	큰	

거래를	공격하면	결국	이윤을	기대할	수	있다는	것이다.	결론

적으로,	상대적으로	적은	(50%	미만)	컴퓨터	자원을	이용하

는	쉬운	이중지불공격도	위험하다는	것이다.

본	논문은	다음과	같이	구성되어	있다.	2장에서는	블록체인

의	작동	원리를	소개한다.	3장에서는	이중지불	공격을	소개하

고	공격의	성공	조건을	정의한다.	4장에서는	이중지불	공격의	

성공률	분석에	관한	기존	연구문헌을	소개하고	분석의	한계

점을	제시한다.	5장에서는	이중지불	공격의	이윤을	분석하고	

50%	미만의	컴퓨터	자원을	이용하는	이중지불	공격도	위협

적임을	실험을	통해	보인다.	마지막으로,	6장에서	요약과	함

께	결론을	맺는다.

II. 블록체인

블록체인은	분산화	거래	시스템으로써,	기존	거래	시스템인	

중앙화	거래	시스템과	대조적이다.	그림	1은	중앙화	거래	시

스템과	분산화	거래	시스템을	비교하여	보여준다.	중앙화	거

래	시스템은	공인된	3자인	trusted	third-party	(TTP)에	의해	

거래내용이	검증	및	기록된다.	이러한	기존	방식은	TTP에	완

전히	의존하고	있기	때문에,	TTP가	부정한	행동을	취하거나	

해킹당할	시	거래자는	금전적	피해를	받을	수	있다.	반면,	블

록체인에	의한	분산화	거래	시스템은	전	세계에	분포한	풀	노

드	(채굴자)에	의해	거래내용이	공동으로	검증	및	기록된다.	

따라서	블록체인은	TTP에	의한	거래	시스템보다	더	신뢰할	수	

있는	거래	시스템을	제안한다.

블록체인	네트워크를	구성하는	노드는	크게	거래자	노

드와	채굴자	노드로	구분	할	수	있다.	거래자	노드는	거래	

(transaction)을	생성하여	채굴자	노드에게	공표한다.	채굴자	

노드는	검증되지	않은	거래들을	모아서	검증하고,	블록에	담

는다.	이후	채굴자	노드는	블록에	담긴	거래들이	수정되지	못

하게	하기	위해	작업증명을	수행한다.

작업증명의	방식은	블록체인	프로토콜마다	차이가	있으며,	

본	논문에서는	비트코인	프로토콜의	작업증명	(proof-of-

work)를	소개한다.	비트코인의	작업증명은	블록의	특별한	해

쉬	(hash)	값을	찾는	것이다.

해쉬는	SHA-256	함수에	의해	1MByte	크기의	블록이	압

축된	256bit	길이의	이진	문자열이다.	SHA-256	해쉬	함수의	

특성은	입력	블록의	이진	값	중	하나의	값이라도	수정되면,	출

력되는	해쉬	값이	불규칙적으로	변한다는	것이다.	다시	말해,	

누군가	악의적인	목적으로	블록의	거래내용을	수정하고	다시	

해쉬	값을	계산하면,	이전에	계산된	해쉬	값과는	전혀	다른	결

과를	얻는다.	이러한	SHA-256	해쉬	함수의	특성이	거래내용	

위조	및	변조를	방지하기	위해	사용된다.

작업증명의	목적은	수	많은	채굴자가	하나의	블록을	함께	

검증하였다는	사실을	증명하는	것이다.	이러한	목적을	달성

하기	위해	비트코인	프로토콜은	채굴자에게	블록의	특별한	해

쉬	값을	찾도록	요구한다.	구체적으로,	블록의	내용에	임시	값	

(nonce)을	추가한	후,	프로토콜이	요구하는	조건을	만족하는	

블록의	해쉬	값이	출력될	때까지	임시	값을	변경하도록	지시

한다.	특별한	해쉬를	찾으면	하나의	블록을	완성하는	것이며,	

블록을	완성한	노드에게는	암호화폐가	보상으로	주어진다.	특

별한	해쉬	값의	조건이	어렵기	때문에,	조건을	만족시키려면	

SHA-256	함수를	수없이	많이	실행하여야	한다.	즉,	조건을	

만족시키기까지	오랜	시간이	소요되며,	그	시간	동안	더	많은	

채굴자가	거래들을	검증	하는데	참여	할	수	있다.

블록체인의	블록들은	서로	연결되어있다.	그림	2은	블록체

인의	구조를	보여준다.	작업증명을	통해	하나의	블록이	완성

되면,	그	다음	블록의	내용에는	이전	블록의	특별한	해쉬	값이	

포함된다.	이러한	체인	구조는	누군가	악의적인	목적으로	이

미	검증된	거래	내용을	위조	및	변조하는	것을	어렵게	만든다.	

예를	들어	그림	2에서,	블록	#1에	들어있는	거래	#2를	수정하

기	위해서는	먼저	블록	#1의	특별한	해쉬	값을	새롭게	찾아야	

(a)	중앙화	장부	시스템

(b)	분산화	장부	시스템	(블록체인)

<그림	1.	중앙화	장부	시스템과	분산화	장부	시스템>
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III. 이중지불 공격

이중지불	공격은	longest	chain	합의를	악용하여	거래	내

용을	변조하고	부당이득을	취하는	공격이다.	그림	4은	Mary	

(이하	M)가	John	(이하	J)에게	이중지불	공격을	수행하는	과

정을	보여준다.	공격에	앞서,	M은	J에게	10	BTC의	암호화폐

를	지급하고	재화를	공급받는	정상적인	거래를	작성	후	공표

한다.	정상적인	거래는	채굴자들에	의해	검증된	후	정상블록	

#153에	포함된다.	이후	채굴자들은	정상블록	#153을	잇는	

또	다른	정상블록들을	지속적으로	생성한다.	한편,	M은	정상

적인	거래를	공표하자마자	정상적인	거래의	내용을	무효화하

는	비정상적인	거래를	작성한다.	비정상적인	거래의	내용은,	

예를	들어,	“M이	M에게	10	BTC를	이체한다”가	될	수	있다.	

M은	비정상적인	거래를	채굴자들에게	공개하지	않는다.	채굴

자들이	정상적인	거래가	포함된	정상블록을	생성하는	동안,	

M은	은밀하게	비정상적인	거래가	포함된	비공개블록	#153

을	생성하고,	이를	잇는	또	다른	비공개블록들도	생성한다.	M

은	비정상적인	거래가	포함된	비공개	블록들의	갈래를	다음의	

조건이	충족되면	공개한다.

i.	채굴자들의	정상블록의	개수가	이체확인	수	( )	보다	크고,

ii.	공격자의	비공개블록의	개수가	정상블록의	개수보다	많음

M이	비공개	블록들의	갈래를	공개하는	시점에서는,	첫	번

째	조건에	의해	정상적인	거래는	완료되었고,	따라서	M은	J

로부터	재화를	공급받았다.	그리고	두	번째	조건에	의해	네트

워크	모든	노드의	lognest	chain	합의는	M이	은밀하게	개발

한	갈래를	선택한다.	즉,	두	번째	조건에	의해	M이	J에게	10	

BTC를	지급한다는	거래가	무효화되기	때문에	M은	10	BTC

를	재사용	할	수	있다.

한다.	그리고	새롭게	찾은	블록	#1의	특별한	해쉬	값은	블록	

#2의	해쉬	값에도	영향을	주기	때문에,	블록	#2의	특별한	해

쉬	값도	새롭게	찾아야	한다.	이러한	일련의	과정을	가장	최신	

블록까지	반복해야	한다.	특별한	해쉬	값을	찾는	작업증명	과

정은	많은	시간을	소요한다.	따라서	혼자서	수	많은	작업증명

을	완성하는	것은	매우	어렵다.

거래가	포함된	블록	이후에	더	많은	블록이	연결된다면,	

그	거래는	위-변조의	위험에	더욱	강인해진다.	이러한	이유

로	거래자는	이체	확인	(block	confirmation)라는	과정을	수

행한다.	이체	확인은	거래를	완료하기	전에,	거래내용이	기록

된	블록을	포함하여	몇	개의	블록이	더	생성되기까지	기다리

는	것이다.	이때	생성을	기다리는	블록의	개수를	이체확인	수	

(block	confirmation	number,	 )라고	한다.	예를	들어,	

그림	3은	Mary가	John에게	10	BTC의	암호화폐를	지불하고,	

John은	Mary에게	그	대가에	상응하는	제품을	제공하는	거

래의	이체확인	과정을	보여준다.	이체확인	수	( )가	2개이

면,	거래가	포함된	블록과,	그	이후에	하나의	블록이	생성되는	

것을	기다린다.	이체확인	수	 가	클수록	위-변조의	위험

에	더	강인해지지만,	거래처리	속도는	느려진다.

블록체인의	블록은	전	세계의	노드가	공동으로	형성하기	때

문에,	네트워크	지연	등의	이유로	서로	연결되지	않는	블록들

이	동시에	생성	될	수	있다.	구체적으로,	하나의	블록에	서로	

다른	두	개	이상의	블록이	연결되어	체인의	갈래(fork)가	발

생	할	수	있다.	비트코인	프로토콜은	여러	갈래가	존재하는	것

을	허용하지	않는다.	다수의	갈래	중	하나의	갈래만	유지하는	

과정을	합의	(consensus)라	한다.	합의는	여러	방식이	존재

하며	[7],	비트코인의	경우	길이가	가장	긴	갈래를	유지시키는	

longest	chain	합의를	사용한다.

<그림	2.	블록체인의	구조>

<그림	3.	이체확인	과정의	예	(출처:	Telemaximum.com)>

<그림	4.	이중지불	공격의	예	(출처:	Telemaximum.com)>
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블록이	 BCN 개	생성되기까지	소요된	시간	동안	공격자가	생

성한	비공개블록의	개수가	k 개일	확률은

이다.	반면	Rosenfield는	정상블록의	개수가	 BCN 와	같

아지기까지	소요된	시간이	랜덤	변수	일	때,	그	시간	동안	공

격자가	생성한	비공개블록의	개수가	 k 인	확률이	negative	

binomial	확률	분포를	따른다는	사실을	적용하였다.	다시	말

해,	Rosenfield가	계산한	공개	블록이	 BCN 개	생성되기까지	

소요된	시간	동안	공격자가	생성한	비공개	블록의	개수가	 k
개일	확률은

이다.	Rosenfield의	계산	결과를	바탕으로,	공격자가	언젠

가는	이중지불공격에	성공할	확률	 ASP 는

이다.

식	(5)에	의해,	 1ASP = ,	즉	이중지불	공격의	성공을	보장

하기	위한	필요-충분	조건이	 p q≤ 이라는	것을	알	수	있다.	

다시	말해,	공격자가	채굴자보다	더	많은	컴퓨터	자원을	보유

하는	것이	공격	성공의	조건이다.	이러한	결론은	Nakamoto

의	계산식에서도	마찬가지로	유도될	수	있다.	Gambler’s	

ruin	theorem을	적용하여	얻은	이	결론은	공격자에게	무한정

의	시간이	주어진다는	가정이	내포되어	있다.	그러나,	공격을	

시도하는	시간	동안	컴퓨터	자원을	운용하는	비용이	지속적으

로	발생되기	때문에	이러한	가정은	비현실적이다.	뿐만	아니

라,	공격	성공확률	100%가	아니어서	실패의	위험이	존재한

다고	하더라도,	공격	성공	시	얻을	수	있는	이윤이	소요된	비

용보다	훨씬	크다면	공격자의	입장에서는	공격을	시도해	볼	

수	있다.	따라서	이중지불	공격의	성공률뿐만	아니라	이윤도	

분석	할	필요가	있다.

IV. 이중지불 공격의 성공률 분석

이중지불	공격의	성공확률은	Nakamoto	[1]와	Rosenfield	

[5]에	의해	계산되었다.	확률	분석을	위해,	채굴자와	공격자가	

일정시간	동안	생성한	블록의	개수를	독립적인	Poisson	확률	

분포[8]를	갖는	랜덤	변수들로	모델링	하였다.	Poisson	확률	

모델을	바탕으로,	이중지불공격의	성공을	위한	두	조건의	달

성	확률	 1P 과	 2P 를	각각	계산	한	후	곱하였다.

먼저,	두	번째	조건인	ii)	비공개블록의	개수가	정상블록의	

개수보다	많을	확률은	Gambler’s	ruin	theorem	[9]를	적

용하여	계산하였다.	채굴자와	공격자가	보유한	컴퓨터	자원

의	비를	각각	 p와	 q 라	칭하겠다	( 1p q+ = ).	이중지

불공격이	시작된	이후	어느	시점에서	채굴자	갈래의	정상블

록	개수가	 h개이고	공격자	갈래의	비공개블록	개수가	 a 개	

(h a≥ )라	가정하겠다.	이후	무한정한	시간이	지났을	때,	공

격자가	언젠가는	두	번째	조건을	달성할	확률은

이다.

Nakamoto와	Rosenfield의	분석	결과는	첫	번째	조건인	i)	

정상블록의	개수가	이체확인	수	보다	클	확률의	계산	방법에서	

차이가	있다.	이	확률을	계산하기	위해서는	채굴자가	생성한	

정상블록의	개수가	이체확인	수		( )와	같아지기까지	소요

되는	시간에	관한	확률모델이	필요하다.	Nakamoto는	이	소요

시간을	상수로	가정한	반면,	Rosenfield는	이	소요시간을	랜

덤	변수로	정의하여	보다	일반적인	방법으로	접근하였다.

구체적으로,	채굴자가	하나의	정상블록을	생성하는데	평균	

HD 의	시간이	소요될	때,	공격자의	비공개블록	생성	평균	소

요시간	 AD 를	다음과	같이	계산	할	수	있다.

이는	블록생성	평균	소요시간이	공격자	혹은	채굴자가	보

유한	컴퓨터	자원에	반비례한다는	가정을	바탕으로	계산되었

다.	Nakamoto는	공개블록의	개수가	 BCN 와	같아지기까지	

소요된	시간을	 H BCD N 로	가정하였다.	따라서	 H BCD N
의	시간	동안	공격자가	생성한	비공개	블록의	평균	개수는	

H BC AD N D 이며,	식	(2)에	의해	이	값은	 BCqN p와	

같다.	Poisson	확률	분포에	의해,	Nakamoto가	계산한	정상
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공개된	정보로부터	얻을	수	있다.	본	논문에서는	BitcoinCash	

네트워크를	예로	들겠다.	BitcoinCash의	평균	블록생성	주기

는	 600HD = 초로	네트워크	개발자에	의해	고정되어있다.	

채굴자가	보유한	컴퓨터	자원의	크기가	변동하면,	채굴	알고

리즘에	 HD 가	유지되도록	채굴	난이도가	변경된다.	또	다른	

파라미터인	 γ 의	값은	컴퓨터	자원	대여	서비스를	제공하는	
업체인	nicehash.com에	의해	결정	될	수	있다.	nicehash.

com에	따르면,	2018년	12월을	기준으로	BitcoinCash에서	

하나의	블록을	채굴하는데	소요되는	비용은	 0.33γ = 	비트

코인(BTC)	이다.

수익	 ( )V q 는	이중지불	공격이	성공	할	경우	이중지불	공

격의	대상이	되는	거래의	가치	v 와	같으며,	공격이	실패할	경
우	0이다.	공격이	성공	할	확률은	공격자의	컴퓨터	자원	q 에	

영향을	받는다.	수식으로는,

으로	표현	될	수	있다.	공격	대상	거래의	가치는	공격자가	

상대	거래자	(피해자)와의	합의를	통해	함께	결정한다.	

식	(6)의	이윤을	계산하기	위해	남은	변수는	랜덤	변수인	공

격성공	소요시간	 AST 이다.	랜덤	변수	 AST 의	정확한	확률	분

포는	[참조문헌	6의	Proposition	4]에서	계산되었으며,	본	논

문에서는	 AST 를	Monte-Carlo	실험으로	측정하였다.	실험을	

위해,	MATLAB상에서	두	개의	독립적인	Poisson	counting	

process	(PCP)를	구현하였다.	두	개의	PCP는	각각	공격자

와	채굴자가	생성한	블록들의	생성	시간을	나타내며,	평균	블

록생성	시간에	영향을	받는다.	공격자	PCP의	평균	블록생성	

주기는	 AD 이며	채굴자	PCP의	평균	블록생성	주기는	 HD
이다.	중단	시간	 cutt 까지의	두	PCP의	블록생성	시간들을	실

현	(realization)	한	후,	두	PCP를	비교하여	이중지불	공격의	

두	가지	성공	조건이	달성유무를	판단하였다.	식	(7)의	지출

을	계산하기	위해,	만약	이중지불	공격이	성공하였다면,	PCP

로부터	성공	시간	 AST 를	추출하여	대입하였으며,	만약	공격

이	실패하였다면,	 cutt 을	대입하였다.	마찬가지로,	식	(8)의	

수익을	계산하기	위해	만약	이중지불	공격이	성공하였다면,	

( )V q v= 	로	계산하였고,	그렇지	않을	경우	 ( ) 0V q = 으

로	계산하였다.	이러한	일련의	과정을	5000번씩	반복한	후	계

산	결과들에	평균을	취하였다.

그림	5는	이중지불공격	실험	결과를	보여준다.	실험에	사

용된	블록체인	네트워크	파라미터는	블록생성	평균비용	

0.33γ = BTC와	블록생성	평균주기	 600HD = 초이며,	이

는	2018년	12월	기준의	BitcoinCash	네트워크의	파라미터와	

V. 이중지불 공격의 이윤 분석

앞서	이중지불	공격의	성공률	분석을	통해	공격자의	컴퓨터	

자원이	채굴자의	컴퓨터	자원보다	더	적을	때,	즉	 p q> 일	

때는	이중지불	공격이	실패	할	수	있음을	확인하였다.	본	장에

서는	 p q> 이더라도,	50%	미만	이중지불	공격이	수익성이	

있으며	따라서	거래자에게는	위협적임을	Monte-Carlo	시뮬

레이션을	통해	확인한다.	본	장의	내용은	[6]에서	수학적으로	

증명되었다.

공격자의	컴퓨터	자원의	비율이	 q 일	때,	이중지불	공격의	

이윤	 ( )F q 를	다음과	같이	정의	하였다.

여기서	 ( )V q 는	이중지불	공격으로부터	얻는	수익이며,	

( )C q 는	 q 	만큼의	컴퓨터	자원을	운용하는데	소요된	지출

이다.

지출	 ( )C q 는	컴퓨터	자원을	운용한	시간과	컴퓨터	자원

의	크기에	비례한다고	가정한다.	 ( )C q 를	계산하기에	앞서,	

p q> 이기	때문에	이중지불	공격이	실패할	가능성이	존재함

을	주의해야	한다.	만약	이중지불	공격이	실패하면,	컴퓨터	자

원을	운용하는	시간이	무한정	늘어나며,	따라서	지출	 ( )C q
도	무한대로	발산한다.	 p q> 인	경우에서	이러한	무한대의	

지출을	방지하기	위해,	중단	시간	(cut	time)	 cutt 을	정의한다	

[참조문헌	6의	Theorem	7].	공격자는	 cutt 의	시간	내에	이중

지불	공격에	성공하지	못할	경우,	지출의	발산을	방지하기	위

해	공격을	중단한다.	만약	 cutt 	내에	공격이	성공할	경우,	지

출	 ( )C q 는	공격	성공	시간	동안	소요된	컴퓨터	자원	운용	

비용이다.	공격	성공	시간은	불확정적이기	때문에	랜덤	변수	

AST 로	모델링	될	수	있다.	컴퓨터	자원의	크기는	공격자의	시

간당	평균	블록	생성량,	즉	 1
AD− 에	비례한다고	가정한다.	종

합하면,	공격자의	컴퓨터	자원	비율이	 q 이고	중단	시간이	

cutt 	일	때의	지출	 ( )C q 은

이며,	여기서	 γ 는	하나의	블록을	생성하는데	소요되는	평
균비용이다.

식	(7)의	지출을	계산하기	위해서는	파라미터	 AD 와	 γ 가	
필요하다.	 AD 는	채굴자의평균	블록생성	주기인	 HD 로부터	

(2)번	식을	통해	계산이	가능하다.	파라미터	 HD 와	 γ 는	공
격	대상	블록체인	네트워크에	따라	다르며,	그	값은	인터넷에	
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VI. 결론

이중지불공격에	관한	기존	문헌들은	공격자의	컴퓨터	자원

이	네트워크	채굴자의	컴퓨터자원보다	더	클	때,	즉	공격자가	

전체	컴퓨터	자원의	50%	이상을	보유해야만	이중지불	공격이	

성공	할	수	있다는	것을	보였다.	이러한	이유로	이중지불	공격

은	51%	공격으로	알려져	왔다.	반면	본	논문에서는	50%	미

만의	컴퓨터	자원을	사용하는	이중지불공격,	즉	50%미만	공

격의	위험성을	분석하였다.	대규모	시뮬레이션을	통해	50%	

미만의	컴퓨터	자원을	사용하는	이중지불공격도	공격자에게	

큰	이윤을	가져다	줄	수	있음을	보였다.	구체적으로는,	거래자

가	설정하는	이체확인	수가	작을수록	이중지불공격의	이윤이	

커짐을	보였다.	다시	말해,	이체확인	수가	작을수록	거래의	처

리속도는	빠르지만	50%미만	공격에는	매우	취약하다.	본	논

문의	실험	결과는	블록체인의	거래자가	거래	가치와	이체확인	

수를	결정하는	것에	관한	가이드라인을	제공	할	수	있다.
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1. Introduction 

2008년 신원 미상의 사토시 나카토모는 백서[1]
를 통해 탈중앙화된 – 즉 신뢰받는 기관이 없는 – 
화폐 시스템을 소개하고, Peer-to-Peer (P2P) 네트워
크를 통해 구현하였다. 이것이 최초의 암호화폐인 
비트코인이고, P2P 네트워크에서의 이중 지불을 막
기 위해 블록체인을 사용하였다. 

 
블록체인이란 블록들이 하나의 체인으로써 연결

된 것을 뜻한다. 각 블록들은 거래 내역(데이터)을 
담고 있고, P2P에 존재하는 불특정 다수 노드들에 
의해 검증 받는다. 검증하는 노드들을 채굴자라 일
컫고, 이 검증과정을 작업증명이라 한다. 

 
작업증명의 목적은 다수의 채굴자들이 하나의 

블록을 채굴 – 즉 검증 – 하기 위해 많은 노력을 
했다는 것을 입증하기 위함이다. 비트코인의 경우, 
SHA256 (Secure Hash Algorithm) 함수의 특정 해쉬 
값을 산출하게 하는 nonce를 찾음으로써 작업증명
이 완료된다. SHA256의 출력 값을 통해 역으로 입
력 값을 알아내는 것이 불가능하므로, 채굴자들은 
무차별적으로 nonce들을 대입해야 한다. SHA256의 
출력 값인 해쉬 값은 블록 간의 연결을 위해 사용
된다. 이전 블록의 해쉬 값을 현재 블록 내역에 포
함시킴으로써 인접한 블록들을 연결시킨다. 이와 
같이 연결하여 채굴된 블록들의 위∙변조를 어렵게 
만들고, 이를 통해 이중 지불을 막는다. 

 
초창기 비트코인의 작업증명은 CPU를 통해서 

이뤄졌다. 이 시기는 사토시가 백서에서 언급한 것
처럼, 어느 누구나 CPU만 있다면 공정한 채굴 경
쟁이 가능하였다. 비트코인이 세상에 알려지고, 채
굴 이윤이 발생함에 따라 채굴 경쟁이 시작되었고, 
2010년, 2013년 각각 GPU와 ASIC (Application-
Specific Integrated Circuit) 채굴 장비들이 등장하였
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다. ASIC 채굴의 성능은 CPU/GPU 보다 월등하였
기 때문에, 채굴 난이도의 급격한 상승을 야기하였
다. 결국 CPU/GPU 채굴자들은 더 이상 이윤 창출
이 불가능해졌고, 오늘날의 비트코인 채굴은 ASIC
을 통해 이뤄진다. 

 
ASIC 채굴로 전환됨에 따라 일반 사람들 혹은 
자본이 적은 사람들은 채굴에서 배제되고, 막대한 
자본력을 가지고 있는 소수의 집단들이 채굴을 독
점하였다. 이 집단들이 전 세계의 채굴 능력을 많
이 점유하면 (극단적인 예로써, 51%이상), 이중 지
불 등을 수행하여 악의적인 용도로 블록들을 채굴
하고, 채굴된 블록들을 위∙변조할 가능성이 존재하
게 되는 것이다. ASIC 채굴을 억제하기 위한 새로
운 작업증명들 [3][4]이 제안됐지만, 결국 ASIC 채
굴 장비들이 등장하였다. 

 
오류-정정 부호 [6]는 무선 통신에서 발생하는 

오류를 정정하기 위해 사용된다. 대표적인 부호들 
중 하나로 LDPC [5] 부호가 있다. 문헌에 따르면, 
LDPC 디코더의 ASIC 구현은 구조적/비용적 문제
로 인하여, 구현의 유연성이 떨어진다 [7]. LDPC 
디코더와 해쉬 함수를 결합한 오류-정정 부호 기
반의 작업증명 [2] (ECCPoW, Error-Correction Codes 
Proof-of-Work)을 제안하였다. 본 특집호의 목표는 
ECCPoW의 동작과정과 ASIC 채굴 장비의 등장을 
어떻게 억제하는지 설명하는 것이다. 

 
본 특집호는 다음과 같이 구성되었다. 2장에서는 

ASIC 장비 등장을 억제하기 위한 작업증명들을 소
개하고, 이들의 한계점을 보여준다. LDPC 부호 및 
디코더에 관한 문헌 결과를 보고한다. 3장에서는 
ECCPoW의 동작과정과 ASIC 채굴 장비 등장 억제
의 요인을 설명한다. 4장에서는 확률적 분석을 통
해 ECCPoW의 작업증명 완료가 쉽지 않다는 것을 
보여준다. 5장에서 본 특집호의 결론을 제시한다. 

2. Background 

본 섹션에서는 ASIC 채굴 장비 등장을 억제하기 
위한 작업증명들 (Ethash와 X11)과 한계점들을 소
개한다. LDPC 부호 및 디코더 소개와, ASIC 디코더
에 대한 문헌들을 제공한다. 이 문헌들을 제공하는 
이유는 ECCPoW의 ASIC 채굴 장비 억제 기능이 
LDPC 디코더에서 기인하기 때문이다. 

2.1. Ethash [3] and X11 [4] 
                                           



이더리움의 작업증명인 Ethash [3]는 비선형 그래
프 (DAG, Directed Acyclic Graph)를 이용하여 ASIC 
채굴 장비 등장을 억제하였다. 이 DAG는 30,000 
블록 단위로 무작위로 생산되는 데이터들의 집합
으로써, 2019년 5월 기준, DAG의 크기는 약 3기가 
바이트이다. 

 
표 1은 Ethash의 동작과정을 보여준다. Nonce와 

BH (블록 헤더)를 활용하여 해쉬 값을 생산하고, 
이 값은 mix0에 저장한다. 이 과정이 Step 2이다. 
Step 4에서는 DAG로부터 데이터 (data1)를 읽어온
다. 읽어올 데이터 위치는 mix0에 의해 결정된다 
Step 5에서는 data1과 mix0를 mixing 함수에 넣고 
얻은 결과를 mix0에 저장한다. Step 4부터 5까지 총 
63번 반복 수행하고, 최종적으로 얻은 mix0를 사
용해 작업증명 완료 유무를 판단한다. 

 
63번의 반복 수행에서의 mixing 함수는 ASIC을 
통해 처리 가능하다. 데이터 읽기 연산은 ASIC와 
무관하다. 더욱이, 어떤 데이터를 읽어오는지 미리 
알 수 없고, DAG의 크기가 너무 크기 때문에 캐쉬
를 이용해 빠르게 읽는 것 또한 불가능하다. 따라
서, 데이터 읽기와 mixing 함수 실행 사이에서 병
목현상이 발생한다. 이 병목으로 인해, ASIC 채굴 
장비를 사용할 필요가 없던 것이었다. 하지만 병목
이 해결되면, ASIC 채굴 장비를 활용해 좀 더 빠른 
채굴이 가능해진다. 문헌 조사에 따르면, 2018년 7
월 비트메인은 ASIC 장비를 공포하였다. 

 
대쉬의 작업증명인 X11 [4]은 다수의 해쉬 함수

들을 사용하여 ASIC 채굴 장비 등장을 억제하였다. 
이 X11은 다음 함수들이 순차적으로 사용한다: 

Blake, Bmw, Groestl, Jh, Keccak, Skein, Luffa, Cubehash, 
Shavite, Simd and Echo 

표 2는 X11의 동작과정을 보여준다. Nonce와 BH
를 이용하여 Blake의 해쉬 값을 얻는다. 얻어진 값
을 Bmw의 입력 값으로 사용한다. 이 과정을 반복
하여 최종적으로 Echo의 해쉬 값을 얻고, 이 해쉬 
값을 통해 작업증명 완료 유무를 판단한다. 

 
X11에서 사용되는 해쉬 함수들의 순서는 고정이
다. 따라서 ASIC 채굴 장비를 개발하려면, 함수들
을 구현하고, 연결 하면 된다. 2014년과 2016년 사
이에는 하드웨어 생산 비용 문제로, ASIC 채굴 장
비 개발이 억제되었다. 하지만, 공정 기술 발달로 
저 비용 생산이 가능해짐에 따라, ASIC 채굴 장비

가 2016년부터 판매되고 있다. 
 
X11을 확장하여 X13, X14, X15 그리고 X17 작업

증명들이 제안되었다. 이름에서 알 수 있듯이, 별
도의 함수들을 추가적으로 사용하여 ASIC 채굴 장
비 등장을 억제하는 것이다. 2019년, X17을 제외한 
작업증명들의 ASIC 채굴 장비가 판매되고 있다. 

2.2. LDPC 부호와 디코더 

대표적인 오류 정정 부호 중 하나인 LDPC [5] 
부호는 대부분의 원소 값이 1인 패리티 체크 행렬 

{ }0,1 m n×∈H  (PCM, parity check matrix)를 이용해 정

의된다. 구체적으로, PCM이 주어졌을 때, 다음 조
건을 만족시키는 

{ }{ }1: 0,1 n×= = ∈c Hc 0 c  

벡터들 { } 10,1 n×∈c 의 집합이 LDPC 부호이다. 

 
PCM을 이용해 LDPC 부호를 이분 그래프로 표

현 할 수 있다. 이 그래프는, 변수 (variable) 및 체
크 (check) 노드들과 이들을 연결하는 선으로 구성
된다. 변수/체크 노드들은 PCM의 열/행에 각각 대

표 1. Ethash 의사 결정 코드  
Inputs: BH, L and DAG 

Step 1: for nonce = 0, 1, 2, … 232 – 1 

Step 2: ( )( )mix0 SHA3 nonce,BH=  

Step 3: for i = 1, 2, …, 63 

Step 4: ( )data1 Fetch DAG,mix0=  

Step 5: ( )mix0 Mixing mix0,data1=  

Step 6: end 
Step 7: If mix0 begins with L zero bits, then break. 
Step 8: end 

BH는 블록 헤더, L은 주어진 난이도. 해당 의사 결정, 
코드는 본 연구팀의 논문인 [2]로부터 인용. 

 
표 2. X11 의사 결정 코드 

Inputs: BH and L  

Step 1: for nonce = 0, 1, 2, … 232 – 1 

Step 2: ( )Blake nonce,BH=e  

Step 3: ( )Bmw=e e  

  …. 

Step 12: ( )Echo=e e  

Step 13: If e begins with L zero bits, then break. 
Step 14: end 

BH는 블록 헤더, L은 주어진 난이도. 해당 의사 결정, 
코드는 본 연구팀의 논문인 [2]로부터 인용. 



응한다. PCM의 (i, j)번째 원소 값이 1이면 i번째 변
수 노드와 j번째 체크 노드가 연결 된 것을 뜻한다. 

 
LDPC 부호의 성능 – 얼마나 많은 오류들을 고

치는지 – 은 PCM의 최소 해밍 거리 d (minimum 
hamming distance)에 의해 결정된다. 이 값은 PCM
을 통해 생성할 수 있는 0 벡터를 제외한 모든 부
호들 중에 가장 적은 해밍 값이다: 

,
min

h
d

∈ ≠
=

u u 0
u


 

여기서 ,k n m= −  ic 는 i 번째 부호, 부호의 개수는 

총 2k , 그리고 벡터 x의 해밍 값은 다음과 같다: 

: .
h
=x x에 포함된 1의 개수  

PCM의 최소 해밍 거리 d가 주어지면, LDPC 부호
를 활용해 정정할 수 있는 bits 오류들의 숫자는 
다음과 같이 결정된다: 

( )1 2t d= −                 (1) 

여기서 x   는 x의 정수를 표시한다. 위의 결과의 

유도 과정은 [6]에 있다. 
 

LDPC 부호가 무선 채널을 통해 전송되면, 채널
에 존재하는 잡음으로 인하여 오류가 발생한다. 잡
음에 의해 왜곡된 부호 y는 다음과 같이 표현 할 
수 있다: 

= +y c e  

여기서 { }0,1 n∈e 는 잡음에 의한 오류 벡터이고 그

리고 c는 전송된 부호이다. LDPC 디코더의 목적은 
오류를 정정하여, 원 부호 c를 찾는 것이다. 이 디
코더는 일반적으로 메시지 전달 (message passing) 
[6] 알고리즘을 사용한다. 이 알고리즘은 변수/체크 
노드들이 서로 메시지를 반복적으로 주고 받으며 
원 부호를 찾기 위해 노력한다. 
 
일반적으로, 알고리즘들을 빠른 속도 및 저전력

으로 실행시키기 위해, ASIC 장치를 사용한다. 따
라서, LDPC 디코더 또한 ASIC을 사용해 구현된다. 
ASIC-LDPC 디코더에서는 변수 및 체크노드들이 
PCM에 따라 물리적으로 연결된다. 따라서, 부호의 
길이의 변화에 따라 노드들을 늘리거나 혹은 PCM 
변화에 따라 유동적으로 노드들의 연결을 재 설정

하는 것이 쉽지가 않기 때문에, 다수의 PCM들을 
지원하는 ASIC-LDPC 디코더 구현은 어렵다.  

 
최신 리뷰 논문[7]에 따르면, 추가적인 하드웨어 

장치들을 이용하면 다수의 PCM들을 지원하는 
ASIC-LDPC 디코더를 구현 할 수 있다고 보고 하
였다. 하지만, 그로 인해 디코더 면적 혹은 생산 
비용이 증가되는 문제가 발생한다고 보고했고, 그 
사례로써 [8]에서 구현된 ASIC-LDPC 디코더를 소
개했다. 이 디코더는 약 100 개의 PCM들을 지원
하지만, 추가적인 장치들이 디코더 면적의 약 75%
를 점유하는 문제를 가지고 있다. 더 많은 PCM들
을 지원하려면 더 많은 장치들이 사용되고, 그로 
인해 ASIC-LDPC 구현이 매우 비효율적이다. 

 
마지막으로, [7]에는 ASIC-LDPC 디코더의 구현 
사례들이 표로 제시되어있다. 이 표에서 부호의 길
이가 가장 긴 경우는 n = 64,800로써, 해당 디코더
는 [9]에 구현되어있다. 

3. 오류-정정 부호 기반의 작업증명 

본 섹션에서 ECCPoW 동작과정을 간단히 소개
하고, ASIC 채굴 장비 등장의 억제 요인을 설명한
다. ECCPoW에 관한 자세한 설명 및 이론적 분석 
결과들은 [2]에 있다. 원활한 설명을 위해 용어들
을 다음과 같이 축약한다. 현재 블록 헤더와 이전 
블록 헤더를 각각 CBH (current block header)와 PBH 
(previous block header)로 사용한다. 

 
먼저, ECCPoW에 포함된 LDPC 디코더와 그 입

력 값을 다음과 같이 각각 정의한다. 

정의 1. 크기가 m × n인 PCM H와 길이가 n인 해쉬 
벡터 r이 주어졌다 가정한다. LDPC 디코더는 H와 
r을 취득하고, 메시지 전달 알고리즘을 사용해 
길이가 n인 벡터 ĉ을 산출한다: 

{ } { } 1ˆ: , 0,1 .n
MP

×∈r H c         (2) 

정의 2. 길이가 n인 해쉬 벡터 r은 다음과 같이 
정의된다: 

[ ]
[ ]

1

1 1

1: if 256
:

1: if 256l l

n n
j n+

 ≤=   > 

s
r

s s s

    (3) 

여기서 256 ,l n=    256 ,j n l= − ×  



( ) { }256
1 : SHA256 nonce,CBH 0,1= ∈s     (4) 

그리고, u = 2, 3, ..., l + 1에 대해 

( ) { }256
1: SHA256 0,1 .u = ∈s s          (5) 

하나의 블록을 채굴하기 위한 작업증명에서는, 
CBH와 PCM은 모두 상수로써 취급된다. Nonce가 
변경되면, 정의 2에 나온 것처럼 해쉬 벡터가 재 
생성되고, 그로 인해 디코더의 출력 값이 변경된다. 
Nonce와 디코더의 입력 값인 해쉬 벡터의 관계는 
SHA256 함수들에 결정된다. 따라서 nonce만 보고 
디코더의 출력 값이 무엇인지 미리 예측하는 것은 
불가능하다. 특정 조건을 만족하는 디코더의 출력 
값을 찾으려면 무수히 많은 nonce들을 대입해야 
한다. 결론적으로 ECCPoW의 작업증명은 디코더의 
출력 값 ĉ이 다음 조건 

ˆ =Hc 0                   (6) 

을 만족하게 하는 nonce를 찾으면 완료된다.  
 

ECCPoW가 어떻게 동작하는지 살펴보았다. 이제 
LDPC 디코더의 입력 값으로써 활용되는 PCM에 
대해 논의한다. 블록들을 채굴 할 때, 하나의 PCM 
사용을 가정한다. 섹션 2에서 이야기 한 것처럼, 
이 가정에서는 ASIC-LDPC 디코더 구현에 아무런 
문제가 없다. 하지만, 이 가정하에서는, ECCPoW를 
위한 ASIC 채굴 장비가 등장 할 수 있다. 

 
이제, 매 블록 채굴 할 때 마다 무작위로 생성된 

PCM 사용을 가정한다. 섹션 2에서 언급한 것처럼, 
다수의 PCM을 위한 ASIC-LDPC 디코더 구현에는 
추가적인 하드웨어 장치들이 필요하다. 더욱이, 각 
PCM들이 무작위로 생성된다. 따라서 어떤 형태로 
생성될지 예측 할 수가 없다. 매 블록마다 변하는 
PCM을 사용하면, 결국 ASIC-LDPC 디코더 구현을 
억제할 수 있다. 이것이 ECCPoW에서 ASIC 채굴 
장비 등장을 억제하는 이유이다. 

 
이제 부호의 길이에 대해 논의를 해보자. 부호의 

길이인 n인 경우, ASIC-LDPC 구현을 위해 필요한 
computing fabric의 총량은 n의 제곱에 비례한다. 
가령 n을 2배 키우면, 필요한 총량은 4배이다. 
또한, n은 가변적으로 변하는 값이다. 무수히 많은 
PCM을 지원하는 ASIC-LDPC 구현에 성공하더라도, 
n을 크게 키움으로써 구현된 ASIC-LDPC 디코더의 
사용을 막을 수 있다. 

 
어떻게 하면 매 블록마다 무작위로 변하는 

PCM을 생성 할 수 있을까? 우리의 해답은 PBH의 
해쉬 값과 Gallager의 PCM 생성 방법 [5]을 동시에 
이용하는 것이다. 이 방법은 사용하면, 임의의 seed 
값이 주어졌을 때, PCM을 결정적으로 생성할 수 
있다. 즉, 여러 사람들이 동일한 seed 값을 가지고 
있으면, 동일한 PCM을 생성 할 수 있는 것이다. 
그리고, PBH의 해쉬 값은 매 블록 마다 바뀌고, 
이미 채굴된 블록이므로, 알려진 값이다. 따라서, 
이 값을 seed로 활용함으로써, 매 블록 마다 
무작위로 PCM을 생성 할 수 있다. [2]에 우리의 
PCM 생성 방법의 의사 결정 코드 및 좀 더 
자세한 설명들을 기록하였다. 

4. 해쉬 사이클 분석 

이 섹션에서는 ECCPoW 작업증명을 푸는 것이 
쉽지 않다는 것을 보인다. 이를 다음 아래에 해쉬 
사이클을 정의한다. 
 
정의 3. 하나의 nonce을 이용하여, LDPC 디코더의 
출력 값을 산출하고, 이 값을 이용해 작업증명의 
완료 유무를 검증하는 것까지 포함한 과정을 해쉬 
사이클로 정의한다. 

 
이제 작업증명을 완료하기 위해서 총 몇 번의 
해쉬 사이클이 필요한지 고려한다. 이 섹션의 분석 
결과들은 [2]에서 일부 발췌된 것이다. 

 
용이한 분석을 위하여 다음 2가지를 가정한다. 
첫 번째로, 디코더는 이상적(optimal)이다. 즉, 섹션 
2에서 나온 것처럼 t개 이하의 오류가 발생시 항상 
정정 가능한 것을 가정한다. 두 번째로, 해쉬 벡터 
와 nonce는 서로 1:1 관계로 가정한다. 즉, 다른 
nonce들은 각각 다른 해쉬 벡터를 생성한다. 

 
이제 i번째 부호가 주어졌을 때, 해당 부호와의 
해밍 거리가 t보다 작은 벡터들의 집합을 

( ) { }, : :i i h
t t= − ≤c r r c            (7) 

로 정의한다. 이 집합의 크기는 다음과 같다 
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첫 번째 가정으로 인하여, 해쉬 벡터가 ( ),i tc

의 원소라면, 출력 값이 항상 i번째 부호이다. 즉, 
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따라서, i번째 부호를 산출할 확률은 다음과 같다 
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여기서 마지막 등호는 (1)에서 기인한다. 디코더의 
출력 값이 임의의 부호일 확률은 다음과 같다: 
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LDCP 디코더가 부호를 출력할 확률이 p이므로, 
이것의 역수는 부호를 출력하기 위해 필요한 평균 
해쉬 사이클이다. 따라서, p를 알면 어느 정도 해쉬 
사이클이 필요한지 계산 가능하다. P를 계산하려면, 
d를 알아야 한다. 임의의 주어진 PCM의 d를 찾는 
것은 어렵다. 우리는 편의를 위해 d를 n의 10%로 
가정한다. 

 
첫 번째로, n = 64, m = 32라 하자. 이 경우 p는 약 

2 × 10-10이다. 이 작업증명을 완료하기 위해 필요한 
해쉬 사이클은 p의 역수인 4 × 109이다. 두 번째로, 
n과 m을 각각 128과 64로 하면, p는 5 × 10-20 이다. 
따라서, 2 × 1019 해쉬 사이클이 필요하다. 이것들은 
작업증명 완료를 위해 많은 해쉬 사이클이 필요한 
것을 보여준다. 

 
마지막으로, LDPC 디코더의 총 연산량은 

( )logIter O n n×  

여기서 n은 부호의 길이이고, Iter은 메시지 전달 
알고리즘의 반복 횟수이다. 각 nonce마다 디코더를 
실행하므로, 평균적으로 작업증명을 완료하기 위해 
사용되는 연산량은 다음과 같다: 

( ) 1logIter O n n p−× ×  

이것을 ECCPoW의 채굴 난이도로 여길 수 있다. 
 
4. 결론 

본 특집호에서는 블록체인 커뮤니티에서 많이 
주목 받고 있는 ASIC 채굴 장비 등장으로 인한 
중앙화 문제를 고찰하였다. 이 문제를 해결하기 
위해 제안된 오류-정정 부호 기반의 작업증명 [2] 
(ECCPoW, Error-Correction Codes Proof-of-Work)를 
소개하였다. 이 방법의 핵심은 기존 SHA256함수와 
LDPC 디코더를 연결한 것이다. SHA256의 출력 
값이 디코더의 입력 값이 되고, 이 디코더의 출력 
값을 이용해 작업증명의 완료 유무를 판단하였다. 

ASIC 채굴 장비 등장의 억제는 LDPC 디코더의 
사용에서 기인한다. 매 블록 마다 새로운 패리티 
체크 행렬을 무작위로 생성함으로써, ASIC-LDPC 
디코더의 구현을 현실적으로 매우 어렵게 만든다. 
그로 인해 디코더의 실행을 CPU/GPU에 의해서만 
처리되도록 설계한 것이다. 
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블록체인개발 현황과 보안이슈 변화 동향 

정  *, 이 흥 노**

요   약

암호화폐가 세계 으로 주목받으며 핵심기술인 블록체인에 한 심이 증가하고 있다. 블록체인은 블록을 P2P 방식을 

기반으로 생성된 체인 형태의 연결고리로 분산 장되어 있으며 임의로 수정할 수 없고 구나 변경의 결과를 열람가능하

다. 블록체인의 공개 형태에 따라 공개형 블록체인과 허가형 블록체인으로 나뉘어 연구되고 있다. 이 논문에서는 세 별 

블록체인의 개발 황과 특징에 해서 알아본다. 한 블록체인 공개형태에 따른 특징과 보안성에 하여 알아보고자 한

다. 

이 논문은 2018년도 주과학기술원의 재원으로 “과학기술응용연구단의 실용화연구개발사업”의 지원을 받아 수행된 연구임. 
** 주과학기술원 센서지능화 연구센터 연구원 (junghj85@gist.ac.kr)
** 교신 자, 주과학기술원 기 자컴퓨터공학부 교수 (heungno@gist.ac.kr)

Ⅰ. 서  론  

블록체인(Blockchain)은 비트코인(Bitcoin)의 등장과 

함께 세상에 알려졌다. 비트코인은 2009년 등장하여 최

근 가격이 격히 증가함에 따라 암호화폐

(Cryptocurrency)가 세계의 주목을 받고 있다. 그리고 

암호화폐의 기반기술인 블록체인에 한 기술  분석과 

블록체인을 목한 비즈니스가 양성되고 있다.
미국 애리조나주에서는 블록체인 기록 등의 법  유

효성 목 의 입법을 진행하 다. 이 입법에서 블록체인 

기술이란 분산, 탈 앙화, 공유, 복제의 성질을 가진 분

산화된 원장이라고 정의하 다. 미국 하와이주에서는 

블록체인 산업의 진흥의 목  입법을 진행하 다. 이 입

법에서 블록체인이란 새로운 P2P 네트워킹  탈 앙

화의 분산 데이터 장 기술이라고 정의하 다. 한국은

행은 블록체인을 거래정보를 기록한 원장을 특정 기

의 앙서버가 아닌 P2P 네트워크에 분산하여 참여자

가 공동으로 기록하고 리하는 기술이라고 정의하 다

[1]. 블록체인이란 1) 통제에 한 탈 앙화를 목 으

로, 2) 분산화된 구조를 가지며, 3) 데이터의 장할 수 

있는 구조를 말한다.
블록체인 기술은 비트코인의 기반기술로 알려져 있

다. 블록체인은 새로운 정보화 기술로써 산업 반에 걸

쳐 향을 미칠 기술이다. 일반 인 시스템에서는 클라

이언트 서버 모델(Client-server model)을 용한다. 이 

모델은 서비스 요청자인 클라이언트와 서비스 자원의 

제공자인 서버 간에 작업을 분리해주는 네트워크 아키

텍처이다. 블록체인은 개자 없이도 개인 (peer)간의 

거래, 가치, 자산 등을 교환할 수 있는 신뢰 로토콜을 

제공한다. 기존의 서버는 신뢰 로토콜을 유지하기 

하여 비용과 노력이 필요하다. 서버에 장하고 있는 데

이터(혹은 코인)는 공격자의 타깃이 된다. 시스템 리

자는 공격자의 공격을 막기 하여 보안을 지속해서 

리해야 한다. 블록체인은 지켜야 하는 데이터를 모두에

게 공개하여 서로를 감시하게 하여 무결성을 유지한다. 
암호화폐에서 블록체인은 모든 거래 내용을 공개하고 

인터넷에 분산 장한다. 즉, 블록체인이란 공개 장부를 

공정하게 만들고 리하기 한 기술이다. 공개 장부에 

한 번 기록된 것은 변경할 수 없으며 조할 수 없기 때

문에 화폐에 응용 가능하다. 
 비트코인의 가격이 2017년 1월 1BTC 가격은 약 

600만원에서 2018년 1월 약 2500만원까지 상승하 다. 
한국 정부에서는 암호화폐의 가격의 변동성이 심해지자 

신규계좌의 생성을 막는 등의 제재를 실행했다. 블록체

인과 암호화폐에 한 사회  심이 증가하 으며 

격한 가격변동으로 인해 우려도 증가하 다. 블록체인

의 공개 형태에 따라 공개형 블록체인(Public 
Blockchain)과 허가형 블록체인(Private Blockchain)으
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이름
발행 or 

ICO
특징

비트코인

(BTC)

2009.

1.3

사토시 나카모토가 제안한 최 의 코

인[2]. 자 화폐를 디지털 서명의 

체인으로 정의함. 코인 소유자는 거

래 내역에 디지털 서명을 한 후 다음 

사람에게 달하고, 이를 받은 사람

은 자신의 공개 키를 코인 맨 뒤에 

붙임.돈을 받은 사람은 앞사람이 유

효한 소유자 다는 것을 확인가능.

비트코인 

캐시

(BCH)

2017.

8.1

비트코인에서 하드포크 되어 생성된 

알트코인이다[3]. 한계 속도를 극복

하기 해 블록 크기를 2~8MB까지 

유동 으로 늘리는 편법 정책을 용

함.

비트코인 

골드 

(BCG)

2017.

10.25

비트코인에서 하드포크 되어 생성된 

알트코인임[4]. 그래픽카드(GPU)로 

채굴할 수 있음.

[표 1] 1세  – 단순 결제 기능의 화폐성 암호화폐

이름
발행 or 

ICO
특징

비트코인 

다이아몬드 

(BCD)

2017.

12

블록 크기 제한을 8MB로 변경하여 트

랜잭션 용량이 향상되고 블록이 5배 

빠르게 생성된다[5]. 거래 송 시에 

액을 암호화하여 개인정보를 보호함.

리  

(XRP)
2012

블로체인 기반 송  시스템임. 앙

통제식(채굴이 존재하지 않음)이며 

국제간 화폐 거래를 이용한 로그램

을 지원하여 수수료  환율 시세차

익을 얻음[6]. 암호화폐의 기본 이념

인 탈규제, 탈 앙화, 익명에 정면으

로 반 되는 코인임.

스텔라

루멘 

(XLM)

2014.

7

리 에서 하드포크 하여 개발된 암호

화폐이다[7]. 비 리 기업 스텔라 재

단에서 운용하는 화폐이다. 리 은 

기업 간의 자  송 을 목 으로 하

고 스텔라루멘은 개인 간의 거래를 

하여 만들어짐.

라이트

코인 

(LTC)

2011.

10.7

비트코인을 심에 두고 개발되었음. 

비트코인보다 약 4배 빠른 거래가 이

루어진다[8]. 라이트닝 네트워크는 

비트코인과 라이트코인에 복수 용

될 정임. 이를 통해 아토믹스왑이 

실  가능해질 정임.

이름
발행 or 

ICO
특징

제트

캐시

(ZEC)

2016.

10.28

트랜잭션의 라이버시와 선택  

투명성을 제공하는 분산형 오 소

스 코인임[9]. 제트캐시 지 은 

지식 증명 기술(zero-knowledge 

proof) 기반으로 공개 블록체인에 

개시되지만 거래의 보낸 사람,받는 

사람  액은 사 으로 유지됨.

모네로

(XMR)

2014.

4.18

CryptoNight이라는 독자  작업

증명 기법을 사용하여 채굴기와 이

를 소유한 자본에 의한 탈 앙화

(decentralization)  가치가 훼

손되는 것을 막음[10]. 거래내역

이 비공개로 되어있어, 가 구

에게 얼마를 보냈는지 알 수 없음. 

시

(DASH)

2014.

2.14

Dash 송을 요청하면 마스터노

드가 3개 이상의 거래 내역을 섞

어서 보내는 코인조인(coinjoin)

방식을 사용함[11]. 마스터 노드

는 Dash를 1,000개 이상 가진 

사람이며 향후 시의 개발  운

 방향에 한 투표권을 가짐.

[표 2] 1.5세  – 1세  암호화폐의 기본 기능과 추가 

기능을 넣은 암호화폐

로 개발되고 있다. 
이 논문은 블록체인 공개형태에 따른 블록체인의 특

징과 보안 연 성에 해서 알아본다. 2장은 세 별 암

호화폐를 구분하여 특징을 정리한다. 3장은 공개형태에 

따라 공개형 블록체인과 허가형 블록체인의 특징을 정

의하고 비교한다. 4장은 블록체인에 용할 수 있는 암

호화폐를 분류한다. 5장은 결론으로 블록체인을 이용한 

비즈니스가 나가야할 방향에 하여 말한다. 
 

Ⅱ. 세 별 암호화폐

암호화폐는 비트코인을 시작으로 재까지 수백개가 

제안되었다. 암호화폐는 단순 결제 기능의 화폐성 1세
 암호화폐(표 1)와 스마트 계약이 가능한 2세  암호

화폐(표 2)로 구분한다. 이 논문에서는 1.5세  암호화

폐(표 3)를 1세  암호화폐의 기본 기능에 추가기능을 

넣은 암호화폐, 2.5세  암호화폐(표 4)를 2세 의 한계

를 극복하고자 나온 암호화폐로 구분하 다.
암호화폐는 세 로별로 진화할수록 기능에 을 

맞춰 발 되고 있다. 를 들어, 새로 제안되는 암호화

폐는 비트코인의 확장성, 거래 속도 향상을 하여 기존

의 구성요소를 변경 혹은 추가하여 구성한다. 하지만 신

규 암호화폐의 새로운 기능과 속도를 한 구조로 인하

여 보안성이 약해지는 경향이 있다. 
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이름
발행 or 

ICO
특징

팩텀코인

(FCT)

2015.

9

데이터(문서)의 투명성과 지속성을 

하여 제안된 랫폼[12]. 팩텀 

블록에는 문서/기록의 고유값을 

장할 수 있음. 

지코인

(XZC)

2016.

10.6

CPU와 GPU를 통해 채굴할 수 

있음[13]1. 공용코인 소유자는 개

인코인을 주조할 수 있음. 개인코

인 사용 시 송  이력 추 이 불가

능함( 지식 증명 기반).

나 코인

(NAV)

2014.

6

비트코인 코어를 개량하여 만들어

진 코인임[14]. 빠른 송속도(블

록타임 30 , 블록사이즈 20mb 

확장)와 익명성(Navtech라는 이

블록체인 기술이용)이 특징이며 

aDapp(익명화된 분산 어 리 이

션)을 지원하는 랫폼으로서 역할

을 함.

시아코인

(SC)

2015. 

6

클라우드 데이터 장 서비스임. 

블록체인을 이용한 스토리지 서비

스를 제공함[15]. 컴퓨터의 장공

간을 다른 사람에게 임 하고 사용

료를 받음. 기존 상용 클라우드서

비스보다 평균 10배 이상 렴함.

버스트

코인

(BURST)

2014. 

8

PoC(Proof of Capacity)를 사

용하여 채굴함[16]. PoC는 컴퓨

터에 남아있는 잉여부분의 하드디

스크를 사용하여 채굴하는 방식임. 

스토리지 

(STORJ)

2017. 

7.2

이더리움 기반으로 만들어진 분산

화된 클라우드 장 랫폼임

[17]. 하드디스크의 남은 용량을 

크라우드 형태로 임 하고 코인을 

획득함.

NEM코인

(XEM)

2015.

3.31

약 90억 개의 고정된 통화 발행으

로 인 이션이 제로인 코인임. 

자바, 자바스크립트로 코드가 작성

됨[18]. NEM 코인에 용된 

PoI (Proof of Importance) 알

고리즘은 코인의 유동성과 거래참

여 기여도를 측정하여 채굴자의 

요도를 결정하고 요도에 비례하

여 보상 함. 

버트코인

(VTC)

2014.

1

NIST5기반의 Lyra2Re 체인 알

고리즘을 제안하여 마이닝 앙 집

권화를 방지함[19]. 지 까지 2차

례 PoW를 변경함.

디지

바이트

(DGB)

2014.

1.10

다섯 개의 마이닝 알고리즘을 사용

하여 마이닝 앙 집 화를 방지함

[20]. 당 280회의 트랜잭션을 

처리할 수 있음. DGB 코인을 보

상으로 지 하는 게임서비스를 제

공함.

이름
발행 or 

ICO
특징

이더

리움

(ETH)

2015.

7.30

블록체인 기술을 기반으로 스마트 

계약 기능을 구 하기 한 분산 

컴퓨  랫폼과 탈 앙화된 앱 

개발 환경 제공[21]. 비탈리크 

부테린(Vitalik Buterin)이 개

발함. P2P 컴퓨터 네트워크를 데

이터  코인거래 내역을 블록체

인에 장하는 것은 물론, 스마트 

계약이 설정된 코드도 실행할 수 

있는 컴퓨  랫폼 제공. 

텀

(QTUM)
2016

비트코인 블록을 사용하여 

이더리움의 스마트 계약 엔진을 

연결한 랫폼임[22]. 비트코인의 

디자인을 사용하고 이것을 

블록체인에 코드로 비즈니스 

규칙을 장하고 EVM(이더리움 

Virtual Machine)과 연결함. 

채굴방식으로 PoS 

(Proof-of-Stake, 지분 합의 

증명)을 택했음.

[표 3] 2세  – 계약 기능을 포함한 암호화폐

이름
발행 or 

ICO
특징

아이오타

(IOTA)
2016

사물인터넷을 한 수수료 없고 

채굴자 없이 데이터 무결성을 추

구하는 블록체인. 탱 (방향성 비

사이클 그래피)이라는 새로운 분

산장부 작성 기술을 사용[23]. 이 

기술은 서버사용으로부터의 탈

앙화를 유지하며 채굴자 없이 즉 

수수료 없는 거래가 가능  함. 

카르다노

(ADA)

2017.

10.1

암호화폐 개발 언어로 합한 하

스 언어로 만들어진 블록체인임

[24]. 하스 은 함수형 언어이며 

카르다노 백서에 제시된 수학  

표 을 완벽하게 설명하고 입증함. 

카르다노는 회계(Accounting)와 

컴퓨 (Computing)을 분리하여 

구 되어있음. 우로보로스

(Ouroboros)라는 PoS 증명 알

고리즘을 사용함.

이오스

(EOS)
2017

이더리움의 PoS에 비해 빠른 트

랜잭션 처리가 가능한 비잔틴장애

허용 DPoS(Delegated Proof 

Of Stake)방식을 사용함[25]. 

이오스 Dapp은 사용자는 수수료

를 지 하지 않고 개발자가 이오

스를 지 함.

[표 4] 2.5세  – 2세 의 한계를 극복하고자 나온 암

호화폐
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Ⅲ. 공개형 블록체인과 허가형 블록체인

블록체인 기술은 서로 신뢰할 수 없는 인터넷 환경에

서 사람이나 사물들이 개인 없이 돈이나 자산을 안

하게 교환하는 것이다. 거래들이 기록되어 있는 분산화

된 원장을 안 하고 변조 될 수 없게 리하기 한 

분산 데이터베이스  련 기술을 말한다. 분산화된 원

장은 암호화키를 이용하여 체인 형태로 연결되어 있어 

변조가 불가능(혹은 난이도가 높음)하다. 기존 시스

템에는 거래명세을 독 하여 데이터를 보호하고 무결성

을 검증하 다. 반 로 블록체인은 거래명세을 모두가 

공유하고 내용에 해 수정이 있는지 서로 감시하고 검

증한다. 블록체인 검증에 참여하는 노드들이 많아야 하

며 참여, 검증, 장에 해 보상이 필요하다. 
노드들은 특정 기간( , 비트코인 매 10분)에 일어난 

거래 기록을 담은 블록(block) 단 로 장한다. 블록을 

조작하는 것을 막기 하여 공동 리하고 블록들을 해

시 함수( , sha256)를 이용하여 요약하고 연결체인을 

만든다. 연결 체인은 이  블록의 요약을 다음 블록에 

추가하여 다음 블록이 완성되면 이  블록을 수정할 경

우 바로 확인할 수 있다. 분산 원장은 모든 블록을 가지

고 있어서 내용을 확인할 수 있지만 변경할 수 없다. 
의 특징을 이용하여 P2P 구조로 모든 사람이 변경되지 

않은 데이터를 가질 수 있으며 확인할 수 있다. 비트코

인 등의 암호화폐의 블록체인은  거래(트랜잭션)를 

장하고 있다.  거래뿐만 아니라 다른 기록 정보를 

원본 그 로 보존하는 목 으로 이용할 수 있다.
블록체인 네트워크는 비트코인, 이더리움 등과 같이 

분산 원장에 구나 참여할 수 있는 공개형 블록체인과 

권한을 가진 이들만 참여할 수 있는 허가형 블록체인으

로 나뉜다. 허가형 블록체인은 운  규칙에 따라 운  

주체 는 특정 몇 명만 원장을 만들 수 있다. 허가형 

블록체인은 재 운 하는 시스템에 블록체인을 용하

기 한 특수한 형태이다. 
 기업이 허가형 블록체인을 도입하는 이유는 공개형 

블록체인( , 비트코인, 이더리움)을 그 로 용할 경

우 기존 시스템과 맞지 않기 때문이다. 그래서 자신에게 

맞는 형태로 변경하여 용하고 싶기 때문에 허가형 블

록체인의 수요가 유지되고 있다. 기업이 허가형 블록체

인을 용하는 이유는 다음과 같다.

1. 거래 처리 시간 단축: 비트코인은 하나의 블록이 생

성되기 해서는 10분이 소요된다. 블록의 기록이 안

정되기 해서 5개의 블록이 필요하다고 가정한다면 

50분이 필요하다. 블록이 생성되는 시간이 비즈니스

에서 필요한 요구 시간보다 길기 때문에 보다 은 

시간을 요구한다.
2. 트랜잭션 비용(Transaction fee) 조정: 블록체인은 

데이터를 P2P로 장하기 때문에 트랜잭션을 장

하기 해서 일정한 비용을 요구한다. 일반 인 은

행 계좌일 경우 송  시에 보내는 쪽이나 받는 쪽 정

책에 따라 일정량의 수수료가 책정된다. 일반 인 

암호화폐( , 비트코인, 이더리움)의 수수료는 송  

자의 수수료 납부 정책에 의해 결정된다. 이는 거래

를 인증해주는 노드(채굴자)가 네트워크상에 반드

시 존재해야 하기 때문이다. 하지만 암호화폐의 가

격이 격히 상승하고 거래량이 증가하여 송  자가 

낮은 수수료 책정 시 채굴 노드에 의해 승인되지 않

거나 시간이 오래 걸리는 문제가 발생한다. 기업에

서 비즈니스로 발생한 트랜잭션이 트랜잭션 비용 때

문에 장이 늦어지거나 거부될 경우 문제가 발생할 

수 있다.

3. 해킹 범죄 감소: 기업은 블록체인을 용하여 해킹 

범죄를 감소시킬 수 있다. 기존의 서버를 공격하여 

진행되었던 사이버 공격 상이 P2P 체를 상으

로 바 었으며 해킹을 하여 투입되는 비용이 증가

한다. 기업은 보안을 해 소요되는 비용보다 블록체

인을 도입으로 인한 유지비용이 다면 블록체인 도

입을 고려할 수 있다.
4. -변조 불가능한 로세스 공유: 일반 사용자들은 

기업에서 장하고 있는 데이터의 무결성에 해서 

확인할 수 있는 방법은 없었다. 기업은 블록체인을 

이용하여 데이터를 장하고 리하는지에 하여 

로세스를 공유할 수 있다. 기업과 사용자는 운용하

고 있는 데이터에 한 신뢰성에 한 공유와 지속

인 리가 가능하다.

블록체인 표 화 생태계는 하이퍼  로젝트

(Hyperledger Project)와 EEA(Enterprise Ethereum 
Alliance) 그리고 R3CEV로 구성되어있다. 하이퍼  

로젝트는 모든 산업에서 사용할 수 있는 블록체인 기

술의 표 화  발 을 한 오 소스 커뮤니티이다. 리

광주과학기술원 | IP: 210.107.***.17 | Accessed 2019/02/18 15:01(KST)



정보보호학회지 (2018. 6) 51

개방형 블록체인 허가형 블록체인

특

징

 - 네트워크에 자유로

운 참여 가능

 - 암호화폐를 이용한 

네트워크 유지  

공유경제

 - 트랜잭션을 모든 노

드와 공유, 안 한 

거래 처리를 한 

로세스 유지

 - 네트워크 노드 참여

자를 승인  제한 

 - 암호화폐 부재

 - 신속한 트랜잭션 처

리, 데이터에 한 

라이버시 심

보

안

성

 - 높은 수 의 보안성 

유지

 - 해킹을 해 큰 비

용 소모 요구

 - 낮은 수 의 보안성 

유지 (불투명성)

 - 참여자를 식별하여 

해킹방지

 - 데이터를 일반인에게 

공유하지 않음

용

역

 - 탈 앙형 트랜잭션 

처리가 요구되는 

역

 - 암호화폐를 이용한 

서비스가 가능한 

역

 - 일반인들의 참여와 

데이터의 공개가 가

능한 역

 - 재자의 역할이 필

요하며 트랜잭션 처

리가 필요한 역

 - 기업/기  등 참여자

를 사 에 특정할 수 

있는 서비스

[표 5] 블록체인 유형별 특징

스 재단, IBM, VM웨어, 드햇, 오라클 등이 모여 

오 소스 로젝트로 진행 이다. 재 200개 이상의 

회원사가 참여하고 있으며 국내에서는 한국거래소, 
탁결제원, 코스콤 등이 포함되어 있다. 하이퍼  로

젝트  하이퍼  패 릭이 가장 빠르게 성장하고 있

으며 159명의 개발자와 IBM과 인텔을 포함한 28개의 

기업에서 패 릭 랫폼을 지원하고 있다. EEA는 이더

리움 기반 허가형 블록체인 컨소시엄이다. 150개 이상

의 회원을 확보하고 있다. 삼성SDS, SK텔 콤, 더루 , 
코인 러그 등이 참여하고 있다. EEA는 이더리움을 엔

터 라이즈  기술로 발 시켜 개인정보, 기 성, 확장

성, 보안 등 다양한 역에서 연구  개발을 제공한다. 
한, 실시간 트랜잭션 처리 등 다양한 랫폼 로젝트

들이 있다. R3 CEV는 로벌 은행 컨소시엄이다. 100
개 이상의 회원을 확보했다. 하나, 신한, 우리, 국민, 농

은행 등이 회원이다. 하지만 기 참여자인 골드만삭

스 등 형 융사의 이탈하여 상황이 좋지 않다.
표 5는 블록체인 유형별 특징을 보인다. 개방형 블록

체인과 허가형 블록체인은 큰 차이 은 네트워크에 

근권한이다. 개방형 블록체인은 구나 네트워크에 참

여하고 거래를 형성하고 승인할 수 있다. 허가형 블록체

인은 승인된 사용자만 참여가 가능하며 승인된 기 만 

거래를 생성이 가능하다. 악의  참여자에 의한 해킹에 

해서 허가형 블록체인이 공개형 블록체인보다 안 하

다. 
공개형 블록체인은 채굴을 해서 거래를 증명하고 보

상에 해서 약속한다. 채굴방식으로 PoW(작업증명), 
PoS(지분증명), DPoS( 임지분증명), PoI(기여증명) 등
을 사용한다. 공개형 블록체인은 다수의 사람이 이용하

기 때문에 형 네트워크가 형성되고 다수의 사람이 검

증한다. 반면에 허가형 블록체인은 소수의 승인 기 이 

거래를 검증  수정을 한다. 허가형 블록체인은 작은 

네트워크 크기로 인해 거래를 통제 가 가능하지만 투명

성과 보안성이 부족하다.

Ⅳ. 결  론

이 논문에서는 블록체인 개발 황과 특징에 해서 

알아보았다. 세 가 증가할수록 기능과 거래 속도 등을 

강조하 지만 상 으로 보안성은 낮아지는 특징을 보

다. 블록체인은 공개형태에 따라서 공개형 블록체인

과 허가형 블록체인으로 분류된다. 공개형 블록체인은 

사람들에게 네트워크에 자유롭게 참여 가능하여 트랜잭

션을 모든 사람과 공유하며 안정 인 거래가 가능하다. 
허가형 블록체인은 네트워크에 허가된 사용자만 참여할 

수 있으며 변형된 형태의 블록체인을 사용한다. 블록체

인의 공개형태에 따라 네트워크 크기가 다르며 투명성

과 보안성이 달라졌다. 향후 연구로 마이닝 방법 즉, 작
업증명(PoW, Proof -of-work)과 지분증명(PoS, 
Proof-of-stake) 등에 따른 보안성에 해 연구를 진행

할 정이다. 
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Abstract: Compressive sensing (CS) spectroscopy is well known for developing a compact
spectrometer which consists of two parts: compressively measuring an input spectrum and recovering
the spectrum using reconstruction techniques. Our goal here is to propose a novel residual
convolutional neural network (ResCNN) for reconstructing the spectrum from the compressed
measurements. The proposed ResCNN comprises learnable layers and a residual connection between
the input and the output of these learnable layers. The ResCNN is trained using both synthetic and
measured spectral datasets. The results demonstrate that ResCNN shows better spectral recovery
performance in terms of average root mean squared errors (RMSEs) and peak signal to noise ratios
(PSNRs) than existing approaches such as the sparse recovery methods and the spectral recovery using
CNN. Unlike sparse recovery methods, ResCNN does not require a priori knowledge of a sparsifying
basis nor prior information on the spectral features of the dataset. Moreover, ResCNN produces
stable reconstructions under noisy conditions. Finally, ResCNN is converged faster than CNN.

Keywords: spectroscopy; compressed sensing; deep learning; inverse problems; sparse recovery;
dictionary learning

1. Introduction

There has been considerable interest in producing compact spectrometers having a high spectral
resolution, wide working range, and short measuring time. Such a spectrometer can be used in a broad
range of fields such as remote sensing [1], forensics [2], and medical applications [3]. Spectrometers
that exploit advanced signal-processing methods are promising candidates. The compressive sensing
(CS) [4,5] framework makes it possible for a spectrometer to improve its spectral resolution while
retaining its compact size. CS spectroscopy comprises two parts: Capturing a spectrum with a
small number of compressed measurements and reconstructing the spectrum from the compressed
measurements using reconstruction techniques.

To date, for effective signal recovery in CS spectroscopy, three requirements should be satisfied.
First, the spectrum should be a sparse signal or capable of sparse representation on a certain
basis. Second, the sensing patterns of optical structures should be designed to have a small mutual
coherence [6]. Third, appropriate reconstruction algorithms are required. Note that several sparsifying
bases have been used in CS spectroscopy such as a family of orthogonal Daubechies wavelets [7],
a Gaussian line shape matrix [8,9], and a learned dictionary [10]. Furthermore, numerous optical
structures have been proposed to attain the necessary small mutual coherence for sensing patterns
such as thin-film filters [11,12], a liquid crystal phase retarder [13], Fabry–Perot filters [7,14], and
photonic crystal slabs [15,16]. As algorithms for reconstructing the original signal, two types of
basic reconstruction techniques have been developed: greedy iterative algorithms [17,18] and convex
relaxation [19,20]. In CS spectroscopy, the reconstruction algorithms have been used with a sparsity
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constraint. Additionally, a non-negativity constraint is used in Reference [16,21]. Combining these
three considerations, CS spectrometers have shown stable performance for light-emitting diodes (LEDs)
and monochromatic lights.

Since not all signals can be represented as sparse on a fixed basis, prior information on structural
features of the spectral dataset is therefore required to generate a best-fit sparsifying basis. Furthermore,
a high computational cost is required for reconstruction techniques. Recently, deep learning [22] has
been emerging as a promising alternative framework for reconstructing the original signal from the
compressed measurements.

Mousavi et al. [23] was the first study on image recovery from structured measurements using
deep learning. Moreover, a deep-learning framework for inverse problems has been applied in
biomedical imaging for imaging through scattering media [24], magnetic resonance imaging [25,26],
and X-ray computed tomography [27]. Kim et al. [28] reported the first attempt to use deep learning in
CS spectroscopy. They trained a convolutional neural network (CNN) to output the reconstructed
signal from the network. From here on the network reported by Kim et al. will be referred to as CNN.

Unlike CNN [28] in which learnable layers were simply stacked and trained to directly reconstruct
the original spectrum, we make a residual connection [29] between the input and output of CNN and
train the network to reconstruct the original spectrum by referring the input of the network. As a
result, the network learns residuals between the input of the network and the original spectrum. It has
been reported that it is easier to train a network when using residual connections than to train a plain
network that was simply stacked with learnable layers [25,29]. Lee et al. [25] analyzed the topological
structure of magnetic resonance (MR) images and the residuals of MR images. They showed that
the residuals possessed a simpler topological structure, thus making learning residuals easier than
learning the original MR images. In addition, He et al. [29] demonstrated with empirical results that
the residual networks are easy to optimize and they achieved improvements in image-recognition tasks.
From these works, we gain insights such that adding residual connections to CNN would improve the
spectral reconstruction performance in CS spectroscopy.

In this paper, we aim to propose a novel residual convolutional neural network (ResCNN) for
recovering an input spectrum from the compressed sensing measurements in CS spectroscopy. The
novelty lies in the proposed ResCNN structure, with a moderate depth of learnable layers and a single
residual connection, which provides the desired spectral reconstruction performance. The desired
performance here means that the proposed ResCNN offers a performance which is better than that of
CNNs as well as that of CS reconstruction with its sparsifying base known. In CS reconstruction, the
prior knowledge of a fixed sparsifying basis is useful and offers good sparse representation results.
However, in general it is a difficult problem to identify a sparsifying basis for various kinds of spectra
and apply the identified basis to have the recovery performance improved. In this regard, it is an
important advance to find a simple ResCNN which offers good enough performance. It is also worth
to note that the proposed ResCNN is tested with the array type CS spectroscopy, discussed in Section 2,
which we have designed with an array of multilayer thin-film filters.

The previous works on CS spectroscopy [7,11,13,14,16] have shown decent reconstruction
performance but on limited simple sources such as LEDs and monochromatic lights. Using ResCNNs,
we are now able to reconstruct more complex spectra, such as spectra with multiplicity of peaks mixed
with a gradual rise-and-fall.

The remainder of this paper is organized as follows. In Section 2, we model the optical structure
which is used for CS spectroscopy. In Section 3, we describe the system of CS spectroscopy and the
proposed ResCNN. In Section 4, simulated experiments are described. Section 5 presents the results of
experiments. In Section 6, we discuss the results. Finally, we conclude this paper in Section 7.

2. Optical Structure

Numerous optical structures have been proposed for CS spectroscopy. It has been reported that
CS spectrometers, which have various spectral features in the transmission spectrum, show high
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spectral-resolving performance [16]. In this work, we used thin-film filters to model CS spectrometers.
Thin-film filters demonstrate a variety of spectral features depending on the materials used, the number
of layers, and the thicknesses of the layers. Once the structure of thin-film is determined, a transmission
value at a given wavelength λ is defined as follows [30]:

T(λ) = 1−
1
2

(∣∣∣ρTE(λ)
∣∣∣2 + ∣∣∣ρTM(λ)

∣∣∣2), (1)

where ρTE(λ) and ρTM(λ) are amplitude reflection coefficients. The coefficients represent the fraction
of the power reflected by a multilayer thin-film in the transverse electric (TE) and transverse magnetic
(TM) modes of an incident light, respectively. We summarized recursive processes for calculating
amplitude reflection coefficients in Algorithm 1 [11,12,31].

Algorithm 1: Recursive processes for amplitude reflection coefficients.

Input: λ

Structure parameters: θ1,n = {n1, n2, · · · , nl},d = {d2, d3, · · · , dl}.
Step 1: Calculate θk,βk, and Nk using structure parameters.

θk = sin−
( nk−1

nk
sinθk−1

)
, for k = 2, 3, ..., l.

βk = 2π cos(θk)nkdk/λ, for k = 2, 3, ..., l.

Nk =

nk/cosθk f or TE

nk cosθk f or TM
, for k = 2, 3, ..., l.

Step 2: Obtain η2 by setting ηl = Nl.
For k = l-1 to 2
ηk = Nk

ηk+1 cos βk+ jNk sin βk
Nk cos βk+ jηk+1 sin βk

.

Step 3: Compute ρ = (N1 − η2)/(N1 + η2).

Output: ρ

Here, θk is the angle of an incident light passing from kth to k+1th layer. The refractive index
of kth layer is denoted as nk. dk denotes the thickness of the kth layer. Given a wavelength vector
λ = (λ1 λ2 . . . λN) ∈ R1×N in the range of interest, i.e., λmax − λmin. Let ∆λ = λmax−λmax

N . Then,
evaluating the function at the integer multiple of ∆λ, i.e., T(λ = λmin + n∆λ) for n = 0, 1, · · · , N − 1,
we obtain the vector of transmission spectrum Tm ∈ R1×N for the wavelength range. Then, the sensing
pattern matrix of optical structures T ∈ RM×N is obtained by repeating the calculation of Tm for
m = 1, 2, · · · , M.

We have used SiNx and SiO2 for high- and low-refractive index materials, respectively. We
numerically generated thin-film filters by alternately stacking high- and low- refractive index materials,
changing the number of layers, and varying the thickness of each layer. The number of layers in each
filter is in the interval of (19, 24), and the thickness (nm) of each layer is in the interval of (50, 300).
Initially, we randomly generated reference filters and compute the mutual coherence among the filters.
Then, new filters were generated by changing thicknesses of the layers and the mutual coherence of the
filters is compared to the mutual coherence of reference filters. Filters with a smaller mutual coherence
then became the new reference filters. This process is repeated until reasonable reference filters with
the required small mutual coherence are obtained.

Figure 1 shows the heatmap for the transmission spectra of the reference filters and two selected
transmission spectra. In Figure 1a, each of the transmission spectra shows a unique sensing pattern
because of the iterative modeling process of the reference filters based on mutual coherence. Figure 1b
shows two transmission spectra that correspond to the 15th and 30th rows in the heatmap of reference
filters. The transmission spectrum reveals a deep spectral modulation depth and various features such
as broadband backgrounds, multiple peaks with a small full width at half maximums (FWHMs), and
irregular fluctuations.
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Figure 1. (a) Heatmap of the sensing matrix: each row represents the transmission spectrum of the
designed thin-film filter. (b) Two transmission spectra corresponding to the 15th and 30th rows in the
sensing matrix.

3. Compressive Sensing (CS) Spectrometers Using the Proposed Residual Convolutional Neural
Network (ResCNN)

3.1. CS Spectrometers

In CS spectroscopy, the measurement column vector y ∈ RM×1 is represented using the
following relation:

y = Tx, (2)

where x ∈ RN×1 is the spectrum column vector of incident light and T ∈ RM×N is the sensing matrix
of the optical structure. Each row of T represents a transmission spectrum. Because the length of
the measurement vector is smaller than the length of the spectrum vector (M < N), the system is
underdetermined. Conventionally, if x is a sparse signal or can be sparsely represented in a certain
basis, i.e., x = Φs, reconstruction algorithms can determine a unique sparse solution Ŝ from the
following optimization problem:

min
s

∥∥∥TΦs− y
∥∥∥2

2 + τ‖s‖1, (3)

where Φ ∈ RN×N is a sparsifying basis and τ is a regularization parameter. Here, s is a sparse signal
whose components are zero except for a small number of non-zero components. Then, the recovered
spectrum x̂ is Φŝ. In this paper, we refer to the methods of solving the optimization problem using
Equation (3) as sparse recovery.

Typically, except for narrow-band spectra, a spectrum is not a sparse signal, and a fixed sparsifying
basis cannot transform all spectra into sparse signals. Clearly, the use of a fixed basis may lead the
sparse recovery to struggle, as no fixed basis will transform every signal into a sparse signal. In
addition, the sparse recovery is time-consuming and takes a high computational cost.

Our goal is to overcome the limitations of the sparse recovery in CS spectroscopy and recover
various kinds of spectra using ResCNN. Figure 2 shows the schematic of the CS spectroscopy system
using ResCNN. This system consists of two parts: compressive sampling and dimension extension,
and the reconstruction using ResCNN. In the compressive sampling and dimension extension, the
measurement vector y is obtained from Equation (1), which then transforms into x̃ ∈ RN×1 using a
linear transformation. A transform matrix A ∈ RN×M extends the M dimension of y to N dimension of x̃,
where x̃ is a representative spectrum corresponding to x. We used x̃ as the input for the reconstruction.
ResCNN learnt a non-linear mapping between x̃ and x, and afforded a reconstructed spectrum x̂ ∈ RN×1.
The dimension extension by the transform matrix was used to make it easier for ResCNN to extract
features and reconstruct spectra from the non-linear mapping.
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Figure 2. Overview of compressive sensing (CS) spectrosocopy system including the proposed residual
convolutional neural network (ResCNN): An input spectrum is compressively sampled by the sensing
matrix, and the dimension of measurements is extended by the transform matrix. ResCNN is trained to
recover the original spectrum from the extented measurements.

3.2. The Proposed ResCNN

As depicted in Figure 2, ResCNN comprises nine learnable layers, five of which are convolution
layers, four are fully-connected layers, and one is a residual connection. Convolution layers are used
for the feature extraction in the non-linear mapping between x̃ and x. Fully-connected layers are used
for the spectra reconstruction. Each of the convolution layers has a set of one-dimensional learnable
kernels with specific window sizes. The number of kernels and the window sizes are indicated in
Figure 2. After every convolutional layer, the rectified linear unit (ReLU) is used as an activation
function, and the subsampling is then applied. We use non-overlapping max-pooling to down-sample
the output of the activation function. We stack the convolutional layer, the ReLU, and the subsampling
five times. The output of the last subsampling is flattened and then fed into the subsequent four
fully-connected layers. The first three layers are followed by the ReLU and dropout in sequence. The
dropout is introduced to reduce the overfitting of ResCNN. The output of the last fully-connected
layer is fed into a linear activation function. The number of units in each of the fully-connected layers
is noted in Figure 2. Unlike CNN [28] in which learnable layers are simply stacked, we make the
residual connection that the representative spectrum x̃ and the output of the linear activation function
are added up to the reconstructed spectrum x̂. Consequently, x̂ is trained to become x. Given training

data
{
xt

i
}k

i=1
, we train ResCNN to minimize a loss function L. We use the mean squared error between

the original xt and recovered x̂t as the loss function:

L =
1
k

k∑
i=1

∥∥∥xt
i
− x̂t

i
∥∥∥2

2. (4)

The non-linear mapping that x̃ becomes x can be defined as H(̃x) = x. Because of the residual
connection in ResCNN, H(̃x) can be rewritten as H(̃x) = F(̃x) + x̃, where F(̃x) is the mapping of
the learnable layers. The representative spectrum x̃ is referenced by the residual connection, and
then,F(̃x) = H(̃x) − x̃. In particular, the mapping of F(̃x) is called a residual mapping; therefore, the
learnable layers learn the residual of x and x̃.

The previous researches [25,29] have used numerous residual connections in very deep neural
networks in order to make networks converge faster by avoiding vanishing gradient problems. We use
one residual connection between input and output of the moderate depth network. Figure 3 depicts the
manner in which a spectrum is recovered in CNN and ResCNN. The learnable layers of CNN directly
reconstruct the spectrum from the representative spectrum x̃. Alternatively, ResCNN reconstructs the
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spectrum by passing the representative spectrum x̃ through the residual connection shown in Figure 3b.
Consequently, the learnable layers of ResCNN learn to reconstruct residuals.

Figure 3. Descriptions of the spectrum recovery process: (a) convolutional neural network (CNN),
(b) ResCNN.

4. Simulated Experiments

We reconstructed 350 spectral bands (N = 350) using 36 thin-film filters (M = 36) whose sensing
patterns have a spacing of 1 nm for wavelengths from 500 to 850 nm. We determined the sensing
matrix T, assuming that the incident light falls onto the filters with normal incidence. As the transform

matrix A, we used the Moore–Penrose inverse of the sensing matrix T, i.e., A = TT
(
TTT

)−1
.

4.1. Spectral Datasets

To evaluate the performance of ResCNN, we used two synthetic spectral datasets and two
measured spectral datasets. The first synthetic dataset is composed of Gaussian distribution functions
while the other is composed of Lorentzian distribution functions. These two synthetic datasets were
selected as generally these types of functions are used to represent spectral line shapes. As shown
in Figure 4, component functions are added to produce the spectra. We generated 12,000 spectra for
each dataset. For each spectrum, the number of component functions was generated using a geometric
distribution with the probability parameter p set to 0.3. We added one to the number of component
functions to prevent the number of component functions from becoming zero. Then, we randomly
set a location, a height, and an FWHM of each peak. To set a peak location (nm), an integer number
was randomly selected from a uniform distribution with the interval (500, 849). A random number
from a uniform distribution in the interval (0, 1) was used for the height. An integer number for an
FWHM (nm) was randomly drawn from a uniform distribution with the interval (2, 50). Finally, all
of the component functions were summed to generate the spectrum. The height of each generated
spectrum was normalized such that it was mapped from zero to one.
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Figure 4. Examples of two synthetic spectra: the solid purple line is composed of two Lorentzian
distribution functions (dash-dotted orange and olive lines), and the solid black line is composed of
three Gaussian distribution functions (dashed red, blue, and green lines).

As measured datasets, we used the US Geological Survey (USGS) spectral library version 7 [32],
and the glossy Munsell colors spectral dataset [33]. The USGS spectral library provides reflectance
spectra for artificial materials, coatings, liquids, minerals, organic compounds, soil mixtures, and
vegetation. We discarded any spectrum that has missing spectral bands. Then, we extracted the
spectrum in the wavelength range of interest (500 to 849 nm) from the wavelength range of the original
spectrum (350 to 2500 nm). The measured wavelength range for the glossy Munsell colors spectral
dataset, which contains the reflectance spectra of the glossy Munsell color chips, was 380 to 780 nm.
The wavelength range of the original spectrum was different from the wavelength range of interest. We
decided to use the wavelength range from 400 to 749 nm to ensure each spectrum was set to 350 spectral
bands. This selection of wavelengths is reasonable because the wavelengths were located in the center
of the wavelength range of the original spectrum, and showed different spectral features with respect
to each spectrum. In addition, our aim was to show the reconstruction performance with respect to
various kinds of spectra. Finally, each spectrum was normalized such that the height varies from 0 to 1.
Overall, 1473 spectra from USGS spectral dataset and 1600 spectra from Munsell color spectral dataset
were used for our simulated experiments. Table 1 lists the details of each of the spectral datasets.

Table 1. Description of the spectral datasets.

Dataset Training/Validation/Test Avg. Number of
Nonzero Values Description

Gaussian dataset 8000/2000/2000 336.8/350
FWHM (nm) on the interval

[2, 50], Height on the
interval [0, 1]

Lorentzian dataset 8000/2000/2000 349/350
FWHM (nm) on the interval

[2, 50], Height on the
interval [0, 1]

US Geological Survey [32] 982/246/245 348.9/350
350–2500 nm, 2151 spectral
bands (we use 350 spectral

bands in 500–849 nm)

Munsell colors [33] 1066/267/267 349/350
380–780 nm, 401 spectral

bands (we use 350 spectral
bands in 400–749 nm)
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4.2. Data Preprocessing and Training

Given the sensing matrix, the spectral data are compressively sampled as the measurement vector
y shown in Equation (1), and then transformed into the representative spectrum x̃ by multiplying the
transform matrix A and y.

In each spectral dataset, the number of training, validation, and test spectra are randomly assigned
using a ratio of 4:1:1 for the synthetic and measured data sets, respectively. The validation spectra are
used for estimating the number of epochs and tuning the hyper-parameters. To train ResCNN, we
used the Adam optimizer [34] implemented in Tensorflow with the batch size of 16 and 250 epochs.
The experiments were conducted on an NVIDIA GeForce RTX 2060 graphics processing unit (GPU).
Training the architecture can be done in half an hour for each dataset.

4.3. Sparsifying Bases for Spare Recovery

Using sparse recovery, we evaluated the performance of conventional CS reconstructions to
benchmark the performance of ResCNN. As shown in Table 1, the spectra for both the synthetic and
measured datasets are dense spectra. Therefore, we must transform the spectra into sparse signals to
solve Equation (3). In this section, we considered methods to make a sparsifying basis Φ.

First, we considered a Gaussian line shape matrix as a sparsifying basis. Each column of the matrix
comprises a Gaussian distribution function whose length is N. A collection of N Gaussian functions
works as a sparsifying basis Φ ∈ RN×N. We generate two Gaussian line shape matrices. Figure 5 a
shows the heatmap images for two Gaussian line shape matrices. Seven different FWHMs are used to
generate the Gaussian distributions. Given an FWHM, Gaussian distributions are generated by shifting
the peak location using uniform spacing. To create a small dissimilarity between the two Gaussian
line shape matrices, two of the seven FWHMs in Gaussian 1 were replaced with other FWHMs, thus
producing Gaussian 2, as shown in Figure 5a.

Figure 5. Heatmap images of sparsifying bases that were used in simulated experiments: (a) Gaussian
line shape matrices, (b) the learned dictionaries which are from the Gaussian training dataset.

Second, a learned dictionary [35–38] is used as a sparsifying basis. Given a training dataset{
xt

i
}k

i=1
, we can derive a learned dictionary Φ that sparsely represents the training data xt by solving

the following optimization problem, known as the dictionary learning problem:

min
Φ,st1,...,stk

k∑
i=1

∥∥∥xt
i
−Φst

i
∥∥∥2

2 + τ
∥∥∥st

i
∥∥∥

1, (5)
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where τ is a regularization parameter and st
i is ith sparse signal over the training dataset. By fixing an

initial guess for the dictionary Φ in Equation (5), we obtain a solution for the sparse signals
{
st

i
}k

i=1
.

The dictionary is then updated by solving Equation (5) using the sparse signals obtained. This process
is iteratively repeated until convergence is reached and we derive the learned dictionary. We used
three dictionary learning methods: method of optimal directions (MOD) [36], K-SVD [37], and online
dictionary learning (ODL) [38]. The learned dictionaries are generated for each of the training datasets,
and the reconstruction performances are evaluated for each test dataset. Figure 5b shows learned
dictionaries identified using the Gaussian training dataset. The learned dictionaries clearly depend on
the dictionary-learning methods used. Nevertheless, each column of the dictionaries shows a learned
spectral feature from the training dataset.

5. Results

To demonstrate the ability of ResCNN to reconstruct spectra, we evaluated its performance using
three different datasets: Synthetic datasets, noisy synthetic datasets, and measured datasets. We used
the same hyper-parameters of ResCNN for each of these datasets. Moreover, we adopted l1_ls [39]
as the fixed reconstruction algorithm in the sparse recovery. We compared the recovered signal with
the original signal by calculating the root mean squared error (RMSE) and the peak signal to noise
ratio (PSNR). In addition, the performance of five conventional sparse recovery methods, described in
Section 4.3 and CNN was calculated.

5.1. Synthetic Datasets

The two synthetic data sets described in Table 1 were used to perform the signal recovery using
sparse recovery and deep learning. Table 2 shows the average RMSE and PSNR for each of the seven
methods evaluated. ResCNN shows the smallest average RMSE for both the Gaussian and Lorentzian
datasets of 0.0094 and 0.0073, respectively. Moreover, ResCNN shows the largest average PSNR
of 49.0 dB for the Lorentzian dataset. For the Gaussian dataset, the sparse recovery method with
Gaussian 2 shows the largest average PSNR, 49.7 dB, which is slightly higher than the 47.2 dB for
ResCNN. Note that the minor difference between the two Gaussian line shape matrices results in
considerable performance difference. However, reconstruction using the learned dictionaries show
similar performance across all of the synthetic datasets.

Table 2. Average root mean squared errors (RMSEs) and peak signal to noise ratios (PSNRs) over
synthetic datasets.

Sparse Recovery Deep Learning

Dataset Gaussian 1 Gaussian 2 K-SVD MOD ODL CNN ResCNN

Gaussian
dataset

0.0226
(43.1 dB)

0.0112
(49.7 dB)

0.0172
(40.3 dB)

0.0174
(40.3 dB)

0.0161
(41.1 dB)

0.0132
(40.5 dB)

0.0094
(47.2 dB)

Lorentzian
dataset

0.0146
(44.9 dB)

0.0094
(47.5 dB)

0.0136
(42.3 dB)

0.0137
(42.3 dB)

0.0127
(42.9 dB)

0.0101
(42.8 dB)

0.0073
(49.0 dB)

Figure 6 shows the reconstructed test spectra from each of the synthetic datasets. The solid red
line (i) is the input spectra from each dataset. ResCNN is shown in dashed black line (ii), while CNN is
shown in solid orange lines (iii). The reconstructed spectra using sparse recovery with Gaussian 1
(iv), Gaussian 2 (v), and ODL (vi) are shown in solid green, blue, and purple lines in respectively.
Because of the similar performance from each of the learned dictionaries, only the ODL method is
shown. The RMSE and PSNR of ResCNN are 0.0138 (37.2 dB) for the spectrum from the Gaussian
dataset and 0.0096 (40.4 dB) for the spectrum from the Lorentzian dataset. For the selected spectra,
ResCNN achieves superior reconstruction performance compared with the other four reconstructions.
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Figure 6. Spectral reconstructions of test spectra in synthetic datasets, (a) Gaussian dataset,
(b) Lorentzian dataset. An input spectrum (solid red (i)) is compared with ResCNN (dashed black
(ii)), CNN (orange (iii)), sparse recovery: Gaussian 1 (green (iv)), Gaussian 2 (blue (v)), and online
dictionary learning (ODL) (purple (vi)). The baselines are shifted for clarity.

Only sparse recovery with Gaussian 1 fails to recover the fine details of the input spectrum. One
example of the poor ability of sparse recovery with Gaussian 1 to resolve the signal is the recovery of
the peak at ~830 and 590 nm being recovered as two neighboring peaks in Figure 6a,b, respectively.
CNN was unable to capture the smoothness of the spectral features compared to the other methods.

5.2. Noisy Synthetic Datasets

To verify the stability of ResCNN, we evaluated the accuracy of the reconstruction at various
noise levels. Gaussian white noise was added to the measurement vector n ∈ RM×1 to Equation (2),
i.e., y = Tx+n. We considered six different noise levels whose signal-to-noise ratios (SNRs) are 15,
20, 25, 30, 35, and 40 dB. The SNR (dB) is defined as 10 · log10

(
‖x‖22/Nσ2

)
, where σ is the standard

deviation of the noise. Using Gaussian and Lorentzian datasets, we compared the reconstruction
performance of ResCNN with the sparse recovery using Gaussian 2, which shows the best reconstruction
performances among sparse recovery methods in synthetic datasets. ResCNN was evaluated with the
same hyper-parameters that were used for the noise-free datasets. The average RMSE and PSNR for
each of the six noise levels are shown in Table 3. While ResCNN was trained using noise-free data, it
outperformed the sparse recovery with Gaussian 2 at every noise level, which indicates that ResCNN
remains stable even with noisy datasets.

Table 3. Average RMSE and PSNR under various signal-to-noise ratios (SNRs, dB) with
synthetic datasets.

SNR (dB)

Dataset Method 15 dB 20 dB 25 dB 30 dB 35 dB 40 dB

Gaussian
Dataset

Sparse
recovery +
Gaussian 2

0.0796
(22.7 dB)

0.0482
(27.1 dB)

0.0308
(31.2 dB)

0.0215
(34.8 dB)

0.0166
(37.9 dB)

0.0138
(40.7 dB)

ResCNN 0.0671
(24.2 dB)

0.0401
(28.7 dB)

0.0251
(32.9 dB)

0.0171
(36.6 dB)

0.0130
(39.8 dB)

0.0110
(42.4 dB)

Lorentzian
Dataset

Sparse
recovery +
Gaussian 2

0.0817
(22.6 dB)

0.0483
(27.1 dB)

0.0300
(31.2 dB)

0.0201
(35.0 dB)

0.0147
(38.5 dB)

0.0119
(41.4 dB)

ResCNN 0.0689
(24.1 dB)

0.0404
(28.7 dB)

0.0243
(33.1 dB)

0.0157
(37.1 dB)

0.0113
(40.6 dB)

0.0091
(43.4 dB)
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5.3. Measured Datasets

ResCNN was trained using the two measured datasets listed in Table 1, USGS and Munsell
colors, and its reconstruction performance was evaluated. In addition, the signal reconstruction was
performed using CNN and sparse recovery with five different sparsifying bases. Table 4 reports the
average RMSE and PSNR for each of the seven methods. ResCNN achieves the smallest average RMSE
and the largest average PSNR for both datasets. In the USGS dataset, the average RMSE and PSNR of
ResCNN are 0.0048 and 52.4 dB, respectively. In addition, ResCNN achieves 0.0040 for the average
RMSE and 50.0 dB for the average PSNR in the Munsell colors dataset. Similar to synthetic datasets,
all of the learned dictionaries provided similar reconstruction performances. In addition, the small
differences between Gaussian 1 and 2 show large differences in the RMSE and PSNR. The average
RMSE and PSNR of the learned dictionary methods approach the values of ResCNN for Munsell colors
dataset because the Munsell colors dataset has simpler spectral features than the other datasets.

Table 4. Average RMSEs and PSNRs for the measured datasets.

Sparse Recovery Deep Learning

Dataset Gaussian 1 Gaussian 2 K-SVD MOD ODL CNN ResCNN

USGS [32] 0.0081
(45.3 dB)

0.0061
(48.4 dB)

0.0070
(48.5 dB)

0.0081
(47.4 dB)

0.0074
(47.6 dB)

0.0116
(40.8 dB)

0.0048
(52.4 dB)

Munsell
colors [33]

0.0068
(44.6 dB)

0.0050
(47.5 dB)

0.0040
(49.8 dB)

0.0040
(49.9 dB)

0.0042
(49.5 dB)

0.0076
(43.0 dB)

0.0040
(50.0 dB)

Figure 7 shows the reconstruction results of one test spectra from each of the measured datasets.
The spectrum for the organic compound dibenzothiophene in the USGS dataset is reconstructed in
Figure 7a. The spectrum of Munsell color 5 PB 2/2 is shown in Figure 7b. The solid red lines are the
input spectra (i). ResCNN are shown in dashed black lines (ii), and CNN are shown in solid black lines
(iii). The spectra of (iv) to (vi) are reconstructed spectra using the sparse recovery with Gaussian 1,
Gaussian 2, and K-SVD. Because of the best performance of the K-SVD among the learned dictionaries
only the K-SVD method is shown.

Figure 7. Spectral reconstructions of test spectra in measured datasets: (a) spectrum of organic
compound dibenzothiophene in USGS dataset, (b) spectrum of Munsell color 5PB 2/2. The input
spectrum (solid red line (i)) is compared with ResCNN (dashed black (ii)), CNN (orange (iii)), sparse
recovery: Gaussian 1 (green (iv)), Gaussian 2 (blue (v)), and K-SVD (purple (vi)). The baselines are
shifted for clarity.

The RMSE and PSNR for ResCNN are 0.0069 (43.2 dB) for the spectrum from the USGS dataset
and 0.0077 (42.3 dB) for the spectrum from the Munsell colors dataset. ResCNN outperforms other
approaches for the spectrum from USGS dataset. However, for the spectrum from Munsell colors
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dataset, the sparse recovery with K-SVD outperforms ResCNN. ResCNN achieves slightly larger RMSE
and smaller PSNR.

The performances of sparse recovery with Gaussian 2 is degraded for measured datasets compared
with the performance for synthetic datasets. The measured datasets have rough spectral features
unlike the smooth spectral features observed in the synthetic datasets. As a result, the sparse recovery
with Gaussian 2 performs worse, because of its inability to represent rough spectral features using
Gaussian distribution functions. The performance of sparse recovery with dictionary learning methods
are improved for measured datasets compared with the performance of synthetic datasets. Because the
number of spectra in measured datasets are smaller than the number of spectra in synthetic datasets.
Therefore, finding the best-fit sparsifying basis for measured datasets is easier than finding the best-fit
sparsifying basis for synthetic datasets using dictionary-learning methods. Meanwhile, ResCNN
shows superior reconstruction performances regardless of spectral features of datasets and the size
of datasets.

6. Discussion

As shown in the results, we demonstrate empirically that ResCNN outperforms the sparse
recovery methods and the CNN over all datasets. The sparse recovery shows unstable performance
because it is highly dependent on the sparsifying basis and spectral features of dataset. This is a direct
result of being unable to identify a fixed sparsifying basis that can transform any spectra into a sparse
signal, which means the a priori structural information such as line shapes and FWHMs is required
to select a consistent sparsifying basis. Learned dictionaries are used to cope with the problem of
identifying a consistent sparsifying basis. The columns of learned dictionaries are composed of learned
spectral features from the training dataset. While this shows an improvement in measured datasets,
a learned dictionary is still limited to representing all the spectral features in the large dataset (i.e.,
synthetic datasets) using linear combinations of columns of the learned dictionary.

Compression approaches for summarizing information with a small number of sensors were
proposed in [40]. These approaches can be exploited to generate a sparsifying basis by reducing the
loss of spectral information in large datasets.

To improve the reconstruction performance in sparse recovery, pre-defined structure information
and side information of unknown target signals were used in [41,42]. The reconstruction of
three-dimensional electrical impedance tomography was improved by updating three-dimensional
structural correlations using pre-defined structured signals [41]. To recover multi-modal data, a
reconstruction framework is proposed in [42] that uses side information in unrolled optimization.
Unrolled optimization approaches using deep learning were proposed in [43,44]. Deep-learning
architectures were used to train hyper-parameters, such as a gradient regularizer and a step size. Using
learned hyper-parameters, it was shown optimized solutions can be obtained within a fixed number of
iterations. These proposed approaches for image reconstruction have assumed random sensing matrix
and structured or sparse signals. In this work, however, we consider dense spectra and the sensing
matrix from thin-film filters for the real implementation. Moreover, the reconstruction performance
may change to a sparsifying basis as shown in results because a reconstructed spectrum x̂ should be
represented as a linear combination of columns of a fixed sparse basis Φ as Φŝ.

For recovering spectra, ResCNN does not require the a priori knowledge of a sparsifying basis
or prior information of spectral features. During training, ResCNN learns the spectral features using
learnable layers, which enable it to recover the fine details for various kinds of spectra without
identifying a sparsifying basis.

ResCNN is directly compared with CNN for the synthetic Gaussian dataset in Figure 8a where
the mean squared error (Equation (4)) is plotted with respect to the epoch. The mean squared error for
CNN and ResCNN are shown in solid black line and solid red line with square symbols, respectively.
ResCNN shows a lower mean squared error than that of CNN. Moreover, ResCNN converges faster
than CNN, indicating that ResCNN optimizes the learnable layers quicker, as expected based on
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previous research using residuals [25,29]. In contrast to the previous research that numerous residual
connections were used in very deep neural networks to converge networks faster by avoiding vanishing
gradient problem, we achieve spectral reconstruction improvements even with one residual connection
in a moderate depth CNN.

Figure 8. (a) Mean squared error of Gaussian dataset with respect to epochs. Solid black line denotes
validation error of CNN, and solid red line with square symbols denotes validation error of ResCNN.
(b) Reconstructions of a spectrum with respect to epochs where (i) to (iv) are epochs 1, 50, 150, and 250,
respectively. Red line (v) denotes the original spectrum.

The reconstruction of an example spectrum with respect to the number of epochs is shown in
Figure 8b. Black lines ((i) to (iv)) are the reconstructed spectra at 1, 50, 150, and 250 epochs, respectively.
The solid red line (v) is the original spectrum, and the series of reconstructed spectrum for ResCNN
show that the reconstruction converged earlier than CNN. The increased rate of convergence is because
of the residual connection in ResCNN. Overall, the reconstruction performance of ResCNN is an
improvement over CNN.

Note that both ResCNN and dictionary learning for sparse recovery require a training dataset
and an optimization process to learn the spectral features. While this is a time-consuming process,
remember that when using a learned dictionary to recover spectra, an iterative reconstruction algorithm
is required, which needs additional time and incurs a high computational cost. The benefit of ResCNN
is that it gives a reconstructed spectrum immediately once the training is completed.

7. Conclusions

In this paper, we propose a novel ResCNN for recovering the input spectrum from the compressed
measurements in CS spectroscopy. As the optical structure for CS spectroscopy, we numerically
generated multilayer thin-film filters which have a small mutual coherence. Therefore, we could
compressively measure input spectra with unique sensing patterns. To reconstruct the input spectra
from the compressively sampled measurements, we modeled ResCNN, which has a moderate-depth of
learnable layers and a residual connection. We stacked nine learnable layers: five convolutional layers
and four fully-connected layers with a single residual connection between the input and output of the
learnable layers. The measurements were extended by a linear transformation and then fed into ResCNN.
Finally, ResCNN reconstructed the input spectra. We demonstrated the empirical reconstruction results
for ResCNN using synthetic and measured datasets. We compared the reconstruction performance of
ResCNN with sparse recovery using five different sparsifying bases and CNN. Compared with sparse
recovery methods, ResCNN shows better reconstruction performance without the a priori knowledge
of either a sparsifying basis or any spectral features of the spectral datasets. On the other hand, the
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sparse recovery methods show deviation of reconstruction performances to sparsifying bases and
spectral datasets, meaning that a fixed sparsifying basis cannot represent all spectral features of input
spectra. Furthermore, ResCNN shows stable reconstruction performances under noisy environments.
Compared with CNN, ResCNN shows significant improvement in reconstruction performance and
converges faster than CNN. In future work, we will explore compression approaches [40] and unrolled
optimization approaches [43,44] for generating a sparsifying basis Φ from the training dataset to fully
represent spectra without loss of spectral features.

Author Contributions: Conceptualization, C.K. and H.-N.L.; methodology, C.K.; software, C.K. and D.P.; formal
analysis, C.K. and D.P.; investigation, C.K.; data curation, C.K.; writing—original draft preparation, C.K.;
writing—review and editing, C.K., D.P. and H.-N.L.; project administration, H.-N.L.; funding acquisition, H.-N.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korean government (MSIP) (NRF-2018R1A2A1A19018665).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Clark, R.N.; Roush, T.L. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing
applications. J. Geophys. Res. Solid Earth 1984, 89, 6329–6340. [CrossRef]

2. Izake, E.L. Forensic and homeland security applications of modern portable Raman spectroscopy.
Forensic Sci. Int. 2010, 202, 1–8. [CrossRef] [PubMed]

3. Kim, S.; Cho, D.; Kim, J.; Kim, M.; Youn, S.; Jang, J.E.; Je, M.; Lee, D.H.; Lee, B.; Farkas, D.L.; et al.
Smartphone-based multispectral imaging: System development and potential for mobile skin diagnosis.
Biomed. Opt. Express 2016, 7, 5294–5307. [CrossRef] [PubMed]

4. Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [CrossRef]
5. Eldar, Y.C.; Kutyniok, G. Compressed Sensing: Theory and Applications; Cambridge University Press: Cambridge,

UK, 2012.
6. Candes, E.J.; Eldar, Y.C.; Needell, D.; Randall, P. Compressed sensing with coherent and redundant

dictionaries. Appl. Comput. Harm. Anal. 2011, 31, 59–73. [CrossRef]
7. Oiknine, Y.; August, I.; Blumberg, D.G.; Stern, A. Compressive sensing resonator spectroscopy. Opt. Lett.

2017, 42, 25–28. [CrossRef]
8. Kurokawa, U.; Choi, B.I.; Chang, C.-C. Filter-based miniature spectrometers: Spectrum reconstruction using

adaptive regularization. IEEE Sens. J. 2011, 11, 1556–1563. [CrossRef]
9. Cerjan, B.; Halas, N.J. Toward a Nanophotonic Nose: A Compressive Sensing-Enhanced, Optoelectronic

Mid-Infrared Spectrometer. ACS Photonics 2018, 6, 79–86. [CrossRef]
10. Oiknine, Y.; August, I.; Stern, A. Multi-aperture snapshot compressive hyperspectral camera. Opt. Lett. 2018,

43, 5042–5045. [CrossRef]
11. Kim, C.; Lee, W.-B.; Lee, S.K.; Lee, Y.T.; Lee, H.-N. Fabrication of 2D thin-film filter-array for compressive

sensing spectroscopy. Opt. Lasers Eng. 2019, 115, 53–58. [CrossRef]
12. Oliver, J.; Lee, W.-B.; Lee, H.-N. Filters with random transmittance for improving resolution in

filter-array-based spectrometers. Opt. Express 2013, 21, 3969–3989. [CrossRef] [PubMed]
13. August, Y.; Stern, A. Compressive sensing spectrometry based on liquid crystal devices. Opt. Lett. 2013, 38,

4996–4999. [CrossRef] [PubMed]
14. Huang, E.; Ma, Q.; Liu, Z. Etalon Array Reconstructive Spectrometry. Sci. Rep. 2017, 7, 40693. [CrossRef]

[PubMed]
15. Wang, Z.; Yu, Z. Spectral analysis based on compressive sensing in nanophotonic structures. Opt. Express

2014, 22, 25608–25614. [CrossRef] [PubMed]
16. Wang, Z.; Yi, S.; Chen, A.; Zhou, M.; Luk, T.S.; James, A.; Nogan, J.; Ross, W.; Joe, G.; Shahsafi, A. Single-shot

on-chip spectral sensors based on photonic crystal slabs. Nat. Commun. 2019, 10, 1020. [CrossRef]
17. Pati, Y.C.; Rezaiifar, R.; Krishnaprasad, P.S. Orthogonal matching pursuit: Recursive function approximation

with applications to wavelet decomposition. In Proceedings of the 27th Asilomar Conference on Signals,
Systems and Computers, Pacific Grove, CA, USA, 1–3 November 1993; pp. 40–44.

http://dx.doi.org/10.1029/JB089iB07p06329
http://dx.doi.org/10.1016/j.forsciint.2010.03.020
http://www.ncbi.nlm.nih.gov/pubmed/20395087
http://dx.doi.org/10.1364/BOE.7.005294
http://www.ncbi.nlm.nih.gov/pubmed/28018743
http://dx.doi.org/10.1109/TIT.2006.871582
http://dx.doi.org/10.1016/j.acha.2010.10.002
http://dx.doi.org/10.1364/OL.42.000025
http://dx.doi.org/10.1109/JSEN.2010.2103054
http://dx.doi.org/10.1021/acsphotonics.8b01503
http://dx.doi.org/10.1364/OL.43.005042
http://dx.doi.org/10.1016/j.optlaseng.2018.10.018
http://dx.doi.org/10.1364/OE.21.003969
http://www.ncbi.nlm.nih.gov/pubmed/23481932
http://dx.doi.org/10.1364/OL.38.004996
http://www.ncbi.nlm.nih.gov/pubmed/24281493
http://dx.doi.org/10.1038/srep40693
http://www.ncbi.nlm.nih.gov/pubmed/28074883
http://dx.doi.org/10.1364/OE.22.025608
http://www.ncbi.nlm.nih.gov/pubmed/25401594
http://dx.doi.org/10.1038/s41467-019-08994-5


Sensors 2020, 20, 594 15 of 16

18. Dai, W.; Milenkovic, O. Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans.
Inf. Theory 2009, 55, 2230–2249. [CrossRef]

19. Chen, S.S.; Donoho, D.L.; Saunders, M.A. Atomic decomposition by basis pursuit. SIAM Rev. 2001, 43,
129–159. [CrossRef]

20. Candes, E.; Tao, T. Decoding by linear programming. arXiv 2005, arXiv:math/0502327. [CrossRef]
21. Oliver, J.; Lee, W.; Park, S.; Lee, H.-N. Improving resolution of miniature spectrometers by exploiting sparse

nature of signals. Opt. Express 2012, 20, 2613–2625. [CrossRef]
22. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [CrossRef]
23. Mousavi, A.; Baraniuk, R.G. Learning to invert: Signal recovery via deep convolutional networks.

In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 2272–2276.

24. Li, Y.; Xue, Y.; Tian, L. Deep speckle correlation: A deep learning approach toward scalable imaging through
scattering media. Optica 2018, 5, 1181–1190. [CrossRef]

25. Lee, D.; Yoo, J.; Ye, J.C. Deep residual learning for compressed sensing MRI. In Proceedings of the 2017 IEEE
14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, VIC, Australia, 18–21 April
2017; pp. 15–18.

26. Mardani, M.; Gong, E.; Cheng, J.Y.; Vasanawala, S.S.; Zaharchuk, G.; Xing, L.; Pauly, J.M. Deep Generative
Adversarial Neural Networks for Compressive Sensing MRI. IEEE Trans. Med. Imaging 2019, 38, 167–179.
[CrossRef] [PubMed]

27. Jin, K.H.; McCann, M.T.; Froustey, E.; Unser, M. Deep convolutional neural network for inverse problems in
imaging. IEEE Trans. Image Process. 2017, 26, 4509–4522. [CrossRef] [PubMed]

28. Kim, C.; Park, D.; Lee, H.-N. Convolutional neural networks for the reconstruction of spectra in compressive
sensing spectrometers. In Optical Data Science II; International Society for Optics and Photonics: Bellingham,
WA, USA, 2019; Volume 10937, p. 109370L.

29. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

30. Macleod, H.A. Thin-Film Optical Filters; CRC Press: Boca Raton, FL, USA, 2010.
31. Barry, J.R.; Kahn, J.M. Link design for nondirected wireless infrared communications. Appl. Opt. 1995, 34,

3764–3776. [CrossRef] [PubMed]
32. Kokaly, R.F.; Clark, R.N.; Swayze, G.A.; Livo, K.E.; Hoefen, T.M.; Pearson, N.C.; Wise, R.A.; Benzel, W.M.;

Lowers, H.A.; Driscoll, R.L. USGS Spectral Library Version 7 Data: US Geological Survey Data Release; United
States Geological Survey (USGS): Reston, VA, USA, 2017.

33. University of Eastern Finland. Spectral Color Research Group. Available online: http://www.uef.fi/web/

spectral/-spectral-database (accessed on 2 August 2019).
34. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
35. Chen, G.; Needell, D. Compressed sensing and dictionary learning. Finite Fram. Theory 2016, 73, 201.
36. Engan, K.; Aase, S.O.; Husoy, J.H. Method of optimal directions for frame design. In Proceedings of the 1999

IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat.
No. 99CH36258), Phoenix, AZ, USA, 15–19 March 1999; Volume 5, pp. 2443–2446.

37. Aharon, M.; Elad, M.; Bruckstein, A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse
representation. IEEE Trans. Signal. Process. 2006, 54, 4311–4322. [CrossRef]

38. Mairal, J.; Bach, F.; Ponce, J.; Sapiro, G. Online dictionary learning for sparse coding. In Proceedings of
the 26th Annual International Conference on Machine Learning, Montreal, QC, Canada, 14–17 June 2009;
pp. 689–696.

39. Koh, K.; Kim, S.-J.; Boyd, S. An interior-point method for large-scale l1-regularized logistic regression. J. Mach.
Learn. Res. 2007, 8, 1519–1555.

40. Martino, L.; Elvira, V. Compressed Monte Carlo for distributed Bayesian inference. arXiv 2018,
arXiv:1811.0505.

41. Liu, S.; Wu, H.; Huang, Y.; Yang, Y.; Jia, J. Accelerated Structure-Aware Sparse Bayesian Learning for 3D
Electrical Impedance Tomography. IEEE Trans. Ind. Inform. 2019. [CrossRef]

42. Tsiligianni, E.; Deligiannis, N. Deep coupled-representation learning for sparse linear inverse problems with
side information. IEEE Signal. Process. Lett. 2019, 26, 1768–1772. [CrossRef]

http://dx.doi.org/10.1109/TIT.2009.2016006
http://dx.doi.org/10.1137/S003614450037906X
http://dx.doi.org/10.1109/TIT.2005.858979
http://dx.doi.org/10.1364/OE.20.002613
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1364/OPTICA.5.001181
http://dx.doi.org/10.1109/TMI.2018.2858752
http://www.ncbi.nlm.nih.gov/pubmed/30040634
http://dx.doi.org/10.1109/TIP.2017.2713099
http://www.ncbi.nlm.nih.gov/pubmed/28641250
http://dx.doi.org/10.1364/AO.34.003764
http://www.ncbi.nlm.nih.gov/pubmed/21052199
http://www.uef.fi/web/spectral/-spectral-database
http://www.uef.fi/web/spectral/-spectral-database
http://dx.doi.org/10.1109/TSP.2006.881199
http://dx.doi.org/10.1109/TII.2019.2895469
http://dx.doi.org/10.1109/LSP.2019.2929869


Sensors 2020, 20, 594 16 of 16

43. Diamond, S.; Sitzmann, V.; Heide, F.; Wetzstein, G. Unrolled optimization with deep priors. arXiv 2017,
arXiv:1705.08041.

44. Gilton, D.; Ongie, G.; Willett, R. Neumann Networks for Linear Inverse Problems in Imaging. IEEE Trans.
Comput. Imaging 2019. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TCI.2019.2948732
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.


sensors

Article

Two-Wired Active Spring-Loaded Dry Electrodes for
EEG Measurements

Seungchan Lee 1 , Younghak Shin 2, Anil Kumar 1, Kiseon Kim 1 and Heung-No Lee 1,*
1 School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology,

Gwangju 61005, Korea; futuremax7@gmail.com (S.L.); anilkdee@gmail.com (A.K.); kskim@gist.ac.kr (K.K.)
2 LG CNS AI&BigData Research Center, Seoul 07795, Korea; shinyh0919@gmail.com
* Correspondence: heungno@gist.ac.kr; Tel.: +82-62-715-2237

Received: 4 October 2019; Accepted: 17 October 2019; Published: 21 October 2019
����������
�������

Abstract: Dry contact electrode-based EEG acquisition is one of the easiest ways to obtain
neural information from the human brain, providing many advantages such as rapid installation,
and enhanced wearability. However, high contact impedance due to insufficient electrical coupling
at the electrode-scalp interface still remains a critical issue. In this paper, a two-wired active dry
electrode system is proposed by combining finger-shaped spring-loaded probes and active buffer
circuits. The shrinkable probes and bootstrap topology-based buffer circuitry provide reliable electrical
coupling with an uneven and hairy scalp and effective input impedance conversion along with
low input capacitance. Through analysis of the equivalent circuit model, the proposed electrode
was carefully designed by employing off-the-shelf discrete components and a low-noise zero-drift
amplifier. Several electrical evaluations such as noise spectral density measurements and input
capacitance estimation were performed together with simple experiments for alpha rhythm detection.
The experimental results showed that the proposed electrode is capable of clear detection for the
alpha rhythm activation, with excellent electrical characteristics such as low-noise of 1.131 µVRMS

and 32.3% reduction of input capacitance.

Keywords: EEG measurements; active electrodes; spring-loaded dry electrodes; two-wired electrodes;
bootstrapping topology

1. Introduction

During the last few decades, dry contact electrode-based electroencephalogram (EEG)
acquisition [1] is one of the easiest ways to obtain neural information from the human brain in
real time. This type of electrode is rapidly replacing conventional wet electrodes, which have
been used in a variety of applications such as patient monitoring of neurological disorders [2],
brain–computer interfaces [3], and biofeedback [4]. Nowadays, dry electrodes are integrated into
portable commercial devices with wearable technologies to provide personal services such as healthcare
and home diagnostics to improve the quality of life. These electrodes are designed to eliminate the
need for electrolytic gels, which makes the installation process simple with a short setup time and
also prevents an increase in impedance due to drying of gels. However, the absence of conductive
gels means that controlling the contact impedance at the electrode–scalp interface is more difficult
than using the conventional wet electrodes. Therefore, the impedance characteristics and the physical
contact capability of the electrode device have become crucial design considerations for practical
electrolyte-free EEG measurements.

Considering these design challenges, many researchers have endeavored to design better dry
electrodes with various innovative ideas. Generally, these electrodes can be classified into three
different categories: microelectromechanical systems (MEMS)-based electrodes, capacitive electrodes,
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and finger-shaped electrodes based on the probe shape and electrical coupling topology at the
electrode–scalp interface.

In the MEMS-based dry electrodes [5,6], an array of microneedles are employed to penetrate
the 10–40 µm thickness outer skin layer of the scalp. Spiky microneedles, which have lengths
of 100–210 µm [7], around 150 µm [8], and 300 µm [9], are typically fabricated on a silicon
wafer using special etching processes. In addition to silicon-based materials, a brush-type carbon
nanotube-based [10], chitosan/Au-TiO2 nanotube-based [11], and polydimethylsiloxane (PDMS)
substrate-based MEMS electrodes [12] have been developed for various kinds of electrophysiological
sensing. Although the tip of microneedles can pass directly through into the inner skin layer to create
a direct DC-coupled interface with the scalp surface, their complicated and costly fabrication process
and infection risks still remain as practical constraints. In addition, EEG measurements on a hairy
scalp are still limited because of the fragile and microscopic needles, which do not penetrate the hair
layer effectively.

Capacitive electrodes are generally designed by building AC-coupled non-contact interfaces
between the scalp surface and electrodes, utilizing insulation materials such as a hair layer, cotton
fabric or printed circuit board (PCB) [13]. This AC-coupled interface can function as a capacitor on the
electrode frontend, due to which the acquired biopotentials pass across the electrically insulated layer.
With regard to this, Sullivan et al. [14] and Chi et al. [15,16] have proposed PCB plate-based capacitive
electrodes equipped with discrete off-the-shelf components or a customized application-specific
integrated circuit (ASIC). Capacitive electrodes based on soft insulating materials such as polymer
foam [17], PDMS [18] and carbon nanotube [19] have also been introduced. However, there are still
many design issues related to measurement distortion such as gain attenuation and phase drift due to
the AC-coupled interface [20].

Finger-shaped dry electrodes have also been developed for direct-contact biopotential
measurements. In these electrodes, the shape of the probe part has been designed to penetrate
the hair layer; therefore, DC-coupled interfaces can be easily made by touching the probes to the
scalp surface. From this idea, a shrinkable spring-loaded probe-based passive dry electrode [21],
a brush-type flexible dry electrode [22,23], a pin-shaped conductive polymer-based dry electrode [24,25]
and a 3D-printed dry-fingered electrode [26] have also been proposed. However, high and unstable
contact impedance due to the electrolyte-free interface remains a major challenge in this type of
dry electrode.

One possible approach to solve this issue is that the electrode device itself supplies conductive
liquid to lower the contact impedance. This method has been presented in the literature [27], but the
semi-dry approach still has some of the same problems as the wet types. Another approach is to embed
supplementary active circuitry in the electrode device to electronically maximize the input impedance
characteristics of the dry electrodes. Following this approach, active electrodes [28] with various circuit
topologies designed using off-the-shelf discrete components [29,30] and ASICs [15,31,32] have been
proposed. This overall research trend suggests that dry electrodes require that the electrode device is
able to make reliable contact with the scalp surface and have high input impedance characteristics.

To meet these requirements, this study proposes a 2-wired active spring-loaded dry electrode to
simultaneously achieve high-precision and electrolyte-free EEG monitoring. The proposed electrode is
designed with a combination of spring-loaded probes and an active buffer circuit. The finger-shaped
probes are able to penetrate the hairs on the scalp without prior preparation, and their shrinkable
spring-loaded structures provide mechanical flexibility to each probe for adjustable contact intensity
along the curvature of the uneven scalp surface. These structural advantages effectively improve the
contact efficiencies of the electrodes with the scalp surface. The zero-drift amplifier-based active buffer
circuit provides low-noise impedance conversion to stabilize the intractable impedance characteristics
of the dry electrodes caused by the absence of the conductive paste. In the design of the active
circuit, the 2-wired bootstrap topology reduces the number of wire connections and provides further
enhancement of the input impedance by reducing the input capacitance.
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To achieve low-noise and attenuation-free EEG measurements, an equivalent circuit model and
amplifier requirements for active circuits were theoretically analyzed in the design process. Evaluations
of the electrical characteristics such as spectral noise power density and input capacitance were also
performed along with a simple alpha rhythm detection test to verify the EEG feature detection capability.

The contribution of this study is to present an optimized design for an active dry electrode for EEG
measurements by combining the electronically maximized impedance characteristic and the physically
maximized contact capability of the electrode device.

The remainder of the paper is organized as follows: Section 2 provides detailed descriptions of
the design and implementation methods along with an electrical analysis of the equivalent circuit
model. The evaluation of the electrical characteristics as well as the experimental methodology for
alpha rhythm detection is presented in Section 3. Section 4 summarizes several results, including
the evaluation of the electrical characteristics and alpha rhythm detection capability. Finally, a brief
discussion of this study and a summary of the proposed electrode development are given in Sections 5
and 6.

2. Design and Implementation

2.1. Two-Wired Active Electrode Design

Active electrodes require an active power supply. At least three wired connections are needed,
instead of a single wire, for both the power supply and signal transmission. Compared to conventional
passive electrodes that do not require a power supply, the additional wires make it difficult to handle
rigid wires and increase the design complexity of the biopotential acquisition system. To reduce
the number of wires for the active electrodes, a bootstrap technique [33] was employed for the
proposed active dry electrodes. This technique reduces the number of electrode wires by replacing
the conventional voltage-based power supply with a current source-based power supply. The power
supply rails and signal transmission lines can be shared over a single wire, resulting in an active
electrode design that requires only two wire connections.

Figure 1 shows the simplified schematic of the bootstrap technique-based active electrode system
using an operational amplifier buffer. The half-power supply bootstrap scheme is implemented by
connecting the amplifier’s positive power supply rail with its signal output node to a current source.
At this point, the current source Is feeds current to the positive power rail of the amplifier, while the
signal output node of the amplifier consumes the surplus current. The signal output voltage is therefore
determined as follows:

Vo =
(Is − Iq+)Ro + AolVi

Aol + 1
' Vi (1)

where Aol, Ro, and Iq+ are the amplifier’s open-loop gain, output impedance, and quiescent current on
the positive power supply rail, respectively.
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Generally, the open-loop gain of an amplifier is very large, so the current biasing effects on the
output node are neglected. Therefore, the output node voltage will be followed to the input node voltage,
and the bootstrapped wire connected with output node can then be used as a signal output link for the
active electrode system. However, this circuit design lowers the voltage delivered to the amplifier’s
positive power supply rail unintentionally, making it difficult to meet the minimum operating voltage
for normal amplifier operation in some special cases. To avoid this cases, the operating voltage range
of the amplifier needs to be checked. This requirement is discussed further in Section 2.3.2.

The unity-gain buffer configuration allows transformation from the low impedance of the
biopotential source to the possible highest impedance [34]. Because the input impedance of the
buffer circuit is determined as the differential input impedance multiplied by the open-loop gain,
this configuration enables maximizing the electrode impedance. The extremely high input impedance
of the dry electrode enables virtually perfected isolation between the source and load, and thus
eliminates the loading effects. This property helps to provide a robust signal, which is hardly affected
by motion artifacts and power line interferences.

2.2. Electrical Model Analysis and Design Considerations

To investigate the electrical characteristics such as source-to-output gain and input-referred noise
of the active circuits, we analyzed the electrical coupling model of the skin–electrode interface for
the proposed active circuit. A general electrical model of the active electrode circuit was analytically
studied by Chi [13]. Figure 2 shows an equivalent electrical model of the proposed active dry electrode
reinterpreted from the general active electrode model. In this circuit model, Vs and Vo denote the
biopotential source generated from the human brain and output node of the active circuit, respectively.
Rs and Cs represent the resistive and capacitive properties of the scalp-electrode interface established
by dry contact of the spring-loaded probes, respectively. Ra and Ca indicate the input resistance and
capacitance of the amplifier, respectively. Cp denotes the parasitic capacitance [35] originating from
the voltage difference between the signal input and output through active shielding. Av is the gain
of the circuit and is set to unity because the proposed active circuit is designed to operate under
a buffer configuration. In order to easily calculate the gain and input-referred noise of the circuit model,
the resistances and capacitances have been substituted in parallel at the interface layer (Rs//Cs) and
input node of the amplifier (Ra//Ca) for impedance Zs and Za, respectively. Using nodal analysis,
the formulation for source-to-output gain of the equivalent circuit model can be derived as:

G( jw) = Vo
Vs

= Za
Zs+Za+(1−Av) jwCpZsZa

=
Ra( jwRsCs+1)

jwRsRa[Ca+Cs+(1−Av)Cp]+Rs+Ra

(2)
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With a low-frequency biopotential source, the contributions of the resistive components are
relatively high because of the reduction of the w factor. In the extreme DC case, where w is equal
to zero, this gain formula simply changes to Ra/(Rs + Ra). As the value of Ra increases, Rs becomes
negligible, which means that the input impedance specification of the amplifier directly affects the gain
attenuation of the low-frequency biopotential source.

Conversely, with a high-frequency biopotential source, the contribution of the capacitive
components increases. Hence, Cs needs to be maximized, while Ca and Cp need to be minimized in
order to avoid gain attenuation of the high-frequency biopotential source. Cp can be minimized by
suppressing the leakage current between the input and output nodes. This can be achieved by shielding
the input node with the output node of the same potential as the input node. Ca is the amplifier’s
internal parasitic capacitance that originates from between the input node and both of the power supply
rails [36]. Thus, this parasitic capacitance can be considered as a combination of the capacitance built
up between the input node and the positive rail (Ca+) and between the input node and negative rail
(Ca−). Applying the bootstrap topology to the proposed active circuit, the voltage difference between
the signal output node, which has the same potential as the signal input node, and the positive voltage
supply rail of the amplifier can be minimized. Therefore, Ca+ can be effectively eliminated, and the
total capacitance of Ca can also be minimized. Cs is involved in the electrode contact efficiency with the
scalp surface. When using non-flexible rigid probes, it is difficult to achieve tight contact with the scalp,
resulting in an air gap between the probes and scalp surface. This air gap is equivalent to another
extra capacitor, which is connected with Cs in series. Consequently, the total capacitance of Cs will
be reduced because of the series connection of two individual capacitors. The flexible spring-loaded
probes, on the other hand, can easily adjust their contact intensities in accordance with the curvature of
the scalp surface, thus preventing to the building of air gaps. Therefore, the maximization of Cs can be
achieved by employing spring-loaded probes.

To quantitatively analyze the noise performance of the active circuit, the noise voltage with respect
to the biopotential source input can be expressed as:

Nin =

(
Zs + Za + jwCpZsZa

Za

)
Vn + ZsIn (3)

and the power density, which is equal to the root-mean-squared (RMS) power of the input-referred
noise voltage, can also be derived as:

N2
in,rms =


∣∣∣Zs + Za + jwCpZsZa

∣∣∣2
|Za|

2

V2
n,rms + |Zs|

2I2
n,rms (4)

where V2
n,rms and I2

n,rms denote the RMS-squared power of the voltage and current noise sources Vn and
In, respectively. These noise sources are derived from the noise model of the amplifier [37], and these
parameters depend on the electrical characteristics specified in the amplifier datasheet. Therefore,
amplifier selection is a key optimization factor for low-noise biopotential acquisition, and it will be
discussed in Section 2.3.2.

For low input-referred noise performance, it is obvious that the operand terms multiplied with
the voltage and current noise sources need to be minimized. To lower the voltage noise Vn, Za firstly
needs to be maximized. The bootstrapping topology provides low input capacitance characteristics
by reducing the parasitic capacitance of the amplifier, resulting in high input impedance of the
amplifiers. Cp should also be minimized for further reduction of the voltage noise term, which can be
achieved by preventing leakage current with robust shielding of the input node. The current noise is
typically dominated by the scalp–electrode coupling impedance Zs, which is inversely proportional
to the electrode contact efficiency. To lower the current noise In, high contact efficiency is required,
meaning that low coupling impedance with low resistance and high capacitance must be achieved.
These requirements can be achieved by equipping multiple spring-loaded probes in the design of
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the proposed electrode. Installation of the twelve parallelly connected probes lowers the resistive
impedance, which in turn prevents poor electrical coupling caused by loose installation of the electrode
unit. In addition, the probe’s shrinkable structure fills the air gaps caused by microcontact failures at
the scalp–electrode interface, thereby continuously keeping high capacitance characteristics.

2.3. Design of Active Dry Electrodes

2.3.1. Spring-Loaded Probes

The EEG signals are acquired using the spring-loaded probes (SK100 Series [19], Leeno Industrial
Inc., Pusan, Korea) by contact with the scalp surface. In each electrode, a total of 12 probes are soldered
to the active circuit PCB, inside the electrode. Each probe consists of four components: plunger, barrel,
spring, and probe receptacles. The plunger has a cylindrical shape, which is coated with beryllium
copper and gold plated over nickel. The plating materials are biocompatible, and they do not induce
any allergic reactions. The tip of the plunger, which is in contact with the scalp, has a round shape to
minimize stabbing pain. The plunger is combined with a barrel and spring to make a spring-loaded
structure. With the aid of the embedded springs, the probe is shrinkable up to a maximum of 1.5 mm
along with the barrel. The initial pressure of the spring is only 10 g in the preloaded state of the probe.
When the probe shrinks to its minimum length, the spring delivers up to 54 g of pressure to the scalp.
Therefore, this linearly increasing force ensures that appropriate contact pressure continues to be
applied along the uneven scalp surface. The probes also relieve pain by absorbing the excess pressure
in the vertical direction. In the electrical specifications, the resistance of each probe is given as less than
50 mΩ, which is sufficiently low for conducting biopotential signals.

2.3.2. Amplifier Specifications

With reference to the electrical model analyses for the proposed active circuits in Section 2.2, it can
be observed that the input-referred noise is primarily affected by the electrical specifications of the
amplifier. In addition to this, the circuit design with bootstrap topology lowers the voltage on the
positive power supply rail in proportion to the input biopotential voltage, which may not meet the
minimum voltage requirement for normal amplifier operation. The other amplifier specifications,
including offset voltage, input bias current, and quiescent current, should also be checked for the
DC-coupled circuit design and longer operation times.

To fulfill these particular requirements, an OPA378 operational amplifier (Texas Instruments,
Dallas, TX, USA) [38] was employed for the proposed electrodes. This amplifier provides outstanding
characteristics such as low-noise, minimal input offset, a wide acceptable range of power supply
voltages, and low power consumption optimized for battery-powered medical instruments. These key
parameters are summarized in Table 1.

Because of the microscopic amplitudes of the EEGs, the noise characteristic is the most important
parameter in the design of a biopotential sensor, which is indicated as the noise voltage and its spectral
densities in the datasheet. According to the IEC standard [28], input-referred noise below 6 µVPP is
acceptable for EEG acquisition systems, and the OPA378 fulfills this condition.

Table 1. Electrical characteristics of the OPA378 operational amplifier.

Electrical Parameters Characteristics

Voltage noise 0.4 µVPP at 0.1–10 Hz
Noise power spectral density 20 nV/

√Hz at 1 kHz
Offset voltage and offset drift 20 µV and 0.1 µV/°C

Input capacitance 5 pF with common mode
Input bias current ± 150 pA, max. 550 pA

Power supply voltage range 2.2–5.5 V (rail-to-rail)
Quiescent current 125 µA, max. 150 µV



Sensors 2019, 19, 4572 7 of 15

For low-noise EEG measurements in the frequency bands near DC, the offset voltage and its drift
need to be checked because they represent measurement precision at the DC region. In low-frequency
bands close to DC, 1/f noise, called flicker noise [39], is more dominate than other type noises.
This type of noise is amplified when approaching the DC region, for which the noise power
spectral density is inversely proportional to the square root of the frequency, making it a major
noise contributor to the low-frequency band near DC. When a large DC offset is coupled directly with
the input of the EEG acquisition system, it can saturate the high-gain preamplifiers and diminish their
dynamic range. To mitigate the DC offset, operational amplifiers equipped with advanced circuit
design techniques such as auto-calibration and chopping have been introduced and are known as
zero-drift amplifiers [28,40]. Utilizing the auto-calibration technique, a signal pathway of the OPA378
continuously corrects the incoming offset voltage every 3 µs with a 350 kHz sample-and-hold circuit.
Therefore, this auto-calibration technique maintains a noise voltage density of 20 nV down to 1 Hz and
achieves a noise voltage of 0.4 µVPP in the bandwidth of 0.1–10 Hz, thereby extending the acceptable
low-frequency range of measurements without an AC-coupled high-pass filter.

As mentioned in Section 2.1, the bootstrap topology lowers the input capacitance of the amplifier
by connecting its positive power supply rail to the signal output node, while also lowering the range
of voltages supplied to the amplifier. Normal operation cannot be guaranteed, when the supply
voltage range does not meet the minimum voltage requirement of 2.2 V. Based on the proposed
circuit design, as the voltage of −2.5 V is already supplied to the negative power rail of the amplifier,
the common-mode voltage of the input biopotential should be kept at least −0.3 V to meet the minimum
voltage requirement. This condition is practically unlikely because of the stable offset characteristics
of the amplifier. Nonetheless, if the common-mode voltage of the input node drops below −0.3,
the amplifier will be turned off, and thereby the output node of the circuit can be left in a floating state.

Moreover, an on-chip electromagnetic interference (EMI) filter with 25 MHz cutoff frequency
provides outstanding EMI suppression. This feature prevents offset shifts in the amplifier output
caused by EMI and allows more precise measurements. The low current consumption of up to 150 µA
easily enables multichannel and battery-powered instrumentation.

2.3.3. Circuit Design and Implementation

The schematic of the proposed active dry electrode and its prototype images are shown in
Figure 3a,b, respectively. The proposed system comprises two individual parts—the electrode unit and
auxiliary board.

The electrode unit is cylindrical in shape with a diameter of 11 mm and a height of 17 mm.
The electrode is composed of the 12 spring-loaded probes, OPA378 amplifier, and CMOD6001
low-leakage diode (Central Semiconductor, Hauppauge, NY, USA), and these are installed in the
electrode PCB embedded in the 3D-printed electrode housing. All probes are electrically connected to
each other, and the measured biopotentials are delivered to the input node of the amplifier. The buffered
biopotentials are then finally transferred to the auxiliary board through the bootstrapped wire, which is
connected to the current-sourcing device. Concurrently, this current-sourcing device in the auxiliary
board supplies a bias current for the amplifier operation through the same bootstrapped wire. The diode
is inserted between the amplifier output and positive rail to keep the output voltage swing lower
than that of the positive rail by the inherent forward voltage drop of the diode [41]. Even though the
amplifier supports rail-to-rail output that allows maximizing the output swing over the entire range of
the supply voltage, this diode is necessary to keep an extra margin for low-distortion voltage output
and low power consumption.

The auxiliary board is designed to provide a constant current source and bipolar voltage power
using linear regulators, current source devices, and numerous decoupling capacitors. To supply
low-noise voltage for the +2.5 V and −2.5 V rails, ADM7154 and ADP7183 linear regulators (Analog
Devices, Norwood, MA, USA) were used. These regulators provide extremely low-noise performance
of 1.6 µVRMS and 4 µVRMS along with high power supply rejection ratios, which are optimized for
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noise-sensitive applications. A REF200 (Texas Instruments, Dallas, TX, USA) [42], which is embedded
with two 100 µA current sources, was used as the current-sourcing device. By connecting the regulated
2.5 V rail to the current sources, the device is capable of simultaneously powering two channels of
the proposed electrodes. Although the current-sourcing capability is limited to 100 µA per channel,
the current requirement for the positive rail of the amplifier is only 75 µA, which is half of the maximum
current consumption of 150 µA, thus ensuring sufficient current supply. All electrical components are
small and surface mounted type, thereby making it easy to design portable size instruments.Sensors 2019, 19, x FOR PEER REVIEW 8 of 16 
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Figure 3. Actual implemented schematic (a) and images (b) of the proposed active dry electrode.
The proposed electrode system comprises the electrode unit itself and an auxiliary circuit board for the
voltage and current power supplies. In the electrical schematic, decoupling capacitors for stabilized
voltage supplies are omitted for simplicity.

3. Evaluation and Experiment

3.1. Noise Characteristics

In the design of electronic circuit-based sensors, the noise floor of the sensing signals is a key
parameter for determining the integrity of the acquired data. To evaluate the noise characteristics of
the proposed active electrode circuit, noise power spectral densities were analyzed using an FFT-based
spectrum analyzer (Keysight 35670A, Santa Rosa, CA, USA), which can quickly capture the spectral
information of analog signals utilizing Fourier analysis and digital signal processing techniques.
With this instrument, the total noise output of a circuit can be estimated by shorting the circuit’s
input node to ground potential and measuring the power spectral densities at the output node of
the circuit. To compare the noise measurements of the proposed 2-wired bootstrap buffered circuit,
a bipolar-powered 3-wired conventional buffered circuit was implemented as a target of comparison.
For the two types of active circuits, 1600-point power spectral densities were measured over the
0.1–200 Hz bandwidth. These measurements were repeated 50 times and averaged for a smoother
representation. The measured noise spectra were transmitted to a laptop using a USB-type GPIB
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interface and instrument control software (Keysight VEE Pro 9.2, Santa Rosa, CA, USA). To reject noise
interference, this evaluation was performed within an aluminum enclosure.

In the analysis stage, Pearson correlation coefficients and Wilcoxon signed-rank test was used
to measure orientational and statistical similarities between the two pairs of noise spectral densities.
To compare actual noise voltages in the EEG bandwidth precisely, RMS voltages were also calculated
from the measured noise spectral densities by taking the squared values of the given voltage spectral
density, integrating within the specified frequency range, and computing the square root.

3.2. Input Capacitance

In the electrode design for EEG measurements, high input impedance is an essential characteristic
for further signal conditioning processes. High input impedance also implies low input capacitance
at higher frequencies. To investigate the impedance characteristics of the proposed electrode circuit,
the input capacitances for the proposed circuit (2-wired bootstrap buffered circuit) and its counterpart
(3-wired conventional buffered circuit) were analyzed. Since the input capacitance of the operational
amplifier is typically lower than a few picofarads, the direct measurements for observing input
capacitance using a multimeter are not practical because of its poor error tolerance. In order to measure
the input capacitance of the operational amplifier-based circuit, a large resistor was inserted in series
with the input node of the amplifier. This configuration set up a first-order RC lowpass filter in
combination with the internal capacitance of the amplifier. Through the frequency response analysis
for the circuits, the input capacitances can be inversely estimated by evaluating the −3 dB cutoff

frequencies. Detailed information on this methodology is described in [43].
The same spectrum analyzer was used to investigate the input-to-output frequency responses for

the test circuits. After inserting a 2 MΩ resistor as a large source resistor Rs, a 100 mVpp sinusoidal
sweep was applied to the input node of the target circuit in accordance with 800 log-scaled bins
arranged over the 1–51.2 kHz bandwidth. The swept source was routed to the input probe of the
spectrum analyzer using a signal splitter, while the output probe was connected to the output node of
the target circuit, unlike the test setup in [43]. This is because a unity-gain buffer configuration allows
the input signal of the amplifier to be identically measured at the output node of the circuit without
the need for a high-impedance FET probe. From this setup, dB-scaled Bode plots can be obtained
from the frequency analyses, and we can estimate the input capacitance of the test circuit using the
following equation: Cin = 1/(2πRs f−3dB). All tests were carried out using customized test PCBs that
were carefully designed with active shielding to avoid other parasitic capacitances.

3.3. Alpha Rhythm Detection Experiment

Alpha rhythm, the most prominent feature of an EEG, can be easily utilized as a benchmark tool
for testing the detection capabilities of real EEG features. When users close their eyes, the spectral
power of the alpha rhythm band (8–15 Hz) is amplified compared to other spectral ranges, and vice
versa when the users open their eyes. By comparing the spectral activation for the alpha rhythm when
the eyes are closed or open, we can evaluate the practical applicability of the proposed electrode for
real EEG monitoring.

For this purpose, ten trials were performed for a subject. A single trial consisted of maintaining the
eye-open state for 12.5 ± 2.5 s and the eye-closed state for 10 s. For every transition of instruction, a beep
sound was used to inform the subject of the command changes. Alternative electrodes such as a 3-wired
active buffered electrode and a passive dry electrode, as well as the proposed electrode, were employed
for the comparison of EEG measurements. All electrode implementations were equipped with the
same spring-loaded probe for dry contact with the scalp surface. These three electrodes were installed
as close as possible to the Fz position according to the international 10–20 system. Disposable wet
electrodes were also attached to the skin behind the left and right earlobes as a reference and a bias
electrode, respectively. Experiments were conducted using MATLAB 2014a (Mathworks, Natick, MA,
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USA) and the Cogent 2000 toolbox, and EEG measurements were recorded using the ADS1299-based
EEG acquisition system which was built in a previous study [44].

Offline analyses for the EEG measurements were also performed using MATLAB 2014a. The raw
EEG dataset was filtered with a 4th order zero-phase 0.5–40 Hz bandpass Butterworth filter. From the
filtered EEG dataset, the epochs for 5 s corresponding to each condition were extracted based on the
recorded event triggers. The spectral power values were also calculated to precisely compare the
spectral activation for the alpha rhythm. The 10-s EEG measurements were also visualized before and
after the fifth eye-close instruction for time-series waveform comparisons. In addition, the similarity of
the bandpass-filtered waveforms was evaluated in terms of Pearson correlation coefficients.

4. Results

4.1. Noise Power Spectral Density

The comparison of the noise power spectral densities for the proposed active electrode circuit
and its conventional counterpart are depicted in Figure 4a. Compared to the noise power spectral
densities of the conventional 3-wired buffer circuit, the proposed 2-wired bootstrap topology shows
a similar trend along with a correlation coefficient of 0.953 within the EEG bandwidth of 0.5–50 Hz.
However, in the Wilcoxon signed-rank test, a nonparametric statistical method for testing a hypothesis
of paired data, the two paired noise spectral densities do not show statistical similarities with a low
significant level (p < 0.0001) at the same EEG bandwidth. In a complementary analysis for a sum of the
difference between the paired noise spectral densities, we found that the proposed design produces
more noise by 2.0433 nV √Hz on average than the 3-wired counterpart. Consequently, this extra
noise leads to a small difference between the estimated RMS noise voltages (i.e., 1.131 µVRMS with the
proposed 2-wired topology vs. 1.017 µVRMS with the 3-wired counterpart). The slightly increased RMS
noise in the proposed topology is due to an increase in noise power at lower frequency bands below
1 Hz. The reason for this is the positive rail voltage of the proposed topology, which has continuously
changed in accordance with the voltage corresponding to the acquired input signal, instead of being
supplied from a low-noise constant voltage source. This unfixed supply voltage, combined with
thermal noise and other interference, seems to result in minor extra noise in the low-frequency region.
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4.2. Input Capacitance Estimation

The spectral analysis results for investigation of the −3 dB cutoff frequencies and the estimated
input capacitance from the results are depicted in Figure 4b. For the two types of circuit configuration,
the differences in the cutoff frequencies is about 7 kHz, resulting in a 1.74 pF reduction in the
input capacitance for the proposed bootstrap configuration compared to the conventional buffer
design approach. The impedance of the amplifier is represented as R/( jwRC + 1), because it is
simplified as a parallel combination of resistance and capacitance. Therefore, an approximately 32.2%
reduction in the input capacitance leads to roughly 147.5% impedance boosting within the EEG
bandwidth. This impedance boosting effect makes the measurement more robust against artifacts and
EMI interference.

4.3. Experimental Results of Alpha Rhythm Detection

Figure 5 shows the experimental results for the alpha rhythm detection test measured by three types
(2-wired active, 3-wired active, and passive) of dry electrodes. The captured time-series waveforms
on the left side of figures were extracted from the EEG measurements near the onset time of the
fifth task from among the 10 trials. In these waveforms, a red vertical line indicates the start time
for the eye-close instruction. Within one second after task onset, slightly large voltage swings were
observed in all measurements while the subject’s eyelids are closed. After the swings, it was confirmed
that clear alpha waves were identified with their distinguished oscillations of measured waveforms.
These evoked alpha waves are easily noticeable in the spectral analysis. The figures on the right side
show the results of the event-related spectral analysis for each electrode measurements. These spectral
comparisons clearly visualize the maximized spectral differences evoked near the 10 Hz, which belong
to the alpha rhythm. Specifically, the maximum spectral differences for two different tasks were
observed at 12.4 dB at 10.1 Hz for the proposed 2-wired active electrode, 11.28 dB at 10.06 Hz for the
3-wired active electrode, and 13.83 dB at 9.98 Hz for the passive electrode. These spectral analysis
results confirmed that EEG feature detection can be fully achieved using the proposed electrode.
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The comparison of the correlation coefficients for each paired EEG waveforms is summarized in
Table 2. The correlation coefficient between the EEG waveforms using the passive dry electrode and
the proposed 2-wired topology is ρ2; the correlation coefficient between the EEG waveforms using the
passive dry electrode and the 3-wired counterpart is ρ3; and the correlation coefficient between the
proposed 2-wired topology and the 3-wired counterpart is ρ23. An insignificant difference between
ρ2 and ρ3 indicates that the proposed 2-wired electrode is sufficient to achieve measurements nearly
equivalent to the conventional 3-wired design approach. A slight decrease in the value ρ23, compared
to ρ2 and ρ3, is supposed to be caused by the difference in common-mode voltages in accordance with
a difference in the design topology.

Table 2. Comparison of correlation coefficients for each paired EEG datasets.

2-wired Active vs. Passive
(ρ2)

3-wired Active vs. Passive
(ρ3)

2-wired Active vs. 3-wired Active
(ρ23)

0.8536 0.8657 0.7854

5. Discussion

Theoretical analysis of the equivalent circuit model for the proposed electrode indicated that the
electrical specifications of the amplifier have a significant effect on measurement characteristics such
as input-referred noise and gain attenuation. As standard specifications in the datasheet, the offset
voltage and the 0.1–10 Hz peak-to-peak noise voltage are involved with not only the precision of
the common-mode voltages, but also noise characteristics within the low-frequency bands near DC,
associated with 1/f noise. Since even EEG waves with very low-frequency bands (0.1–4 Hz), including
delta waves and slow oscillations, are often used for sleep studies [45], the examination of these
specifications is required to verify the 1/f noise characteristics. The OPA378, a zero-drift amplifier with
0.1–10 Hz RMS noise of 0.4 µV and offset voltage of 20 µV, provides excellent low-noise characteristics,
but noise boosting is still observed at lower frequencies below 1Hz in the actual noise measurements.
This is because the 1/f noise is generated internally from the quantum mechanical random process
inherent in all semiconductor devices, including the amplifier to be measured and the measurement
instrument itself. This means it is difficult to eliminate 1/f noise completely. Nevertheless, the proposed
electrode still presented excellent low noise characteristics of 1.131 µVRMS within an EEG bandwidth
of 0.5–50 Hz along with noise power spectral densities of 139 nV/

√Hz at 1 Hz and 49 nV/
√Hz at

10 Hz. These measurements are comparable with previous studies (7.4 µVRMS within a bandwidth of
1–1000 Hz in the [41], and 200 nV/

√Hz at 1Hz in the [15]).
On the other side, the ratio of the noise characteristics versus power consumption also needs to be

checked to consider the entire power consumption of the EEG acquisition system. There is a trade-off

relationship between power consumption and noise performance [46], which means that increased
power consumption of the amplifier results in better low-noise characteristics in general. Amplifiers
that require higher power can be used in the active electrodes for better noise performance, but this
results in an increase in the overall power requirement of the instrument with numerous channels.
For example, the state-of-the-art operational amplifier OPA188 (Texas Instruments, Dallas, TX, USA)
exhibits a better noise voltage of 250 nVPP over the 0.1–10 Hz bandwidth, which is a 37.5% lower noise
voltage compared to that of the OPA378. However, its current consumption is typically increased
3.6 times more to 450 µA. The proposed electrode is designed to consume up to 150 µA of current
per channel, resulting in a total of only 2.4 mA for 16 channels, thus it can be continuously operated
for about 40 hours even with a 100 mAh small lithium polymer battery. This low-power operation
adequately meets a design requirement for battery-powered mobile instruments.

Compared with previous studies [18,20,29], another difference in the frontend circuit design is the
exclusion of a bias current path. In those previous studies, a large value resistor in the TΩ range or
parallel connection of two reverse diodes is generally used as the bias current path. This is necessary
to prevent voltage saturation at the input node of the amplifier caused by incoming bias currents,
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but it also generates a lot of thermal noise due to the high physical resistance. The problem here is that
irrespective of the resistance value, degradation of the amplifier’s input impedance cannot be avoided.
The proposed electrode omits the design of the bias current path, but the built-in protection circuitries
embedded in the amplifier can fulfill this role to effectively prevent electrical overstress at the input
node and degradation of the high input impedance.

6. Conclusions

In this study, we have proposed a two-wired active spring-loaded dry electrode to conduct
electrolyte-free EEG monitoring. By combining spring-loaded probes with the active buffer circuit,
the proposed electrode design simultaneously enables electronically maximized input impedance,
and physically maximized contact capability. In the design process, the equivalent circuit model
for the electrode circuit and its associated electrical parameters such as noise and gain attenuation
were analyzed to obtain low-noise and attenuation-free EEG measurements. Based on the analysis,
the active circuit was designed based on low-cost discrete components and the low-noise and low-offset
zero-drift amplifier. The complete electrode device was implemented by combining the active buffer
circuit with spring-loaded probes and a 3D-printed housing. Through several evaluations included the
alpha rhythm detection test, the proposed electrodes were found to have a low-noise characteristic
of 1.131 µVRMS within the EEG bandwidth of 0.5–50Hz and the capability to clearly detect an alpha
rhythm near 10 Hz. In addition, by applying the bootstrap topology to the proposed electrode design,
the proposed electrode only requires a two-wired connection with an approximate 32.2% reduction
in the input capacitance. This leads to an impedance boosting of roughly 147.5% within the EEG
bandwidth. In our future work, we plan to design a portable instrument for mobile EEG monitoring
based on the proposed electrode system.
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Abstract
This paper presents an overall quality enhancement approach especially for dark or poorly
illuminated images with a core objective to re-allocate the processed pixels using recursive
histogram sub-division. An information preserved and image content based behavioral recon-
struction inspired adaptive stopping criterion based on pixel-wise relative L2−norm basis
(which itself is intuitively related to optimal PSNR value) is proposed in this paper, so that
highly adaptive gamma value-set can be derived out of it for sufficient enhancement. Due to
this adaptive behavior of the intensity distribution the gamma value-set when derived from it,
is obviously highly adaptive and here individual gamma values are evaluated explicitly raised
over reconstructed intensity values, unlike conventional gamma correction methods. This
adaptiveness makes the entire methodology highly capable for covering a wide variety of
images, due to which robustness of the algorithm also increases. The proposed methodology
has been verified on various dark images. The simulation results authenticate the overall
enhancement (contrast as well as entropy enhancement along with sharpness enhancement)
achieved by the proposed has been found superior to other dark image enhancement
techniques.
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1 Introduction

Remotely acquired digital imagery in diverse circumstances and its indispensable contribution for
social welfare, demands an efficient quality enhancement as a core part of image pre-processing.
In this manner, the required information can be restored and required parametric features can be
sufficiently extracted according to the demand [21]. Researchers get highly fascinated by
histogram equalization (HE) [5] and its efficiently modified variations due to their simplicity
and less computational complexity. Obviously, the global HE cannot preserve local spatial
features of the image which limits the amount of quality enhancement in all parts of the image
and hence, researchers started looking for distributing histogram into its constituting sub-
histograms for local histogram modifications [8, 15, 17, 18]. Fuzzy inspired histogram smooth-
ening followed by local maxima based sub-division has been also proposed as Brightness
preserving dynamic fuzzy HE (BPDFHE) [15]. Exposure-based sub-image HE (ESIHE) [17]
has been proposed for low exposure images, where image exposure is utilized for sub-division.
Afterward, median-mean dependent sub-image-clipped HE (MMSICHE) [18] has been intro-
duced where histogram clipping is based on the median with bisecting each section to obtain four
sub-images, so that they can be equalized locally. Later, recursive-ESIHE (R-ESIHE) [19] by
iterative usage of ESIHE till exposure reduced to a predefined threshold. Also, its multi-level
histogram separation version termed as recursively separated-ESIHE (RS-ESIHE) [19] has been
also introduced. Later on, the averaging histogram equalization (AVGHEQ) [11], HE based
optimal profile compression (HEOPC) [30] method for color image enhancement followed by
HE with maximum intensity coverage (MAXCOVER) [31] have been also proposed. Also, the
adaptive gamma correction with weighting distribution (AGCWD) [7] and its efficient variations
[16, 20, 24–31] have been also proposed for dark images. Afterward, the intensity and edge-based
adaptive unsharp masking filter (IEAUMF) [10] based enhancement have been also proposed by
employing the unsharp masking filter for edge augmentation. Sigmoid mapping through cosine
transformed Regularized-HE [4] has been also proposed. Recently, getting fascinated by artificial
intelligence and deep learning based methods, various methodologies have been also proposed
namely, LIME: Low-light image enhancement via illumination map estimation (LIME) [6], Deep
photo enhancer: Unpaired learning for image enhancement from photographs with gans (DPE)
[3], Learning to See in the Dark (LSD) [2], and Learning a deep single image contrast enhancer
from multi-exposure images (LDSICEM) [1]. In the same sequence, although several kinds of
enhancement methodologies have been proposed till date for widely diverse characteristics of
images from various domains, (contextual literature survey is explicitly presented in [21, 24, 25]),
still most of them are lagging when it comes to the matter of enhancement of different domain
images through a single approach. In this paper, a robust and highly adaptive end-to-end
framework is proposed for quality enhancement of almost all kind of images. On the first sight,
the term “gamma correction” seems somehow conventional; but any approach which is capable
for computing the quality enhanced intensity distribution out of the input intensity distribution
through raising radical powers comes under the head of the gamma correction. Decision making
of adaptive gamma value-set precisely for each individual intensity level of the image, is still an
open problem, as most of the proposed gamma based (radically powered) algorithms lead to over-
enhancement and extreme ends’ saturation, and hereby proposed algorithm seems free from these
drawbacks due to deciding a novel kind of gamma value set through “optimal PSNR based
perfectly re-allocated and reconstructed” intensity distribution. Here, as such no greedy behavior
based optimization algorithm is involved for a blind random search, and hence, the approach is
not iterative as a whole. It needs only 2–4 iterations at most for thresholds identification and
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subsequent histogram division based on optimal PSNR value, but gamma value-set evaluation
non-iterative at all. Here, a precisely re-allocated intensity-span is derived through reconstruction
of the image by considering first and second moment for histogram sub-division, and later the
cumulative distribution of the reconstructed images itself is utilized for deriving a gamma value
set. The corresponding individual values from this set when raised up as radicals over the
reconstructed and re-allocated intensity levels of the image under consideration leads to the
overall quality enhancement. Remaining manuscript is drafted as follows: after brief literature
survey and basic introduction in section 1; section 2 explains the proposed algorithm followed by
its stepwise framework. Later, section 3 deals with the experimentation followed by correspond-
ing results and discussion; and in section 4, conclusions are drawn.

2 Proposed methodology

Hue-Saturation-Intensity (HSI) colour image model is generally utilized for separation of
chromatic as well as non-chromatic image information. For the proposed quality enhancement
for the colour images, hue and saturation channels can be kept unaltered along with relevant
processing over intensity channel. The entire methodology using process-flow diagram is
presented in Fig. 1, and the corresponding step-wise procedure is as follows:

Step 1: Initially, all three channels (R, G, B) are linearly stretched for dynamic range
expansion. For R-channel:

R u; vð Þ← R u; vð Þ−Rmin

Rmax−Rmin
ð1Þ

Here, Rmax = max {R(u, v)} and Rmin = min {R(u, v)} for all the pixel elements (u, v) for R-
channel. Similarly, other two channels can be stretched.

Step 2: Extraction of intensity (luminance or V-channel) information after RGB to HSI
colour space conversion as:

H u; vð Þ; S u; vð Þ; I u; vð Þ½ �T ¼ THSI
RGB R u; vð Þ;G u; vð Þ;B u; vð Þ½ �T ; ð2Þ

Here, THSI
RGB is RGB to HSI transformation process.

Step 3: Histogram {H(h)} of the luminance channel is employed for further processing.
Here, H(h) is count of pixels having hth intensity value. Set a←min(h) and b←
max(h) which also represents the entire range of histogram starting from its lowest
pixel intensity value to largest pixel intensity value. Calculate the mean (μ) and
standard deviation (σ) for this operational range [a, b] of the histogram /sub-
histogram (for next level division), using:

μ ¼ ∑b
h¼ahH hð Þ
∑b

h¼aH hð Þ ; ð3Þ
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σ ¼ ∑b
h¼a h−μð Þ2H hð Þ
∑b

h¼aH hð Þ

 !1=2

; ð4Þ

Step 4: Set two threshold values i.e. T1 = μ − σ and T2 = μ + σ, so that the “the operational
region” (mentioned in Step 3) can be distributed into its further sub-regions.

Step 5: Store [a, T1] and [T2, b] as two parts of the histogramwithout further distributing them
so that they can be retained as such till their equalization in subsequent steps. Consider
[T1 + 1, T2 − 1] as sub-histogram region Hk(h) so that operations can perform the next
step so that it can be adaptively distributed in further recursive steps.

Step 6: Cumulative distribution function (CDF) for each kth sub-histogram can be evaluated as:

cd f k hð Þ ¼ 1

Nk
∑hkþ1

hkþ1Hk hð Þ; ð5Þ

Here, intensity span of every kth histogram can be considered in the range [hk + 1→ hk + 1].
Here, Nk is the net pixel count inkthsub-histogram.

Low contrast satellite image in RGB color space

RGB to HSV color space transform

V-channel S-channelH-channel

Set [a, b] [0, 255]

V'-channel S-channelH-channel

Reconstruct the finally enhanced coloured image using HSV model

Calculate µ and σ for the current operational range [a, b]

Set threshold values as T1 = µ1 - σ1, T2 = µ1+ σ1

Keep [a,T1] and [T2,b] intact and set [a, b] [T1+1, T2-1]

Equalize all sub-histograms locally and reconstruct enhanced V-channel sub-image

Evaluate the difference in PSNR value by comparing previous PSNR value

Diff. in

PSNR > 0.01

Derive PDF and then CDF for adaptively equalized sub-image

Evaluate gamma value-set using modified CDF

Derive PDF and then CDF for adaptively equalized sub-image

Apply gamma correction

N

Y

Fig. 1 Process Flow for the proposed methodology
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Step 7: Equalize all sub-histograms independently as:

Î k ¼ Ik min þ I k max−Ik minð Þ*cd f k hð Þ; ð6Þ

Step 8: Overall reconstructed image can be derived as:

Î ¼ Î1∪Î2∪Î3∪:::∪Î k ; ð7Þ

Step 9: Calculate the value of PSNR in dB for enhanced intensity channel obtained in this
iteration with reference to that in previous iteration as [31]:

PSNR ¼ 10log10
255

MSE
; ð8Þ

Here, RSME is root-mean-square error, defined as [31]:

MSE ¼ 1

M � N
Î−I
��� ���2

2
; ð9Þ

Here, I and Î are input and output images for every iteration. Find the difference of PSNR
value obtained in this step with that obtained in the previous step.

Table 1 Number of iterations and corresponding threshold values evaluated for images under consideration

Image S.
No.

No. of iterations
(imax)

Threshold values in lower intensity
region T1(i)

Threshold values in higher intensity
region T2(i)

1. 2 [21, 37] [95, 54]
2. 2 [29, 48] [102, 68]
3. 2 [34, 49] [99, 73]
4. 2 [19, 42] [95, 81]
5. 3 [46, 68, 87] [139, 112, 94]
6. 2 [25, 48] [98, 75]
7. 2 [33, 51] [118, 89]
8. 2 [37, 45] [94, 53]
9. 2 [21, 47] [85, 61]
10. 2 [31, 48] [122, 78]
11. 2 [40, 57] [99, 73]
12. 2 [34, 59] [126, 93]
13. 2 [32, 49] [119, 84]
14. 2 [35, 53] [121, 78]
15. 2 [28, 52] [117, 81]
16. 3 [68, 84, 102] [140, 122, 110]
17. 3 [33, 42, 98] [150, 127, 111]
18. 2 [23, 45] [95, 81]
19. 2 [31, 48] [122, 78]
20. 2 [34, 53] [96, 83]

Fig. 2 Multilevel thresholding of intensity value axis
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Step 10: Now, follow the optimal PSNR criterion to decide the requirement of next level
thresholding. Here, recursion is aborted if difference in PSNR values (obtained in
successive steps) gets reduced to less than 0.01 dB. In other words, next level
thresholding has to be aborted when PSNR value gets saturated, as this saturation
symbolizes insignificant further image division/reconstruction; and hence, not
appreciated.

Step 11: If the optimal PSNR criterion as mentioned in step-10 is not achieved, then assign
[a, b] ← [T1 + 1,T2–1] and repeat steps 3–9 for further adaptive separation; and
hence, adaptively equalized output can be achieved.

Step 12: Afterwards, cumulative distribution has to be derived reconstructed image so that
the adaptive gamma value-set can be derived as:

γ ið Þ ¼ 1−cd f m ið Þ; ð10Þ
Finally, the enhanced output is achieved as:

Ien ið Þ ¼ I ið Þ½ �γ ið Þ; ð11Þ

INPUT GHE BPDFHE MMSICHE

RSEISHE AGCWD AVGHEQ HEOPC

MAXCOV RHE-DCT IEAUMF LIME

LSD DPE LDSICEM PROPOSED

Fig. 3 Quality enhanced results of different algorithms for “Image 1”
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Step 13: Finally, the enhanced image can be obtained as:

R u; vð Þ;G u; vð Þ;B u; vð Þ½ �T ¼ TRGB
HSI H u; vð Þ; S u; vð Þ; Î u; vð Þ
h iT

; ð12Þ

Here, TRGB
HSI is HSI to RGB transformation process.

At the first attempt, two (2) threshold values are identified and hence, results into three (3)
sub-histograms, followed by their individual equalization. If the stopping criterion will not get
satisfied (i.e., PSNR >0.01 dB), then both of the above thresholds will be treated as extreme
end of the middle sub-histogram which is further subdivided in the similar fashion as
mentioned above. Hence, the new threshold values will be identified in-between the previous
threshold values. In this manner, by the end of second attempt of division, there will be four (4)
threshold values and accordingly five (5) sub-histograms. In most of these cases, it is
insignificant to looking forward for further sub-division.

INPUT GHE BPDFHE MMSICHE

RSEISHE AGCWD AVGHEQ HEOPC

MAXCOV RHE-DCT IEAUMF LIME

LSD DPE LDSICEM PROPOSED

Fig. 4 Quality enhanced results of different algorithms for “Image 2”
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3 Experimental results: performance evaluation and comparisons

Multilevel iterative thresholds are shown in Fig. 2. Table 1 lists the number of iterations and
corresponding threshold values evaluated iteratively (as shown in Fig. 3) for all test images.
The iteration-count varies adaptively according to the intensity spread of the image. Perfor-
mance evaluation and comparison is done by proper reimplementation of some very popular
state-of-the-art enhancement methodologies namely, GHE [5], BPDFHE [15], MMSICHE
[18], RSEISHE [19], AGCWD, AVGHEQ [11], HEOPC [22], MAXCOV [23], RHE-DCT
[4], IEAUMF [10], LIME [6], LSD [3], DPE [2] and LDSICEM [1]. Quantitative analysis
(Tables 2, 3, 4, 5, 6, 7, 8 and 9) is done by using 8 reliable statistical performance measures
namely, average brightness (B), average contrast (V), average discrete information content (or
entropy, E), sharpness (S), and colorfulness (C) of the image. Considering intensity value I(u,
v) for pixel element located at uth row and vth column of its equivalent image M ×N matrix
whose size is similar to that of corresponding intensity channel of the image, and its
performance measures can be formulated as follows.

INPUT GHE BPDFHE MMSICHE

RSEISHE AGCWD AVGHEQ HEOPC

MAXCOV RHE-DCT IEAUMF LIME

LSD DPE LDSICEM PROPOSED

Fig. 5 Quality enhanced results of different algorithms for “Image 3”
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Mean represents the average intensity value [11], which indirectly informs about the
average image brightness level for the image under consideration. Brightness (B) or mean
can be expressed as:

B ¼ 1

M*N
∑M

u¼1∑
N
v¼1I u; vð Þ; ð13Þ

Likewise, intensity spread or variance (V) or contrast indicates the amount of intensity
deviation per pixel with respect to the mean intensity level (B) of the image, as:

V ¼ 1

M*N
∑
u;v

I u; vð Þ2− 1

M*N
∑
u;v

I u; vð Þ
� �2

; ð14Þ

In this manner, the total sum of the intensity dispersions (w.r.t. mean level) can be identified as
contrast and obviously it should be high for proper quality enhancement. In addition, for proper
information content evaluation, Shannon entropy based characterization can be applied as:

INPUT GHE BPDFHE MMSICHE

RSEISHE AGCWD AVGHEQ HEOPC

MAXCOV RHE-DCT IEAUMF LIME

LSD DPE LDSICEM PROPOSED

Fig. 6 Quality enhanced results of different algorithms for “Image 4”

Multimedia Tools and Applications (2019) 78:20431–20463 20447



H ¼ − ∑
i¼0

Imax

pilog2 pið Þ; ð15Þ

where, pi = ni/(M ×N) is the possibility of existence of ith level of intensity, and Imax is the
maximum available intensity. Here, M ×N represents the total number of pixels present in an
image. The gradient is obtained from:

S ¼ 1

M*N
∑
u;v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δu2 þΔv2

p� �
; ð16Þ

Δu = Ienh(u, v) − Ienh(u + 1, v)and Δv = Ienh(u, v) − Ienh(u, v + 1) are the local gradients of en-
hanced image. Higher the gradient value more will be the sharpness of image. Along with
above intensity based measures, colorfulness is also used for proper evaluation of the quality of
color images. The colorfulness can be expressed numerically, as:

INPUT GHE BPDFHE MMSICHE

RSEISHE AGCWD AVGHEQ HEOPC

MAXCOV RHE-DCT IEAUMF LIME

LSD DPE LDSICEM PROPOSED

Fig. 7 Quality enhanced results of different algorithms for “Image 5”
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C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
rg þ σ2

yb

q
þ 0:3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2
rg þ μ2

yb

q
; ð17Þ

Δrg ¼ R−G; ð18Þ

Δyb ¼ 0:5 Rþ Gð Þ−B; ð19Þ
Here, μrg, μyb are the mean values and σrg, σyb are the standard deviation values of Δrg, Δyb

respectively. Spatial co-occurrence of the image pixels are usually avoided while evaluating
the intensity based indices, and hence, to resolve it, Grey-Level Co-occurrence Matrix based
performance indices also plays a significant role for texture and other spatially influenced
properties. Overall statistical and spatial behavior w.r.t. reference pixel can be derived by
calculating the pixel-wise average for all four directional matrices:

GLCM ¼ 0:25 GLCM0 þ GLCM π=4
þ GLCM π=2

þ GLCM 3π=4Þ;
� ð20Þ

In this paper, three well known GLCM based indices, i.e. GLCM-Correlation, GLCM-Energy
and GLCM-Homogeneity are evaluated. Any element of the GLCM matrix Ψ(m, n), is usually

INPUT GHE BPDFHE MMSICHE

RSEISHE AGCWD AVGHEQ HEOPC

MAXCOV RHE-DCT IEAUMF LIME

LSD DPE LDSICEM PROPOSED

Fig. 8 Quality enhanced results of different algorithms for “Image 6”
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evaluated by considering the nth neighboring pixel w.r.t. mth pixel, and later on, by calculating
the μm, μn, σm, andσn as the corresponding mean values and standard deviation values
respectively. GLCM-correlation (GC) stands for the interdependency for the corresponding
neighborhood of the pixels w.r.t. reference pixels, expressed as:

INPUT GHE BPDFHE MMSICHE

RSEISHE AGCWD AVGHEQ HEOPC

MAXCOV RHE-DCT IEAUMF LIME

LSD DPE LDSICEM PROPOSED

Fig. 9 Quality enhanced results of different algorithms for “Image 7”

INPUT GHE BPDFHE MMSICHE

RSEISHE AGCWD AVGHEQ HEOPC

MAXCOV RHE-DCT IEAUMF LIME

LSD DPE LDSICEM PROPOSED

Fig. 10 Quality enhanced results of different algorithms for “Image 8”
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GC ¼ ∑
M−1

m¼0
∑
N−1

n¼0

m−μmð Þ n−μnð ÞΨ m; nð Þ
σm:σn

; ð21Þ

GLCM-Energy (GE) can be characterized by normalized count of repeated pairs. Intuitively,
these are responsible for uniformity of texture, and hence, expressed as:

GLCM−Energy GEð Þ ¼ ∑
M−1

m¼0
∑
N−1

n¼0
Ψ m; nð Þ2; ð22Þ
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Fig. 11 Quality enhanced results of different algorithms for “Image 9”
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Fig. 12 Quality enhanced results of different algorithms for “Image 10”
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GLCM-homogeneity (GH) can be characterized by the closeness of neighboring pixels with
reference pixels. Intuitively, these are also responsible for uniformity of texture, and hence,
expressed as:

GH ¼ − ∑
M−1

m¼0
∑
N−1

n¼0
Ψ m; nð Þlog2Ψ m; nð Þ; ð23Þ

Qualitative (visual) analysis for enhancement of images is shown in Figs. 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 and 23. Comparative evaluation for Brightness (B),
Contrast (V), Entropy (E), Sharpness (S), colourfulness (C), GLCM-homogeneity (GH),
GLCM-energy (GE), GLCM-correlation (GC) are listed in Tables 2 to 9, respectively. It can
be easily noticed from the tabular results that both entropy and contrast are highly desirable
along with image sharpness content of the information. Also, certain amount of brightness
should be also increased, which is also desired for clear contrast evaluation in case of dark
images.

Also, for identifying the textural improvement, GLCM based performance measures like
GLCM- are also employed and the excellence of the proposed model, and the lower value are
desired for GLCM-homogeneity, GLCM-energy, GLCM-correlation for better visualization in
context of both human as well as machine-vision perspective.

Finally, it can be easily concluded that this approach outperforms the other state-of-the-art
approaches. The novelty of the work can be justified as the re-allocation of intensity levels for
corresponding pixel elements is so precise due to least successive differential change in PSNR value
which ensures that further division or further reconstruction is obviously redundant. As this statistical
moment-based redistribution needs only 2–4 iterations at most for subsequent histogram division,
otherwise this approach is free from iterative greedy algorithms and hence system complexity is not
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Fig. 13 Quality enhanced results of different algorithms for “Image 11”
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so high. Due to this adaptive behavior of the intensity distribution the gamma value-set when
derived from it, is obviously highly adaptive and here individual gamma values those evaluated
explicitly raised over reconstructed intensity values, unlike conventional gamma correctionmethods.
Unlike greedy algorithms, it is a parameter-free approach, hence no pre-specified count for sub-
divisions. It imparts the better gamma-corrected intensity distribution throughout the dynamic range.
In addition multiple repetitive equalizations like other methods have been avoided for extreme
intensity levels according to the image behavior. Here, only the in-between middle range (μ1
− σ1,μ1 +σ1) is only operated for further sub-division (which is also limited to 2–3 iterations) the
range and rest of the intensity values themselves decide their adaptive gamma value-set locally. This
is the sole region that over-enhancement (which leads to saturated patches) and under-enhancement
(which leads to dark patches) can be easily avoided and hence, naturally looking, quality enhanced
images can be achieved. Desired time-complexity analysis is also presented in Table 10 and Fig. 22,
by executing the proposed method as well as all the state-of-the-art methodologies in a similar
environment. The running time is calculated as an averaged execution time for a set of 120 test
images.
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Fig. 14 Quality enhanced results of different algorithms for “Image 12”
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4 Conclusion

In this paper, a new quality enhancement approach especially for dark or poorly illuminated images
with a core objective to re-allocate the processed pixels using reclusive histogram sub-division along
with an adaptive stopping criterion based on pixel wise relative L2-norm basis (which itself is
intuitively related to optimal PSNR value). Employing such kind information preserved signal
reconstruction based stopping criterion makes the desired intensity distribution easy achievable in
less iterations and hence complexity hike due iterative behaviour can be easily compensated to a
great extent. Hence, iteration count only ranges from 2 to 3. Perfectly reconstructed, moment-
centered piecewise sub-equalized statistical distribution which intuitively leads to the adaptive or
image dependent evaluation of the desired gamma value-set, so that precise re-allocation of the
transformed intensity bin-values. Due to this adaptive behavior of the intensity distribution the
gamma value-set when derived from it, is obviously highly adaptive and here individual gamma
values are evaluated explicitly raised over reconstructed intensity values, unlike conventional
gamma correction methods. This adaptiveness makes the entire methodology highly capable for
covering a wide variety of images, due to which robustness of the algorithm also increases. The
proposedmethodology has been verified on various dark images. The desired performance has been
achieved visually and also measured by using relevant image quality matrices.
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Fig. 15 Quality enhanced results of different algorithms for “Image 13”
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Fig. 16 Quality enhanced results of different algorithms for “Image 14”
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Fig. 17 Quality enhanced results of different algorithms for “Image 15”
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Fig. 18 Quality enhanced results of different algorithms for “Image 16”
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Fig. 19 Quality enhanced results of different algorithms for “Image 17”
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Fig. 20 Quality enhanced results of different algorithms for “Image 18”
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Fig. 21 Quality enhanced results of different algorithms for “Image 19”
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Fig. 23 Quality enhanced results of different algorithms for “Image 20”

Table 10 Average execution time (in seconds) for comparative quantitative evaluation among various algorithms

METHOD GHE BPDFHE MMSICHE RSEISHE AGCWD
TIME (in Seconds) 0.057 0.124 0.275 0.139 0.282

METHOD AVGHEQ HEOPC MAXCOV RHE-DCT IEAUMF
TIME (in Seconds) 1.959 0.389 0.358 0.373 0.404

METHOD LIME LSD DPE LDSICEM PROPOSED
TIME (in Seconds) 0.673 1.109 1.407 2.553 0.324
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Abstract—In this letter, we propose a multimodal method for 

improving radio frequency (RF) fingerprinting performance that 

uses multiple features cultivated from RF signals. Combining 

multiple features, including a falling transient feature that has not 

previously been used in RF fingerprinting studies, we aim to 

demonstrate that the proposed method results in improved 

accuracy. We show that a sparse representation-based 

classification (SRC) scheme can be a good platform for combining 

multiple features. Experimental results on RF signals acquired 

from eight walkie-talkies show that the RF fingerprinting 

accuracy of the proposed method improves significantly as the 

number of features increases. 

 
Index Terms—Classification algorithm, Feature extraction, 

Multimodality, RF fingerprinting, Radio frequency identification 

 

I. INTRODUCTION 

LASSIFYING radio frequency (RF) signals is useful in 

electronic warfare to identify the radio transmission 

signals of adversaries [1]. For the classification to work well, 

the availability of good features and a simple but robust 

technique are essential. A feature is a sample vector cultivated 

from the transmitted RF signals and bears unique information 

about the pertinent device. The identification of RF transmitters 

using such features is called RF fingerprinting. Features are 

known to arise from many sources, including tiny difference in 

device fabrication process and electronic components [1]. 

RF fingerprinting has attracted significant attention [2–6]: 

Patel et al. [2] used RF-DNA features which contain 

information on variance, skewness, and kurtosis, within a 

preamble response and showed that an ensemble method 

combining multiple classifiers performs well. Peng et al. [3] 

used four features—differential constellation trace figure, 

carrier frequency offset, modulation offset, and I/Q offset 

where classifications were done by calculating the minimum 

distance between test data and training data. Jia et al. [4] used 

the mean of the instantaneous amplitude of the received signal 

and the modulation symbol. They found an optimal 

dimension-reduced matrix that maximizes the quadratic mutual 

information between the low-dimensional features and the class, 

and minimizes the classification error. The same authors also 

 
Manuscript received February 28, 2019. This work was supported by the 

National Research Foundation of Korea (NRF) grant funded by the Korean 
government (MSIP) (NRF-2018R1A2A1A19018665) 

The authors are with the School of Electrical Engineering and Computer 

Science (EECS), Gwangju Institute of Science and Technology (GIST), South 
Korea (e-mail: heungno@gist.ac.kr). 

investigated an RF fingerprinting scheme based on the 

low-rank representation of the original data with the robust 

classifier parameter [5]. Merchant et al. [6] used a 

convolutional neural network (CNN) for seven commercial 

Zigbee devices. They collected 1,000 data per class. In [2–6], 

RF fingerprinting schemes with multiple features, which 

exhibited a high accuracy rate, were proposed for Zigbee 

devices and satellite terminals. 

The contributions and novelties of this letter are as follows: 

 We propose a new RF fingerprinting algorithm and a set 

of three RF features—rising transient, falling transient, 

and sync—and show the possibility that each feature can 

provide unique information through a real-life experiment. 

The falling transient feature has never been used in RF 

fingerprinting studies. Our results indicate that the 

performance of RF fingerprinting improves as each 

feature is additionally employed. 

 Even though SRC is a common algorithm in classification 

[7], there are no studies on RF fingerprinting with a 

combination of SRC and multiple features. We show that 

SRC can be a good platform for RF fingerprinting. 

The remainder of this letter is organized as follows. The 

experimental system is described in Section II. The proposed 

method is outlined in Section III. Results are presented and 

analyzed in Section IV. The conclusion is given in Section V.  

II. EXPERIMENTAL SYSTEM 

A. Walkie-talkie Signals 

Our RF signals follow the digital mobile radio (DMR) 

standard. The DMR standard follows time-division multiple 

access (TDMA) and 4-level frequency-shift keying modulation 

[8]. A signal burst appears for 30 ms and disappears for 30 ms 

using the 2-slot TDMA method. This pattern is repeated in 

transmission. 

The signal burst consists of rising transient, falling transient, 

and steady-state signals. The rising transient signal grows from 

zero to the designed level of the RF signal. Contrary to the 

rising transient signal, the falling transient signal decreases 

from the designed level to zero. The steady-state signal refers to 

the resting part between the rising and the falling transient 

signal. The steady-state signal is composed of data and a sync 

signal. The data have 216 bits and the sync signal has 48 bits. 

The bit rate of the DMR standard is 9,600 bits/s. The sync 

signal is used to synchronize between a transmitter and 

receiver. 
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From the pertinent signal part, a feature is obtained. Each 

feature is the main lobe of a spectrum of the pertinent signal 

part. We show how to extract each feature from the pertinent 

signal part in Section III. A. As we mentioned, the features are 

the result of the inherent nonlinear properties of radio 

transmitters in the manufacturing process [1]. Owing to the 

presence of such features, RF fingerprinting can be 

accomplished.  

B. Signal-Acquisition Setup 

For our experiment, two walkie-talkie models were used: the 

Motorola Sl1M and Hytera BD-358. Each model follows the 

DMR standard. Four units of each type, eight walkie-talkies in 

total, were used in the experiment.  

Signal was transmitted from the transmitter and acquired 

from an SMA male mini car-mounted antenna, the receiving 

frequency band of which is 400–470 MHz. We then 

down-converted 423.1875 MHz to 10 MHz using an 

XL-11-411 RF mixer and an E4438C ESG vector signal 

generator. Then, we filtered the signal bandwidth and sampled 

the signal using an IF recording system with the PX14400 

operator functioning as a low-pass filter and analog-to-digital 

converter. Signals sampled at 96 MHz were saved to a 

computer and loaded to MATLAB. As we captured 50 signals 

per walkie-talkie, 400 signals were saved to the computer. 

III. PROPOSED FEATURE EXTRACTION AND CLASSIFICATION 

A. Signal Burst to Features 

To cultivate features, we extracted the three signal parts from 

a single signal burst. Then, each feature was selected from the 

pertinent extracted signal parts.  

Each signal part is extracted out from the first signal burst of 

the total received signal through time-windowing. To design 

the time-window for each signal, we used a thresholding 

method. For a rising transient signal 
500,000 1

R

f , the starting 

threshold is the first time point at which the amplitude of the 

signal burst exceeds 10% of its maximum; the ending threshold 

is the time point it exceeds 90%, respectively. Similarly, for the 

falling transient signal 
500,000 1

F

f , the starting threshold and 

the ending threshold are the latest time points at which the 

amplitude of the signal burst exceeds 90% and 10% of its 

maximum, respectively. Since the length of each transient 

signal fluctuates, we used zero padding method after the ending 

point of each transient signal to match the length. To design the 

time window for the sync signal, we referred to the DMR 

standard [8]. The sync signal 
480,000 1

S

f  is located at the 

center of a signal burst. We set the center of the time-window 

for the sync signal to the central time point between the ending 

time of the rising transient signal and the starting time of the 

falling transient signal. The width of the time window was set 

to 0.005 s, as per the DMR standard [8]. 

The extracted signal parts are transformed to the spectrum 

domain by fast Fourier transform (FFT) with the size of the 

time signal. Then, the operation of taking the absolute value of 

each element is executed to compare energy and frequency 

information of the extracted signal part with those of the others. 

Since the main lobe occupies most of the energy of each signal 

part, the main lobe is taken from each spectrum. The main lobes, 
2,000 1( )R MLF f , 2,000 1( )F MLF f , and 1,920 1( )S MLF f , 

are the unique features used for RF fingerprinting in our 

experiment, where ( )F   is the FFT operation function and ML  

means the main lobe of the spectrum.  

To extract the main lobe, we used a bandpass filter first. 

Then, the center frequency of the filtered spectrum was 

down-converted to zero. Finally, we decimated the signal to 

reduce the length of the sample sequence. The main lobe was 

set to occupy the most of energy of each signal part, 

considering the channel bandwidth. 

B. Proposed SRC 

SRC is a classification algorithm based on the compressed 

sensing theory [7] and is used to determine the class from the 

sparse solution of the representation equation 

 y Ds , (1) 

where 1Py  is a test data vector, P NLD  is a training data 

matrix composed of N  training data vectors for each class 

label  1, ,l L , and the column vector 
1NLs  is the 

vector of sparse representation coefficients. The sparse signal 

recovery algorithm in [7] was used to solve (1) with P NL . 

The obtained sparse unique solution s  is divided into L  

disjoint subvectors 
( )l

s , for 1, ,l L . Specifically, 

(1) (2) ( )( ) , ( ) ,  ,( )
T

T T L T   s s s s , where T  is the transpose. 

Likewise, we divide D  into L  submatrices corresponding to 
( )l

s . To identify the class of test data, we solve 

 
 

( ) ( )

21, ,

class a mg inr l l

l L

 y D s .  (2) 

 If the column vectors in D  are less correlated, the solution 

s  of (1) is approximated to be sparse since the condition of 

having a sparse solution depends on the mutual correlation 

between the columns of D  [9]. Thus, the compressed sensing 

algorithms in [7] can be used to find a unique solution s . 

However, when RF signals are taken directly to form the 

column vectors of D , the solution s  cannot be sparse because 

they may be highly correlated. Then, the performance of SRC 

may be poor. Thus, RF signals must be processed to remove 

correlation to obtain high performance in SRC [9]. 

To remove correlation among RF signals, the proposed 

method applies principal components analysis (PCA) to the 

column vectors, each of which combines multiple features. 

PCA is known to be good at geometrically separating the 

features in the Euclidean domain, removing the mutual 

correlation [10]. This section aims to show that how three kinds 

of features are concatenated and how PCA is applied to features. 

For clarity in explanation, we first introduce the single modal 

method and move on to the proposed multimodal method. 

1) Single modal RF fingerprinting : Consider that one of the 

rising transient, falling transient, and sync features is used as 
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the sole representative feature of a single transmitter. We first 

form a feature matrix in which the columns are the sample 

vectors of the feature of candidate RF transmitters. 

Mathematically, for L  RF transmitters (classes) and N  

sample vectors of a feature of each RF transmitter, we construct 

feature matrix 
M NLA  as follows: 

 
       1 1 2

1 1, , , , ,
L

N N
 
 

A a a a a , (3) 

where column vector 
  1l M

n

a  is the nth sample vector of a 

feature of the lth RF transmitter for 1, ,n N  and 1, ,l L , 

and M  is the length of 
 l
na . We denote a sample vector of a 

feature of an unknown RF transmitter as u. From the PCA 

operation, (6) and (8), A  and u  are changed to a training data 

matrix D  and a test vector y , respectively. 

2) Multimodal RF fingerprinting : The proposed method is 

to concatenate the multiple features in the representation 

equation u As , as shown in Fig. 1; the feature matrices are 

concatenated in a row-wise manner. On the columns of this 

combined matrix, the PCA is applied. Let us denote the nth 

sample vector of the kth feature of the lth RF transmitter for 

1, ,n N , 1, ,l L , and 1, ,k K  by 
  1

,

l M

k n

a , 

where K  is the number of features to be combined. The feature 

matrices are concatenated as follows:  

 1 2

T
T T T

K
  A = A A A , (4) 

where 
 

,

l

k na  forms the columns of feature matrix M NL

k

A ,  

 
       1 1 2

,1 , ,1 ,, , , , , .
L

k k k N k k N
 
 

A a a a a  (5) 

We obtain the training data matrix D  as follows:  

 ( )T D = V A m1 , (6) 

where 
1

1 1

1 L N
l MK

n

l nL N



 

 


m a  is an average vector of 

columns of MK NLA ,  : 1 1  11  is the 1 by NL  vector 

of 1 s, 1

1, 2, ,( )  ( )   ( )
T

l l T l T l T MK

n n n K n

   a a a a  is a column 

vector which combines K features, and 
MK PV  is a 

rearranged eigenvector matrix of the covariance matrix 

( )( )T MK MK  A m1 A m1 . The eigenvectors of 

( )( )T A m1 A m1  are arranged according to the eigenvalues 

in descending order. Since the eigenvalue of the covariance 

matrix is proportional to the variance of the columns of A  and 

the eigenvectors of the covariance matrices are orthonormal, 

the column vector of V becomes a basis of the new space on 

the variance of the columns of A  [10]. The dimension of V  

can be selected by user as  1, ,P MK . To obtain the test 

data vector y  of SRC, we first concatenate the sample vectors 

of different features of an unknown transmitter 
ku  as follows: 

 
1 2

T
T T T

K
   u u u u . (7) 

Finally, y  is obtained by mapping the difference between 

concatenated vector 1MKu  and m , i.e., u m , onto the 

space with the eigenvector matrix V , 

 ( )T y = V u m . (8) 

 By using PCA, the equation in Fig. 1 is changed to (1), 

which has principal components as training and test data. The 

SRC solution in (1) was determined using the basis pursuit 

algorithm, which finds the unique sparse solution that has the 

minimum L1 norm [11]. 

IV. EXPERIMENTAL RESULT AND DISCUSSION 

For our experiment, we set the decimation rate for all feature 

extractions to 250, considering the bandwidth of the RF signal 

following the DMR standard [8] and the sampling rate. To 

evaluate the performance of the proposed classifier, we used a 

five-fold cross validation technique. Fifty data were used per 

walkie-talkie, such that each test data was classified on the total 

of 320 training data. The experiment was performed in a 

line-of-sight environment. SNR was around 35-40 dB. 

Table I shows the accuracy rate of the proposed method. The 

accuracy rate of the multimodal scheme is much better than that 

obtained from using only one feature. The minimum number of 

principal components is the minimum number of column 

vectors in the eigenvector matrix V  that yields the highest 

accuracy rate. Fig. 2 shows five results of classification using 

from 1 to 100 principal components, 1) on the rising transient 

feature, 2) on the falling transient feature, 3) on both transient 

features combined, 4) on the sync feature, and 5) on all features 

combined. Improved performance with an increased number of 

Fig. 1. Feature concatenation in the proposed method 
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features indicates that each feature could contain unique 

information. Since the eigenvectors of the 21st and higher 

eigenvalues of ( )( )T A m1 A m1  do not have enough 

information to represent the differences of data, the 

classification accuracy is not changed as 21P  . Fig. 3 shows 

a feature map in which the principal components of features of 

the Motorola Sl1M are mapped onto a 3D plot. The label of 

each axis, such as Component 1 and Component 2, means the 

projection of u m  to the Pth column vector of V . The figure 

shows distinct cluster formation when a concatenated feature is 

used.  

To compare the proposed method with convolutional neural 

network (CNN), we referred to the study [6]. For additional 

tests, we used a five-fold cross validation technique. Five 

training neural networks were constructed using the same 

training dataset with the proposed method. We used the 

concatenated features as input data. The average classification 

accuracy rate of the CNN was 90.75% which can be compared 

with 98.75% of our method. This comparison shows that SRC 

can perform RF fingerprinting well with fewer training data. 

Because it is simple to add more training data and different 

kinds of features in SRC, the performance of the proposed 

method could be improved with additional training data and 

other kinds of features. 

V. CONCLUSIONS 

This letter proposed a multimodal RF fingerprinting scheme 

based on SRC. We showed that the proposed multimodal 

scheme, which concatenates multiple features in the row-wise 

manner and applies PCA to the concatenated dictionary matrix, 

improves accuracy significantly. We showed the possibility 

that the three signal features we have cultivated from RF signal 

samples could provide mutually independent information. The 

proposed scheme is efficient in the sense that improved RF 

fingerprinting accuracy is obtained. In addition, it is simple and 

easy in the proposed scheme to add more data and various kinds 

of features. The MATLAB source code for this study can be 

obtained at “Lab homepage address will be written”.  
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Fig.  3. Feature map of a 3-D principal components space 

Table I. Accuracy rate of the proposed method 

 
4 BD-358 4 SL1M 

4 BD-358 

4 SL1M 

 Accuracy rate (Minimum number of PC)  

TR(R) 88% (24) 82% (48) 90.5% (45) 

TR(F) 87.5% (45) 90% (12) 92.25% (13) 

TR(R + F) 93% (49) 92% (20) 95.5% (63) 

Sync 99% (45) 83.5% (22) 93.75% (86) 

TR(R + F) + Sync 99% (44) 98.5% (22) 98.75% (21) 

R: Rising, F: Falling, PC: Principal components 
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a b s t r a c t 

We demonstrate 2D filter-array compressive sensing spectroscopy based on thin-film technology and a compres- 

sive sensing reconstruction algorithm. To obtain different spectral modulations, we fabricate a set of multilayer 

filters using alternating low- and high-index materials and reconstruct the input spectrum using a small number of 

measurements. Experimental results show that the fabricated filter-array provides compatible spectral resolution 

performance with a conventional spectrometer in monochromatic lights and LEDs. In addition, the fabricated 

filter-array covers a wide range of wavelengths with a single exposure. 
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. Introduction 

The demand for spectrum information is increasing not only in re-

earch and development but also in the private sector. In response to

his demand, researchers are trying to make spectrometers that are both

mall and inexpensive. These spectrometers could be used in various

elds, such as medical systems, mobile applications, and remote sens-

ng [1–3] . In particular, optical filter-based spectrometers do not need

otorized or dispersive elements, and their filter-array can be directly

ttached to the detectors so that they can be easily miniaturized. How-

ver, there is a trade-off between size (for integrating filters) and spec-

ral resolution with miniaturized spectrometers. 

Over the years, numerous approaches to applying compressive sens-

ng (CS) techniques have been proposed to reduce the size of spectro-

copes without reducing spectral resolution, or potentially even improv-

ng it. These approaches [4–7] include the following: band pass filters

4] , random transmittance filters [5] , photonic crystal slabs [6] , and

iquid crystal phase retarders [7] . Recently, Fabry–Perot (FP)-based CS

pectroscopy methods have been presented [8,9] . To acquire differently

odulated spectral measurements, a 2D array of FP resonators with dif-

erent cavity depths has been tried [8] as well as a piezo-actuated de-

ice that changes the distance between two FP mirrors has been tried

9] . A hundred FP resonators are used to recover the input spectrum in

8] , and the operational range of the piezo-actuator imposes mechanical

imitations in [9] . 

The CS framework [10–12] is an efficient sampling and reconstruc-

ion scheme that requires fewer samples to reconstruct the signal than

hat required by conventional sampling. The CS framework can be ap-

lied to filter-based spectroscopy, offering the advantage of reducing
∗ Corresponding author. 

E-mail address: heungno@gist.ac.kr (H.-N. Lee). 
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he number of filters and detectors required and allowing the system to

e miniaturized. 

In spectroscopy, the relation between the spectral components of the

nput light source 𝐱 ∈ ℝ 

𝑁× 1 and the modulated signal 𝐲 ∈ ℝ 

𝑀× 1 can be

xpressed as follows: 

 = 𝐓𝐱 , (1) 

here 𝐓 ∈ ℝ 

𝑀×𝑁 is the sensing matrix. Each row of the sensing matrix

s to represent the transmission function (TF) of i -th filter, 𝑻 𝑚 ∈ ℝ 

1 ×𝑁 

or 𝑚 = 1 , 2 , … , 𝑀 . In order to achieve miniaturization of spectroscope

ithout degradation of spectral resolution, the CS framework is utilized

n spectroscopy, where the number of filters is set to be smaller than the

umber of spectral components ( M < N ). Then, Eq. (1) becomes an un-

erdetermined linear system. A sparse signal reconstruction algorithm

ith L 1 norm minimization can be used to solve Eq. (1) , if the input

pectrum is either naturally sparse or can be sparsely represented in

ome basis 𝚽 ∈ ℝ 

𝑁×𝑁 , i.e., 𝐱 = 𝚽𝐬 , where 𝐬 ∈ ℝ 

𝑁× 1 is a sparse vector.

hen, Eq. (1) becomes 

 = 𝐓𝚽𝐬 (2) 

The sparse signal s can be estimated by solving the following L 1 norm

inimization problem: 

̂
 = arg min 

𝐬 
‖𝐬 ‖1 subject to ‖𝐲 − 𝐓𝚽𝐬 ‖2 ≤ 𝜀 (3)

here 𝜀 is a small non-negative constant. The reconstructed input spec-

rum �̂� is then 𝚽�̂� . 
In this paper, we demonstrate 2D filter-array CS spectroscopy. This

ses a multilayer thin-film filter-array for spectral modulation, where

ach filter modulates the input spectrum using different sensing pat-

erns. A CMOS image camera reads out the modulated signals with a
ctober 2018 
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Table 1 

Recursion for calculating reflection coefficients. 

Input: 𝜆, 𝜃1 = 0 , 𝒏 = { 𝑛 1 , 𝑛 2 , ⋯ , 𝑛 𝑙−1 , 𝑛 𝑙 } , 𝒅 = { 𝑑 2 , 𝑑 3 , ⋯ , 𝑑 𝑙−1 , 𝑑 𝑙 } . 

Step 1: Obtain 𝜃k , 𝛽k , and N k 
𝜃𝑘 = sin 

−1 ( 𝑛 𝑘 −1 
𝑛 𝑘 

sin 𝜃𝑘 −1 ) , 𝑓𝑜𝑟 𝑘 = 2 , 3 , ⋯ , 𝑙. 

𝛽𝑘 = 2 𝜋 cos ( 𝜃𝑘 ) 𝑛 𝑘 𝑑 𝑘 ∕ 𝜆, 𝑓𝑜𝑟 𝑘 = 2 , 3 , ⋯ , 𝑙. 

𝑁 𝑘 = { 
𝑛 𝑘 ∕ cos 𝜃𝑘 𝑓𝑜𝑟 𝑇 𝐸 
𝑛 𝑘 cos 𝜃𝑘 𝑓𝑜𝑟 𝑇 𝑀 

, 𝑓𝑜𝑟 𝑘 = 1 , 2 , ⋯ , 𝑙. 

Step 2: Set 𝜂𝑙 = 𝑁 𝑙 

Step 3: Obtain 𝜂2 

Decrement k by 1 from l – 1 to 2 

𝜂𝑘 = 𝑁 𝑘 

𝜂𝑘 +1 cos 𝛽𝑘 + 𝑗 𝑁 𝑘 sin 𝛽𝑘 
𝑁 𝑘 cos 𝛽𝑘 + 𝑗 𝜂𝑘 +1 sin 𝛽𝑘 

return 𝜂2 

Step 4: Compute 𝜌 = ( 𝑁 1 − 𝜂2 )∕( 𝑁 1 + 𝜂2 ) . 

Output: 𝜌
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Fig. 1. (a) Schematic of the thin-film filter-array. (b) Example of two transmis- 

sion functions for thin-film filters. 
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ingle exposure, and then a reconstruction algorithm is applied that de-

ends on the modulated signals and the sensing matrix, allowing the

nput spectrum to be recovered. 

The research focus has been given to fabrication of the multilayer

hin-film filters for actual CS spectroscopy implementation and verifica-

ion experiments. For fabricating as a 2D filter-array, we use commonly

vailable materials SiNx and SiO2 for high and low refractive index ma-

erials which are deposited alternately on the substrate with varying

hicknesses. Furthermore, we come up with a practical way that set of

lters can be deposited on a single substrate with different thicknesses

f layers. 

. 2D filter-array 

.1. Multilayer thin-film filter 

Thin films are a basic component that have been applied in a variety

f areas, including semiconductor devices, optical coatings, and solar

ells [13] . The theoretical TF of a multilayer thin-film filter is given by

14] 

 

(
𝜆, 𝜃1 

)
= 1 − 

1 ∕ 2 
(||𝜌𝑇𝐸 ||2 + 

||𝜌𝑇𝑀 

||2 
)
, (4)

here 𝜌TE and 𝜌TM 

are the reflection coefficients. Given a wavelength 𝜆

nd the incident angle 𝜃1 , TF can be calculated using recursive routines

hown in Table 1 . 

In Table 1 , given the input of a wavelength 𝜆, a vector of l refractive

ndices 𝒏 = ( 𝑛 1 , 𝑛 2 , ⋯ , 𝑛 𝑙−1 , 𝑛 𝑙 ) and a vector of 𝑙 − 1 layer thicknesses 𝒅 =
 𝑑 2 , 𝑑 3 , ⋯ , 𝑑 𝑙−1 , 𝑑 𝑙 ) , a reflection coefficient 𝜌 is generated. Note that there

re l layers considered in total. The first one is the layer of the air and the

ast one is the layer of the substrate. The light is assumed to be arriving

rom the air to the second layer in normal incidence. The first index n 1 
n the vector n represents the refractive index of the air. The last one

 l in the vector n represents the refractive index of the substrate. The

efractive indices of the intermediate thin-film layers are denoted by n 2 
o 𝑛 𝑙−1 . The thickness of the air does not need to be considered. The

hickness of the substrate is denoted by d l . 

The thicknesses of the intermediate thin-film layers are denoted by

 2 to 𝑑 𝑙−1 . The incidence angle of the light passing from the k th to the

 + 1th layer is 𝜃k , and 𝜂k is the effective complex-valued index of the

 th layer. A TF for a single filter is obtained by considering all wave-

engths in the range of interest. An array of TFs for the M filters can be

btained by repeating this process where each filter 𝑻 𝑚 ∈ ℝ 

1 ×𝑁 for 𝑚 =
 , 2 , ⋯ , 𝑀 in Eq. (1) is generated from a unique set of refractive index

nd thickness vectors. 

.2. Numerical design of 2D filter-array 

To implement the proposed 2D filter-array, we numerically modeled

he proposed spectroscopy method with reference to [14–16] , and ac-

ording to the following steps. (i) Generate the reference vector of layer
54 
hicknesses, i.e. 𝒅 = ( 𝑑 2 , 𝑑 3 , ⋯ , 𝑑 𝑙−1 , 𝑑 𝑙 ) , for the reference filter. (ii) Gen-

rate a vector of thicknesses for the other filter by randomly removing

ne to five layer thicknesses from the reference vector. (iii) Repeat the

tep (ii) 35 times to create a total of 36 vectors of thicknesses. (iv) Use

he recursion Table 1 and Eq. (4) to calculate the TFs for a new filter-

rray (sensing matrix). (v) Use the mutual coherence 𝜇 to quantify the

oodness of the sensing matrix of the designed filter-array. Mutual co-

erence 𝜇 is defined as 𝜇
Δ
= max 

𝑖,𝑗 
|𝑜 𝑖𝑗 |, where o ij is the ( i, j )th off-diagonal

lement of the Gram matrix, 𝐓 

∗ 𝐓 ∈ ℝ 

𝑁×𝑁 . T 

∗ denotes the conjugate

ranspose of T . With these steps, we can generate a single set of 36 fil-

ers. By repeating these steps, multiple sets of 36 filters can be obtained.

mong these sets of filter-arrays, the set of filters with a smallest mutual

oherence is selected. 

In CS framework, a sensing matrix with a smaller mutual coherence

s better than the one with a higher mutual coherence to capture the

nformation of input signal to be reconstructed [5,17] . A schematic of

he proposed filter-array is shown in Fig. 1 (a). Each time a layer is re-

oved, the layers above and those below come together to form a single

ayer with two thicknesses added up. We consider two materials, SiN x 

nd SiO 2 for the high- and low-refractive index materials with refractive

ndices of 2.02 for SiN x and 1.45 for SiO 2 . The thickness range of each

ayer is from 50 to 150 nm. Through the numerical design, we empiri-

ally found that removal of up to five layers from the 24-layer reference

lter was possible to create a 6 ×6 filter-array with a low coherence. 

Fig. 1 (b) shows the TFs for two designed filters as examples. In con-

entional spectroscopy, the TFs with a large spectral depth and a narrow

pectral peak are preferred in order to prevent interference among mea-

urements. In compressive sensing spectroscopy, Each TF of the filter

hould be wide enough so that the set of the small number of filters

ully senses the spectral information in the given wavelength range [9] .

Each filter shows several spectral peaks and rapid changes of trans-

ission value with respect to wavelength. Therefore, each filter has a

igh optical throughput that the energy (intensity) which passes through

he filter is higher than that with the conventional bandpass filter ap-

roach. In addition, fewer filters can be used to cover the entire wave-

ength range with the proposed method. For example, suppose 250

andpass filters are used to cover the wavelength range from 500 to
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Fig. 2. (a) Schematic of the thin-film filter-array fabrication process. (b) Photo- 

graph of a fabricated thin-film filter-array. (c) Monochrome image of the thin- 

film filter-array taken at a wavelength of 700 nm. 
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Fig. 3. (a) Schematic of the optical setup for measuring the sensing matrix. 

(b) Schematic of the optical setup for testing the performance of the proposed 

spectroscopy system. (c) Photographs of the optical setup and the CMOS image 

camera with the thin-film filter-array. 
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000 nm. Then, the bandwidth of TF is 2 nm, according to the conven-

ional bandpass filter design. In the proposed approach, the same range

f wavelength can be covered with only 36 proposed filters, subject to

he use of a recovery algorithm present at the reconstruction end. 

.3. Filter-array fabrication 

Fig. 2 (a) shows the process in which a thin-film filter-array is fabri-

ated. This comprises two main parts; one is SiO 2 film deposition and

he other is SiN x film deposition according to the specified thicknesses.

rior to depositing an SiO 2 film, a 6 ×6 germanium (Ge) grid with ele-

ents of size 300 𝜇m and spacing 100 𝜇m was formed on the glass using

n e-beam evaporator to separate the filters. In this grid, SiO 2 and SiN x 

ayers were deposited with the width of 300 𝜇m in each filter. Then, se-

ective deposition was done as follow: An intentionally thick SiO 2 film

as deposited on the glass patterned with the Ge grid using plasma- en-

anced chemical vapor deposition. The regions where the film should

ot be deposited were then removed by conventional photolithography,

amely CF 4 /O 2 reactive ion etching. The process pressure and radio- fre-

uency power were maintained at 50 mTorr and 50 W, respectively. The

iN x film deposition process was performed in the same manner as for

iO 2 . Finally, these two main steps, SiO 2 and SiN x film deposition, were

epeated 12 times each to lay down 24 layers. Fig. 2 (b) and (c) show

 photograph of a fabricated thin-film filter-array and a monochrome

mage of the filter-array, respectively. Each filter is composed of a dif-

erent number of layers each with different thicknesses; therefore, each

ne has unique color due to its different TF, as shown in Fig. 1 (b). 

. Experiments 

.1. Experimental setup 

Optical setups for experimental verification of the proposed spec-

roscopy system are shown in Fig. 3 . Fig. 3 (a) depicts the optical setup

or measuring TFs of a filter-array. The setup for testing the performance

f the proposed system is shown in Fig. 3 (b). The photographs of the op-

ical setup and the CMOS image camera with the thin-film filter-array
55 
re shown in Fig. 3 (c). During the optical experiments, we set the in-

ident angle to filter-array as normal incidence. Using a linear stage, a

otational stage and optical mounting posts, we aligned the optical fiber

ith the CMOS image camera (E0-1312, Edmund Optics) for the normal

ncidence. 

In Fig. 3 (a), a halogen lamp (KLS-150H-LS-150D, Kwangwoo) was

sed to provide a continuous light spectrum. It was put into a monochro-

ator (MMAC-200, Mi Optics) to produce a specific narrow wavelength

and. Then, a fiber-optic collimator was used to form a beam of parallel

ight. The beam was fed into the CMOS image camera through the fabri-

ated thin-film filter-array. With a single exposure, each filter modulated

he light in a different pattern. The modulated light was read out by pix-

ls of CMOS image camera, yielding M = 36 distinct output signals y in

q. (1) . Each output signal was taken by summing up the modulated

alues of the pixels underneath the pertinent filter. 

To apply CS reconstruction algorithms to the proposed system, the

ensing matrix T must be pre-determined. Let us denote the intensity

hich passes through the filter-array as IF ( m, 𝜆) and the intensity with-

ut the filter-array as IWF ( m, 𝜆), where m is the filter index and 𝜆 is the

avelength. The sensing matrix is then given by 

 ( 𝑚, 𝜆) = 

𝐼𝐹 ( 𝑚, 𝜆) − 𝐵𝐼( 𝑚, 𝜆) 
𝐼𝑊 𝐹 ( 𝑚, 𝜆) − 𝐵𝐼( 𝑚, 𝜆) 

, (5)

here BI ( m, 𝜆) is the background intensity. We took 500 wavelength

amples, spaced 1 nm apart, in the range from 500 to 1000 nm. The mea-

ured sensing matrix 𝐓 ∈ ℝ 

36 × 500 obtained from the fabricated thin-

lm filter-array is shown in Fig. 4 . Each TF of the filters, a row of the

olor map, is shown as a combination of colors, i.e., red (high trans-

ission value) and blue (low transmission value). Different TFs show

ifferent places of high and low transmission values indicating mutual

ncorrelation. As a set of 36 filters, the filter-array covers the entire

avelength range with high optical throughput. 
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Fig. 4. Color map of the measured sensing matrix for the thin-film filter-array. 

Each row represents the TF of a filter with respect to wavelength. 
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Fig. 5. (a) Computational reconstruction performance of the fabricated thin- 

film filter-array with respect to the FWHM. (b) Computational spectral recon- 

struction performance of the fabricated thin-film filter-array with respect to the 

SNR. 
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.2. Computational experiments 

To quantify the performance and explore the two-point resolution

f the fabricated filter-array, we conducted computational experiments.

he two-point resolution is the ability to distinguish the spectral peaks

hich are closely spaced. For the experiments, we generated mono-peak

pectra and two-peak spectra as input spectra using the Gaussian func-

ion. A generated input spectrum x was numerically modulated by mul-

iplying the measured sensing matrix T as shown in Eq. (1) . Then, us-

ng the M -modulated signals (measurements) and the sensing matrix T ,

 reconstruction algorithm is used to recover the input spectrum. In

he experiments, we considered that the input spectrum was a directly

parse signal. The mean-squared error (MSE) between the input spec-

rum x and the reconstructed spectrum ̂𝐱 was calculated. The MSE is de-

ned as ‖𝐱 − ̂𝐱 ‖2 2 ∕ 𝑁 . 

We firstly tested the spectral reconstruction performance of the fabri-

ated filter-array with changing the full width at half maximum (FWHM)

f the generated input signals. We made three noisy environments by

dding the additive noise n to Eq. (1) as 𝐲 = 𝐓𝐱 + 𝐧 whose the signal

o noise ratios (SNRs) were 20, 25, 30 dB. The SNR in decibels is de-

ned as 10 ⋅ log 10 ( ‖𝐱‖2 2 ∕ 𝑁 𝜎2 ) , where 𝜎 is the standard deviation of the

oise. 

The spectral reconstruction performances with respect to the FWHMs

re shown in Fig. 5 (a). For the two-peak spectrum, the distance between

wo peaks was determined as [1.5 · FWHM], where [ · ] is the nearest in-

eger function. We averaged all the MSEs of the spectrum over the peak-

ocations from 500 to 999 nm in a given FWHM. As shown in Fig. 5 (a),

he mono-peak spectrum is reconstructed better than two-peak spec-

rum. As the FWHM increased, the performance of spectral reconstruc-

ion is degraded. This is due to the increased sparsity of the spectrum. 

Second, we verified the stability of noise along the SNR conditions

or the fabricated filter-array. As shown in Fig. 5 (b), the reconstruction

erformance on mono-peak spectrum is better than that of the two-peak

pectrum. In addition, when the FWHM is 1 nm, the reconstruction per-

ormance is better than the FWHM with 2 nm. Despite the additive noise,

he results show that the fabricated filter-array is robust to the noisy en-

ironments. 

As depicted in Fig. 5 , the reconstruction performance of the fabri-

ated filter-array depends on the FWHM and the SNR. For the two-point

esolution, the MSE has the smallest value when the FWHM of the two-

eak spectrum is 1 nm. The overall MSEs are small enough to use the

abricated filter-array to conduct the optical experiments. 

.3. Optical experiments 

Optical experiments were then conducted to evaluate the perfor-

ance of the proposed system, as shown in Fig. 3 (b). Narrow-band

onochromatic lights and LEDs were used as input light sources. To gen-
56 
rate narrow-band light, a supercontinuum white light source (SuperK

OMPACT, NKT Photonics) was placed in the monochromator, making

 narrow band of light with a full width at half maximum (FWHM) of

pproximately 1 nm. These light sources were fed into the CMOS image

amera through the filter-array, simultaneously capturing the M differ-

ntly modulated signals. The M -modulated signals and the measured

ensing matrix T were then used to solve Eq. (3) . We used a Gaussian

ernel matrix as the sparsifying basis 𝚽. The spectral waveform can be

epresented as a linear combination of Gaussian kernels, and a Gaussian

ernel can be easily generated with two parameters, namely the peak

ocation and the FWHM value [4,18] . The l1_ls_noneg algorithm [19] was

sed as a reconstruction algorithm to solve Eq. (3) with non-negativity

onstraints. 

Fig. 6 shows the reconstruction results for monochromatic lights and

EDs. For comparison, the reference spectrum and the reconstructed

pectrum were normalized to the range between zero and one. 

The optical experimental results for monochromatic lights are shown

n Fig. 6 (a). In our optical experiment, depicted in Fig. 3 (c), we use four

ifferent monochromatic spectra, with spectral peaks located at 600,

00, 800, and 900 nm, respectively. The reference spectra are measured

sing an optical spectrum analyzer (AQ-6315B, Ando) which indicate

ctual spectral peak locations at 598.7, 700.4, 800.5, and 900.4 nm, re-

pectively. Using the fabricated filter-array CS spectroscopy with the

econstruction algorithm, the spectral peak locations are reconstructed

t 599, 699, 799, and 901 nm, respectively. The mean FWHM of the

eference spectra is approximately 1 nm, and the mean FWHM for the

econstructed spectra is approximately 1.4 nm. 

Fig. 6 (b) shows the spectral reconstructions of green (527 nm) and

ed (635 nm) LEDs. For the reference spectra, we measure the LEDs us-

ng a grating spectrometer (QE65000, Ocean Optics). The spectral peak

ocations for the reference LEDs are 527.6 nm (green LED) and 634.9 nm
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Fig. 6. Spectral reconstructions of several different input light sources. (a) Spec- 

tral reconstructions of monochromatic lights (dots) compared with reference 

spectra (solid lines): 600 nm (green), 700 nm (yellow), 800 nm (red), and 900 nm 

(purple). (b) Spectral reconstructions of LEDs (dots) compared with reference 

spectra (solid lines): green LED (527 nm), and red LED (635 nm). 
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Fig. 7. Computational spectral reconstruction of a halogen lamp (red dash line) 

compared with the reference spectrum (black solid line) measured by a conven- 

tional spectrometer. 

e  

F  

t  

w

4

 

fi  

p  

t  

s  

p  

m  

o  

t  

(  

p  

l

A

 

K  

2

R

 

 

 

 

 

 

 

 

 

[

[  

[  
red LED), and the reconstructed spectral peak locations are 531 nm

green LED) and 633 nm (red LED). The peak signal-to-noise ratios are

8.3 dB (green LED) and 31.7 dB (red LED). 

Discussing Fig. 6 , the spectra of reconstructed monochromatic lights

how several negligible spikes. This is probably due to background noise

n the optical experiments. But overall, the reconstruction results of the

roposed CS spectroscopy system for monochromatic lights and LEDs

re similar to those of the grating spectrometer. Furthermore, the num-

er of modulated signals is significantly small ( M = 36) that the mea-

urement to wavelength sample ratio is 36:500 (ratio between M and

 ). 

To further explore the performance of the proposed CS spectroscopy,

e conducted the computational experiment on the fabricated filter-

rray using a continuous light source, halogen lamp. For the experiment,

e used the measured sensing matrix T . The conventionally measured

pectrum of the halogen lamp was used as the input spectrum x . The

odulated signals were generated by numerically multiplying the sens-

ng matrix and the input spectrum. By solving Eq. (3) , we reconstructed

he continuous spectrum of light. In Fig. 7 , we present computational

pectral reconstruction of the halogen lamp. The peak signal-to-noise

atio is 43.8 dB. Due to the limitations of our optical components to re-

ect the spectrum of the halogen lamp except for the wavelength range

rom 500 to 1000 nm, we could not perform the optical experiment on

he continuous source. However, the computational reconstruction re-

ult of the halogen lamp indicates that the fabricated filter-array can be

tilized for recovering the various kinds of spectra in the given wave-

ength range without limitations of the optical components. 

Fabricating the proposed filter-array can be more difficult than fab-

icating Fabry–Perot structure due to the large number of layers for the

roposed filter-array. However, the proposed spectroscope is compact

nd it does not need motorized components which were used with the

abry–Perot structure [9] . In addition, thanks to the 2D array struc-

ure, the proposed spectroscope captures all measurements in a single

xposure. But the Fabry–Perot spectroscope [9] required a number of
57 
xposures as many times as the number of measurements. Compared to

abry–Perot spectroscope [8] , the proposed spectroscope utilizes 36 fil-

ers to cover the wavelength range from 500 to 1000 nm, but 100 filters

ere used in [8] to cover the range from 500 to 750 nm. 

. Conclusion 

We have demonstrated a 2D array CS spectroscope based on thin-

lm technology. A 2D thin-film filter-array is fabricated based on array

rocessing. Using the fabricated filter-array, measurements are obtained

o which the CS reconstruction algorithm is applied. Finally, demon-

tration of input spectrum reconstruction is successfully made. The pro-

osed system is compact, portable, and obtains the necessary measure-

ents in a single exposure thanks to its structural advantages. More-

ver, it works over a wide spectral range, from the visible light region

o the near-infrared region. Compared with conventional spectrometers

non-CS spectrometers), the proposed system has a high optical through-

ut and compatible spectral resolution performance in monochromatic

ights and LEDs with significantly less number of measurements. 
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Dry Electrode-Based Fully Isolated EEG/fNIRS
Hybrid Brain-Monitoring System
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and Heung-No Lee , Senior Member, IEEE

Abstract—A portable hybrid brain monitoring sys-
tem is proposed to perform simultaneous 16-channel
electroencephalogram (EEG) and 8-channel functional
near-infrared spectroscopy (fNIRS) measurements.
Architecture-optimized analog frontend integrated circuits
(Texas Instruments ADS1299 and ADS8688A) were used to
simultaneously achieve 24-bit EEG resolution and reliable
latency-less (<0.85 µs) bio-optical measurements. Sup-
pression of the noise and crosstalk generated by the digital
circuit components and flashing NIR light sources was
maximized through linear regulator-based fully isolated
circuit design. Gel-less EEG measurements were enabled
by using spring-loaded dry electrodes. Several evaluations
were carried out by conducting an EEG phantom test and
an arterial occlusion experiment. An alpha rhythm detection
test (eye-closing task) and a mental arithmetic experiment
(cumulative subtraction task) were conducted to determine
whether the system is applicable to human subject studies.
The evaluation results show that the proposed system is
sufficiently capable of detecting microvoltage EEG signals
and hemodynamic responses. The results of the studies
on human subjects enabled us to verify that the proposed
system is able to detect task-related EEG spectral features
such as eye-closed event-related synchronization and
mental-arithmetic event-related desynchronization in the
alpha and beta rhythm ranges. An analysis of the fNIRS
measurements with an arithmetic operation task also re-
vealed a decreasing trend in oxyhemoglobin concentration.

Index Terms—Electroencephalogram (EEG), functional
near-infrared spectroscopy (fNIRS), hybrid brain–computer
interface, multimodal analysis, portable instrument, simul-
taneous measurement.
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I. INTRODUCTION

THE brain–computer interface (BCI) [1], [2] was originally
developed to assist severely disabled people who cannot

control their peripheral nerves and muscles, due to neurological
and neuromuscular disorders such as amyotrophic lateral
sclerosis, brainstem strokes, and spinal cord injuries. This
technology is now advancing to provide a new communication
channel that facilitates human-machine interaction. Presently,
a number of new techniques based on wearable devices and the
Internet of Things (IoT) are being applied to BCIs related to the
fields of healthcare, telemedicine, and clinical care [3]. Current
BCI technology, however, faces several challenges, such as its
limited number of controllable functional-brain signals [4], the
need for recalibration of the signal processing algorithms, and
uncontrollability for a non-negligible proportion of the users,
referred to as “BCI-illiteracy” [5].

Multimodal analysis of brain activities—the so-called hybrid
BCI [6], which can be implemented by simultaneously acquir-
ing and analyzing two or more brain signals, has been pro-
posed as an alternative BCI technique capable of overcoming
the above challenges. Two or more complementary neurological
signals can be combined and shared to maximize the amount
of exploitable information, thereby enhancing the robustness of
control accuracy in real-world applications.

Hybrid BCI systems could be established by the fusion of two
or more modalities amongst various brain imaging techniques,
such as electroencephalogram (EEG), magnetoencephalogram
(MEG), functional magnetic resonance imaging (fMRI), and
functional near-infrared spectroscopy (fNIRS). Among these
modalities, the disadvantages of MEG- and fMRI-based tech-
niques is the need to install the machines in confined areas
and the fact that they can only be used for short runtimes
because of their high cost, large size, and the need for ex-
pert operators [7]. Contrary to this, EEG- and fNIRS-based
brain-monitoring systems are electromechanically simple, mak-
ing them easy to design for lightweight, compact and low-cost
systems. EEG/fNIRS-combined hybrid systems could easily be
built as portable or wearable devices and utilized in more dy-
namic applications, such as driver drowsiness detection [8] and
seizure monitoring in epileptic patients [9].

An EEG is the electrical potential produced by the sum of the
synchronous activation from the dendritic branches of a large
number of neurons. Because EEG recording can be achieved
noninvasively through the electrodes placed on the scalp and its
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time resolution is relatively high in the millisecond range, it is
widely used as an electrophysiological recording modality [2].
On the other hand, fNIRS measures the changes in the local con-
centration of oxygenated and deoxygenated hemoglobin in the
cerebral cortex region by utilizing low-energy optical radiation
from light sources of two different wavelengths in the near-
infrared range (700–1000 nm). Although this technique demon-
strates a slower response compared to EEG, it enables an inves-
tigation of metabolic and microcirculatory neuronal activation
regardless of the electrically synchronized activation of neurons
[10]. The simultaneous acquisition of EEG and fNIRS mea-
surements could provide more comprehensive neurodynamic
information regarding the accessible neuronal metabolism and
neuroelectric activities. As such, several researchers have re-
cently developed EEG–fNIRS hybrid systems for use in various
applications [11].

A review of the available literature related to hybrid BCI sys-
tems indicates that a combination of individual EEG and fNIRS
systems has been used in various experimental accomplishments
regarding motor imageries [12]–[16], visual and auditory stim-
ulations [17] and mental workloads [18], [19]. In such a setup,
fully synchronized operation of the entire system is difficult,
because each individual system contains its own controller that
is operated at a predefined clock speed. Therefore, the mea-
surements acquired from two systems may not be completely
synchronized in the absence of a precise simultaneous con-
trol mechanism. Attempts to address this concern have resulted
in the design of customized EEG–fNIRS hybrid acquisition
instruments.

One of the first attempts to this end has been started with the
design of a probe for simultaneous measurements of EEG and
fNIRS data [20]. Lareau et al. [21] and Sawan et al. [22] have
proposed a similar hybrid system that was capable of acquir-
ing multi-channel EEG and fNIRS measurements. However, it
was difficult to use it as an out-of-lab device because of its
large size (16 × 13 × 8.2 cm3). In 2013, a field-programmable
gate array (FPGA) and an EEG application-specific integrated
circuit (ASIC) based compact, and advanced bimodal acqui-
sition system was developed by Safaie et al. [23]. Recently,
Luhmann et al. [24] developed a miniaturized modular hybrid
system, wherein one module was capable of simultaneously
monitoring four channels of bio-electrical and bio-optical mea-
surements. However, these reported studies still have several
limitations related to practical usability in daily-life monitor-
ing. The conductive gel of conventional wet electrodes leads
to user irritation and easily degrades the signal quality as it
becomes dry, making long-term monitoring difficult. Efficient
suppression of the crosstalk and noise characteristics in a mixed-
signal system is another key challenge in designing a hybrid
instrument.

This paper proposes a dry electrode-based portable hy-
brid brain monitoring (HBM) system that provides simulta-
neous monitoring of fully synchronized 16-channel EEG and
8-channel fNIRS. Aiming at a use of out-of-lab and clinical
applications, the performance and availability of the instrument
have been improved by integrating the following advanced fea-
tures with the proposed system:

1) Dry electrode-based gel-less EEG acquisition [25]–[27]
for easy to put on, non-degraded EEG quality, and
significant reduction in wearing time to less than 10 min-
utes (refer to Section II-C);

2) Architecture-optimized frontend design for sufficient res-
olution EEG and timing-secured errorless bio-optical
measurement, i.e., delta-sigma (Δ-Σ) architecture ADC-
based 24-bit EEG resolution and successive approxi-
mation register (SAR) architecture ADC-based latency-
less (<0.85 μs) bio-optical measurements (refer to
Section II-A);

3) Linear regulator-based fully-isolated circuit design for
maximization of noise and crosstalk suppression (refer to
Section II-B);

4) Customizable EEG electrode-positioning structure
(named as EEGCAP) to meet various experimental sce-
narios (refer to Section III-B-1)).

Several evaluation tests were performed to verify the hybrid
data acquisition performance. The acquisition of EEG measure-
ments using the dry electrodes was evaluated by performing
an EEG phantom test. An arterial occlusion experiment was
performed to verify the hemodynamic responses of the fNIRS
measurements. Finally, human subject studies including an al-
pha rhythm detection test and an experiment to assess mental
arithmetic operation were performed to verify the practical ca-
pabilities for EEG and fNIRS feature measurements.

The remainder of the paper is organized as follows: Section II
and III provide detailed descriptions of the design methods and
the implementation of the proposed system, respectively. The
evaluation of the EEG/fNIRS measurements and human subject
studies, including an alpha rhythm detection test and a mental
arithmetic operation experiment, are presented in Section IV.
Section V summarizes several results, including system imple-
mentation, acquisition capability evaluation, and offline anal-
ysis of human subject studies. The contributions of this study
are discussed in Chapter VI in comparison with previous stud-
ies. Finally, concluding remarks with a summary of the system
design and experimental results are given in Section VII.

II. SYSTEM DESIGN

This section describes the key design methods for implement-
ing the proposed HBM system, namely architecture-optimized
frontend design, linear regulator-based fully-isolated circuit de-
sign, and dry electrode-based gel-less EEG acquisition.

A. Architecture-Optimized Frontend Design

Physiological signals, such as EEG and fNIRS, possess small
amplitudes and are highly susceptible to various types of noise.
For this reason, the use of complicated signal-conditioning cir-
cuits becomes necessary to achieve high-precision measure-
ments. State-of-the-art integrated analog frontend (AFE) inte-
grated circuits (ICs) combined with high-resolution analog-to-
digital converters (ADCs), signal-conditioning circuits, and as-
sociated built-in circuits and their design benefits were reported
[28]. The integrated functions of these ICs assist to reduce the
number of discrete components required in the design of a data
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acquisition system, enabling miniaturized and low-cost designs
with reliable performance.

The proposed design employs the ADS1299 AFE IC (Texas
Instruments, USA) [29] for EEG measurements. It was in-
tegrated with 8-channel, 24-bit resolution Δ-Σ ADCs, pro-
grammable gain amplifiers (PGAs), and other built-in periph-
erals. A sufficiently small step size of the least significant bit
(LSB) (0.022 μV at a 24 PGA gain) and low peak-to-peak noise
performance (0.98 μV at a 250-SPS sampling rate and a 24
PGA gain) enables precise detection of EEG signals in the μV
range. The integrated 8-channel ADCs allow simultaneous sam-
pling of multiple input measurements, thus no sampling skew
and glitch noise exist in the converted data without the need for
sample-and-hold circuits.

Although the ADS1299 was used for EEG measurements in
previous studies [24], this is the first time the ADS8688A (Texas
Instruments, USA) [30] was used for the acquisition of bio-
optical measurements. This device is a 16-bit successive SAR
ADC-based AFE integrated with numerous built-in functions
such as 8-channel input multiplexer, PGAs, and second-order
low-pass filters.

Compared to the Δ-Σ architecture employed in ADS1299,
the SAR ADC architecture [31] can provide the precise delay-
less measurement required for bio-optical acquisition. The delta
sigma architecture is advantageous for acquiring high-resolution
measurements exceeding 20 bits; however, its operating mech-
anism requires the use of a digital decimation filter for noise-
shaped representation of oversampled data, thereby resulting in
conversion latency known as the settling time [32]. This latency
represents the delay between the beginning of the input signal
conversion and the end time at which fully settled output data
are available. In the case of the ADS1299, this latency reaches
16 ms at a sampling rate of 250 SPS. Unlike delta-sigma ADCs,
the SAR ADC architecture does not require the conversion la-
tency because it repeatedly performs a zero-latency task, which
compares the reference voltage and input measurements through
a sample-and-hold circuit, a comparator, and a DAC. This zero-
latency feature, which produces digitized data within 0.85 μs
in case of the ADS8688A, leads to reliable delay-less measure-
ment. Because the bio-optical measurement requires on-time
acquisition within predefined timing bins (4 ms) when the NIR
light source is in an active state, this delay-less characteristic is
essential for accurate acquisition of bio-optical measurements.
Therefore, the ADS8688A, instead of the ADS1299, which is
Δ-Σ architecture ADC-based AFE IC, is employed for the bio-
optical measurement.

B. Linear Regulator-Based Fully-Isolated Circuit Design

In mixed-signal systems in which analog and digital com-
ponents are integrated into a single circuit, the crosstalk noise
generated in digital circuits could be coupled to neighboring ana-
log circuits via stray capacitances [33]. In the proposed HBM
system, a periodical switching operation of the NIR light source
is necessary to acquire bio-optical measurements. The oscillat-
ing noise in the digital circuits is unavoidable because of the
instantaneously high current flow in the driving circuit of the

light source. Without careful consideration of the crosstalk, this
noise may appear on the analog circuits associated with the
AFE ICs and can easily distort the small EEG and bio-optical
amplitudes.

The crosstalk rejection capability was maximized by imple-
menting a fully isolated circuit design technique, such as a circuit
design with separate ground planes and an isolated digital inter-
face, in the power and control circuits of the proposed system.
The design of the power supply circuit included the use of a
dedicated lithium-polymer battery and an isolated DC–DC con-
verter (DCP020509, Texas Instruments, USA) to separate the
ground for the data acquisition circuits and the digital control
circuit. This design results in a total of three completely sepa-
rated ground planes. Since independent return current paths are
created on each ground plane and these paths are completely
isolated from each other, the switching noise generated in the
control circuit cannot reach the data acquisition areas. There-
fore, the EEG and fNIRS acquisition circuits are able to maintain
flat and stable ground potentials. Two digital isolators (Silicon
Labs Si8662) are also used for the isolated interface of the EEG
and fNIRS acquisition circuits. Many advanced features, such as
high data throughput, low propagation delay, and noise robust-
ness of the isolator IC serve to provide a reliable and uncoupled
data path in the digital interface.

The linear regulator-based power supply circuits were care-
fully designed by using a number of decoupling capacitors and
ferrite beads to provide low-noise DC power to the data ac-
quisition circuits. The linear regulators provide several advan-
tages compared to DC-DC converters, such as highly regulated
output voltage, low noise spectral density, and a high power
supply rejection ratio (PSRR), thereby making them ideally
suited for noise-sensitive applications. In addition to these low-
noise power supply circuits, an optimized printed-circuit-board
(PCB) layout and advanced circuit-design techniques, such as
grounding, signal routing, and decoupling [34], were applied
to maintain stable and regulated DC voltages and build a low-
impedance return current path.

C. Dry Electrode-Based Gel-Less EEG Acquisition

Conventionally, disc-shaped Ag/AgCl electrodes have been
employed in EEG measurements. These electrodes require the
use of conductive gels and hair preparation during installation
in order to reduce the electrical impedance to an acceptable
level. These procedures are time consuming and cause irritation
in most subjects, because conductive gels are sticky. Moreover,
these electrodes are not suitable for long-term and ambulatory
applications, because conductive gels dry over time and their
adhesion is easily lost during motional vibrations. Therefore,
the signal quality of the wet electrodes may be continuously
degraded in ongoing experiments, thus the use of wet electrodes
is to be limited in experiments requiring more than 30 minutes.
To overcome these problems, dry electrodes, which do not re-
quire conductive gels, are used in the proposed system. These
electrodes comprise spring-loaded probes that maintain a con-
stant pressure on the surface of the uneven scalp regardless of its
movement. Consequently, these electrodes are capable of more
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Fig. 1. Simplified schematic of the proposed HBM system. Solid and
dotted arrows indicate the flow of digital logic signals and analog mea-
surements, respectively. Likewise, the shaded and transparent regions
indicate the digital and analog circuits, respectively. The boundary be-
tween the analog and digital circuits is isolated by a digital isolator and
DC–DC converter. The dedicated EEG acquisition circuits is also iso-
lated from the main board circuits.

stable EEG measurements even in out-of-lab environments. The
dry-electrode structure is described in detail in Section III-B-1).

III. IMPLEMENTATION

A. Instrumentation

1) Data Acquisition Circuit: Fig. 1 depicts a schematic of
the proposed system excluding the power supply circuits. The
system comprises two boards—the main board and slave board.
The main board is capable of performing 8-channel bio-optical
measurements, and 4-channel dual-wavelength LED emissions.
The slave board was designed to perform 16-channel EEG mea-
surements. The two boards were connected using the Molex
board-to-board connector, and all components were controlled
by the STM32L475 low-power microcontroller (STMicroelec-
tronics, USA) installed on the main board.

The following procedure was used to perform bio-optical
measurements on the main board. Common-mode electromag-
netic and radio-frequency interference noise is first filtered out
from raw bio-optical measurements using a simple RC low-
pass filter in the input stage. Inside the embedded ADS8688A
AFE IC, the acquired bio-optical signal is amplified by the in-
tegrated PGA to pre-programmed input ranges (±0.64 V) and
subsequently filtered by an anti-aliasing low-pass filter with a
15-kHz cutoff frequency. Because the actual sampling rate of
the bio-optical measurement reaches 20 kHz to obtain an av-
eraged measurement from quick repeated samples, the built-in
anti-aliasing filter is required for aliasing rejection. The filtered
signal is then fed to the ADC driver and multiplexer circuits,
and is finally sampled by a 16-bit SAR ADC. According to this

Fig. 2. Schematics of power-supply circuit for (a) main board, and
(b) slave board. Two lithium-polymer batteries supply power to the main
board and the slave board, respectively. In the main board, the isolated
DC–DC converter separates the ground planes for the main control cir-
cuit (shaded digital power supply section) and the isolated NIRS acqui-
sition circuit (fNIRS analog power supply section).

procedure, 8-channel bio-optical data can be finally obtained at
a 5-SPS sampling rate.

The following procedure was also used to perform EEG mea-
surements on the slave board. The EEG measurements acquired
by the dry electrodes are filtered by the onboard input filter stage.
X2Y type capacitors [35] were employed in this filter stage
to facilitate higher attenuation of electromagnetic and radio-
frequency noise, while reducing onboard space requirements.
Inside the ADS1299 AFE IC, the filtered EEG measurements
are amplified by a built-in low noise PGA with a 24 gain setting
and digitized by a dedicated ADC for each channel over every
sampling period (4 ms). The sampled EEG data are then trans-
mitted to the microcontroller (MCU) via an SPI bus. With two
ADS1299s in a daisy-chained configuration that allows multiple
ICs to be controlled simultaneously using a single shared bus,
16-channel EEG measurements can be obtained at a 250-SPS
sampling rate.

2) Power Supply Circuit: Fig. 2 depicts a schematic
of the power-supply circuits of the proposed HBM system.
The proposed system is powered by two lithium-polymer
batteries—one each for the main and slave boards—which
can be charged via the onboard battery management IC (Texas
Instruments BQ24073) through a USB port. As the battery
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Fig. 3. Schematic of the MOSFET-based NIR LED driving circuit employed in the proposed HBM system. This circuit was combined with a DAC,
analog multiplexer, and OPAMP-based buffering circuit to flexibly control the emission intensity of the four LEDs. By implementing two copies of this
circuit, the proposed system can control up to eight LED emissions.

voltage decreases over time, boost and dual-output DC–DC
converters (Texas Instruments TPS61232, TPS65133) are used
to stabilize these output voltages. An isolated DC–DC converter
(Texas Instruments DCP020507) is employed to supply fully
isolated power for the fNIRS acquisition circuits on the main
board. In the final stage of the power-supply circuits, low-noise
DC voltage is lastly delivered to the AFE ICs, MCU, and other
peripherals through six low-noise linear regulators (Analog
Devices—ADM7154, ADP7182, ADP 7142, and ADM7171;
Texas Instruments—TPS7A4701 and LP5907).

3) MOSFET-Based LED Driving Circuit: Fig. 3 illustrates
the schematic of the MOSFET-based LED driving circuit. Be-
cause the number of NIR light sources required may vary de-
pending on the configuration of the probe set layout and the
experimental paradigm, a programmable control function for
multi-channel emission is required for the LED driving cir-
cuitry. A calibration function for radiant intensity is also neces-
sary because the NIR LED may exhibit radiant power mismatch
even for the same current consumption. Thus, a programmable
LED driving circuit was designed to flexibly control the radiant
intensity of multi-channel NIR LEDs by combining a digital-to-
analog converter (DAC), an analog multiplexer and MOSFET
drivers. In operation, the MCU regulates the gate voltage of
the MOSFET driver by controlling the output voltage of the
built-in digital-to-analog converter (DAC) of the MCU. The
regulated gate voltage is buffered with an OPAMP and then fed
to the analog multiplexer (Analog Device ADG729) for con-
trolling multi-LED emissions. The multiplexed gate voltage is
lastly supplied to the N-channel MOSFET driver to modulate
the LED current flow. This design provides flexibility to control
as many as eight NIR LED emissions with fine-tuned radiant
intensity in the proposed system. In the human subject studies
described in this paper, the radiant intensity for all NIR LEDs
was manually adjusted to 10 mW using an optical power meter
and DAC output voltage control.

B. Sensors

Customized sensor units were designed for the EEG and
bio-optical measurements to enhance the usability and re-

Fig. 4. (a) Dry electrode for EEG measurement, (b) dual wavelength
LED-based NIR light source unit, and (c) silicon photodiode-based NIR
detector unit for bio-optical measurement.

configurability of the proposed system. The sensor units
comprise 16-channel dry electrodes, 2-channel NIR LEDs, and
6-channel photodiodes.

1) Spring-Loaded Dry Electrode and Customizable
EEGCAP: The Fig. 4(a) depicts a prototype of the dry electrode
for the EEG measurements, which comprises spring-loaded
probes, a PCB, and a housing. The electrode unit, which is
designed to remain in contact with the subject’s scalp, acquires
EEG potentials via the 18 spring-loaded probes (Leeno Indus-
trial Inc., SK100R). Each probe comprises four components—
the (1) plunger, (2) barrel, (3) spring, and (4) probe receptacles.
The plunger is combined with a barrel and spring to consti-
tute the spring-loaded structure. Each spring can withstand up
to 54 g of pressure in its maximally compressed state. This
enables each probe to maintain a suitable contact pressure on
the uneven surface of the scalp. In terms of electrical specifi-
cations, the resistance of each probe is less than 50 mΩ, which
is sufficiently low for conducting bioelectrical measurements.
All probes are electrically connected to each other via the PCB
embedded in the electrode housing and are thereby linked to a
single electrode wire. The entire electrode assembly is enclosed
by the 3D-printed plastic housing.

A helmet-like bracket (named the EEGCAP) was designed
using flexible rubber materials to hold the dry electrodes in po-
sition in accordance with 10–20 systems. The mesh-type EEG-
CAP structure was equipped with as many as 58 holes to allow
electrodes to be positioned on the scalp. Each electrode was
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Fig. 5. Installation layout of NIR LEDs (L1 and L2) and photodiodes
(PD1–PD6) for acquisition of the bio-optical measurements. To investi-
gate hemodynamic changes at the frontal lobes, the light source and
detector units are attached using a transparent double-sided tape. This
layout produces 8-channel hemodynamic responses from the 1-to-8 bio-
optical channels marked in blue color.

firmly engaged in the hole via an interlocking frame structure,
and able to continuously push against the subject’s scalp to
maintain a constant pressure. This customizable structure could
make a number of configuration choices available in terms of
the electrode-positioning layout depending on the experimental
paradigm.

2) NIR Light Source and Detector Units: Dual wavelength
(730 and 850 nm) AlGaAs LEDs (Opto ENG OE-MV7385-P)
were used for the NIR light source unit depicted in Fig. 4(b).
Two LEDs packaged in a miniaturized plastic leaded chip car-
rier (PLCC) were soldered onto a light source PCB and covered
by 3D printed materials. The spectral spread of the emitted ra-
diation (Δλ = 30–40 nm) was broader compared to that of
monochromatic laser diodes (Δλ � 1 nm). However, the inco-
herent and un-collimated characteristics of the LED light source
achieve sufficient tissue penetration to enable the investigation
of local hemodynamic changes. Owing to its suppressed heating
and low risk of retinal damage, it can be used in direct contact
with the human scalp [36].

The NIR detector unit depicted in Fig. 4(c) was based on
a silicon photodiode device (Texas Instruments OPT101) inte-
grated with an on-chip trans-impedance amplifier. Because the
device exhibits high spectral sensitivity in the infrared spectrum
(>0.5 A/W in the 730–850 nm wavelength), it is optimized
for use in NIR detection applications. Owing to the built-in
trans-impedance amplifier circuitry composed of an operational
amplifier and an internal feedback network, the photodiodes pro-
vide direct voltage output with a sufficiently wide bandwidth (14
kHz) which is linearly proportional to the detected light inten-
sity. The photodiode is soldered onto a detector PCB along with
decoupling capacitors, and housed inside a 3D-printed-casing.

Fig. 5 illustrates the positioning layout for NIR LEDs and
photodiodes for placement on the subject’s forehead. The lay-
out configuration occupies a 9 cm × 3 cm area with two NIR
LEDs and six photodiodes, and the distance between the light
source and the detector unit was set at 2.7 cm. In operations us-
ing this layout, the NIR LEDs flicker alternately in accordance
with the pre-programmed LED switching sequence and only the

photodiodes surrounding the turned-on LED are instantaneously
activated. Each hemodynamic response is measured in the area
between the pair of light sources and the detector unit and this
area is defined as a bio-optical channel. To achieve the maximum
number of bio-optical channels in the restricted forehead space,
measurements for bio-optical channels 3 through 6 located be-
tween NIR LEDs L1 and L2 are all required. By exploiting a
TDM-based channel-sharing scheme where one photodiode can
provide multiple independent measurements in non-overlapped
timing periods, the four independent measurements for these
centrally located bio-optical channels can be provided from
photodiodes PD3 and PD4; i.e., photodiode PD3 can provide
measurements for the 3rd and 5th bio-optical channels and pho-
todiode PD4 can provide measurements for the 4th and 6th
optical channels in the same manner. Therefore, this channel
sharing operation enables the proposed sensor layout to acquire
8-channel bio-optical measurements with only six photodiodes.

C. System Operation and Hybrid Data Acquisition

The ADC basically converts analog input signals into digi-
tized signals with consistent intervals based on an internal or
external reference clock. However, the clock may have its own
tolerance and frequency drift characteristics. In heterogeneous
data-acquisition systems employing two or more ADCs to pro-
duce a fully synchronized data stream, the clock tolerance of
individual ADCs makes accurate synchronization difficult to
achieve. This problem can be solved by using a reference sys-
tem clock to which all ADCs could be universally referred.

Complete synchronization is achieved between the EEG and
bio-optical measurements by using the data-ready signals (re-
ferred to as DRDY in the datasheet) generated by the ADS1299
AFE IC as the reference system clock. The DRDY signal rep-
resents the transition of a falling edge when the digitized EEG
data stream becomes valid. It, therefore, generates a pulse signal
of the same period as the sampling rate of EEG acquisition. By
synchronizing the emission control of NIR LEDs and data acqui-
sition of ADS8688A with the DRDY pulse cycle, the complete
synchronization between EEG and bio-optical measurements
can be preserved regardless of the occurrence of small timing
errors in the reference clock of each AFE.

Fig. 6 depicts a single period of simultaneous EEG and bio-
optical acquisition captured from the logic analyzer screen.
Once ADS1299 begins to acquire EEG measurements at a pre-
programmed sampling rate (250 SPS), the DRDY pulses begin
to be generated with the same sampling period (4 ms) as EEG
data generation. In accordance with the generation of the DRDY
pulse, NIR radiation of dual wavelengths (730 and 850 nm) is al-
ternately switched in the order—L1 (730 nm)–L2 (730 nm)–L1
(850 nm)–L2 (850 nm)—over the course of 50 EEG acquisition
cycles (200 ms). Each time the NIR LED is turned on by the mul-
tiplexer switching, the radiation lasts for 4 ms, during which time
the ADS8688A acquires NIR light intensities from the set of ac-
tivated photodiodes surrounding the turned-on LED; i.e., when
the L1–730 nm or L1–850 nm states are active, measurements
from the photodiodes PD1–PD4 are sampled. This also applies
to the two L2 states and sampling of photodiodes PD3–PD6. To
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Fig. 6. Logic analyzer view of one period of simultaneous EEG and NIRS acquisition and magnified view of the upper gray region (−0.5–4.5 ms).
According to the DRDY pulse generated by the ADS1299, 16-channel EEG measurements are acquired, and the NIR light sources L1 and L2 are
alternately activated for 4 ms. During NIR irradiation for 4 ms, each of the 4-channel photodiodes surrounding the light source measured the light
intensity 14 times and averaged it. A total of 16-channel of bio-optical measurements are obtained over a 200-ms period, which is converted into
8-channels of fNIRS data during the fNIRS decoding process.

obtain stable measurements with minimized background noise,
the light intensity measurement of each bio-optical channel is
repeatedly acquired 14 times with a 50–μs interval and subse-
quently averaged. During the 4-ms period of LED radiation, a
total of 56 optical measurements are then sequentially obtained
within 2.8 ms from the four photodiodes surrounding the turned-
on LED. While the four LEDs are flashing sequentially within
a 200-ms period, a total of 16 bio-optical measurements can be
obtained through a time-division multiplexing operation.

The aforementioned sequence allows fully synchronized
16-channel EEG and 16-channel bio-optical measurements to
be acquired every 4 ms ( = 250 SPS) and 200 ms ( = 5 SPS), re-
spectively. The acquired measurements are then packetized and
successively transmitted to the host device via the SPBT3.0 DP2
Bluetooth module (STMicroelectronics, USA) with a header
and timing information. The host device decodes the packets of
EEG and bio-optical data using MATLAB 2014a (MathWorks,
USA). Using the Modified Beer-Lambert Law [37], [38] in the
decoding process, the 8-channel fNIRS data, including concen-
tration changes in the oxy- (ΔHbO), deoxy- (ΔHbR), and total
hemoglobin (ΔHbT), are also converted from the 16-channel
bio-optical data.

The MCU system was programmed to perform the following
operations:

1) Peripheral initialization—establishment of peripheral in-
terfaces (SPI interface, general purpose input/output
ports, and interrupt routine) and setting up registers of
all AFE ICs;

2) Launching the data-retrieval loop upon detection of the
start trigger;

3) Acquisition of EEG data from ADS1299, when a DRDY
pulse is generated;

4) Control of NIR LED emission in accordance with the
LED switching schedule and DRDY trigger;

5) Acquisition of bio-optical data of the predefined photo-
diode sets from ADS8688A in accordance with the LED
control sequence;

6) Packetization of acquired EEG and bio-optical data
along with header and timing indication and subsequent

transmission of data packets to the host device via the
Bluetooth module;

7) Repeating steps 3 through 6 until the stop trigger is
detected.

IV. EVALUATION AND EXPERIMENT

A. Evaluation of EEG and fNIRS Acquisition

1) EEG Phantom Experiment using Dry Electrodes: The
proposed HBM system employs dry electrodes for EEG ac-
quisition instead of the conventional wet electrodes for wide
applicability and enhanced usability. Therefore, it is necessary
to verify the acquisition capability of the dry electrodes at the
level of micro-voltage amplitudes. In the proposed system, the
fNIRS and EEG acquisition circuits operate simultaneously.
Thus, EEG signal acquisition is subjected to interference from
the electrical switching noise generated by the NIR LEDs and
this effect must be examined. For this purpose, we devised an
EEG phantom experiment.

First, EEG-like voltage signals were generated. Raw EEG
data samples of 60-s duration were taken from the C3 channel
of a BCI competition 3-IVa dataset (motor imagery task, down-
sampled to 250 Hz) [39]. These EEG data samples were then
inputted to an arbitrary waveform generator (Keysight 33220A)
for reproduction of a EEG voltage waveform. The reproduced
voltage waveform was then passed through a voltage divider
circuit (of 10000:1 ratio) to create a microvolt-level EEG signal.
This voltage waveform was finally fed to the EEG phantom.

Second, an EEG phantom was created using a conductive
rubber pad (10 cm × 12 cm × 5 mm, 100 Ω/cm) to simulate a
real human scalp. An NIR LED unit is placed at the center of the
rubber pad. Then, one dry and one wet electrode (with conduc-
tive gel) were attached around the LED unit on the rubber pad to
emulate the NIR interference during EEG signal measurement.
The two electrodes and the NIR LED unit were connected the
EEG input port and NIR LED driving port of the HBM, re-
spectively. The EEG reference input of the HBM system was
connected to the ground potential of the waveform generator.
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Third, the voltage waveform of 60-s duration prepared in the
first step was reproduced in the EEG phantom. Measurement
samples were recorded at a sampling speed of 250 SPS from the
two electrodes during the 60-s period. The two acquired signals
were compared with the prepared voltage waveform in terms
of correlation coefficients. In offline analysis, three correlation
coefficients were calculated and analyzed depending on the NIR
LED ON/OFF state. The correlation coefficient between the
acquired signal using a dry electrode and the prepared waveform
is ρD ; the correlation coefficient between the acquired signal
using a wet electrode and the prepared waveform is ρW ; and the
correlation coefficient between two acquired signals obtained
using a wet electrode and a dry electrode is ρDW . To ensure
reliability of the analysis, this test was repeated thrice, and the
averaged correlation coefficients were compared.

2) Arterial Occlusion Experiment: The hemodynamic re-
sponse of the proposed system was verified by evaluating the
fNIRS responsivity using an arterial occlusion experiment [22],
[23]. The experiment was performed using an inflatable arm
cuff and a sphygmomanometer. The arm cuff could be shrunk to
block arterial blood flow to artificially change the concentration
of oxy and deoxy hemoglobin in the bloodstream on the arm.
This would enable us to verify the hemodynamic behavior of
the proposed system by observing this occlusion through NIRS
data acquisition and offline analysis.

For the experiment, NIR LEDs and photodiodes were at-
tached to a subject’s arm in the layout shown in Fig. 5. The
experiment was carried out for 5 min. The first minute of the
experiment was used as the baseline observation before con-
striction of the cuff. After 1 min, the pressure was increased to
200 mmHg for 6 s and maintained at this level for 2 min, and
then, the contraction was released. Through offline analysis,
recorded hemodynamic responses were filtered with a 4th order
zero-phase Butterworth 0.2-Hz low-pass filter and normalized
responsivities for all channel measurements were derived.

B. Human Subject Studies-Alpha Rhythm Detection Test
and Mental Arithmetic Experiment

Although the evaluation and verification of the EEG and
fNIRS acquisition system were conducted through the EEG
phantom and fNIRS responsivity tests, an experiment involving
a human subject also needed to be carried out to evaluate the
practical applicability in hybrid EEG/fNIRS monitoring. To
this end, an alpha rhythm detection test and a mental arithmetic
experiment were carried out. The first is a basic level test to
determine whether the proposed system is effective for EEG
acquisition. The second is a more challenging experiment to
establish whether the system can be used to discern the subtle
difference in the EEG and fNIRS signal patterns when the
brain engages in non-trivial mental activity, i.e., a mathematical
subtraction operation.

The alpha rhythm is the most well-known EEG feature that
can be easily detected when the user closes his or her eyes. When
the eyes are closed, the spectral power of the alpha rhythm band
(8–15 Hz) is amplified relative to the other spectral ranges. By
comparing the spectral power when the eyes are closed and

when they are not, the detection capability of real EEG features
can be verified. One subject participated in this test. Ten trials
were performed and one trial consisted of maintaining the eye-
open state for 12.5 ± 2.5 seconds and the eye-closed state for
10 seconds. In every transition of the command, a beep sound
was used to alert the subject to the change of instruction.

The mental arithmetic experiment is designed to examine the
functional brain activation that occurs when subjects are re-
quired to carry out non-trivial mathematical operations. During
a subtraction operation, the brain activation can be observed in
both EEG and fNIRS signals. In the EEG signals, the activation
appears in the form of an event-related desynchronization (ERD)
or event-related synchronization (ERS) [40], known as spectral
and suppression and enhancement of the measured EEG signals.
The activation in the fNIRS signals is also shown as a hemody-
namic difference in oxy- and deoxy-hemoglobin concentration
changes (ΔHbO, ΔHbR) [41]. We can investigate these distinc-
tive responses through offline analysis, such as time-frequency
analysis of the EEG measurements and time-course analysis of
the fNIRS measurements.

Including the subject who participated in the alpha rhythm
detection experiment, a total of three subjects voluntarily par-
ticipated in the mental arithmetic experiment. All subjects (three
males, average age: 26.3 ± 1.7 years old) were healthy and had
no record of neurological and psychiatric disorders. Each sub-
ject was given a summary of the experiment and signed a consent
form before their participation started.

The subjects were seated on a chair in front of a 24-inch
LCD monitor. Prior to the experiment, pilot signal monitoring
was performed to check the adhesion state of the probe set
and baseline noise characteristics of the acquired EEG signals.
The experiment consisted of two sessions, and each session
consisted of 10 trials. In a trial, a white fixation cross was
displayed while waiting for the next task period in the first
22.5 ± 2.5 s. In this resting state, the subjects were instructed
to gaze at the center cross sign and to refrain from any thinking
to maintain a low mental load. During the next task period,
the subjects were instructed to cumulatively subtract a two-digit
random prime number (ranging from 10 to 30) from a three-digit
random number in the range 500 to 999 for 20 s. For example, the
problem of subtracting 13 from 700 is presented to the subject
via a computer screen, i.e., “700 – 13.” The subject had to solve
this problem by subtraction inside his/her head. Once he/she
arrived at the answer to the problem, 687 = 700 – 13, they were
required to memorize it and to continue to subtract another 13
from the answer, i.e., “687 – 13.” This continued until the end
of the task period.

EEG measurements were conducted by attaching 16 dry elec-
trodes to the scalp with the fabricated EEGCAP. To observe the
task-related activation in the overall brain areas, 16 electrode
positions covering the frontal (Fz, F3, F4, Fc1, Fc2, Fc5, and
Fc6), motor/temporal (C3 and C4), and parietal (Pz, P3, P4,
Cp1, Cp2, Cp5, and Cp6) regions were carefully chosen in ac-
cordance with the international 10–20 system. Reference and
bias electrodes were also attached to the skin behind the left and
right earlobes, respectively, using disposable wet electrodes.
The EEGCAP equipped with dry electrodes was fastened to a
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Fig. 7. Images of the (a) main board, and (b) slave board, of the pro-
posed HBM system.

strap on the subject’s chest. Two NIR LEDs and six photodiodes
were also installed on the forehead using double-sided adhesive
tape according to the probe layout in Fig. 5. These installation
procedures may take less than 10 minutes, as there is no need
for a series of additional preparation processes, such as hair
arrangement and scalp abrasion. The EEG and fNIRS measure-
ments acquired by the installed electrodes and photodiodes were
simultaneously recorded with an event trigger in real time using
MATLAB 2014a.

Offline analysis for the acquired EEG and fNIRS datasets was
performed using MATLAB 2014a and EEGLAB toolbox [42].
The EEG datasets were obtained from both the alpha rhythm
detection test (one subject participated) and mental arithmetic
experiments (three subjects participated). Each EEG dataset was
bandpass filtered with a 4th order zero-phase 0.5–40 Hz But-
terworth filter. From the filtered dataset, each epoch before and
after task onset (−10 to +10 s for the alpha rhythm detec-
tion dataset and −15 to +15 s for the mental arithmetic ex-
periment dataset) was extracted based on the recorded event
trigger. An EEGLAB built-in function is utilized to investigate
ERD/ERS patterns for the time-frequency analysis of the EEG
dataset. To visualize the grand-averaged ERD/ERS patterns for
each experiment, we averaged the time-frequency decomposi-
tion outcomes for all sessions and all subjects who participated.
The fNIRS datasets, which comprise the relative concentra-
tion changes of oxy-, deoxy- and total hemoglobin (ΔHbO,
ΔHbR, and ΔHbT), were only obtained from the mental arith-
metic experiments (three subjects participated). A 4th order
zero-phase 0.01–0.2 Hz Butterworth bandpass filter was applied
to the fNIRS datasets and each epoch was extracted similarly
to the EEG pre-processing procedure. Baseline correction of
the extracted epoch was performed by subtracting the averaged
fNIRS data measured in the resting state between −5 s and
0 s. Identification of the grand-averaged hemodynamic trends
during arithmetic operations was also obtained by averaging
each of the hemodynamic time courses in the same manner the
grand-averaged ERD/ERS patterns were derived.

V. RESULTS

A. System Implementation

Images of the circuit boards of the proposed HBM system
for EEG and fNIRS acquisition are shown in Fig. 7. Two

Fig. 8. Image of the complete system comprising the fNIRS probe
set and rubber EEGCAP, including 16-channel dry electrodes. The dry
electrodes were tightly engaged in the electrode-positioning holes for
fixed electrode placement.

TABLE I
CORRELATION COMPARISON FOR ARTIFICIALLY GENERATED

EEG RECORDING

four-layered 70 × 70 mm PCBs were fabricated for 16-channel
EEG and 8-channel fNIRS acquisition. These boards are con-
nected to each other through the board-to-board connector and
are powered by two 2,000 mAh lithium polymer batteries.
Sixteen-channel dry electrodes with 18 spring-loaded probes
were installed in the EEGCAP, as shown in Fig. 8. Six-channel
NIR photodiodes and 2-channel NIR LEDs were also fabricated
as depicted in Fig 4(b) and (c). In the experiment involving hu-
man subjects, installation of the dry electrodes and the fNIRS
probe set was easily accomplished by attaching the set of NIR
photodiodes and LED units to the subject’s forehead and by
requesting the subject to wear the EEGCAP equipped with dry
electrodes.

B. Dry-Electrode Evaluation

The correlation coefficients for each electrode comparison
set (dry electrode vs. raw signal, wet electrode vs. raw signal,
and dry electrode vs. wet electrode) evaluated with the EEG
phantom are summarized in Table I. A ρDW value close to one
indicates that the dry and wet electrodes detect almost the same
waveform regardless of the activation of the NIR LEDs. This
confirms that the dry electrode is capable of obtaining EEG
signals without the use of conductive gels and provides almost
the same EEG measurement as the wet electrode. Values of
ρD and ρW above 0.9 indicate that the phantom measurements
through the dry and wet electrodes are not significantly different
from the raw signal data. The slight decrease in the correlation
coefficient, compared to ρDW , is considered to be caused by the
error that occurred in the waveform-reduction process using the
voltage-divider circuit during artificial EEG generation.

The waveforms recorded by the wet and dry electrodes on the
EEG phantom, and the raw EEG signal are shown in Fig. 9(a).
The signal recorded at the dry electrode looks like amplified
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Fig. 9. (a) Comparison of the raw EEG signal and waveforms recorded by the wet and dry electrodes on the EEG phantom, (b) Normalized
hemodynamic responses over the eight bio-optical channels with an arterial occlusion experiment.

version of the original signal; however, the overall trend of the
waveform is not significantly different according to the correla-
tion coefficient greater than 0.9.

C. fNIRS Response Evaluation

The 8-channel normalized ΔHbO, ΔHbR, and ΔHbT levels
were obtained from the offline analysis of the data captured dur-
ing the arterial occlusion experiment and these results are plotted
in Fig. 9(b). All hemodynamic responses converge towards the
baseline within ±0.02 mM / DPF during the first 60 s before
contraction of the cuff and increase rapidly over 6 s when the
cuff is inflated. When the contraction is complete, the inflowing
arterial blood is almost blocked and therefore, the ΔHbO and
ΔHbR are linearly diverged until the moment the cuff is re-
leased. The slope of the ΔHbO and ΔHbR are −0.7 μM/DPF·s
and +1.4 μM/DPF·s, respectively. When the pressure on the
cuff is released to allow the arterial blood flow to return, the
ΔHbO and ΔHbR dramatically converge and overshooting oc-
curs. After peaking to the opposite overshoot, all hemodynamic
responses gradually converge to the steady state. Compared with
previous studies [22], [23], in which the same experiment was
conducted, the results of this experiment demonstrate that the
proposed HBM system is sufficiently responsive to analyze the
changes in the hemoglobin concentration.

D. Analysis of Human Subject Studies

The results of the grand-averaged time-frequency analysis
results and a comparison of the normalized spectra of the alpha
rhythm detection test are depicted in Fig. 10(a) and (c). The
vertical dashed lines on the time-frequency analysis plot at 0
seconds denote the onset of the eye-closing task period.

In the alpha rhythm detection test, the event-related syn-
chronization (ERS) pattern evoked by the instruction to close
the eyes is clearly indicated with higher spectral power (red
zones at Fig. 10(a)) in the alpha rhythm placed in the 8−13 Hz
bands compared to the baseline spectral power of −7.5 to −2.5

s. The high spectral power of the beta rhythm in the range
of 20–24-Hz at the beginning of the task is considered to be
a harmonics related to the high spectral power of the alpha
rhythm. The first and second maximum ERS intensities, i.e.,
3.74 dB at 11.46 Hz and 2.13 dB at 21.16 Hz, were observed
from the dB scale comparison of the normalized spectral graphs
at Fig. 10(c). Based on these results, which show that the alpha
rhythm associated with closure of the eyes can be detected by
using spectral analysis, it is evident that the proposed system
can appropriately acquire the general EEG feature signals.

The results of the grand-averaged time-frequency analysis
and comparison of the normalized spectra recorded during the
mental arithmetic experiments are depicted in Fig. 10(b) and
(d). The spectral pattern of the time-frequency analysis was
calculated based on the spectral power during the resting state
(−15 to −5 s). Compared to the spectral pattern during the task
period with those of the alpha rhythm detection test, it is evident
that reversed patterns of the spectral perturbation are observed.
First and second major event-related desynchronization (ERD)
patterns are observed in the alpha rhythm at approximately
10 Hz and in the wide beta rhythm range 18–25 Hz, during
the cumulative subtraction task period. The maximum ERD
intensity of −2.62 dB at 10.79 Hz in the alpha rhythm range
was observed from the dB scale comparison of the normalized
spectral graphs in Fig. 10(d). The second highest ERD intensity
is −2.10 dB at 19.49 Hz in the beta rhythm range.

The grand-averaged time courses of the concentration
changes in oxy-, deoxy- and total hemoglobin (ΔHbO, ΔHbR,
and ΔHbT) in the mental arithmetic experiments are plotted in
Fig. 11. During the cumulative subtraction task, which is given to
the subject to increase the workload level of the brain, we found
a clear decreasing trend of ΔHbO. The diminished ΔHbO level
is then rapidly restored again to the resting state after the task
periods. In contrast, ΔHbR shows a weaker inverse pattern and
more delayed response compared to the ΔHbO trend. The low-
est ΔHbO is recorded just before the end of the task, whereas
the ΔHbR trend continues to increase slightly after the task
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Fig. 10. Results of grand averaged time-frequency analysis (dB scale) for the alpha rhythm detection test (a) and mental arithmetic experiments
(b). Vertical dashed lines indicate task onset. Red and blue zones mean the time and frequency ranges associated with high event-related
synchronization (ERS) and desynchronization (ERD). Spectral comparisons (c) and (d) are normalized spectra for each task states ((c) eye open
states vs. eye closed states, (d) arithmetic operating states vs. resting states).

Fig. 11. Grand-averaged time courses of concentration changes in
oxy-, deoxy- and total hemoglobin (ΔHbO, ΔHbR, and ΔHbT) for mental
arithmetic experiments.

period. This ΔHbR trend begins to decrease belatedly at 8 s
after the end of the task. These analysis results show that the
ΔHbO pattern much more closely reflects the mental workload

level than the weaker ΔHbR response and the ΔHbT pattern
also follows the more dominant ΔHbO trend.

The EEG and fNIRS responses in the mental arithmetic
experiments provided the brain activation responses such as
the ERD pattern on the alpha and beta rhythm bands and
the decreasing trend of the ΔHbO response. These results
were compared with those obtained in the previous study [43],
in which similar experiments were conducted using commer-
cial equipment. Based on our studies with human subjects,
we can conclude that the proposed HBM system has suffi-
cient capabilities to simultaneously monitor EEG and fNIRS
signals.

VI. DISCUSSION

The system specifications and key differences compared with
the previous studies are summarized in Table II.
[Electrodes] Compared to all previous studies, the proposed

system is the first to apply the spring-loaded dry electrodes.
More than one hour of continuous EEG monitoring using the
conventional wet electrodes is difficult because the conductive
gel needs to be replenished every time it becomes dry. Because
the dry electrodes enable gel-less EEG acquisition, the quality
of the measurement is not degraded and longer experimentation
is possible for daily-life monitoring. In addition, it is easy to
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TABLE II
COMPARISON OF SYSTEM SPECIFICATIONS AND CONTRIBUTIONS WITH PREVIOUS STUDIES

Fig. 12. EEG baseline noise measurements and their spectrum, under
the NIR LED activated condition.

install without irritation, a shortened system setup time, and
reduced complexity of the experiment.
[Isolated and low-noise circuit design] The implementation

of an isolated circuit design is also a first attempt compared to
previous studies. Owing to the complete separation of the EEG,
fNIRS, and control circuitries with a linear regulator-based low-
noise power supply, the proposed system is able to achieve ex-
cellent low-noise characteristics for EEG acquisition. During
the EEG phantom test, the input-referred noise of the EEG ac-
quisition circuit was evaluated using the built-in input-shorted
function of an ADS1299 and its results are shown in Fig. 12.
Even with the LED flashing condition, an input-referred noise
of 0.141 μVRMS and 1.066 μVpp was measured and no crosstalk
component was observed in the spectrum. These results verified

that the proposed system closely achieves the low-noise charac-
teristics of 0.14 μVRMS and 0.98 μVpp (at a sampling rate of 250
SPS and a 24 PGA gain) as specified in the ADS1299 datasheet
[29].
[Frontend design] Compared to previous studies on sys-

tem specifications, the proposed system employs two different
kinds of architecture-optimized AFE ICs to simultaneously pro-
vide superior EEG resolution and delay-less bio-optical mea-
surement. Because high resolution and continuous sampling
are required for EEG measurement, the conversion delay can
be considered negligible and the 24-bit Δ-Σ ADC is ideal for
use. However, in the case of bio-optical measurements, on-time
data acquisition is more important than resolution performance
because the sampling is required only for specific predefined
time periods along the preprogrammed LED emission sched-
ule. The Δ-Σ ADC-based ADS1299 has a conversion latency of
16 ms at a 250-SPS sampling rate, whereas the SAR ADC-based
ADS8688A always maintains a data conversion time of up to
0.85 μs, regardless of the sampling rate setting. Therefore, this
instantaneous sampling characteristic prevents sampling errors
in the bio-optical measurements caused by the phase transition
of LED activation and ensures system reliability.
[System specifications] The positioning-customizable

16-channel EEG electrodes and 8-channel photodiode detec-
tors indicate that the proposed system is ready for clinical
applications for which sufficient spatial resolution is required.
However, the estimated volume efficiency (system volume per
number of EEG and PD channels) has been slightly reduced due
to the implementation of advanced design techniques, such as
isolation design and low-noise power supply. Nevertheless, the
system size is such that it is still portable (7 × 7 × 1 cm3) and
the power efficiency (power consumption per number of EEG
and PD channels) is considerably improved, thus the operation
time can be extended to more than 8 hours with a 1-Ah lithium
polymer battery. This extended operation time adds the benefit
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of a spring-loaded dry electrode that maintains good scalp
contact without a conductive gel, facilitating hybrid brain
monitoring in out-of-lab situations.
[Limitations and future development] One of the limita-

tions is that it is difficult to obtain fNIRS measurements in var-
ious brain areas because the NIRS probes can only be attached
to the hairless scalp. Overcoming this challenge necessitates
the design of a probe structure that can be adhered to the scalp
by applying pressure with a stretchable structure such as the
spring-loaded structure of a dry electrode.

The achievement of stable EEG quality in an actual out-of-
lab situation requires motion artifacts to be removed from EEG
measurements. Therefore, a movement monitoring function is
required, and it can be implemented by integrating a MEMS-
based inertial sensor. A continuous impedance check function
is also required to monitor the adhesion of the electrode in
real time, because the adhesion pressure of the electrode has a
significant effect on the quality of the acquired EEG signal. This
function can be implemented by utilizing the built-in lead-off
detection function with the ADS1299.

VII. CONCLUSION

In this study, a hybrid brain monitoring system for simul-
taneous acquisition of 16-channel EEG and 8-channel fNIRS
has been proposed. A single low-power microcontroller unit
synchronously controls two kinds of architecture-optimized
AFE ICs to achieve fully synchronized data acquisition. Em-
ploying Δ-Σ ADC-based ADS1299 and SAR ADC-based
ADS8688A simultaneously, the proposed system achieves
24-bit EEG resolution and delay-less (<0.85 μs) reliable fNIRS
measurements. A fully isolated design, which completely sep-
arates the ground plane of each circuit section by using digital
isolators and an isolated DC-DC converter, physically blocks
inter-circuit interference. The isolated design applied with a lin-
ear regulator-based low-noise power supply improves system
reliability and noise immunity for EEG/fNIRS measurements.
Moreover, the use of spring-loaded dry electrodes and EEGCAP
shortens system-wearing time and continuously provides stable
EEG quality. It will allow longer experiments for out-of-lab ap-
plications. The acquisition of EEG and fNIRS measurements
was evaluated by conducting an EEG phantom test using arti-
ficially generated EEG signals and an arterial occlusion exper-
iment. Additionally, an alpha rhythm detection test and mental
arithmetic experiments were performed to assess the practical
capabilities of the proposed system for human subject studies.
The grand-averaged results of the time-frequency analysis for
EEG measurements and time courses for NIRS measurements
verified that the proposed HBM systems are suitable for use in
real BCI applications.
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ABSTRACT Fractional-order integration (FOI) and its beauty of optimally ordered adaptive filtering for
image quality enhancement are latently too valuable to be casually dismissed. With this motivation, a new
Riemann–Liouville fractional-order calculus-based spatial-masking methodology is proposed in this paper
in association with counterbalanced piecewise gamma correction (PGC). A generalized FOI-based mask
is also suggested. This mask is negatively augmented with the original image for harvesting texture-based
benefits. PGC is just employed through a constructive association of both kinds of reciprocally dual gamma
values (γ1 = γ and γ2 = 1/γ,∀γ > 1), which leads to optimally desired enhancement when applied in a
weighted counter-correction manner. Efficiently improved and recently proposed opposition-based learning
inspired sine–cosine algorithm is employed in this paper, along with a newly framed fitness function. This
fitness function is devised in a novel manner by taking care of textural as well as non-textural details of the
images. In this paper, especially for dark images, 130% increment is achieved over the input contrast along
with the simultaneous 147% increment in the discrete entropy level and 22.8% increment in the sharpness
content. Also, brightness and colorfulness are reported with 130% and 196.4% increased with respect to the
input indices, respectively. In addition, the textural improvement is advocated in terms of desired comparative
reduction of gray-level co-occurrence matrix-based metrics, namely, correlation, energy, and homogeneity,
which are suppressed by 25.6%, 72.5%, and 21.8%, respectively. This performance evaluation underlines
the excellence and robustness for imparting proper texture as well as edge preserved (or efficiently restored)
image quality improvement.

INDEX TERMS Fractional-order (FO) masking filter, fractional-order integration (FOI),
Riemann–Liouville (RL) definition, sine cosine algorithm (SCA), opposition-based learning (OBL),
gray-level co-occurrence matrix (GLCM), quality enhancement, optimal mask designing, two-dimensional
(2-D) adaptive filtering, piecewise-gamma correction (PGC).

I. INTRODUCTION
Remotely acquired digital imagery and its various forms
keep on laying the core and firm foundation of today’s
technological era, and hence it is quite implicit that neces-
sity and importance of quality enhancement and desired
information restoration is having the prime concern. Various
integers’ based mathematical suggestions got appreciation
in the last two decades, but fractional-order calculus-based

The associate editor coordinating the review of this manuscript and
approving it for publication was Sara Dadras.

mathematical advancements in image processing applications
are still fascinating in one form or the other. Fractional-order
calculus (FOC) is a kind of eternal source of analytical pro-
cessing power. FOC [1], [2], since the historical day of its
paradoxical invention, evolved from a very popular Leibniz-
L’Hôpital technological conversation, as on September 30,
1695; the theory is still gloriously blooming day-by-day for
drawing significant application based consequences. FOC
is now being more widely accepted in current technologi-
cal trends. The involvement of classical, as well as integer-
based calculus in anthropological scientific advancement,
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is indispensable. Hence, it is very hard to say about
‘‘fractional-order or non-integral order calculus’’ even after
323 years of discussion and its consequent advancement,
that in which domain of science and technology, FOC
is incapable to facilitate the corresponding technological
advancement. FOC has recently been applied in various areas
of engineering, science, finance, applied mathematics, and
bio-engineering with its remarkable success. Contemporary
advancements in all technological spheres for social welfare
cannot be imagined without signals and their ‘‘on-demand or
application-specific ‘‘contextual processing, in one form or
the other. A large amount of work has already been focused on
image enhancement through FO differentiation based mask-
ing [3]. More robustness can be imparted for pre-existing
methodologies by an organized and efficient involvement
of swarm intelligence in association with the fractional-
differential approach. Now through this paper, it’s the time of
debut for fractional-order integral based adaptive filtering for
image quality enhancement. With such an objective, an inter-
esting approach is proposed by suggesting a fusion based
framework by employing optimally ordered fractional-order
integration for gamma corrected image enhancement appli-
cation for almost all kind of images.

Fundamentally, image visualization characteristics can be
categorized as spectral, textural and contextual features for
almost all kinds of remotely sensed images. Spectral features
account for general tonal variations corresponding to each
band in the visible and/or infrared region of the electromag-
netic spectrum. Structural variation and corresponding inter
as well as intra-organization of the contextual surfaces of the
images can be better identified as the texture of the image.
Texture, in one form or the other, accounts for most of the
information related to all kinds of preprocessing tasks asso-
ciated with remotely sensed imagery. It is also responsible for
identifying the objects or regions of interest in an image. Also,
intensity levels and their sharpness also contribute to overall
behavioral characteristics of the image. Hence, in general,
quality enhancement can be seen as collective coordination
of improved spatial, contextual, textural and edge-dependent
image features. Initially, for various years, the histogram of
the acquired image has been utilized for image enhancement.

Initially, researchers got highly fascinated by histogram
equalization (HE) based approaches, especially, general his-
togram equalization (GHE). GHE flattens and enlarges the
dynamic range of image’s histogram by remapping the gray
but its performance is inadequate due to the issue of mean-
shift and also, it is quite unable to preserve the local spatial
features of an image [4]. Due to this, the sole attention of
the researchers got shifted to histogram-distribution along
with local histogram modifications, and also towards their
corresponding advantages. Therefore, several algorithms
were developed for image enhancement based on local his-
togram modifications. Later on, median-mean dependent
sub-image-clipped HE (MMSICHE) [5] was proposed for
image enhancement along with further bisecting both of
sub-histograms on the basis of the median count of the

corresponding pixels in both sub-histograms. Contrast
limited adaptive histogram equalization (CLAHE or
ADAPHE [6]), has been also proposed as a very efficient
variant of GHE. ADAPHE operates on small regions in the
image in a tile-wise manner rather than the entire image.
Later all neighboring tiles are combined using 2-D bilinear
interpolation to eliminate artificially induced boundaries.

Blind-reliability over HE (local and global both) based
enhancement approaches is not advisable because of their
tendency to impart uniform intensity distribution without
knowing the behavior of input image; and hence, gamma cor-
rection based methods were suggested by various researchers
for contrast enhancement. Gamma correction was initially
applied directly on image pixels in its original domain. After-
ward, transform domain gamma correction based on wavelets
and filter-banks based transformations were suggested with a
common problem of manual tuning for the desired and rele-
vant gamma value which is a very tedious and a trivial kind
of task. It was found that applying gamma correction through
histogram is easier and quite efficient rather than applying
gamma correction directly on the corresponding image itself.
Later on, adaptive gamma correction with weighting distri-
bution (AGCWD) [8] and its various effectively improved
versions like [9]; were better performed for this objective,
where desired contrast enhancement is imparted by utilizing
a gamma value-set of size 2L−1 for a corresponding L bit
image, which itself is derived by using cumulative distri-
bution of the intensity values present in low contrast input
image.

The averaging histogram equalization (AVHEQ)
approach [7] was proposed by combining linear color chan-
nel stretching, histogram averaging, which is followed by
consequent one to one mapping of the intensity levels.
In the same context, HE based optimal profile compression
(HEOPC) [10] and HE with maximum intensity coverage
(HEMIC) [11] were proposed, where the objective is to
harvest more and more intensity levels in an exhaustive
manner. Afterward, the intensity and edge-based adaptive
unsharp masking filter (IEAUMF) [12] based enhancement
have been also proposed by employing the unsharp masking
filter for edge augmentation. Although, these approaches are
focused over the harvesting of more and more intensity levels
which generally leads to kind of smoothening and hence,
improvement of textural details is not focused on it, and
sometimes leads to the unbalanced exposure also.

Most of the methodologies are based on parallel pipelined
methods by framing collective coordination of various effi-
cient operations. Most of the conventional methodologies are
based on histogram redistribution mechanism, in one way
or the other. Usually, histogram-redistribution doesn’t care
much about textural details. Also, the spatial pixel-wise orien-
tations are not considered while (one-dimensional) histogram
based processing. A second serious issue is the appearance
of saturation effects in case of gamma correction which
leads to over-enhancement and under-exposed patches in the
enhanced version of the image. Both of these issues are tried
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to be rectified, as in the proposed approach, gamma correction
is employed in a counter-correction based balanced manner
by involving both gamma expanded and gamma compressed
channels. Piecewise gamma correction (PGC) is proposed
in an effective manner by suggesting a fusion based frame-
work by the constructive involvement of reciprocal gamma
values which leads to interim compressed as well as interim
expanded images. This is initially proposed as a dual cor-
rection for GHE and termed as PGC based HE (PGCHE)
where the results are not so enriched due to lack of textual
treatment. So, it was further improved for PGC based textural
enhancement by taking the benefits of positive augmenta-
tion through fractional order differentiation based adaptive
filtering. Later, it is found more effective than in place of
FOD based masking, if unsharp masking is modified by
applying fractional order integration based adaptive filtering
in a negative augmentation manner, the outcomes are much
better.

In this manuscript, idea is to introduce the benefits of FOI
based adaptive two-dimensional filtering for overall textural
and non-textural benefits. In addition, parallel ‘‘FOI based
textural improvement and edge restoration’’ is also suggested.
The prime contribution in this manuscript is an inclusion
of highly adaptive, multidimensional optimally weighted
framework through association of piecewise gamma correc-
tion along with the fractional-order integration based nega-
tively augmented unsharp masking for texture highlighted,
overall quality enhancement for remotely sensed imagery.
An opposition based learning inspired sine-cosine algorithm
based optimization mechanism termed as OBL-SCA model
is framed in accordance with the concerned tuning prob-
lem for free parameters; utilizing a newly framed objective
function which is designed by using intensity-dependent and
GLCM based fidelity parameters. The fitness function is
specially framed by considering textural and illumination
improvement for dark images. As, FO masking is itself not
sufficient for dark images, hence, for proper exposure shift,
counter-balanced piecewise gamma correction is also entan-
gled with it. Hence, idea is to employ gamma correction in a
dual manner by constructive fusion of PGC through employ-
ing gamma correction in a dual manner by a constructive
amalgamation of interim channels.

In this context, reciprocally dual values of gamma are
utilized for employing the desired enhancement. The closed
form pre-existing approaches are usually unable to serve the
purpose efficiently. Hence, a constructive combination of
artificial intelligence or machine learning inspired optimiza-
tion principles along with classical optimization approaches
can be applied. Particle Swarm Optimization (PSO) [13],
Artificial Bee Colony (ABC) optimization [14], Moth-Flame
Optimization (MFO) [15], Sine Cosine Algorithm (SCA)
[16], etc. have been also developed by imitating various
nature-inspired analogies. In general, most of such kinds of
optimization strategies are suffering from common issues of
local trapping, which can be eradicated efficiently if gov-
erned by some kind of artificial learning based intelligence.

Considering the above key-points in mind, sine-cosine opti-
mizer using opposition-based learning [17] is integrated with
the proposed framework. In this manner, better converging
behavior is proposed by planning a gradient-based explo-
ration and exploitation.

The core contribution for achieving overall quality
enhancement, in this manuscript can be point-wise identified
as:
• A novel framework of FOI based masking is proposed
for adaptive image filtering which leads to analogous FO
unsharp masking.

• Collective benefits of newly identified PGC and FO
integral are justified and proposed in this paper for tex-
tural improvement along with on-demand dual gamma-
correction.

• In one manner, textural and non-textural content of the
image is separately processed as per the ‘‘on-demand’’
basis and later an optimally framed fusion is employed
for collective contribution.

• A newly framed fitness function or the cost function is
formulated for deciding the tuning parameters to make
the approach highly adaptive for a diverse blend of
images.

• This newly proposed cost function is designed by blend-
ing the significant fidelity parameters in an effective and
robust manner for highlighting the effective convergence
of the algorithm.

The remaining manuscript is drafted as follows: after brief
literature survey and basic introduction in section 1; section
2 explains the problem formulation; section 3 explains the
proposed Piecewise Gamma Corrected (PGC) RL-FOI based
Masking (PGCRLFOIM) algorithm followed by its stepwise
framework. Later, section 4 deals with the experimentation
followed by corresponding results and discussion; and in
section 5, conclusions are drawn.

II. PROBLEM FORMULATION
The central idea is to impose both of these corrections on the
fractionally masked and negatively augmented image which
is just an analogy of negative augmentation of the fractionally
derived low pass filtered/smoothened intensity channel. Thus,
sharpness behavior of the texture and edge content can be
highlighted and finally corrected through a reciprocal set of
gamma values in a dual balanced manner. Hence, both of
these individually account for keeping the processed intensity
channels in the permissible intensity ranges in a constructive
manner and hence, fruitful exploration for all of the intensity
values can be done, by proper avoidance for the saturation due
to an accumulation of the pixel values in extreme-end bins
of the histogram. Hence, information loss can be minimized
by avoidance of over-saturated patches as well as improperly
exposed regions. Thus, an attempt is made for the proposal
of a complete framework is by collective contribution of
textural, spectral and contextual base quality improvement.
Hence, successful harvesting of the optimal masking which
is analogs to low pass filtering of fractional order and its
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negative augmentation leads to a kind of adaptive enhance-
ment based masking which is later counter corrected by both
gamma values by collective piecewise contribution of both
values of reciprocal gamma set (γ1 = γ and γ2 = 1/γ ,
∀γ > 1), and thus leads to interim enhanced and interim
compressed gamma value set.

III. PROPOSED METHODOLOGY
Fundamental instinct behind this approach is to design an
efficient and highly adaptive behavior-dependent end-to-end
optimal framework for overall image quality improvement.
Both the textural as well as non-textural image details are
managed along with proper edge restoration. A general-
ized N-ordered FOI based mask framing strategy is sug-
gested using rotation-invariant uniformity principle; so that,
whenever it is assimilated along with piece-wise gamma
correction, it leads to better quality improvement for the
texture of the poorly-illuminated digital image. Usually,
remotely sensed, imperfectly illuminated satellite images
come under this category; however, this proposed framework
is also applicable for other similar kinds of rich-grained
images.

A. PIECEWISE GAMMA CORRECTION
Piecewise gamma correction (PGC) is applied by an opti-
mal evaluation of gamma-compressed and corresponding
gamma-expanded channel. It should be notified that both
of these counter-gamma values are reciprocal of each other
and hence, advantageous for lower-end as well as higher-end
intensity correction. This, in turn, results into restriction of
oversaturated as well as sub-enhanced patches and hence,
the objective of more and more information exploration get
fulfilled. When intensity values of the input image (Iin) are
normalized from zero to unity, if they are exponentially
employed by a gamma value more than unity, it leads to
intensity compression and hence, can be termed as gamma
compressed intensity channel (Igcp) as [2], [3]:

Igcp = (Iin)γ , γ> 1, (1)

Correspondingly, its dual can be evaluated by the recipro-
cal of the gamma value as in Eq. (1). It leads to shifting
towards the dark end of the histogram’s abscissa, and hence,
leads to a compressed kind of intensity distribution. Such
interim channel is utilized basically for imparting counter
correction for over-enhanced or saturated bright patches.
Complimentary to this, as per the Eq. (2), the intensity
values of the input channel get shifted towards the bright
end of the histogram’s abscissa. Hence, it leads to expan-
sion of intensity distribution towards the bright end. This
leads to counter correction for dark patches and also for
boosting up for less illuminated image-patches. The interim
gamma corrected expanded (Igex) channel can be evaluated
as [2], [3]:

Igex = (Iin)1/γ , γ> 1, (2)

B. RL FRACTIONAL ORDER INTEGRATION
For adaptive kind of isolation of non-textural ingredients from
the image in highly optimal fashion, benefits of the FOI
are derived by following the Euclidean domain based RL
definition for FOI. This is analogously derived from integer
based fundamentals. Originally inspired by the Cauchy inte-
gration for the concerned analytic function, primarily for any
complex plane; symbolically it can be justified as [1]:

Dnf (t) =
1

(n− 1)!

t∫
a

(t − u)n−1 .f (u) du, n ∈ N (3)

Thus, according to the RL definition, as suggested,
the Cauchy integral formula can be directly extended to
enter the fractional-order calculus domain. By convention,
it is required that f (t) must be a causal function. In other
words, f (t) must identically be vanishing for t < 0, which
occurs intuitively, by default, in case of digital images, since
negative pixel intensities are insignificant. From the standard
formalization of v-ordered RLFOI for any function f (t) in the
interval [0,t] and [-∞,t] as follows:

J vf (t) =
1

0 (z)

t∫
−∞

(t − u)v−1.f (u) du, v > 0, (4)

The duration of signal f (t) is [0,t] and 0(.) is the Gamma
Function defined as:

0 (z) =

∞∫
0

e−t tz−1dt, (5)

Discrete-time equivalent of J v can be derived by framing a
discrete time FO kernel I v (n) as:

I v (n) =


nv−1

0 (v)
, n > 0

0, n ≤ 0
, (6)

A = I v(1); B= I v(2); C= I v(3); D= I v(4); E= I v(5);

(7)

[A,B,C,D,E, . . .]

=

[(
1v−1

0 (v)

)
,

(
2v−1

0 (v)

)
,

(
3v−1

0 (v)

)
,

(
4v−1

0 (v)

)
, . . .

]
,

(8)

C. PROPOSED PGCRLFOIM FRAMEWORK
Rather than following the image-dependent FO differential
masking based edge-augmentation concept (as earlier pro-
posed by the same authors), the idea is to suppress the
non-textural details first, which is followed by overall boost
up of the processed image. Thus, the local spatial intensity
saturation, as well as over-brightness enhancement, can be
counter-attacked. For this purpose, the RL-FOI based odd-
dimensional symmetric mask is framed in a generalized man-
ner. To avoid the further higher order complexity, a 5×5 sized
mask is derived by following the fundamental FO integral
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calculus. In addition, the mask coefficients are arranged to
maintain the proposed mask rotational invariant. The con-
ceptual analysis is to suppress the non-textural content of the
image first; and then, enhancement for the resulted image in
a fashion so that PGC can be imposed in an optimal manner.
Fractional-order 1-D filtering can be extended to a 2-D image
matrix, and hence, a set of fractional-order partial differential
equations w.r.t. x and y-direction can be expressed as [3]:

I vx f (x, y)

≈

(
1v−1

0 (v)

)
· f (x, y)+

(
2v−1

0 (v)

)
· f (x − 1, y)

+

(
3v−1

0 (v)

)
· f (x − 2, y)+ . . .+

(
(n+ 1)v−1

0 (v)

)
· f (x − n, y) , (9)

I vy f (x, y)

≈

(
1v−1

0 (v)

)
· f (x, y)+

(
2v−1

0 (v)

)
· f (x, y− 1)

+

(
3v−1

0 (v)

)
· f (x, y− 2)+ . . .+

(
(n+ 1)v−1

0 (v)

)
· f (x, y− n) , (10)

An RL definition based FO 5x5 mask is created by maintain-
ing a similar kind of gradient behavior in almost all eight
directions. These directions can be viewed w.r.t. the center
pixel based balanced orientation at angles of 0, 45◦, 90◦,
135◦, 180◦, 225◦, 270◦, 315◦ and 360◦, respectively. In this
work, the behavior of smoothing filter or blurring image
filter is extended by framing this FO low pass filter kind
of mask. The elements of this 5x5 mask are normalized so
that sum of all elements remains unity. Masks of 3x3 and
7x7 size have been also tested for this, but a trade-off is settled
for 5x5 size. Integer-ordered masks are usually employed
for detection of the smooth content of images by complete
exclusion of major and minor edges. This extent of inclusion
or exclusion depends on the order of FOI mask which itself
acts as a 2-D adaptive filter to extract the low-frequency
content of the image under consideration. Idea is to extract
the non-edge content of the image optimally based on the
adaptively decided order, and finally, deduct this informa-
tion content from the input image. The later emphasis on
the whole image leads to a highlighted textural content of
the image. Masking is employed through a symmetric mask
using only the first three coefficients as shown in Eq. (11).
Fundamentally, 2-D linear filtering is done by convolving
these filters from left to right for all rows individually and
then by convolving these filters from top to bottom for all
columns, similarly.

Hx = Hy =
0.125

(A+ B+ C)


C 0 C 0 C
0 B B B 0
C B 8A B C
0 B B B 0
C 0 C 0 C

,
(11)

It has to be taken care that, size of the convolved prod-
uct must be the same as the size of input image channel
matrix. FO changes and correspondingly adaptive nature of
these masks can be identified through the spectral behavior
for these masks more precisely. Next step is to compute
the fractional-order integration based negatively augmented
masking for deriving a third interim channel, which is a
texture improved version of the input channel. This anal-
ogy is inspired from unsharp masking mechanism, with its
negatively augmented version and hence, resembles the sup-
pressed low pass filtered version of the image by optimally
ordered version of the FOI by following its RL definition.
This interim channel is evaluated as:

Ifimf = Iin + k · λ · (Iin − Iv) , (12)

2-D convolutional filtering of the input channel (Iin) by
employing the RL FOI mask (H ) can be understood as:

Iv = H ⊗ Iin, (13)

Later on, k which is the scaling factor for adaptive augmenta-
tion (can be assumed 0.5). In order to accomplish the design
objective, a hyperbolic profile, λ is adopted, as:

λ = 0.5 [1+ tanh (3− 6 (|Iv| − 0.5))] , (14)

The profile is decided by an adaptive contribution of the
magnitude of negatively augmented; FOI based filtered chan-
nel’s pixels at the corresponding image coordinate. Here,
tanh(±3) = ±0.995 ≈ 1 is sufficient to approximate a
unity scale. The rationale in defining the input based profile
also applies here. Since the corresponding magnitudes are
bounded between ±1, a modification is made as 6 ×(|Iv| -
0.5) in order to bind the profile coefficients within ±3. The
multiplication by 6 is used as a normalization accounting for
the doubled edge magnitudes due to the possible two edge
or textural polarities. An enhanced version of the image can
be evaluated by weighted and collective fusion of all three
interim enhanced images. The parameters p and q are solely
responsible for the weighted amalgamation of these channels,
as:

Ien=
(

p
1+ q

)
· Igcp +

(
1− p
1+ q

)
· Igex+

(
q

1+ q

)
· Ifoimf ,

(15)

Balanced benefits of both gamma compression and gamma
expansion over the image under consideration in a recip-
rocally framed counter-correction manner; and hence, for
weighted involvement in a pixel-wise augmentation man-
ner, the parameter p is introduced for imparting intensity
exposure based enhancement. Later on, for textural and
edge improvement, a novel FOI based negative augmenta-
tion scheme is suggested and hence, in accordance with it,
third interim channel is also framed. Further, its weighted
involvement is also a matter of prime concern, and hence,
the parameter q is involved. The role of the q must be
framed in such a manner that a balanced involvement for
gamma corrected interim channels along with the proposed
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negatively augmented RL-FOI mask based filtered interim-
channel Ifoimf can be framed. Thus, collective involvement
of texture enhanced version along with rest of the channels
is premier concern and hence, a highly balanced provision is
made for it as follows. Here, the gamma value is kept more
than unity and hence, its reciprocal leads to value in the range
(0, 1]. Balanced and weighted framework contribution of all
interim channels can be maintained by keeping the value of
p in the range of [0, 1] and q can be varied throughout the
positive range. Assuming a case when q → 0 it leads to
the ignorance or absence of texture improved channel and
such type of situation arises when the acquired image is of
smooth nature. Contrary to this, a larger value of q stands for
highly textured images. When, q is unity, it indicates half of
the contribution is due to the presence of Ifoimf and remaining
both gamma based channels are confined to rest of the half
share. According to above justification, q must be varied in
the range [0,∞), but while looking for its practical aspect,
it can be noticed that beyond the range of [0, 4), there is
a significant drop in contribution as it will be below 20%,
and hence, ignored in this work. Now, the third parameter
i.e. gamma (γ ) value must be positively varied starting from
the unity. Hence, when it is simply unity, it leads to simple
unity scaled one-to-one mapping. When raised above unity
value, it leads to counter related gamma-compressed and
gamma-expanded interim channels. Very high gamma value
obviously leads to unnatural artifacts and hence, just for
avoiding such kind of scenario, range of the gamma parame-
ter is confined to (1,3), which is experimentally found suitable
w.r.t. both gamma-corrected and gamma-expanded channels.
Next, to frame the influence of the fractional-order for corre-
sponding fractional-order integration,v is varied in the range
of (0,1) so that accordingly adaptive mask can be framed.
In this way, now this problem can be easily identified as an
optimization problem for search in a four-dimensional search
space for positive exploration and exploitation. Finally, it can
be simply identified that all four parameters (p, q,γ , and
v) have to be varied in the range [(0,1),[0,4),[1,3),(0,1)],
respectively.

D. FITNESS FUNCTION FORMULATION
Mostly the objective functions have been framed by consid-
ering only the entropy of the content in the mind. In this
formulation, both kinds of discrete entropy contents (inten-
sity based as well as GLCM based entropy values (i.e.,
DEO and DEGLCM ) for the processing image is considered.
To better highlight the effectiveness of the edges as well
as the texture content of the images, special considerations
are framed by proposing a novel objective function in this
context. Magnitude gradient matrix for the output image
(GMO) is evaluated for the processed image by employing the
Sobel-Feldman operator along the rows as well as columns
of the image. Summing up all of the pixel-wise gradient’s
magnitude implies the sharpness or the edgy content of
the image. This kind of summing-up may lead to a higher
order magnitude. For this purpose, a logarithmic operation is

imparted twice over this sum to make it up to the comparable
order. Along with it, normalized image contrast measure is
also amalgamated by considering its exponential treatment
for making it in a comparable order. Cube root for the product
of these three quantities made this expression equivalent to
the order for the other term in the expression namely, color-
fulness metrics’ enhancement factor which is just a ratio of
colorfulness measure for the output image to the colorfulness
measure for the input image. Also, to introduce sufficient
dominance of entropy content, the exponential of the framed
fraction is implied. As a whole, a newly introduced fitness-
function in the proposed enhancement algorithm, is designed
as (16), as shown at the bottom of the next page:

E. REINFORCEMENT LEARNING BASED SINE-COSINE
OPTIMIZER
Remembering the well-known and remarkable applicability
along with the keen understanding for No-free lunch theory,
it can never be obvious that, ‘‘which evolutionary and/or
metaheuristic algorithm will perform best, when associated
with the proposed framework’’. It’s again a very challenging
to decide that, which optimization mechanism is more effec-
tive when associated with the proposed framework and hence,
various algorithms (like, PSO, ABC, CSO, SCA, MFO,
OBL-SCA, etc.) have been tested for this purpose. Finally,
OBL-SCA is found performing very efficiently. Initially,
a trigonometrically inspired stochastic population-based opti-
mization, termed as Sine-Cosine Algorithm was suggested.
For more optimal behavior, this mechanism is efficiently
modified through reinforcement learning. Thus, the opposi-
tion based learning inspired Sine-Cosine Algorithm (OBL-
SCA) came into existence. Here, OBL-SCA is incorporated
in a well-framed manner for obtaining the desired level of
quality enhancement in association with the proposed frame-
work. In this context, both the fine as well as coarse texture
should be restored and enhanced along with their contrast and
entropy enhancement. Fundamentally, SCA is based on sine
and cosine based trigonometric functions those are respon-
sible for exploration and exploitation in the search space.
A machine learning strategy termed as opposition based
learning (OBL) is incorporated along with SCA, so that its
intelligence for exploration as well as exploitation mecha-
nism can be utilized, and the search-space can be explored in a
more appropriate manner. While evaluating the cost function,
the OBL leads to the best solution-set among the original
as well as its opposite position data-set, collectively; and
hence, this intelligent step-wise learning mechanism finally
leads to early convergence. Similar to most of the population-
based optimization approaches, initially, a set of randomly
evaluated solutions is created is this approach. On repeated
consecutive evaluations in a similar fashion, this random
set is improved by imparting a set of certain sine-cosine
based trigonometric rules, which is the core of this opti-
mization approach. Obviously, the optimal solution hunt is
never guaranteed in a single run execution for population-
based techniques. Nevertheless, with appropriate population
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size of search agents in fixed iteration counts, the probabil-
ity of attaining global optimum solution can be increased.
Irrespective of the behavior of stochastic population-based
optimization approaches, the major effort distribution can be
categorized into two phases, like exploration versus exploita-
tion. Eventually, in the exploration phase, a high-level abrupt
randomness is imparted to find the more and more promis-
ing regions of the search space as a set of random solu-
tions. Contrary to this, in the exploitation phase, steady
changes are framed for various random solutions, and conse-
quently, the random variations are made noticeably less. The
above-mentioned phases can be inherently characterized by
following a set of position updating expressions, as follows:

X t+1i = X ti + r1 · sin (r2)×
∣∣r3 · Pti − X ti ∣∣ , (17)

X t+1i = X ti + r1 · cos (r2)×
∣∣r3 · Pti − X ti ∣∣ , (18)

where, X ti stands for the current position of the solution at t
th

iteration correspondingly in the ith dimension. The random-
ness of the exploration phase is maintained by employing four
random variables, namely, r1, r2, r3 and r4. The usage selec-
tion for both of the above equations, is separately governed
by r4, and hence, it is random and equi-probable. Pti stands
for ith dimension’s destination point for the corresponding t th

iteration. Above expressions behave somehow in conjugate
fashion, merged using a uniformly distributed random vari-
able r4 in the range of [0,1].

X t+1i =

{
X ti + r1 · sin (r2) ·

∣∣r3 · Pti − X ti ∣∣ , r4 < 0.5,
X ti + r1 · cos (r2) ·

∣∣r3 · Pti − X ti ∣∣ , r4 ≥ 0.5,

(19)

The above equation expresses the core updating mechanism
ensuring both exploration as well as exploitation collectively.
The random parameter r1 governs the direction of movement.
The direction can be inside or outside the region covering the
solution to destination intermediate distance. r2 symbolizes
the magnitude of the corresponding to and fro shift. Also,
the random variable r3 is associated for imparting weight ran-
domly for the drift towards the destination and hence, stochas-
tic behavior can be introduced. The corresponding net effect
is emphasized if r3 > 1, and deemphasized if r3 < 1.At last,
the parameter r4 is solely responsible for switching exchange
in-between the sine and cosine based conjugate equations.
The engagement of sine and cosine expressionswhile framing
the behavior of position updating equations, leads to the term
‘‘Sine Cosine Algorithm’’ (SCA) for this approach. It can
be easily understood that the entire interim space between
two solutions can be defined through the above equations.
It should be easily noticed that higher dimensional equivalent
system can also be realized, similarly in the corresponding

Algorithm 1 Sine Cosine Algorithm
1: Initialize a set of search agents (solutions)
2: Repeat
3: Compute the values for all search agents by employing
the proposed cost function
4: Update solution set by using the best achieved values so
far (P = X∗)

5: Update the random variable vector ri (∀ i ∈ 1 to 4)
6: Update the current search agents’ position through Eq.
(19)

7: until (t < maximum iteration count)
8: Return the best found solution till the maximum count
of iterations and consider it global optimum solution

hyper-plane. The conjugate behavior along with the cyclic or
periodic nature for sine and cosine functions influences the
re-allocation of intermediate or local solutions and hence, fol-
lowing it, better exploration can be easily achieved. Also, for
exploring the outside region i.e. between the corresponding
destinations can be done by just changing the range of these
trigonometric expressions. The relative as well as absolute
change of range of sine and cosine expressions leads to rela-
tive updating of the position outside/inside the interim region
in-between itself and another solution. The above mentioned
random position is characterized by r2 defined in the range
[0, 2] employed through updating the equation. Hence, this
mechanism ensures the collective effect of exploration as well
as exploitation of the entire search space for corresponding
dimension iteratively. It is the promising intellectual behav-
ior to maintain the balance of exploration and exploitation,
which highlights the outperformance of this optimizer. In this
context, assuming a constant positive integral damping factor
(a), for the t th iteration, the random variable r1 is defined in
a linearly reducing fashion using the follow expression as:

r1 = a
(
1− t

/
T
)
, (20)

where, t signifies the current iteration, and T stands
for the total iteration count. The resultant damping or
range-reduction during the consecutive course of iterations
can be easily understood as an effect of r1 over the employed
updating equation. Also, it can be noticed that the Sine Cosine
optimizer explores efficiently, when sine and cosine function
ranges in (1, 2] and [−2, 1). Correspondingly, the search
space is exploited efficiently when sine and cosine ranges in
[−1, 1]. The pseudo-code can be understood as a sequence
of updating equations employed iteratively by evaluating all
four kinds of random parameters. The core algorithm pre-
serves the best achieved solution so far, and this solution is
further identified as a destination point in the next step for

J ,

(
CMO

CMI

)
+

3

√√√√eSDO . (DEO+DEGLCM ) .

(
log(log

(
M∑
m=1

N∑
n=1

(GMO (m, n))

))
, (16)
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TABLE 1. Information regarding test sattelite images.

Algorithm 2 OBL-SCA Approach
1: Define variables
1. Defining upper and lower bounds
2. Initialize a set of search agents X (solutions)
3. Evaluate the opposite ensemble X’ as: X̄ =

{
x̄ij
}
={

ui + li − xij
}
, i = 1, 2, 3, . . .N. Where, xij and x̄ij

denote the ith point of the jth solution of x and its
corresponding

4. Choose the best N solutions from combined population-
set
(
X ∪ X̄

)
.

5. Identify this solution set as input for further steps.
6. Repeat
7. Compute the values for all search agents by employing
the proposed cost function

8. Update the solution set by using the best achieved values
so far (P = X∗)

9. Update the random variable vector ri (∀ i ∈ 1 to 4)
10. Update the current search agents’ position
11. until (t < maximum iteration count)
12. Return the best found solution till the maximum
count of iterations and consider it global optimum
solution

updating other variables w.r.t. it. With the increasing iteration
count, range of sine and cosine functions is updated to empha-
size the better exploration. The termination of sine-cosine
optimizer is executed as the maximum iteration count is
achieved. The smooth transition switching in-between explo-
ration and exploitation phases is the best intellectual feature
of this approach due to adaptive range selection for sine and
cosine functions. Also, the best global optimal approximation
achieved till the current iteration is considered as the destina-
tion for drifting; and hence, the chances of getting lost of the
search agents during optimization, is efficiently suppressed.
SCA also leads to the abrupt changes initially and gradual
changes in later stages. Step-wise, proposed approach and
hereby employed algorithms are as follows:

IV. EXPERIMENTATION AND DISCUSSION
Experimental validation alongwith comparative performance
evaluation is done by reimplementation of various state-of-
the-art methods such as GHE, MMSICHE [5], ADAPHE [6],
AVHEQ [7], AGCWD [8], HEOPC [10], HEMIC [11],
IEAUMF [12], PGCHE [4] and PGCFDM [3]. Qualitative

Algorithm 3 Proposed PGCRLFOIM Framework
1: INPUT (1) : Input image (Iin)
2: INPUT (2): X = {p,q, γ ,v} as the input parametric
vector consisting of weighting parameters (p,q) gamma
value (γ ) order of fractional-order integral mask (v)
scaling parameter for negative augmentation (k).

3: OUTPUT: GLCM based cost function (J ) and Quality
Improved Output Image (Ien)

4: Evaluation of the tile-wise equalized (Iteq) input
channel.

5: Computation of gamma compressed interim intensity
channel

6: Computation of gamma expanded interim intensity
channel

7: Evaluation of v-ordered FOI mask (H ) as suggested in
eq. (11).

8: Fractionally ordered filtering is imparted through these
masks to extract non-textured information as,
Iv = Iin ⊗ H

9: Computation of partially texture enhanced interim image
by employing: Ifoim = Iin + 0.5.λ (Iin − Iv) .

10: Computation of the enhanced image using Eq. (15),
11: Evaluation of the cost function, as shown in Eq. (16),
12: RETURN:Magnitude of the cost function J .

and quantitative outcomes for the enhanced images for vari-
ous methods are also presented in this paper. For quantitative
assessment and corresponding qualitative analysis, visually
improved and resultant images obtained by employing a
variety of state of the art methodologies can be collectively
evaluated in Fig. 1-6. In the similar manner, corresponding
tabular evaluation is also presented in Table 2, by assembling
most significant eight fundamental performancemeasures for
all of the state-of the art methodologies published recently.
Various satellite images acquired from standard databases (as
listed in Table 1) are tested. Especially, to make the images
dark and low contrasted, a fixed intensity value is deducted
from these test images and hence, substantial information
content is initially loosed. Later, through proper experimen-
tation the information regain is attained. In this manner,
a kind of assurance/confidence is achieved that, the proposed
framework will be well suited for the required enhance-
ment of the remotely sensed, poorly illuminated satellite
images.
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FIGURE 1. Visual presentation/ qualitative evaluation with comparison among input images; GHE; MMSICHE; ADAPHE; AVHEQ; AGCWD; HEOPC; HEMIC;
IEAUMF; PGCHE; PGCFDMF and the proposed approach for Image 1 (i.e., Brussels, Belgium).

A. BASIS FOR COMPARATIVE EVALUATION
Eight highly reliable and fundamentally identified mea-
sures, namely brightness (B), contrast (V), discrete
Shannon entropy (H), sharpness (S), colorfulness (C),
GLCM-correlation (GC), GLCM-energy (GE), and GLCM-
homogeneity (GH) are employed here for explicit measure-
ment for the excellence over various methodologies. Quality
improvement can be justified by relative increment in B,
V, H, S, and C along with relative decrement in GC, GE,
and GH.

B. ONE-DIMENSIONAL HISTOGRAM BASED
PERFORMANCE INDICES
Brightness (or mean, B) value forM by N sized image matrix
I (m,n) is evaluated as an averaged summation, as:

Brightness(B) =
1

M × N

∑M

m=1

∑N

n=1
I (m, n), (21)

Average intensity spread or the variance (V ) accounts for the
image contrast, responsible for a naturally pleasant look, can
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FIGURE 2. Visual presentation/ qualitative evaluation with comparison among input images; GHE; MMSICHE; ADAPHE; AVHEQ; AGCWD; HEOPC; HEMIC;
IEAUMF; PGCHE; PGCFDMF and the proposed approach for Image 2 (i.e., Himalaya Range).

be evaluated as:

Contrast (V )=
1

M×N

∑
m,n

I (m, n)2−

(
1

M×N

∑
m,n

I (m, n)

)2

,

(22)

Information content is quantified by Shannon entropy of
the image and hence, bounded probability calculation using
normalized image histogram, as:

Entropy (H) = −
Imax∑
i=0

pi log2(pi), (23)

where, pi = ni
/
(M ∗ N ) accounts for the intensity level-wise

possibility of occurrence and, maximum intensity level is
symbolized by Imax . Accountability for the presence of the
edge content can be easily identified through the sharpness
content of the image that can be also identified as the gradient

of the image, evaluated as:

Sharpness (S) =
1

M × N

∑
m,n

(√
1m2 +1n2

)
, (24)

where, 1m = Ienh (m, n) − Ienh (m+ 1, n) and1n =
Ienh (m, n)−Ienh (m, n+ 1) symbolizes for the accountability
of the local values of gradient content of the image. For color
images, color channel’s coordination is also significant. Thus,
utilizing relative colors’ variance and relative colors’ mean
value, coordination of different color channels can be iden-
tified as ‘colorfulness’ of the image, which can be evaluated
as,

Colorfulness (C) =
√
σ 2
rg + σ

2
yb + 0.3

√
µ2
rg + µ

2
yb, (25)

1rg = R− G;1yb = 0.5 (R+ G)− B; (26)
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FIGURE 3. Visual presentation/ qualitative evaluation with comparison among input images; GHE; MMSICHE; ADAPHE; AVHEQ; AGCWD;
HEOPC; HEMIC; IEAUMF; PGCHE; PGCFDMF and the proposed approach for Image 3 (i.e., Millau Viaduct, France).
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FIGURE 4. Visual presentation/ qualitative evaluation with comparison among input images; GHE; MMSICHE; ADAPHE; AVHEQ; AGCWD;
HEOPC; HEMIC; IEAUMF; PGCHE; PGCFDMF and the proposed approach for Image 4 (i.e., Guam - Mangilao Golf Resort).
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FIGURE 5. Visual presentation/ qualitative evaluation with comparison among input images; GHE; MMSICHE; ADAPHE; AVHEQ; AGCWD; HEOPC;
HEMIC; IEAUMF; PGCHE; PGCFDMF and the proposed approach for the Image 5 (i.e., Riyadh, Saudi Arabia).
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FIGURE 6. Visual presentation/ qualitative evaluation with comparison among input images; GHE; MMSICHE; ADAPHE; AVHEQ; AGCWD;
HEOPC; HEMIC; IEAUMF; PGCHE; PGCFDMF and the proposed approach for the image 6 (i.e., los angeles, california).
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FIGURE 7. Comparative evaluation for performance indices for different test images (Im1 to Im6).
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TABLE 2. Numerical results for comparative evaluation among input, GHE, MMSICHE, ADAPHE, AVHEQ, AGCWD, HEOPC, HEMIC, IEAUMF and the
proposed approach by evaluating measures like brightness (B), CONTRAST (V), ENTROPY (H), SHARPNESS (S), COLORFULNESS (C), GLCM-CORRELATION
(GC), GLCM-ENERGY (GE), GLCM-HOMOGENEITY (GH).

where, 1rg,1yb, µrg, µyb, σrg, σyb, symbolizes correspond-
ing differential values, differential mean and corresponding
differential standard deviation values, respectively.

C. GLCM BASED PERFORMANCE INDICES
Spatial co-occurrence of the image pixels are usually avoided
while evaluating the intensity based indices, and hence,
to resolve it, Gray-Level Co-occurrence Matrix based per-
formance indices also plays a significant role for texture

and other spatially influenced properties. Overall statistical
and spatial behavior w.r.t. reference pixel can be derived
by calculating the pixel-wise average for all four directional
matrices:

GLCM

= 0.25
(
GLCM0+GLCMπ/4

+GLCMπ/2
+GLCM3π/4

)
;

(27)
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TABLE 3. Statistical improvement achieved for various quality measures (averaged over 30 images).

In this paper, three well known GLCM based indices,
i.e. GLCM-Correlation, GLCM-Energy and GLCM-Homog-
eneity are evaluated. Any element of the GLCM matrix
9 (m, n) , is usually evaluated by considering the nth neigh-
boring pixel w.r.t. mth pixel, and later on, by calculating the
µm, µn, σm, and σn as the corresponding mean values and
standard deviation values respectively. GLCM-correlation
(GC) stands for the interdependency for the corresponding
neighborhood of the pixels w.r.t. reference pixels, expressed
as:

GC =
M−1∑
m=0

N−1∑
n=0

(m− µm) (n− µn)9 (m, n)
σm.σn

, (28)

GLCM-Energy (GE) can be characterized by normalized
count of repeated pairs. Intuitively, these are responsible for
uniformity of texture, and hence, expressed as:

GLCM − Energy (GE) =
M−1∑
m=0

N−1∑
n=0

9 (m, n)2, (29)

GLCM-homogeneity (GH) can be characterized by the close-
ness of neighboring pixels with reference pixels. Intuitively,
these are also responsible for uniformity of texture, and
hence, expressed as:

GH = −
M−1∑
m=0

N−1∑
n=0

9 (m, n) log29 (m, n), (30)

Ideally, all these values should be as low as possible
for better texture visualization of the content. Hence,
relatively lower values for these parameters are usually
appreciated.

D. COMPARATIVE ASSESSMENT OF THE PROPOSED
PGC-RLFOIM
Overall assessment of the proposed approach is done by
rigorous experimentation by evaluating all above-mentioned
performance indices for some of the earlier, state-of-the-art
proposals by various researchers. The tabular results along
with the resulted images and their corresponding bar statis-
tics are produced here for portraying the general excellence
of the proposed approach. Individual results can be easily
analyzed by considering the core objective of simultane-
ous contrast and entropy improvement along with sharpness
enhancement. In addition to it, some amount of brightness
improvement is also desired in case of the dark images,
and in this way more scope can be explored for further
contrast improvement by exploring more span of intensity
levels. For accountingGLCM-based assessment, as discussed

above, the least values of indices like GLCM correlation
(GC), GLCM energy (GE) and GLCM-homogeneity (GH)
are appreciated for a quality enhanced image. The theoretical
excellence due to the presence of OBL is quite implacable,
and hence can be accepted easily for the outperformance
of the proposed method due to its self-ignited, exhaustive
learning mechanism. It can be proved experimentally by
integrating various optimization methods along with hereby
proposed PGCRLFOIM framework by utilizing the compa-
rable resources like the same iteration-count along with same
population size; so that the unbiased comparison can be illus-
trated for the various algorithms’ co-existence compatibility.
OBL-SCA is utilized for final modeling, which itself has been
derived by imparting intelligence based on opposition based
exhaustive machine learning approach; and hence, termed as
OBL-SCA.
Clustered bar-graphs as presented in Fig. 7 also draw

a very clear sketch for the outperformance of the pro-
posed approach. The performance bar graphs for six dif-
ferent test-images are plotted. The different colors of the
bar columns represent different test images. Better quality
improvement can be easily advocated by increased value for
brightness (B), contrast (V), entropy (H), sharpness (S) and
colorfulness (C) as shown in Fig 7. (a-e). Contrary to this,
decreased values of GLCM-based indices namely correla-
tion (R), energy (E) and homogeneity (M) collectively advo-
cate the better texture based quality improvement, as shown
in Fig 7(f-h). As listed in Table 3, an averaged analysis is
also presented over various test images. Accordingly, 152.4%
increment (2.52 times) is achieved over the input contrast
along with the simultaneous 147.3% (2.47 times) increment
in the discrete entropy level and 22.8% (1.228 times) incre-
ment in the sharpness content. Also, for dark color images,
higher values of brightness and colorfulness are also desired,
those are reported with 130.4% (2.3 times) and 196.4%
(2.96 times) increased w.r.t. the input indices, respectively.
In addition, the textural improvement is advocated in terms
of desired comparative reduction of GLCM based metrics,
namely correlation, energy and homogeneity are suppressed
by 25.6% (0.744 times), 72.5% (0.275 times), and 21.8%
(0.782 times), respectively. Hence, the desired objective is
achieved efficiently.

V. CONCLUSION
As a concluding note, it can be said that the prime objec-
tive is to extract more and more information by imparting
adaptive/content-wise boosting/improvement for visual fea-
tures of the poorly acquired, remotely sensed textured satel-
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lite images. Along with proper illumination improvement
for dark satellite images, content dependent texture enhance-
ment is also required for efficient post-processing usage.
With this above-mentioned objective, an optimal fusion based
framework is proposed for a constructive association of
gamma-compressed and gamma-expanded intensity chan-
nels, with a third channel which is a novel inclusion in
this paper. This third channel is a texture enhanced version
of the image obtained by fractional-order RL integration
based adaptive 2-D filtering. Effectively proposed, 2-D RL
fractional-order integral mask is a highly efficient version
of blurring/smoothing filter and when, thus processed fil-
tered output is negatively augmented with input intensity
channel, with proper intensity dependent scaling factor, leads
to texture enhanced version of the input channel. The pro-
posed PGC-RLFOIM approach can also be identified as a
weighted association of all three interim channels, namely
gamma compressed, gamma expanded, and the fractional-
order integration based texture enhanced version. Optimal
association of these interim images is planned in an intelligent
manner by adaptive exploration alongwith efficient garnering
of missing intensity levels throughout the span of permissi-
ble intensity levels. Along with this newly proposed fusion
framework, a novel fitness function has been also suggested
in this paper which seems very robust for all kinds of textural
and non-textural image details. According to the demand,
OBL-SCA is associated with the proposed framework after
rigorous experimentation, so that a four-dimensional (4-D)
search space can be fruitfully explored and exploited for
achieving the suitable values of (α, β, γ, v) so that overall
enhancement can be imparted. The approach has been found
very efficient for remotely sensed satellite images and on
some general images as well.
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Abstract. In this paper, a new design method for the finite impulse response (FIR) notch filters using frac-

tional derivative (FD) and swarm intelligence technique is presented. The design problem is constructed as a

minimization of the magnitude response error w.r.t. filter coefficients. To acquire high accuracy of notch filter,

fractional derivative (FD) is evaluated, and the required solution is computed using the Lagrange multiplier

method. The fidelity parameters like passband error, notch bandwidth, and maximum passband ripple vary non-

linearly with respect to FD values. Moreover, the tuning of appropriate FD value is computationally expensive.

Therefore, modern heuristic methods, known as the constraint factor particle swarm optimization (CFI-PSO),

which is inspired by swarm intelligence, is exploited to search the best values of FDs and number of FD required

for the optimal solution. After an exhaustive analysis, it is affirmed that the use of two FDs results in 21%

reduction in passband error, while notch bandwidth is slightly increased by 2% only. Also, it has been observed

that, in the proposed methodology, at the most 66 iterations are required for convergence to optimum solution.

To examine the performance of designed notch filter using the proposed method, it has been applied for removal

of power line interference from an electrocardiography (ECG) signal, and the improvement in performance is

affirmed.

Keywords. Notch filter; fractional derivative (FD); swarm intelligence.

1. Introduction

Filtering of any contaminated signal is the primary

requirement in numerous signal processing applications.

Thus, digital filters are the vital elements in digital signal

processing, which have been classified as the finite impulse

response (FIR) and infinite impulse response (IIR) filters.

FIR filter having a transfer function with all zero’s, results

in always stable system functions, and are used extensively

in noise filtering and filter banks [1–3]. Generally, the FIR

notch filters are prominently used in elimination of inter-

ference, caused due to an individual frequency component.

In early stage of research in the notch filter design [4], three

methods were adopted such as: (i) windowed Fourier series

approach; (ii) frequency sampling approach, and (iii) opti-

mized FIR filter design approach [4, 5].

In the optimized FIR filter design approach [5], a rea-

sonable amount of the passband ripples are introduced, and

the frequency sampling method leads to large interpolation

error as frequency response drastically changes across the

notch point. Other familiar methods to lessen the minimum

and maximum error in frequency response are McClellan-

Parks-Rabiner (MPR) computer program and standard lin-

ear programming technique. MPR algorithm is generally

used to design the Equiripple FIR filters, whereas standard

linear programming is used for the design of Equiripple FIR

notch filter, but this method fails due to huge memory

requirement, and also takes more computational time for

convergence. Another method for designing a FIR notch

filter is the multiple exchange algorithm, also known as

Equiripple FIR notch filter design method [6]. Recently, a

new method has been proposed in which the ‘Null width’ is

controlled by proper selection of zero odd order derivative

constraints to obtain maximally flat linear phase FIR notch

filter [7].

Fractional derivative (FD) has been employed for refin-

ing the performance in various signal processing applica-

tions like: image sharpening [8, 9], event detection in

biomedical signals [10], filter design accuracy [11]. FD

possesses the real time phenomena of memory effect of*For correspondence
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electrical circuits and chemical reaction, which helps in

smooth tracking. Therefore, fractional derivative is exten-

sively used by several researchers [12–20]. In [12–15],

authors have proposed new methods for designing simple

digital FIR filters, wideband fractional delay filters using

fractional derivatives. However, in these techniques, the

optimal value of order of fractional derivative is determined

by trial and error method. In order to overcome this prob-

lem, authors have used different swarm based techniques

such as particle swarm optimization (PSO), artificial bee

colony (ABC) algorithm, cuckoo search (CS) optimization,

etc. to determine the optimal value of order of FD for

designing FIR filters and filter banks [16–20]. A new

technique using fractional derivative and swarm based

optimization has been proposed for designing IIR filters

[21]. The expression of a fractional derivative consists of an

integration, which is a non-local operator and that is why

fractional derivative is also a non-local operator. Hence, the

fractional derivative has a unique property of capturing the

history of a variable. This is not easily conquerable by

using only integer order derivative [22]. From the reviewed

literature, it is evident that several methods have been

proposed for designing FIR Notch filters. However, in these

techniques, there is no provision for controlling the notch

bandwidth and more accurate passband response. There-

fore, there is strong motivation to develop a new design

technique for FIR Notch filter that has improved passband

response, and required for noise filtering for numerous

signal processing applications [1–3].

Therefore, in the above context, this paper describes a

new technique for designing a digital FIR Notch filter using

fractional derivative and swarm intelligence with the

improved passband response along with suitable notch

bandwidth. For this purpose, the design problem of a digital

FIR Notch filter is formulated as minimization of integral

square error between the ideal response and actual response

subjected to the fractional derivatives are evaluated at the

prescribed frequency. For determining suitable value of

order of FD, which controls the notch bandwidth and pre-

cise attenuation at the individual frequency, the constraint

factor particle swarm optimization (CF-PSO) is used due to

its simplicity and efficient implementation. The detailed

experimental analysis has been carried out to produce an

optimal choice iteration count. Statistical analysis is done,

which confirms the robustness of the proposed method. To

examine the efficacy of state-of-the- art with the proposed

method, these algorithms have been tested for noise filter-

ing of an ECG signal. Rest of the paper is organized as

follows. Section 2 briefs the swarm intelligence based

optimization methods, while section 3 contains an over-

view of fractional derivatives. Section 4 explains the design

procedure of FIR notch filter using FDC. In esction 5, the

proposed problem formulation is stated and a detailed

explanation of the experimental set-up and the results are

given in section 6. Finally, the conclusions are provided in

section 7.

2. Swarm intelligence based optimization

The modern heuristic search methods are proven as the

robust in problem solving of non-differentiable, multi-mod-

elled, and non-convex problems. Particle swarm optimiza-

tion (PSO) [23, 24], artificial bee colony (ABC) [25], Hybrid

algorithm [26], cuckoo search optimization (CSO) [27], and

similar other methods are most prominent swarm intelli-

gence based techniques. In all these techniques, solution of

non-differentiable problem is searched from a search space

matrix (U), which is continuously updated. PSO is inspired

by the communication of biological organism, and exten-

sively used in numerous optimization problems due to its

simple structure, efficient exploration and exploitation ability

[24]. The principle equations in PSO are [23]:

Vkþ1 ¼ v W � Vk þ w1 � PBk � Uk
� �

þ w2 � GBk � Uk
� �� �

:

ð1Þ

In the above Eq., k is the iteration cycle count,Vk represents

the current velocity matrix, associated with search space

matrix (U),W is the inertia weight, C1 and C2 are the learning

coefficients rates, which evaluate following as; w1 ¼ C1 �
rand �ð Þ and w2 ¼ C2 � rand �ð Þ, while v is the constrained

factor. PB represents archive of personal best solutions dis-

covered till kth iteration,whereasGB is the global best solution

at kth iteration. New velocity is computed by using Eq. (1),

which is used for updating of U as [23]:

Ukþ1 ¼ Vkþ1 þ Uk: ð2Þ

During the course of modification, if either value of U or

V gets beyond the limit, then the respective values are

restored. For restoration, either new suitable value, which is

either in the predefined range or ultimate value of range is

assigned to out of range elements of U or V.

3. Fractional derivative (FD)

The exhaustive research in numerous signal processing

applications using fractional derivatives (FD) has been

fascinated [11–22]. Riemann–Liouville, Grünwald–Let-

nikov and Caputo are the three most prominent definitions

of FD, and Grünwald–Letnikov fractional derivative is

mostly used [11, 16–19].

Duy mð Þ ¼ duy mð Þ
dmu

¼ lim
D!0

X1

l¼0

�1ð ÞlTu
l

Du y m� lDð Þ; ð3Þ

and the coefficient Tu
l is computed as:

Tu
l ¼ C uþ 1ð Þ

C lþ 1ð ÞC u� lþ 1ð Þ

¼
1; l¼ 0

u u� 1ð Þ u� 2ð Þ. . . u� lþ 1ð Þ½ �
1; 2; 3 � � � l ; l� 1

8
<

:
: ð4Þ
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In the above Eq., C �ð Þ represents a gamma function.

Based on this, FDs of trigonometric function may be

computed as:

Du A � sin xxþ uð Þf g ¼ A � xu � sin xxþ uþ p
2
u

� �
; ð5Þ

and

Du A � cos xxþ uð Þf g ¼ A � xu � cos xxþ uþ p
2
u

� �
: ð6Þ

4. Design of FIR Notch Filter using FD

The design problem of a digital filter is to evaluate the

coefficients of a transfer function, which reasonably satisfy

the approximation to the desired response. The notch filter

function is to attenuate an individual frequency component

decidedly, while other frequency components are kept intact.

Therefore, the ideal response of a notch filter is given by:

Hd ejx
� �

¼
0; x ¼ xnotch

1; x 6¼ xnotch

(

: ð7Þ

4.1 Design procedure of FIR notch filter

The transfer function of a causal FIR filter with order of N

is defined as [11]:

H ejx
� �

¼
XN

n¼0

h nð Þ�e�jxn ð8Þ

The filter transfer function, defined by the above equa-

tion has a linear-phase response, if the impulse response

{h(n)} is symmetric. On this basis, whether h(n) is the

symmetric or anti- symmetric, FIR filters are categorized

into four types as Type-1 to Type-4 [11]. In this paper,

Type-1 filter, whose impulse response is symmetric with

even order (N) is considered. Due to symmetric response,

Eq. (8) may be reframed as:

H ejx
� �

¼ e�jxL h Lð Þ þ 2 �
XL�1

n¼0

h nð Þ� cos x L� nð Þð Þ
( )

;

¼ Ho xð Þ � e�jxL:

ð9Þ

Here, L ¼ N=2, Ho xð Þ is the magnitude response of a FIR

filter, which can be rewritten as:

Ho xð Þ ¼
XL

l¼0

b lð Þ cos x lð Þ; ð10Þ

where

b lð Þ ¼ hðLÞ l ¼ 0

2 � h L� lð Þ1� l� L

�
ð11Þ

Eq. (10) may also be represented in matrix form as:

Ho xð Þ ¼ bT � C xð Þ; ð12Þ

where

b ¼ b 0ð Þ b 1ð Þ . . . b Lð Þ½ �; ð13Þ

and

C xð Þ ¼ 1 cos xð Þ . . . cos Lxð Þ½ �: ð14Þ

In Eq. (12), T denotes the transpose of a vector. Now, in

case of notch filter, the design problem is reduced to

evaluate the coefficients of filter (b) such that it should

eliminate the desired individual frequency component and

has unity magnitude for the rest of other frequencies. Now,

the filter coefficients are determined by minimizing an error

function, defined as:

J bð Þ ¼
Z

x2ROI

Hd xð Þ � H0 xð Þð Þ2dx;

¼ bTQb� 2pTbþ a;

ð15Þ

where, ROI is the region of interest, matrix Q, vector p, and
scalar a are given by [11]:

Q ¼
Z

x2ROI

C xð Þ � C xð ÞTdx; ð16Þ

p ¼
Z

x2ROI

Hd xð Þ � C xð Þð Þdx; ð17Þ

and

a ¼
Z

x2ROI

Hd xð Þf g2dx: ð18Þ

Now on the differentiation of Eq. (15) w.r.t. b, and

equating to zero, results in the conventional least squares

design solution as bLS ¼ Q�1 � p: To yield more accuracy

at notch frequency, the following constraints are

employed on the response Ho(x) at the given frequency

as [11]:

Ho x0ð Þ ¼ Hd x0ð Þ ¼ 0; ð19Þ

and

DHo xð Þjx¼x0
¼ 0: ð20Þ

In case of a notch filter, the fractional derivative evalu-

ated atx0 must satisfy the constraint defined as [11]:

DuHo xð Þjx¼x0
¼ b u� 1ð Þ ð21Þ

In Eq. (21), u is the order of FD and b is the recommended

constant, and for this work, it is taken as 30 [11].
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By using Eqs. (6) and (10), the fractional derivative of

DuHo xð Þ can be computed as:

DuHo xð Þ ¼
du

PL

l¼0

b lð Þ cos xlð Þ
	 


dxu
¼

XL

l¼0

b lð Þ d
u cos xlð Þ
dxu

;

¼
XL

l¼0

b lð Þ�lu � cos xlþ pu
2

� �
¼ bT � c x; uð Þ;

ð22Þ

where, the vector c(x, u) is defined as:

c x; uð Þ ¼

0

1u � cos xþ pu
2

� �

2u � cos 2xþ pu
2

� �

..

.

Lu � cos Lxþ pu
2

� �

2

66666664

3

77777775

ð23Þ

By using the equations (12), (22) and (23), the constraint

equations (19), (20), and (21) are rewritten in matrix form

as:

CBx � b ¼ F: ð24Þ

where

CBx ¼ CT x0ð Þ cT x0; 1ð Þ cT x0; uð Þ
� �T

; ð25Þ

and

F ¼ 0 0 b u� 1ð Þ½ �T : ð26Þ

The constraints defined in Eq. (19) is used for achieving

exact zero magnitude response at the reference notch fre-

quency (x0), while Eq. (20) is used to make first order

derivative equal to be zero [11]. And the constraint defined

by Eq. (21) aids in controlling 3-dB notch bandwidth [11].

Therefore, it is possible to adjust the notch bandwidth by

tuning the value of u.

On merging the objective function given by Eq. (15),

with constraints in Eq. (24), the definition of design prob-

lem of notch filter is expressed as:

Minimize J bð Þ ¼ bTQb� 2pTbþ a;

subjected to CBx � b ¼ F:
ð27Þ

The Lagrange multiplier method [11, 16] gives the

optimal solution of such constrained optimization problem,

and is computed as:

bopt ¼ Q�1 � p�Q�1 � CBT
x

� CBx �Q�1 � CBT
x

� ��1
CBx �Q�1 � p� F
� �

: ð28Þ

This is a closed-form solution and effortlessly com-

putable. The computational complexity of this method

includes two terms, one is the computation of conventional

least squares solution, which is Q�1 � p. Second term is the

product of Q�1 � CBT
x CBx �Q�1 � CBT

x

� ��1
and

CBx �Q�1 � p� F
� �

, in which the computation of inverse

of a matrix CBx �Q�1 � CBT
x

� ��1
is expensive task. How-

ever, size of CBx �Q�1 � CBT
x is small of i� i, where i =

(integral order) ? (order of FD terms), which are user

defined and smaller. Therefore, the computational com-

plexity of second term is also small. Authors in [11], have

designed a notch filter using single FD term and have

shown its effect on notch bandwidth (Wnotch) as depicted in

figure 1(a), and the corresponding frequency response in

figure 1(b). The fidelity parameter, defined as passband

error (erp) is computed as:
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Figure 1. (a) Variation of notch bandwidth and erp using single FD (u), (b) FIR notch filter frequency response for different FD value

(u) =1.3, 1.5, 1.7, and 1.9.
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erp ¼
1

p

Zx1
c

0

Hd ejx
� �

� Ho ejx
� �� �2

dx

0

B@

þ
Zp

x2
c

Hd ejx
� �

� Ho ejx
� �� �2

dx

1

CA;

ð29Þ

where, x1
c and x2

c are the lower and upper cut-off fre-

quencies, given by:

Ho xl
c

� �
¼

ffiffiffi
2

p
; where l ¼ 1 or 2: ð30Þ

It is found that erp varies withWnotch such that at u =1.01,

Wnotch is the minimum, however erp is having maximum

value. When u is increased, Wnotch starts increasing with the

reduction in erp. Authors in [11], have used the step size of

0.1 for FD values, however it is observed that the step size

with 0.01 attains more accurate results as shown in figure 1.

When FD value is incremented with 0.01 and u is equal to

1.42, erp attains it’s the best value of -26.96 dB, which is

the minimum and starts increasing, when u is greater than

1.45. Therefore, more accuracy with less Wnotch may be

achieved with high precision value of u, however it would

be computational expensive in such approach. Therefore,

swarm intelligence based modern heuristic approach is a

suitable choice for obtaining the optimal solution, which

simultaneously reduce the Wnotch and erp.

5. Problem formulation

In this work, the design problem of a notch filter response

with less erp and narrow Wnotch is constructed as a mini-

mization of Eq. (29). Here, Wnotch is controlled by the value

and number of u. Therefore, particle swarm optimization

(PSO) is used for finding the suitable FD value and number

of FD used. The proposed method using FD and swam

intelligence technique is completely described in figure 2.

5.1 Particle swarm optimization

In PSO, the optimal solution is found by controlling the

local and global search using search space, which is formed

in the initial stage. In the proposed methodology, for

acquiring more accurate solution, FD values are searched

using CI-PSO. Therefore, search space (U) is formulated by

a matrix containing elements uniformly distributed in the

range of lower (Ul) and upper (Uu) bound, defined as:

U ¼ Ul � Uuð Þ � rand 0; 1ð Þ: ð31Þ

Each set of a row vector of U is the possible combination

of FD values for the evaluations (25) and (26). This

approach ensures the independency on step size, and the

self-learning mechanism of PSO helps in finding the

appropriate best value. Also, with this approach, more

fractional order based design can be tested with less com-

putational cost.

5.2 The algorithmic steps to be followed

for the proposed method based on FD using PSO

The complete design scheme can be framed using following

steps:

Step 1: Declare the filter specifications like: filter order

(K), notch frequency (xnotch), and FD order.

Step 2: Define the ideal repose (Hd(e
jx)) on the basis of

Eq. (7).

Yes

Filter specification
ω0, N

Formulation of positive 
symmetric matrix Q

Fractional term 
matrix

Update 
algorithm

Evaluation of 
fitness

Inverse 
of Q

Search space for 
fractional term Values of 

fraction term

Filter coefficients using 
the Lagrange multiplier 

Sorting of individual 
best possible solution

An optimized filter 
response after 

iterative computation

Cycles < max count
No

Figure 2. Block diagram of the proposed method.
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Step 3: Compute a vector C(x), matrix Q, and vector

p using Eqs. (14), (16), and (17). Also, evaluate the inverse
of Q and store for further computations.

Step 4: Initialize the search space matrix (U) and velocity

matrix (V) with uniformly distributed random matrix

within the limit of Ul to Uu as defined by Eq. (31).

Step 5: Evaluate the matrix CBx and vector F for each

solution containing FD value in a row vector of U. After
then, compute an optimal filter coefficients bopt using

Eq. (28).

Step 6: Compute the frequency response, followed by the

computation of error function, defined by Eq. (29). Store

these error values as Local Best Error, and find out the least
value of error from these. Assign this least value to Global

Best Error. Assign the content of matrix U into matrix PB
(personal best solutions). In the end, the solution correspond-

ing toGlobal Best Error is kept inGB (global best solutions).

Step 7: Update V using Eq. (1), followed by the update of

U using Eq. (2).

Step 8: Restore these values, if they move beyond Ul and

Uu.

Step 9: Using the updated Un?1, evaluate CBx, F, then
compute the filter coefficients bopt using Eq. (28) similarly

as performed in step 5.

Step 10: Consider those solutions of updatedU, whose erp is
less than that of Local Best Error. After this, sort out the
minimum value of Local Best Error, and if it is smaller than

the current Global Best Error, then update the Global Best
Error and GB with respective value and solution.

Step 11: Repeat steps 4 to 9 till maximum number iteration

are completed or erp is dropped beyond tolerable limit.

6. Experimental set-up, results and discussion

This section elaborates the experimental set made for the

design of a FIR notch filter using FD with PSO. For this

purpose, MATLAB� 2014 is used on Genuine Intel

(R) CPU i7 3770 @ 3.40 GHz, 4GB RAM. The grid size of

500 equally spaced sample for normalized digital frequency

is taken during the experiments.

6.1 Statistical analysis of the proposed method

In PSO, size of search space is the key factor and depends

on computation time. If U is smaller, it results in less

computation time and grows almost abruptly as the size

increases. The size of U is defined by the dimensionality

(D) and number of solution (NS). Therefore, for obtaining

the solution in reasonable computational time (t), it is

required to set NS reasonably best by experimental evalu-

ation. Therefore, in this section, various experiments have

been performed to demonstrate the effect of D and NS on

erp, Wnotch, t and convergence. Number of FDs is consid-

ered as D, and 30 trials of experiments are performed for

possible combinations of D and NS. The mean of different

fidelity parameters such as erp, Wnotch, is computed for

analysis, and it is observed that the erp and Wnotch are

increased for D greater than 2 as illustrated in fig-

ures 3(a) and 3(b). The mean value of t is increased with

the increase in number of search space solution (NS) and

D as shown in figure 3(c). However, the performance

measured in terms of erp and Wnotch are being intact irre-

spective of the value of NS. Therefore, NS = 10 is an

optimal choice for acquiring the best results in reasonable

computation time. The mean value of rate of decay for erp
w.r.t. iteration for different number of FD, denoted by D is

shown in figure 3(d).

The computation time taken during optimization process

depends on order of filter, number of fractional derivatives

and search space size. From the above discussion, it is clear

that two fractional derivatives are the best suited for mini-

mum erp. Also, swarm size equal to 10 achieves the same

performance as achieved with other higher value of it, which

is also observed in figure 4 that shows the variation in the best

and worst performance for different swarm size values. It can

be perceived that erp quickly converges into steady state as

shown in figure 3(d). To find the practical value of iteration

cycles, the convergence profile is differentiatedw.r.t. number

of iteration (n). The value of n after, which is:

o 10 � log10 mean erp
� �� �� �

ok
¼ constant, ð32Þ

and this is the best appropriate choice. On performing the

above operation, the suitable value of n is found to be 13

and 66 for D = 1 and 2, respectively as shown in figure 5(a).

It can also be observed that D = 2 archives 21% reduction

in erp, when compared with D = 1; however, slight incre-

ment in Wnotch of 2% has occurred as depicted in fig-

ure 5(b). The frequency response of FIR notch filter

designed by the proposed method is shown in fig-

ure 5(c) with notch at x = 0.3.

6.2 Comparative analysis

Based on the results obtained in the above analysis, robustness

of the proposed methodology has been tested by designing

different order notch filter with different notch frequencies.

The maximum iteration is kept to be 70, and order is varied

from 10 to 80 with increment of 10. The proposed method has

been tested using single FD and two FDs, the results obtained

in single FD is summarized in table 1, while table 2 summa-

rizes the results obtained in case of two FDs.

6.3 Application in an electrocardiogram signal

filtering

ECG signal processing is the most eminent and consistently

evolving stream in bio-medical signal processing [28, 29].
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One of the important parts is extraction of QRS complex

and analyzing its characteristics to diagnose the irregular-

ities in the heart rhythm. The notch filters are widely used

in application, where an individual harmonic elimination is

required such as interference of power line in an electro-

cardiogram (ECG) recording, open-loop voltage across the
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Table 1. Performance of the proposed method with different order and notch frequencies for single FD.

Filter Order

xnotch = 0.25 xnotch = 0.60 xnotch = 0.80

erp Wnotch erp Wnotch erp Wnotch

10 0.4672 0.4618 4.4578 0.4492 -1.8395 0.4650

20 -16.7001 0.5027 -17.8581 0.4681 -17.9987 0.4650

30 -22.7098 0.3644 -22.9152 0.3613 -24.0427 0.3424

40 -27.7795 0.2890 -27.8404 0.2859 -27.9608 0.2859

50 -29.2317 0.2419 -28.7865 0.2482 -29.2498 0.2450

60 -29.6564 0.2168 -30.0488 0.2105 -29.9702 0.2073

70 -30.7874 0.1948 -30.6193 0.1916 -30.7997 0.1854

80 -31.5196 0.1696 -31.4998 0.1696 -31.4098 0.1696

Table 2. Performance of proposed method with different order and notch frequencies for two FDs.

Filter Order

xnotch = 0.25 xnotch = 0.60 xnotch = 0.80

erp Wnotch erp Wnotch erp Wnotch

10 0.4703 0.4609 4.3841 0.4496 -1.9289 0.5759

20 -16.6999 0.5023 -17.8597 0.4681 -18.0006 0.4618

30 -22.8581 0.3644 -23.0752 0.3641 -24.2116 0.3456

40 -28.8163 0.2922 -28.9032 0.2922 -29.0729 0.2890

50 -31.3496 0.2532 -30.9587 0.2576 -31.2656 0.2513

60 -31.5176 0.2262 -31.5415 0.2205 -31.6355 0.2212

70 -31.4722 0.1970 -31.5991 0.1963 -31.6769 0.1910

80 -31.6336 0.1715 -31.6621 0.1696 -31.7297 0.1715
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input of an analog instrument and many such [7]. In this

section, power line interference in an ECG is filtered by

using the designed notch filter as shown in figure 6. First,

an artificial ECG is generated, and then contaminated with

power line interference, and finally filtered using the

designed notch filter. This experiment is also performed on

ECG recorded signals from MIT-BIH [30]. The quality of

filtering is judged by finding the value of following

[31, 32]: mean squared error (MSE):

MSE ¼ 1

Ns

X
x nð Þ � x

_
nð Þ

�� ��2; whereNs number of samples;

ð33Þ

where Ns number of samples. Percent root mean square

difference (PRD):

PRD ¼
P

x nð Þ � x
_

nð Þ
���

���
2

P
x nð Þ½ �2

0

B@

1

CA

1=2

�100; ð34Þ

and signal to noise ratio (SNR):

SNR dB = 10 � log10
P

x nð Þ½ �2
P

x nð Þ � x
_
nð Þ

�� ��2

0

@
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Figure 6. Proposed methodology for design of notch filter for

power line interference removal from ECG signal.
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synthesized ECG signal spectrum, (c) filtered synthesized ECG signal by filter designed using proposed methodology, and (d) spectrum
of filtered ECG signal.
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An ECG signal with the sampling rate of 400 Hz is

synthesized, and 60 Hz interference has been introduced as

shown in figures 7(a) and 7(b). This contaminated signal

has been filtered using the notch filters designed using FD

approach as suggested in [11], and by the proposed design

approach. It can be perceived from table 3 that filtering

using notch filter designed by the proposed methodology

using second order FD obtains better value of fidelity

parameters. This is possible due to the filter designed with

second order FD, which has better passband accuracy with

optimal notch bandwidth. The obtained performance has

been compared and summarized in table 3. It is evident that

with the second order fractional derivative approach, filter

achieves more accurate filtering results when compared to

single order fractional derivative approach as given in [11].

The designed filters are also tested for real time ECG

signal taken from [30]. These signals are mixed with 50 and

60 Hz power line signal. The sampling frequency of ECG

signal is 360 Hz, and if these signals are interfered by 50 Hz

power line signal, then notch filter with

50=360

� �
� 2 ¼ 0:2778, normalized digital frequency is

required. Where as in case of 60 Hz power line signal

interference, it is required that notch frequency should be

0.3333 normalized. In trial based approach [11], it took

3.7813 seconds for completion, and then additional time in

sorting of best solution from entire listed output solutions.

If same approach is adopted for two derivatives, then it

would take more computation time. Whereas the proposed

technique takes maximum of 7.39 seconds for obtaining the

optimal values of u for D = 2. ECG signals are

Table 3. Performance evaluation of notch filter designed by proposed technique in filtering of synthesize ECG signal.

Design Technique FD Order Fractional value (u) MSE PRD SNR

FD [11] 1 1.300000 164.2868 0.1704 27.6859

FD [11] 1 1.500000 88.7068 0.0920 30.3623

FD [11] 1 1.700000 165.6624 0.1718 27.6497

FD [11] 1 1.900000 386.6205 0.4010 23.9690

Proposed 1 1.370809 116.2129 0.1205 29.1894

Proposed 2 1.373603,

2.981385

81.9271 0.0850 30.7076
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Figure 8. (a) ECG signal record MIT BIH 100, (b) contaminated ECG signal with 50 Hz interference, (c) filtered ECG signal, (d) ECG
signal record MIT BIH 101, (e) contaminated ECG signal with 50 Hz interference, and (f) filtered ECG signal. (d) ECG signal record

MIT BIH 103, (e) contaminated ECG signal with 60 Hz interference, and (g) filtered ECG signal. Filtering has been performed using

filter designed using proposed methodology with D = 2.
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contaminated by both 50 and 60 Hz interference and fil-

tered as depicted in figure 8, and performance is summa-

rized in table 4. The optimal value of u is found to be

1.389992 and 2.956899 in case of notch frequency equals to

0.2778, while it should be 1.390799 and 2.973813 for

normalized notch frequency equals to 0.3333.

7. Conclusions

In this paper, a new design approach using fractional

derivatives, which are explored using CFI-PSO, is pre-

sented. The exhaustive experimentation results have

revealed that two fractional derivatives with second order

derivative is sufficient for the design of optimal notch filter.

There is reduction in passband error by 21%, however there

is nominal increment of notch bandwidth by 2.1%, when

compared with the double FD with single FD design

approach. The thorough analysis made for analyzing the

effect of swarm size reveals that swarm size consisting of

ten solutions is the best, which also results in less compu-

tation time. On differentiating the mean of convergence

w.r.t. iteration, it gives the reasonable iteration count for the

convergence and found to be 13 for single and 66 for two

FD based design. The designed filter is tested for power line

interference removal, and was found to be very efficient.
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ABSTRACT It has been recently shown that the l0-norm problem can be reformulated into a mixed integer
quadratic programming (MIQP) problem. CPLEX, a commercial optimization software package that can
solve integer programming problems, is used to find the global solution to this MIQP problem for sparse
signal estimation. However, CPLEX uses an exhaustive approach to search a feasible space to this MIQP
problem. Thus, its running time grows exponentially as the problem dimension grows. This means that
CPLEX quickly becomes computationally intractable for higher dimension problems. In this paper, we aim
to propose a fast first-order-type method for solving this MIQP problem based on the alternating direction
method. We conduct extensive simulations to demonstrate that: 1) our method is used to estimate a sparse
signal by solving this problem and 2) our method is computationally tractable for problem dimensions up to
the order of 1 million.

INDEX TERMS Alternating direction method, compressed sensing, mixed integer quadratic program.

I. INTRODUCTION
Compressed sensing [1] has attracted attention because it
allows for the acquisition of signal samples at a rate lower
than the Nyquist rate. The theory of compressed sensing
is built under a sparsity assumption that an n-dimensional
signal x can be sparsely represented using a few non-zero
coefficients in a basis. This sparse signal is sampled to
yield an m-dimensional measurement vector b = Fx + n,
where F is an m × n sensing matrix and n is an m ×
n noise vector. Since m < n, the problem of estimat-
ing x is ill-posed. However, the theory shows that x is
reliably estimated by solving the l0-norm problem:

minx τ ‖x‖0 + 2−1 ‖b− Fx‖22, (1)

where τ is a positive regularization value. In (1), the
l0-norm function is non-convex and discontinuous. Indeed,
(1) is known to be NP-hard. Instead of solving (1), researches
aim to solve an l1-norm problem. This problem is formulated
by relaxing the l0-norm function in (1) and is given by

minx τ ‖x‖1 + 2−1 ‖b− Fx‖22. (2)

Candes and Tao [1] have proved that a solution to (2) is equiv-
alent to a solution to (1) if F satisfies a restricted isometry
constant (RIC) condition. Many l1-norm-based methods have

been proposed to solve (2). The earliest method is l1ls [2].
This method is based on an interior point technique and
can estimate x from a small number of iterations. In each
of iteration, l1ls solves a linear equation system expressed
in a matrix-vector product form. The matrix in each system
changes as the iteration passes. Thus, factorization methods
such as the LU decomposition and the QR decomposition can
be used to reduce the computations for solving this system.
However, solving multiple linear equation systems can be
still burdensome. This makes its computational cost too high
for high-dimensional x. Then, gradient projection sparse
recovery [3], homotopy [4], split-Bregman [5] and your algo-
rithms for l1 (YALL1) [6] have been proposed to solve (2).
These are first-order-type methods that do not require matrix-
inversions in all iterations. This implies that they are compu-
tationally tractable to estimate high-dimensional x. But, there
are known problems on (2). First, the l1-norm function yields
a biased estimation for large non-zero magnitudes, while the
l0-norm function considers all non-zero magnitudes
equally [7]. Second, if F does not satisfy the RIC condition,
– either m is small or the elements of F are correlated – then
a solution to (2) is sub-optimal [8].

In the literature, l0-norm-based methods such as iterative
hard thresholding (IHT) [9], variants of IHT [10]–[12],
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and mean doubly augmented Lagrangian (MDAL) [13] have
been proposed to solve (1). Dong and Zhu [12] have shown
that their method is superior to homotopy [4]. Dong and
Zhang [13] have shown that MDAL restores images with
higher quality than those recovered by split-Bregman [5].
These results in [12] and [13] suggest that more accurate
sparse signal estimation is conducted using the l0-norm func-
tion rather than the l1-norm function.
Recently, Bourguignon et al. [14] have proposed an novel

approach to solve (1). This approach aims to find an esti-
mate for x and the positions of the non-zero elements of x,
i.e., the support set. From (1), they have made a mixed integer
quadratic programming (MIQP) problem:

min
u∈{0,1}n,x∈Rn

τ1Tn u+ 2−1 ‖b− Fx‖22

subject to |x| ≤ Mu (3)

where the binary vector u indicates the support set and M
is a positive value. For (3), M can be known in practical
contexts. For example, if x is an 8-bit greyscale image, M
is set to be 255. Bertsimas et al. [15] have proposed methods
to estimate upper bounds on M if both F and b are known.
Bourguignon et al. [14] used CPLEX [16] to solve (3) and
demonstrated that CPLEX is superior to IHT [9] for sparse
signal estimation. According to explanations in [14], this
result is because CPLEX exhaustively searches for a whole
feasible space to find the global solution to (3) while IHT
finds a local solution to (1).

CPLEX [16] is a commercial solver which can be used
to solve MIQP problems. Then, CPLEX is implemented
based on a branch-and-cut method [30] that is a combination
of a cutting plane method [31] with a branch-and-bound
method [17]. As noted in [22], the branch-and-cut method
has non-polynomial computational costs in the worst-case
and can be troublesome to solve MIQP problems with large
variables. This implies the computational intractability of
using CPLEX in solving integer programming problems with
large variables. In Section V, we empirically confirm this
computational intractability.

In this paper, we aim to propose a fast method based on the
alternating direction method (ADM) for solving (3). We ana-
lyze the computational cost per iteration of the proposed
method, referred to as ADM-MIQP. According to this result,
we can show that ADM-MIQP is a first-order-type method.
We evaluate the quality of its solution using metrics defined
as follows.

First, we define support set error (SSE) as

d1
(
u, û

)
:= k−1

∑n

i=1

∥∥u (i)− û (i)
∥∥
1, (4)

where û is a solution to (3) and u is constructed from

u (i) = 0 if i /∈ I
u (i) = 1 if i ∈ I,

where I is the support set to be detected. Second, we define
mean square error (MSE) as

d2
(
x, x̃

)
:= n−1

∥∥x− x̃
∥∥2
2 , (5)

where x is an original signal and x̃ is an estimate of x. Then,
we compare ADM-MIQP with both YALL1 and MDAL in
terms of SSE and MSE. We observe the following:
• ADM-MIQP significantly surpasses both MDAL and
YALL1 in terms of both MSE and SSE.

• ADM-MIQP exhibits good estimation performance
close to the performance of ORACLE that knows sup-
port set a priori.

• ADM-MIQP is computationally tractable for solving (3)
with the problem dimension up to the order of one
million.

• ADM-MIQP exhibits a computational cost given by
O
(
n1.3

)
in our simulations.

The rest of this paper is organized as follows. Section II
gives notations used in this paper and a summary about ADM.
Section III elucidates the derivation and computational costs
associatedwithADM-MIQP.Also, Section III gives results of
comparison between our proposed approach with that of [22]
for solving our problem. Section IV gives simulation studies
and shows the superiority of ADM-MIQP compared to other
ADM-based methods [6], [13]. Section V gives conclusions
of this paper.

II. PRELIMINARIES
A. NOTATIONS
We present some notations frequently used in this paper and
their meanings in Table 1.

TABLE 1. Summary of the notations.

B. ALTERNATION DIRECTION METHOD (ADM)
A branch and bound method [17] finds the global solution to
a MIQP problem. But, since this method has non-polynomial
computational costs, it is computationally intractable for
solving MIQP problems with large variables. We turn instead
to ADM for solving the MIQP problem (3). In this sub-
section, we introduce ADM and provide its recent results.

It is well-known that ADM is a powerful technique for
solving a large-scale convex problem. ADM involves the fol-
lowing steps: i) ADM splits this problem into sub-problems
and ii) solves alternatively these sub-problems until condi-
tions are satisfied. ADM is then proven to find the global
solution to this problem as the iteration continues [18], [19].
As the number of iterations approaches infinity, the solution
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generated by ADM converges to an optimal solution which
satisfies the Karush-Kuhn-Tucker conditions to a convex
problem.

Recently, ADM has been empirically shown to be a pow-
erful technique to find accurate solutions to integer program-
ming problems [20]–[22]. Yadav et al. [20] have used ADM
to solve an image separation problem that can be modeled
as a binary quadratic programming. Souto and Dinis [21]
have then solved a signal decoding problem modeled as an
integer quadratic programming with an equality constraint
using ADM. Last, Takapoui et al. [22] have solved problems
modeled as MIQPs with an equality constraint, and shown
that ADM could be greatly faster than a commercial integer
programming method. We are motivated to derive a compu-
tationally tractable and accurate method to solve (3) using
ADM, inspired by these results in [20]–[22].

III. SPARSE SIGNAL ESTIMATION VIA MIQP PROBLEM
The MIQP problem (3) has an inequality constraint and this
constraint can be formulated into an equality constraint. Thus,
we can use the approach of [22] to solve (3) by taking a further
formulation. But, no explicit discussion on how this approach
can be used to solve a MIQP problem which has an inequal-
ity constraint was given in [22]. In the sub-section III.C,
we derive an algorithm based on the approach of [22] for
solving (3). We call it Takapoui’s Algorithm with Inequal-
ity Constraint (TAIC). We then compare ADM-MIQP with
TAIC with respect to the computational cost per iteration.
We show that ADM-MIQP requires much less computation
per iteration than TAIC does.

A. DERIVATION OF ADM-MIQP
It is convenient to solve a single minimization problem
rather than a joint minimization problem. To this end, we
define

d =
[
xT uT

]T
∈ Rn

× {0, 1}n ,

which is nonconvex. Then, (3) is reformulated into

min
d

2−1dTQd+ qTd subject to Ad ≤ 02n,

where

Q =
[
FTF On
On On

]
, q =

[
−8Tb
τ1n

]
,

and

A =
[

In −MIn
−In −MIn

]
.

We then define a nonnegative vector z. Then, we obtain

min
d,z

2−1dTQd+ qTd+ IX (z)

subject to Ad+ z = 02n (6)

where IX (z) is an indicator function of X := {z |z ≥ 02n } ,
i.e., IX (z) = 0 for z ∈ X and IX (z) = ∞ for z /∈ X .

We apply ADM into (6) to obtain

dt+1 = argmin
d

2−1dT
[
Q+ ρATA

]
d+ qT1 d,

zt+1 = argmin
z

IX (z)+ ρ2−1zT z+ (ρAdt+1 − λt)T z,

λt+1 = λt − ρ (Adt+1 + zt+1), (7)

where q1,t = q − AT (λt − ρzt), λ is the dual variable, and
ρ > 0 is a penalty value. The sub-problem on d is an MIQP.
Thus, solving this problem is difficult, but we separate it into
a pair of problems in terms of x and u, respectively:

xt+1 = argmin
x

2−1xT
(
FTF+ 2ρIn

)
x+ qT1,t [1 : n] x,

ut+1 = argmin
u

ρM2uTu+ qT1,t [n+ 1 : 2n]u.

Since the sub-problem on x has a quadratic objective function,
we have an analytic closed-form solution:

xt+1 = −
(
FTF+ 2ρIn

)−1
q1,t [1 : n]

=

(
FTDFq1,t [1 : n]− q1,t [1 : n]

)
/(2ρ) (8)

where the second equality is due to the Woodbury for-
mula [23] and D :=

(
FFT + 2ρIm

)−1
. The sub-problem on

u is a binary quadratic programming. Since uTu = 1Tn u, we
have

ut+1 = argmin
u

(
ρM21n + q1,t [n+ 1 : 2n]

)T
u,

which has an analytic closed-form solution as follows:

ut+1 (i) = 0 if ηt ≥ 0

ut+1 (i) = 1 if ηt < 0 (9)

where ηt = ρM2
+ q1,t (n+ i). The sub-problem on z is

solved to yield a solution:

zt+1 = max
(
02n,λt/ρ +

[
M ut+1 − xt+1
M ut+1 + xt+1

])
, (10)

where ‘‘max’’ operation is performed element-wise.
In summary, we have formulated (6) from (3) by adding the

non-negative vector and the indicator function. We then have
applied ADM into (6) to produce the iterations given in (7).
We next provided analytic solutions to these sub-problems.
Then, we summarized ADM-MIQP in Table 2.
In [18] and [19], it has been proved that for any positive

penalty value ρ, ADM can find the global solution to a
convex problem. The penalty value only affects the conver-
gence speed, not the quality of the solution. Researchers have
discussed how this penalty value can be chosen to improve
the speed [18], [19]. However, our problem (3) is non-convex
due to the non-convex variable d. In the literature, there
are no convergence studies for non-convex problems with
non-convex variables, to the best of our knowledge. It is
difficult to find convergence conditions for the penalty value
in the problem (3) that is being solved using ADM-MIQP.
Afonso et al. [32] have solved (1) using their own algorithm
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TABLE 2. The pseudo code of ADM-MIQP.

derived based on ADM. They have set their penalty value
as ρ = τ/10 in their simulations. Ghadimi et al. [18]
have made a tool for setting the penalty value for a strictly
convex problem with an inequality constraint. This tool takes
a matrix given in the constraint as its input. By inspired by
these works, we have relied upon extensive simulations with
various penalty values given by a combination of τ and M ,
i.e.

ρ ∈
{
τ/M , τ/M2, . . . , τM2

}
,

where M is the element of our matrix A. Based on results
of these simulations, we set the penalty value as ρ = τ/M
and use this value in our simulations. In our simulations,
we empirically observe that ADM-MIQP with this penalty
value can be used to solve (3) for estimating a sparse signal

with the accuracy of ‖
x−x̃‖22
‖x‖22

≤ ε where x is an original sparse

signal, x̃ is the estimate sparse signal and ε is sufficiently
small.

Any warm-start techqniues can be applied into
ADM-MIQP for improving its performance. We run
ADM-MIQP multiple times with different initial variables
randomly generated. Then, we have different sotluions, i.e.,{

d1,d2, · · · ,dL
}

where L is the number of runs of ADM-MIQP.We then select
a solution among these multiple solutions via

dsol := argmin
d∈{d1,d2,··· ,dL}

2−1dTQd+ qTd.

This selected solution is at least guaranteed to be better than
the other unselected solutions in terms of the cost function.

B. COMPUTATION COSTS PER ITERATION
We aim to show that ADM-MIQP is a first-order-type
method. The costs of updating z and u are both O (n). Then,
the cost of updating x is O

(
mn+ m3

)
, due to both the matrix

inversion and the matrix-vector products. If D is stored, then
this cost can be reduced to O (mn).

Next, in applications such as a single pixel camera
[24], [25], a lensless camera [26], [27], for an image com-
pression [28], a sensing matrix is constructed by randomly
taking m rows from an orthogonal matrix. Then, D becomes
a constant value 1

1+2ρ . As a result, the update on x is given as

xt+1 =
(
(1+ 2ρ)−1 FTFq1,t [1 : n]− q1,t [1 : n]

)
/(2ρ).

(11)

Indeed, if F is a partial discrete cosine transform (DCT)
matrix, all matrix-vector products in (11) can be performed
by the fast Fourier transform operation. That is, the update
cost forx can be significantly reduced to O (n log n).

C. COMPUTATION COSTS PER ITERATION
We now derive the algorithm called TAIC (Takapoui’s
Algorithm with Inequality Constraint) by following the
approach of [22] for solving the MIQP problem (3) which
only has the inequality constraint. As shown in the sub-
section III.A, it is noted that (3) is equal to (7). Then,
we define the symbols as follows:

d̃ :=
[
d
z

]
∈ Rn

× {0, 1}n × R2n
+ ,

Ã :=
[
A I2n

]
∈ R2n×4n,

q̃ =
[

q
02n

]
∈ R4n×1 and Q̃ =

[
Q O2n
O2n O2n

]
∈ R4n×4n,

where z is a slack variable. With these symbols, we can
reformulate (7) into an MIQP problem with an equality

min
d̃

2−1d̃T Q̃d̃+ q̃T d̃ subject to Ãd̃ = 02n, d̃ ∈ X̃ (12)

where X̃ := Rn
× {0, 1}n ×R2n

+ is a non-convex set. Similar
to (6), we also reformulate (12) into a standard form of ADM
as follows:

min
d̃,z̃

2−1d̃T Q̃d̃+ q̃T d̃+ IX̃
(
z̃
)

subject to
[
Ã
I4n

]
d̃−

[
O2n×4n
I4n

]
z̃ = 06n (13)

where IX̃
(
z̃
)
is an indicator function of X̃ and O2n×4n is the

2n× 4n matrix of zeros. TAIC is then implemented via

d̃t+1 = argmin
d̃

2−1d̃T Q̃d̃
T
+ q̃T d̃T

+ 2−1ρ
∥∥∥g (d̃, z̃t , λ̃t)∥∥∥2

2
,

z̃t+1 = argmin
z̃

IX̃
(
z̃
)
+ 2−1ρ

∥∥∥g (d̃t+1, z̃, λ̃t)∥∥∥2
2
,

λ̃t+1 = λ̃t − ρg
(
d̃t+1, z̃t+1, 06n

)
, (14)
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where λ̃ is the dual variable, ρ > 0 is a penalty value, and

g
(
d̃, z̃, λ̃

)
:=

[
Ã
I4n

]
d̃−

[
O2n×4n
I4n

]
z̃+

λ̃

ρ
.

It is noted that (7) is formed by adding one slack variable
to (3). But, (13) is formed by adding two slack variables
into (3). Thus, there is an intuition that TAIC requires more
computational costs per iteration than ADM-MIQP does.

To investigate the validation of our intuition, we restrict
our attentions to the sub-problem on d̃ in (14) that can be
simplified to

d̃t+1 = argmin
d̃

2−1d̃T D̃d̃
T
+ hTt d̃ (15)

where D̃ :=
[
Q̃+ ρ

(
ÃT Ã+ I4n

)]
∈ R4n×4n and

ht := q̃− ρ
[
Ã
I4n

]T ([
O2n×4n
I4n

]
z̃t − λ̃t

)
.

The sub-problem on d in (7) has been decomposed into a
pair of problems on x and u, respectively. But, D̃ is a non-
diagonal matrix that implies that the sub-problem in (15)
cannot be decomposed. We then consider an analytic closed
form solution to (15) as follows:

d̃t+1 = −D̃−1ht . (16)

For saving computational costs, the inverse matrix in (16) can
be stored. Even with this stored matrix, TAIC takes O

(
16n2

)
computational cost per iteration for conducting (16) due to
the matrix-vector product. This cost can be negligible for a
small value of n. For a large value of n, it cannot be ignored.
On the other hands, ADM-MIQP takes O (mn) computational
cost per iteration. It can be seen that TAIC takes more com-
putational costs per iteration for updating the other variables
than ADM-MIQP does. Thus, it can be concluded that the
cost of ADM-MIQP is greatly less than that of TAIC.

IV. SIMULATIONS STUIDES
We conduct simulations to show that ADM-MIQP gives a
solution to (3). We compare ADM-MIQP with MDAL and
YALL1. The reasons for selecting bothMDAL andYALL1 as
comparative approaches are a) these methods are also based
on ADM and b) are known to be computationally tractable.
We define a Gaussian sparse vector ensemble and a Gaussian
noise vector ensemble as follows.
Definition 1: The Gaussian sparse vector ensemble is an

ensemble of n-dimensional k-sparse vectors, where each vec-
tor x is generated as follows: a) the positions of the non-zero
values of x are randomly selected, b) the non-zero values
are taken from the standard normal distribution and c) x is
normalized to produce the l2-norm for x unit.
Definition 2: The Gaussian noise vector ensemble is an

ensemble ofm-dimensional noise vectors whose elements are
independent and identically distributed Gaussian with zero
mean and variance σ 2.

We define the signal-to-noise ratio (SNR) as

SNR [dB] := 10 log10
(
‖Fx‖22/

(
mσ 2

))
.

We set the parameters of ADM-MIQP,MDAL, andYALL1 as
follows. The regularization value is set as τ = σ

√
2 log n if

SNR [dB] is finite and τ = 10−4 if SNR [dB] is infinite.
The M value is set as M = maxi |x (i)|. As we have stated in
the sub-section III.A, our penalty value is set as ρ = τ/M .
The penalty value of YALL1 is set as ρ = ‖b‖1/m, used
in [6]. But, MDAL with the penalty value used in [13] failed
to yield an accurate solution in our simulation. We conducted
extensive simulations to find the penalty value for MDAL.
Thus, in our simulations, it was set as ρ = 10τ . We ter-
minated these methods either when the number of iterations

exceeded 2000 or when ‖
xt+1−xt‖2
‖xt+1‖2

≤ 10−4, as was done

in [6], for YALL1, and when ‖
xt+1−xt‖2
‖b‖2

≤ 10−4, as in [13]

for MDAL and when ‖
dt+1−dt‖2
‖dt+1‖2

≤ 10−4 for ADM–MIQP.

We kept in mind that a solution for x in (3) must satisfy a
convex constraint

x ∈ {x |−M ≤ x (i) ≤ M },

where i = 1, 2, . . . , n. However, both YALL1 andMDAL are
not designed to use this constraint. Therefore, we extended
these methods to use the constraint for a fair comparison.
Since the constraint is convex, this extension was easily
carried out by adding the following:

xt (i) = min (max (xt (i) ,M) ,−M),

where xt (i) is the ith element of an intermediate solution at
the t th iteration. All simulations are conducted on a com-
puter with Intel (R) Core (TM) i7-3820 processor clocked at
3.6 GHz. The MATLAB codes are in [29].

A. CONVERGENCE BEHAVIORS OF ADM-MQIP
We remind that both SSE defined in (4) and MSE defined
in (5) can be used to evaluate the quality of a solution given
by ADM-MIQP. We use both of the metrics to study how this
solution behaves. Since the elements of u are either 0 or 1,
we have

kd1 (u,ut)+ nd2 (x, xt) = ‖u− ut‖22 + ‖x− xt‖22

=

∥∥∥∥[ xu
]
−

[
xt
ut

]∥∥∥∥2
2

= ‖d− dt‖22 (17)

where dt is the t th solution of the ADM-MIQP and d is
a feasible solution to (3). Thus, if both the metrics are
small, the l2-norm between the t th solution and the d is also
small. Based on this relation, we define the convergence of
ADM-MIQP.
Definition 3: A solution dt =

[
xTt uTt

]T of by ADM-
MIQP is convergent to a point d =

[
xT uT

]T to (3) if
there exists a positive integer T such that for every positive
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ε1 and ε2, we then have d1 (u,ut) < ε1 and d2 (x, xt) < ε2
for all T ≤ t ≤ maxIter, where maxIter is the maximum
number of iteration.

To show that ADM-MIQP can find a converged solution to
the MIQP problem (3), the problem dimension n, the number
of measurements m and the sparsity level k were set as
1024, 307 and 30, respectively. Two values for SNR [dB]
were considered: 35 and 45, respectively. We generated
1000 independent realizations of the set (F, x, n) where F
was made by randomly taking 307 rows of the 1024 × 1024
DCT matrix, x was taken from the Gaussian sparse vector
ensemble, and n was taken from the Gaussian noise vector
ensemble. We determined average values for both MSE
defined in (5) and SSE defined in (4). We then plotted the
results in Figs. 1 and 2, respectively.

FIGURE 1. It plots the average MSE of ADM-MIQP depending on the
number of iterations. The problem dimension n, the number of
measurements m and the sparsity level k are set to be 1024, 307 and 30,
respectively.

For all the SNRs investigated, both MSE and SSE
gradually decreased and were eventually saturated. For
SNR [dB] = 45, at the 250th and 500th iterations, MSEs
were 3.5× 1E−5 and 2.4× 1E−5, respectively. Finally, MSE
converged to 2 × 1E−5 after O

(
103

)
iterations. This means

that an estimate of x can converge to an original sparse signal.
Next, we considered SSE at SNR [dB] = 45. At the 250th

and 500th iterations, SSEswere 0.041 and 0.031, respectively.
Eventually, SSE converged to 0.029 after O

(
103

)
iterations.

This suggests that the detected support set converges to an
original support set. Due to (17), after O

(
103

)
iterations, we

observed

‖d− dt‖22 < O
(
10−c

)
where c ≈ 1. This observation shows the convergence of
ADM-MIQP under the definition 3.

B. COMPARISON STUIDES AND DISCUSSION
Let α := m/n be an under-sampling ratio and β := k/m be an
over-sampling ratio. The phase transition for a given method

FIGURE 2. It plots the average SSE of ADM-MIQP depending on the
number of iterations. The problem dimension n, the number of
measurements m and the sparsity level k are set to be 1024, 307 and 30,
respectively.

shows how accurately this method can estimate sparse signals
in the (α, β) plane with n. We conducted simulations to
study the phase transitions in computations obtained by
ADM-MIQP, MDAL and YALL1. Then, the aims of this
phase transition study include being aware of the overall
performance of ADM-MIQP and understanding which of
these ADM-based methods, each of which solves different
problems to estimate sparse signals, achieves the best perfor-
mance for this sparse signal estimation.

The problem dimension n was set as 1024. Then,
a 15 × 15 uniformly spaced grid on the (α, β) plane was
constructed for α, β ∈ {0.15, 0.175, · · · , 0.5}. We gener-
ated 1000 independent realizations of the set (F, x), where F
was derived by randomly taking m rows of the 1024 × 1024
DCT matrix and xwas taken from the Gaussian sparse vector
ensemble. The estimate x̃ was considered to be successful if∥∥x− x̃

∥∥2
2/‖x‖

2
2 ≤ 10−4. In Fig. 3, we illustrated the phase

transitions for all these methods. The solid line represents
a 99% probability of success. That is, for points lying in
the graphical area below this line, there was at least 99%
probability of success in problem solving. The area beneath
the dashed-line then represents a 50% probability of success.

First, we fixed the over-sampling ratio. We then con-
sidered the under-sampling ratio to attain a 99% probabil-
ity of success. The under-sampling ratio for ADM-MIQP
was found to be the smallest. As an example, for a fixed
β = 0.25, we observed that the under-sampling ratios of
ADM-MIQP, MDAL, and YALL1 were 0.25, 0.275, and
0.325, respectively. The under-sampling ratio was propor-
tional to m because n was fixed. This implies that ADM-
MIQP requires the smallest value of m for sparse signal
estimation, when compared with the other methods.

Second, we fixed the under-sampling ratio and considered
the over-sampling ratio to achieve a 99% probability of suc-
cess. We observed that for ADM-MIQP, the over-sampling
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FIGURE 3. It plots the empirical phase transitions of the ADM-based methods such as ADM-MIQP, MDAL and YALL1, respectively.

ratio was the largest. For a fixed α = 0.3, the over-sampling
ratios of ADM-MIQP, MDAL and YALL1 were 0.325, 0.25,
and 0.225, respectively. The over-sampling ratio was propor-
tional to k for a fixed under-sampling ratio. This shows that
ADM-MIQP can estimate x with the higher value of k in
which the other methods cannot.

Next, we conducted simulations to study the performance
of all these methods by varying k for a fixed n and m under
noisy cases. To this end, SNR [dB], n and m were set as
35, 1024, and 307, respectively and k was varied between
30 and 100. Then, we generated 1000 independent realiza-
tions of the set (F, x, n) where F, x, and n were obtained
through the manner discussed in the sub-section III.A. Then,
we obtained the average MSE for each method and plotted
these values in Fig. 4.

For any k , ADM-MIQP can achieve the lowest MSE
when compared with MDAL and YALL1. This means that
ADM-MIQP can more accurately estimate x than the other
methods can. The MSE gap between ADM-MIQP and

ORACLE is small. At k = 40, as an example, MSEs of
ADM-MIQP and ORACLE are 7 × 1E−6 and 4 × 1E−6,
respectively. This suggests that ADM-MIQP can achieve a
performance close to that achieved by ORACLE.

Since both MDAL and YALL1 are originally designed
to find an estimate of x, not the support set, we needed to
construct the support set based on the estimate x̃ in order to
measure SSEs for these methods. For this purpose, we set a
threshold value

ζ = 0.8min
i
|x (i)|

and constructed the support set û by

û (i) = 0 if
∣∣x̃ (i)∣∣ < ζ,

û (i) = 1 if
∣∣x̃ (i)∣∣ ≥ ζ.

where i = 1, 2, . . . , n. Under the same conditions used in
the experiment depicted in Fig. 4, we independently made
1000 realizations of the set (F, x, n). We then determined the
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FIGURE 4. It plots the average MSEs of ADM-MIQP, MDAL, YALL1 and
ORACLE depending on the sparsity level k. The problem dimension n,
the number of measurements m and SNR [dB] are set to be 1024, 307 and
35, respectively.

FIGURE 5. It plots the average SSEs of ADM-MIQP, MDAL and
YALL1 depending on the sparsity level k. The problem dimension n,
the number of measurements m and SNR [dB] are set to be 1024,
307 and 35, respectively.

average SSE for each of the methods and plotted the results
in Fig. 5. As with MSE, for any k , ADM-MIQP was found to
achieve the lowest SSE. As an example, at k = 80, SSEs
of ADM-MIQP, MDAL, and YALL1 were 0.04, 0.14, and
0.26, respectively. This means that ADM-MIQP can more
accurately detect the support set than the other methods can.
Next, at k = 60, we counted the number of events for
which

∑n
i=1

∥∥u (i)− û (i)
∥∥
1 ≤ 6, i.e., for which the support

set error could occur within 10%. The results for ADM-
MIQP, MDAL, and YALL1 were 962, 227, and 349 events
respectively. This suggests that ADM-MIQP surpasses the
other methods.

Thus far, we have shown that ADM-MIQP is superior to
other ADM-based methods in terms of MSE and SSE. There
are multiple reasons for why this is the case.

FIGURE 6. It plots the average running times of ADM-MIQP, MDAL,
YALL1 and CPLEX depending on the problem dimension n with
m = b0.3nc, k = b0.3mc and SNR [dB] = 45. ADM-MIQP, MDAL and
YALL1 have the polynomial computational order.

FIGURE 7. It plots the average running times of ADM-MIQP and CPLEX
depending on the problem dimension n with m =

⌊
0.3n

⌋
,k =

⌊
0.2m

⌋
and SNR [dB] = 45. This figure shows that ADM-MIQP is significantly
faster than CPLEX.

First, ADM-MIQP is designed to solve (3). The binary
vector u in (3) indicates the support set and 1Tn u counts the
number of ones in u. This means that ADM-MIQP aims to
find a solution that both the cardinality of the support set
and the data-fidelity are jointly minimized. Minimizing the
cardinality of the support set is a characteristic of l0-norm
based methods. This is the reason for the superiority of our
method over YALL1.

Second, Dong and Zhang [13] have empirically reported
that MDAL finds a local solution to the l0-norm problem.
By contrast, methods based on ADM tend to find the global
solution to a MIQP problem, as reported in [20]–[22]. Then,
as reported in [14], CPLEX is capable of finding the global
solution to (3). To understand whether ADM-MIQP finds
the global solution or not, we compared the solution of
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FIGURE 8. The original grayscale images of size 512 × 512 are shown in the first row. The
images recovered by ADM-MIQP are shown in the second row. The images recovered by
MDAL are shown in the third row. The PSNR value of each recovered image is averaged
10 trials at m =

⌊
0.15n

⌋
and k =

⌊
0.05n

⌋
. (a) Lena. (b) Airplane. (c) Cameraman.

(d) 33.83 dB. (e) 31.19 dB. (f) 33.71 dB. (g) 26.91 dB. (h) 22.27 dB. (i) 27.31 dB.

ADM-MIQP and that of CPLEX. We independently gener-
ated 100 realizations of the set (F, x) by assuming that n,
m, and k were 200, 80, and 10 respectively, where F was a
partial orthogonal sensing matrix and x was taken from the
Gaussian sparse vector ensemble. We determined the average
of the objective function

τ1Tn u+ 2−1 ‖b− Fx‖22

for each method, as well as the average for normalizedMSE,

‖xC − xA‖22/‖xC‖
2
2

where xA is an estimate of x obtained by ADM-MIQP and
xC is an estimate of x obtained by CPLEX. The value of the
objective function of CPLEX, and that of ADM-MIQP, were
0.0099 and 0.0094, respectively, and the normalized MSE
was 0.0033. The gap between these values and the normalized
MSEwere both small. This indicates that ADM-MIQP indeed
finds the global solution to (3). This makes ADM-MIQP a
superior approach to MDAL.

We observed that ADM-MIQP is computationally tractable
for solving (3) up to the problem dimension n of the order
of one million. To this end, SNR [dB] was set as 45 and n
was varied from 1024 to 1048576. For a fixed n, we altered
m and k to m = b0.3nc and k = b0.3mc. The number of
iterations was set as 1000. At each point (n, m, k , SNR [dB]),

we generated 500 independent realizations of the set (F, x, n),
where F, x, and n are obtained by the approach given in the
sub-section IV.A. We determined the average running time
for each method and plotted the results in Fig. 6.

In Fig. 6, the average running times for each method
grow linearly with n. We calculated the order of the average
running times for ADM-MIQP, MDAL and YALL1 with
respect to n. The orders are roughly O

(
n1.3

)
,O

(
n1.3

)
, and

O
(
n1.13

)
respectively. These orders show that ADM-MIQP

has polynomial computation costs, leading to that ADM-
MIQP is still computationally tractable for solving (3) with
the large problem dimension. Finally, YALL1 was found to
be a faster method than ADM-MIQP. This is because the
l1-norm problem (2), solved by YALL1, is easier to solve
than (3). Despite this, if the running time for ADM-MIQP is
acceptable, ADM-MIQP gains significant improvements on
sparse signal estimation.

We conducted simulations to compare ADM-MIQP with
CPLEX in terms of the running time. MaxIter was set
as 1000. SNR [dB] was set as 45 and n was varied from
128 to 224. Then, both m and k were altered to m = b0.3nc
and k = b0.2mc. At each point (n, m, k , SNR [dB]),
we made 50 independent realizations of the set (F, x, n),
where x and n are obtained by the approach given in the
sub-section IV.A and F is a partial orthogonal matrix.
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FIGURE 9. The images are corresponding to the part of the original and each recovered airplane
images. (a) The original image. (b) The image recovered by ADM-MIQP. (c) The image recovered
by MDAL.

In Fig. 7, the average running time of CPLEX rapidly
grows with n. Even n was roughly doubled, the time rapidly
increased. At n = 128 and n = 224, the times are
6.7 secs and 2113 secs, respectively. This observation can
be in accordance with the statement in Section I that CPLEX
has the computational intractability in solving (3) with large
variables. On the other hands, the average running time of
ADM-MIQP does not rapidly grow with n. This observation
shows that ADM-MIQP is faster than CPLEX.

C. AN IMAGE RECOVERY EXAMPLE
We conducted an image recovery experiment to demon-
strate the successful application of ADM-MIQP. For this
study, the discrete wavelet transform was applied onto each
image. The k largest magnitude values of the transformed
image were retained. For each image, k non-zero values were
stacked to form a sparse vector, to be compressed to get
an m-dimensional measurement vector using a partial DCT
matrix. Both MDAL and ADM-MIQP were used to recover
the image. To evaluate the qualities of the recovered images,
we used the following peak-signal-to-noise ratio (PSNR):

PSNR [dB] := 10 log10
(
n× 2552/

∥∥x− x̃
∥∥2
2

)
, (18)

where x̃ is an original image and is the recovered image.
In Fig. 8, we illustrate the original greyscale images of size

512 × 512 with a problem dimension n = 262144. We have
also showed the images recovered by each method and their
PSNRs. These PSNR values were the averages of results from
10 trials where m = b0.15nc and k = b0.05nc.

It is immediately observed that ADM-MIQP recovers
images with higher quality than MDAL in terms of PSNR.
ADM-MIQP then preserves the detailed information in the
original images. For example, let us consider the text part
‘‘US AIR Force’’ of the recovered airplane image. As shown
in Fig. 9, we clearly see this text in (b), recovered by ADM-
MIQP, we cannot make out it in (c), recovered by MDAL.
This result shows that ADM-MIQP surpasses MDAL in this
image recovery example.

V. CONCLUSION
We proposed a fast method referred to as ADM-MIQP to
solve the mixed integer quadratic programming problem (3)

formulated in [14] from the l0-norm problem (1). We derived
ADM-MIQP using the alternating direction method, which
has been recently used to solve integer programming prob-
lems in [20]–[22].We then showed that ADM-MIQP is a first-
order-type method. That is, matrix-vector products are only
used to implement ADM-MIQP. We selected MDAL [13]
and YALL1 [6] as competitors to ADM-MIQP because these
methods are based on ADM to solve the l0-norm and the
l1-norm problems, respectively. We also compared
ADM-MIQP with ORACLE, an approach which involved
a priori knowledge of the support set. We used both support
set error (SSE) (4) andmean square error (MSE) (5) to assess
the quality of a solution obtained by each method.

We empirically demonstrated that ADM-MIQP could
achieve a significantly better performance than MDAL and
YALL1 in terms of both SSE and MSE. We also showed that
ADM-MIQP eventually achieved a performance close to that
of ORACLE in terms of MSE. We showed that ADM-MIQP
is computationally tractable for solving (3) up to the order of
one million in the problem dimension. We confirmed that the
computational cost of ADM-MIQP is O

(
n1.3

)
in our simula-

tions. We concluded that ADM-MIQP is efficient in finding
an accurate solution to (3) when the problem dimension n is
large.

The next step is to conduct convergence analysis for
ADM-MIQP. Specifically, it will be interesting to prove that
a solution of ADM-MIQP is convergent. Also, this work can
be extended to determine the appropriate penalty value that
would guarantee the convergence of ADM-MIQP.
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Cooperation among sensors in a wireless sensor network, deployed for industrial monitoring in an indoor scenario, is a topic of
interest in the smart factory and smart city research.The indoorwireless communication channel is very harsh and the observations
of all the sensors cannot be sent reliably to the base station. Failure to transmit correct sensing results to the base station may result
in false alarms or missed detection of events.Therefore, we propose a cooperation scheme for the wireless sensors to send the data
reliably to the base station. Our aim is to increase the reliability of the received information, reduce the probability of error, lower the
overall power consumption, and keep the latency to an acceptable low level. We propose a reliability factor feedback algorithm to
adjust the weight of unreliable sensors in the decision-making process.The proposed scheme is analyzed based on its latency, power
consumption, and packet delivery ratio. Our results show significant improvement in the reliability of the received data, improved
packet delivery, and reduced false alarm ratio for full repetition and cluster head-based cooperation.The power consumption and
latency in data transmission are also kept to an acceptable low level.

1. Introduction

With the advancement in Internet-of-Things (IoT) and the
drive towards smart factory goal, industrial wireless sensor
networks (IWSNs) are becoming increasingly important in
monitoring the indoor industrial area. The wireless com-
munication link plays a very important role in transmitting
the sensed information to a processing unit located in the
base station (BS). A broken communication link or a fault
in the sensor leads to false alarms or missed detection of
events at the BS. This situation may also cause the nodes to
repeat transmissions of the data or use higher transmit power
leading to higher energy consumption and lower overall
throughput of the network. The energy consumption per bit
of the network is also affected negatively by the amount of
data transmitted by the network nodes and the processing
required at the receiver.

In order to improve the reliability of the received infor-
mation at the BS, a number of methods have been proposed,

including cooperation among wireless nodes to reduce the
error due to bad channel conditions. These methods include
network coding [1–3], packet loss issues in wireless traffic
[4], and relay selection mechanism in networked control
system (NCS) for successful cooperative transmission in
industrial environments [5]. The work in [6] proposes an
energy-efficient scheme to improve packet delivery by using
a reliable reactive routing enhancement (R3E) protocol. For
the amplify-and-forward (AF) based cooperative commu-
nication systems, an adaptive-gain M-relay AF scheme was
proposed in [7] in order to achieve good error-rate perfor-
mance. A solution formachine conditionmonitoring (MCM)
in large factories, which reduces the energy consumption
and improves the network throughput, was proposed in [8].
In order to reduce the probability of false alarms sent by
the sensors, the work in [9] presents an IWSN-based MCM
system. When cooperation among sensor nodes is used in a
network consisting of multiple sensors, the aggregation and
processing of data at the intermediate sensor nodes play an
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important role in the performance and energy consumption
of the cooperative multihop communication system. Since
all the packets are addressed to a single destination and the
size of data packets is usually small, therefore, a reduction
in the size of control packet overhead and the number
of transmissions can improve the energy efficiency, and
throughput, of the system [10–12].

Our recently proposed solution [13] reduces the prob-
ability of error in the received information at the BS by
using cooperation and data aggregation at the relay nodes.
However, [13] uses full repetition of the aggregated data in the
cooperation group, which results in an unnecessary redun-
dancy and leads to significant reduction in the throughput,
which may be critical to the performance of the network.
An improvement to [13] was proposed in [14] by performing
partial repetition of the aggregated data at the intermediate
nodes with the help of cluster heads. This method reduces
the amount of transmissions required to transmit the same
information to the BS and also reduces the latency at the
expense of some reduction in performance. In the schemes in
[13, 14], all the sensors in a cooperation group only share their
observations with each other in the first phase unlike [1–3] in
which the data is also received at the BS in the first phase. In
the second phase, the cooperative information is sent to the
BS by either using a full repetition mechanism [13] or using
a selected number of cluster head (CH) nodes [14]. In these
methods, the relays only detect the received symbols and do
not need to decode the symbols, unlike the method in [1–3].
The detected symbols are then used in the cooperation phase
even if not correctly received. In order to ensure successful
packet delivery, schemes like [5, 6] incur the extra overhead
of retransmission but our proposed scheme does not require
retransmission. Therefore, it simplifies the hardware and
signal processing requirements of the relay node.

Thiswork combines the data aggregation and cooperation
mechanisms to improve the reliability of the information
received at the BS as well as keeping the redundancy overhead
to a certain limit in order to perform with low latency. In
this paper, we introduce a parameter called reliability factor,
which keeps track of the reliability of information received
from a sensor. The reliability factor is obtained by comparing
the received information from a senor with the final result,
which is obtained after fusion of the information received
from all the sensors within the cooperation group. Based
on the reliability factor, we propose an algorithm called
reliability factor feedback algorithm (RFFA) to improve the
reliability of the final result by adjusting the weights of each
participating sensor node in the fusion and decision-making
process. A comparison of the latency in data communication
and power consumption has been presented between the
noncooperation, full repetition (F-Rep.), and cluster head-
based cooperation schemes. Also, the packet delivery rate and
false alarm rate of the proposed scheme have been compared
with some previous related works.

The rest of the paper is organized as follows. Section 2
presents the system model. Section 3 describes the operation
of the network. Section 4 presents the performance analy-
sis of the proposed scheme. Section 5 presents simulation
results, and Section 6 concludes the paper.

2. System Model

AWSN with indoor non-line-of-sight (NLOS) configuration
is considered. The sensor nodes are organized into different
cooperation groups based on their geographic proximity to
each other. Cooperative transmission is performed within
each cooperation group, V = {𝑉𝑖}𝑁𝑖=1, where 𝑁 is the maxi-
mum number of nodes in a cooperation group. Each node
in a cooperation group is able to communicate with the BS
in a dual-hop manner. The channels from a source node to
an intermediate node, 𝛽, and the channels from an inter-
mediate node to the destination, 𝛼, are modeled as lognormal
distributed Rayleigh fading channels.

2.1. Sensor Coverage and Connectivity. For the purpose of
condition monitoring inside an industrial building, the sen-
sors need to be deployed in the form of a static grid or may be
deployed randomly. For the deployment of sensor network,
we used the static-triangular grid deployment method [15].
The minimum number of sensors required to provide 1-
coverage to an area of length, l, and breadth, b, is N =2𝑙𝑏/(𝑟2√27), where 1-coverage means that any point in the
respective area is covered by at least one sensor and r
represents the sensing radius of a sensor. This results in an
optimal and regular deployment of sensor nodes making
a triangular grid structure. In the resulting triangular grid,
every three nodes with intersecting sensing ranges form an
equilateral triangle with each side equal to 𝑟√3.

The minimum number of necessary and sufficient neigh-
bor nodes of a sensor node, required to ensure the connectiv-
ity of the network, is given as Θ(logN) and ranges between0.074 logN and 5.1774 logN [16]. Accordingly, each node
in a cooperation group is assumed to be able to communicate
with a minimum of 6 to a maximum of 20 neighbor nodes
in this paper. A node decodes the information received only
from its neighbor nodes and discards the rest.

2.2. Path-Loss and Shadowing in a Factory Area. As the
signal propagates through the walls, machines, and other
installations inside a factory area, it creates a shadowing
effect which results in the attenuation of the transmit power,
referred to as path-loss, and is expressed as a ratio between the
transmitted and received power. Path-loss is used to measure
the received signal strength (RSS) at the receiver.

In order to find the RSS at each sensor from all other
sensors in the cooperation group, we use the lognormal
shadowing model.This is a generic model used to predict the
propagation loss for a wide range of environments including
free space and indoor factory environments [17]. The path-
loss measured in dB at a distance d from the transmitter is
given by

𝑃𝐿𝑑𝐵 (𝑑) = 𝑃𝐿𝑑𝐵 (𝑑0) + 10𝜂 log10 ( 𝑑𝑑0) + 𝑋𝜎,𝑑𝐵, (1)

where 𝑃𝐿𝑑𝐵 is the path-loss in dB, 𝜂 is the path-loss exponent
indicating the rate of decay of the mean signal with respect
to distance, d0 is a reference distance, and 𝑋𝜎,𝑑𝐵 is a zero-
mean Gaussian random variable with standard deviation 𝜎
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representing the shadowing effect. In (1), 𝑃𝐿𝑑𝐵(𝑑0) is the
path-loss in dB at a reference distance 𝑑0, which is calculated
using the Friis free-space propagation model [18]. It is used
to model the line-of-sight (LOS) path-loss incurred in the
channel, given as

𝑃𝑟 (𝑑0) = 𝑃𝑡 𝐺𝑡𝐺𝑟𝜆2(4𝜋𝑑0)2 𝐿 , (2)

where 𝑃𝑟(𝑑0) is the received signal power in Watts, P𝑡 is the
transmitted signal power inWatts, andG𝑡 andG𝑟 are the gains
of transmitter and receiver, respectively. 𝜆 is the wavelength
of the carrier in meters, and L is the system losses which are
not associated with propagation loss. Generally, it is more
convenient to work in log domain because the transmitted
and received powers are usually available in dBm and the
antenna gains in dBi. Therefore, the Friis free-space equation
is given in log domain as

𝑃𝐿𝑑𝐵 (𝑑0) = 𝑃𝑡,𝑑𝐵 + 10 log10 (𝐺𝑡) + 10 log10 (𝐺𝑟)
+ 20 log10 (𝜆) − 20 log10 (4𝜋𝑑0)
− 10 log10 (𝐿) .

(3)

In (3), G𝑡, G𝑟, and L are taken equal to 1 as we consider unit
gain antennas and the internal system losses are considered
as 1, whereas the reference distance 𝑑0 is taken as 1 m. Using
(3) in (1) and the parameters suitable for indoor factory non-
line-of-sight (NLOS) environments, we can compute the RSS
at a receiving node as

𝑃𝐿𝑑𝐵 (𝑑) = 𝑃𝑡,𝑑𝐵 + 10 log10 (𝐺𝑡) + 10 log10 (𝐺𝑟)
+ 20 log10 (𝜆) − 20 log10 (4𝜋𝑑0)
− 10 log10 (𝐿) + 10𝜂 log10 ( 𝑑𝑑0) + 𝑋𝜎,𝑑𝐵

(4)

3. Network Operation

The operation of the network is controlled by using the
organize and operate protocol (OOP) [13] and also OOP with
cluster heads (OOP-CH) [14]. In these protocols, the nodes
are first organized into cooperation groups. Then in OOP-
CH, the BS chooses a number of cluster heads based on the
received signal strength information (RSSI). After this, the
normal operation of sensing and sending the data to the BS
by using a two-phase cooperation mechanism starts. In the
case of OOP, the sensing and transmit operations start after
the nodes are organized into cooperation groups as there are
no CH nodes used. A sequence flow diagram of the OOP-
CH protocol is presented in Figure 1. The OOP has a similar
flow except the controls necessary for CH-based cooperation.
Upon receiving the cooperative packets from all the interme-
diate nodes, the BS performs majority voting-based fusion
and makes a decision based on the received information.

3.1. Phase 1. In this phase, a sensor first senses the sur-
rounding area for the intended information. After this, every

sensor in the cooperation group shares its sensed information
with the intermediate nodes (C nodes in the case of CH-
based cooperation, as shown in Figure 2) present in its
neighborhood by referring to its neighbor list, using BPSK
modulation and TDMA scheme. The received signal 𝑟𝑖,𝑗 at
node V𝑗, from node V 𝑖, in phase 1 is

𝑟𝑖,𝑗 = √𝐸𝑠1V𝑖𝛽𝑖,𝑗 + 𝑛𝑖,𝑗 (5)

whereE𝑠1 is the transmitted symbol energy in phase 1, v𝑖 is the
binary information sent from node V 𝑖, and 𝑛𝑖,𝑗 is the AWGN
with power spectral density, N0.The data packet in this phase
contains the floor number, sensor ID, time-of-origin (TOO),
and the sensed alarm information. See [13] for detail of the
data packet.

3.2. Phase 2. In this phase, each intermediate node (C
node in the case of CH-based cooperation, as shown in
Figure 2) 𝑉𝑗 makes a cooperative data packet by combining
the information received from the cooperating nodes within
its cooperation group, V, during the first phase. Then the
cooperative data packet denoted by x𝑗 at a node j, which
is formed by the aggregation of the received and amplified
packets, is transmitted to the BS in a TDMA manner. The
received signal at the BS, 𝑦𝑗,𝐷, can be written as

𝑦𝑗,𝐷 = √𝐸𝑠2𝑥𝑗𝛼𝑗,𝐷 + 𝑛𝑗,𝐷 (6)

where 𝛼𝑗,𝐷 represents the lognormal fading channel coef-
ficient from node V𝑗 to the BS and E𝑠2 is the transmitted
symbol energy in phase 2. 𝑛𝑗,𝐷 is the AWGN at destination D
from node j, with power spectral density, N0.The signal from
the source node i, relayed via the relay node j and received at
the destination D, can be written as

𝑦𝑗,𝐷 = √𝐸𝑠1𝐸𝑠2𝜁𝑖,𝑗𝛼𝑗,𝐷𝛽𝑖,𝑗V𝑖 + 𝑛𝑗,𝐷 (7)

where 𝜁𝑖,𝑗 = 1/√𝐸𝑠1|𝛽𝑖,𝑗|2 + 𝑁0,𝑖,𝑗 represents the amplification
factor used at relay node V𝑗 with a corresponding source
node V 𝑖 and 𝑛𝑗,𝐷 = (√𝐸𝑠2/√𝐸𝑠1|𝛽𝑖,𝑗|2 + 𝑁0,𝑖,𝑗)𝛼𝑗,𝐷𝑛𝑖,𝑗 +𝑛𝑗,𝐷. Since the noise terms 𝑛𝑖,𝑗 and 𝑛𝑗,𝐷 can be assumed
independent, then the equivalent noise 𝑛𝑗,𝐷 is a zero-mean
complex Gaussian random variable with variance given as𝑁0 = (((𝐸𝑠2|𝛼𝑗,𝐷|2)/(𝐸𝑠1|𝛽𝑖,𝑗|2 + 𝑁0,𝑖,𝑗)) + 1)𝑁0.
3.3. Reliability Factor Feedback Algorithm. The base station
receives the information from the intermediate nodes (either
CCHnodes or allN node in the cooperation group), decodes
the information, and combines it at the fusion center by using
majority rule decision. In the case of OOP-CH, a majority
rule decision, which consists of votes from C CH nodes in
the cooperation groupV, is mathematically represented as

𝑅 (𝑖) = argmax
𝑋

C∑
𝑗=1

𝑤𝑗𝐼 (𝑦𝑗 (𝑖) = 𝑋) (8)
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Figure 1: The proposed organize and operate protocol with cluster heads (OOP-CH) for WSN.
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Figure 2: Depiction of the two-phase cooperative communication system. In Phase 1, for example, the sensor 𝑠1 sends its information to all
CH sensors (𝑠2, 𝑠3,. . .,𝑠C) during its allocated time slot. Similarly, all the other sensors transmit their information to CH sensors. In Phase 2,
only the CH sensors then make a cooperative packet of the aggregated data and transmit it to the destination, 𝐷.

where 𝑦𝑗(𝑖) is the ith cooperative symbol received from a
sensor j, 𝑤𝑗 is the weight associated with the reliability of
information received from each intermediate node, and 𝐼(.)
is an indicator function. In the case of OOP, the summation
in (8) is taken over all N nodes in the cooperation group.

In order to achieve a highly reliable result after fusion
of the received information, we propose a reliability factor
feedback algorithm. In this algorithm we compute a reliability
factor for each of the intermediate nodes (C nodes in the
case of CH-based cooperation and N nodes in the case
of F-Rep. cooperation) by using the result obtained after
information fusion at the fusion center. The reliability factor
is then fed back to the majority rule fusion and used as the
weight 𝑤𝑗 of each intermediate node involved in the fusion

process. Figure 3 shows a block diagram of the proposed
fusion mechanism with the RFFA for OOP-CH scheme. In
case of OOP, the number of sensors are N instead ofC.

3.3.1. Computing the Reliability Factor. The following steps
are taken in order to compute the reliability factor, 𝛾 for each
sensor.

Definition 1. An error report, 𝜀, is defined as a reported
observation by a sensor which is different from the final
decision after majority rule fusion.

(1) Find all the error reports made by each sensor in one
transmission.
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Figure 3: Block diagram of the reliability factor feedback algorithm.

(2) Divide the number of error reports of each sensor by
the total number of sensors in a cooperation group.

(3) Subtract the computed value from 1 to get the reliabil-
ity factor.

𝛾𝑖,𝑗 = 1 − (𝜀𝑖,𝑗𝑁 ) (9)

3.3.2. Updating the Weights. After the reliability factor has
been computed, it is used as the weight of each sensor in the
decision-making process. A high reliability factor value of a
sensor results in heavier weight of the corresponding sensor
in the voting and decision-making process.

(1) Take an average of the reliability factors of each
sensor in the cooperation group, received from the
intermediate sensors involved in the fusion process.
Divide the computed value by the total number of
intermediate sensors (C nodes in the case of CH-
based cooperation and N nodes in the case of F-Rep.
cooperation).

𝑤𝑗(𝐹−𝑅𝑒𝑝.) = ∑𝑁𝑖=1 𝛾𝑖,𝑗𝑁𝑁
𝑤𝑗(𝑐ℎ) = ∑𝑁𝑖=1 𝛾𝑖,𝑗𝑁C

(10)

(2) Feedback the computed weights 𝑤𝑗 to the fusion
process given by (8) and as shown in Figure 3.

4. Performance Analysis

In this section, we analyze the performance of the proposed
CH cooperation scheme with the help of symbol error rate
(SER), latency in transmission, and power consumption.

4.1. Symbol Error Rate. The proposed system is a dual-hop
communication system with multiple branches. Each relay
has multiple branch inputs and repeats the symbols for its
neighbor nodes, in a single branch output by using AF
scheme, in a TDMA manner to ensure orthogonality of the
transmission. The resulting SER can be approximated by

the following equation derived in our previous work [13,
Theorem 1],

𝑃𝑠 (𝛾𝑒𝑞,𝑗,𝐷)
= 𝐹 (1 + 𝑔𝑃𝑆𝐾𝑁0sin2𝜃 ( 𝜎2𝑗,𝐷∏𝑁−1𝑖=1 𝜎2𝑖,𝑗∏𝑁−1𝑖=1 𝜎2𝑖,𝑗 + 𝜎2𝑗,𝐷 + 1)) (11)

where 𝐹(𝑥(𝜃)) = (1/𝜋) ∫(𝑀−1)𝜋/𝑀
0

(1/𝑥(𝜃))𝑑𝜃, M is the
modulation symbol size, 𝑔𝑃𝑆𝐾 = sin2(𝜋/𝑀), 𝛾𝑒𝑞,𝑗,𝐷 represents
the instantaneous SNR per relay node at the destination, and𝜎2𝑖,𝑗, 𝜎2𝑗,𝐷 are the variances of the Rayleigh fading channel
coefficients 𝛽𝑖,𝑗 and 𝛼𝑗,𝐷, respectively. For the proof of the
result in (11), please see [13] Appendix A.

From (11), we get 𝑃𝑠 as the probability of error in the
information received from an intermediate sensor. Since
this is a cooperative system with multiple nodes sending
information about the same event, therefore, the number of
votes needed to decide the final outcome, i.e., the majority, is𝑙 = ⌈(𝑁+1)/2⌉ in the case of F-Rep. cooperation and 𝑙 = ⌈(C+1)/2⌉ in the case of CH-based cooperation. The respective
probability of error in the consensus can be computed by
using the Binomial theorem,

𝑃𝑒F-Rep. (𝑁) = 𝑁∑
𝑚=𝑙

(𝑁
𝑚) 𝑃𝑠𝑚 (1 − 𝑃𝑠)𝑁−𝑚 (12)

𝑃𝑒𝐶𝐻 (C) = C∑
𝑚=𝑙

(C𝑚) 𝑃𝑠𝑚 (1 − 𝑃𝑠)C−𝑚 (13)

4.2. Latency. For the sake of a fair comparison between
noncooperative and cooperative systems, we assume a tra-
ditional relay-based scheme with dual-hop communication
for the noncooperative method. In this scheme, a relay node
forwards the data from a source node in the second hop
towards the BSwithout any cooperative mechanism involved.
LetB represent the number of bits per symbol, and the symbol
duration is given by 𝑇𝑠 = 1/𝑓𝑠, where f 𝑠 is the symbol rate.
Then, the throughput in case of noncooperation (𝑇𝑛𝑐), F-Rep.
cooperation (𝑇𝐹-𝑅𝑒𝑝.), and CH-based cooperation (𝑇𝑐ℎ) dual-
hop communication can be written as

𝑇𝑛𝑐 = 𝑁𝐵𝑁𝑇𝑠 + 𝑁𝑇𝑠 bps
𝑇𝐹-𝑅𝑒𝑝. = 𝑁𝐵𝑁𝑇𝑠 + 𝑁𝑁𝑇𝑠 bps

𝑇𝑐ℎ = 𝑁𝐵𝑁𝑇𝑠 + C𝑁𝑇𝑠 bps
(14)

where the time taken by two hops to transmit the symbol to
BS is represented by the addition in the denominator. Since in
F-Rep. cooperation and CH cooperation, each intermediate
node relays the data of N or C nodes in the second phase,
respectively, it results in the additional N orC in the denomi-
nator for𝑇𝐹-𝑅𝑒𝑝. and𝑇𝑐ℎ.The delay incurred in transmitting N
packets to the BS in the case of noncooperation (D𝑛𝑐) F-Rep.
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cooperation (D𝐹-𝑅𝑒𝑝.) and CH cooperation (D𝑐ℎ) schemes
can then be computed as

D𝑛𝑐 = 𝑁 × size of data packet (bits)𝑇𝑛𝑐 (bps)
D𝐹-𝑅𝑒𝑝. = 𝑁 × size of data packet (bits)𝑇𝐹−𝑅𝑒𝑝. (bps)

D𝑐ℎ = 𝑁 × size of data packet (bits)𝑇𝑐ℎ (bps)

(15)

4.3. Power Consumption. In this subsection, we compute the
power consumption of the proposed system. In order to
simplify our analysis, we do not take into account the power
consumed by each sensor during sensing, and the power
consumed by the usual processing operations at the BS and
the intermediate nodes as these power consumption opera-
tions are common among all the schemes compared here in
this paper. Hence, we will compute the power consumed in
transmitting the information to the BS and the information
fusion operation at the BS and compare the noncooperation,
F-Rep. cooperation, and CH cooperation schemes. We first
compute the energy consumed by these operations and then
convert it to power in dBm units as it is easy to visualize. Let
E𝑡, E𝑖 , and E𝑟 represent the energy consumed by the transmit
operation by a sensor, idle listening, and reception at a sensor
node/BS, respectively. In the case of noncooperative dual-hop
communication, each node transmits with energy E𝑡 in phase
1 and the other 𝑁 − 1 nodes receive this information with
energy E𝑟. In phase 2, each relay node transmits with energy
E𝑡 to the BS while the other 𝑁 − 1 nodes remain idle, and the
BS receives each node’s data with energy E𝑟. Thus the total
power consumed (P𝑛𝑐) is given as

P𝑛𝑐 = 10 log10 ( 1000𝑁𝑇𝑠 × 1W × (𝑁 (𝐸𝑡 + (𝑁 − 1) 𝐸𝑟)
+ 𝑁 (𝐸𝑡 + (𝑁 − 1) 𝐸𝑖 + 𝐸𝑟))) .

(16)

For computing the power consumption of the coopera-
tive dual-hop communication, let E𝑓 represent the energy
consumed by the fusion operation at the BS. The total
power consumed by F-Rep. cooperation (P𝐹-𝑅𝑒𝑝.) and CH
cooperation (P𝑐ℎ) is given as

P𝐹-𝑅𝑒𝑝. = 10 log10 ( 1000𝑁𝑇𝑠 × 1W
× (𝑁 (𝐸𝑡 + (𝑁 − 1) 𝐸𝑟)
+ 𝑁 (𝐸𝑡 + (𝑁 − 1) 𝐸𝑖 + 𝐸𝑟) + 𝑁𝑁𝐸𝑓))

(17)

P𝑐ℎ = 10 log10 ( 1000𝑁𝑇𝑠 × 1W × (𝑁 (𝐸𝑡 + (𝑁 − 1) 𝐸𝑟)
+ C (𝐸𝑡 + (𝑁 − 1) 𝐸𝑖 + 𝐸𝑟) + C𝑁𝐸𝑓))

(18)

Table 1: Simulation parameters.

Parameter Value
Total area 100 m × 100 m
No. of cooperation nodes, N 12, 18
No. of cluster head nodes,C 3, 5
Carrier frequency 2.4 GHz (ISM Band)
Transmit power, 𝐸𝑠1, 𝐸𝑠2 1 mW
Standard deviation, 𝜎 7 (Indoor NLOS)
Path-loss exponent, 𝜂 3 (Indoor NLOS)
Sensing radius of each sensor, 𝑟 18 m

where NN and C𝑁 terms in the numerator of (17) and (18)
represent the number ofmultiply-and-accumulate operations
performed to compute the fusion result for either N or C
cooperative packets each containing N number of obser-
vations as given in (8). Also, in the second term in the
numerator of (18),N is replaced byC as there areCCHnodes
transmitting to the BS instead of all the N relay nodes.

5. Simulation Results

In order to carry out simulations, we assumed an indoor
communication environment with an area of 100 m × 100 m.
The indoor area is assumed to contain heavy machines and
hard partitionedwalls. Rayleigh fadingwithNLOS lognormal
shadowing channel parameters (standard deviation 𝜎 = 7,
path-loss exponent 𝜂 = 3) is used to model the indoor factory
environment [19].The ISMband carrier frequency of 2.4GHz
is used with a transmit power of 1 mW. Suppose that a fault
in the operation or state of the machine at a certain location
is evident from higher temperature at that location. We use
Gaussian random fields to model this information over the
entire area. As the field varies from high temperature to low,
four different kinds of alarms, i.e., Danger,Warning, Caution,
and OK, are generated, respectively. For the simulation, we
choose a cooperation group of either 18 or 12 nodes with
5 or 3 CH nodes, respectively, and the results are averaged
over 10,000 sensing operations. To observe the advantage of
using RFFA clearly, we deliberately introduced error in the
transmission from 3 of the 18 nodes for F-Rep. cooperation
and 1 of the 5 CH nodes for CH cooperation in the second
phase.The simulation parameters are summarized in Table 1.

5.1. SER. In order to verify our approximated numerical
result in (13), we simulate a cooperation group of 18 nodes
with 3 CH nodes. Figure 4 shows the plot of the result
obtained in (13) compared with the SER obtained from
simulation of the CH cooperation scenarios. A similar result
for F-Rep. cooperation (12) was published in our previous
work [13] and is not shown here. The result shows that the
approximation works well to predict the performance of the
proposed scheme.

5.2. Latency and Power Consumption. In order to compute
the latency and power consumption of the proposed scheme
in a practical scenario, we take the example of a Zigbee
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Figure 4: Comparison of CH simulation and the approximated
result, given in (13). In this experiment, 3 CH nodes were chosen
from a cooperation group of 18.
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Figure 5: Comparison of power consumption results of the pro-
posed CH scheme, F-Rep. scheme, and no cooperation scheme.

(IEEE 802.15.4) based implementation [20]. For the sensor
nodes, we utilize the data from Silicon Lab’s EFR32 Mighty
Gecko Mesh Networking Wireless SoC, which can be used
to implement a Zigbee, Bluetooth, Thread, or a proprietary
2.4 GHz wireless sensor network [21]. Therefore, we take T𝑠
= 50 𝜇s [20], E𝑡 = 0.05 𝜇J, E𝑖 = 0.14 nJ, E𝑟 = 1.02 𝜇J [21],
and E𝑓 = 0.665 𝜇J [22]. The latency and power consumption
results of the F-Rep. cooperation (each node transmits a
cooperative packet in phase 2 to the BS, as in [13]), CH
cooperation (each CH node transmits a cooperative packet
in phase 2 to the BS, as in [14]), and the relayed transmission
(a relay node forwards the data for a source node without
any cooperation mechanism) are shown in Figures 5 and 6,
respectively. The results show increased latency and power
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Figure 6: Comparison of latency results of the proposed CH
scheme, F-Rep. scheme, and no cooperation scheme.

consumption in the case of F-Rep. cooperation and CH
cooperation. However, the increase in power consumption in
case of F-Rep. cooperation, reported in [13], has been reduced
from ∼2 dB to ∼0.8 dB for N = 12 and from ∼2.2 dB to∼0.2 dB for N = 50. The reduction is because the number
of relay nodes in the second phase has been reduced from
N to C and only C CH nodes now transmit to the BS in the
second phase instead of all the N nodes. The latency, shown
in Figure 6, has been reduced from ∼145 ms to ∼53 ms for N
= 12 and from ∼2.7 s to ∼220 ms for N = 50, by using CH
cooperation method. This is also because of the reduction in
the number of relay nodes in the second phase from N toC.
As the number of relay nodes reduce to a suitable number
in the form of CH nodes, necessary to obtain cooperation
benefit, it helps reduce the power consumption as well the
time required to transmit all the information to the BS in
order for the BS to be able to make a decision. The results
of CH cooperation show a significant improvement in the
latency and energy consumption on that reported in [13] and
this will be helpful in achieving the low-latency design goal
of future communication systems.

5.3. False Alarm and Packet Delivery Rates. We have used
the false alarm rate (FAR) and packet delivery rate (PDR)
metrics to compare our results with some of the previous
works including our own work in [13]. The FAR and PDR
were calculated and averaged over a range of SNR (0 to 30 dB)
with a total of 10,000 packets for N = 12 (F-Rep. cooperation)
andC = 5 (CHcooperation). In order to keep the comparison
fair, we use the PDR result of [5], when no relay selection
mechanism is used, and the PDR result for IWSN given by
[6]. As shown in Table 2, the CH cooperation scheme shows
significant improvement in the FAR when compared to [9],
performs better than [8] and shows increased FAR from that
reported in [13].This work shows an increased FAR than that
of [13] because the benefit of cooperation has been reduced
from full repetition (N nodes) to partial repetition (C nodes)
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Table 2: Comparison with related works.

Performance Metrics [4] [5] [6] [8] [9] [13] F-Rep. [14] CH
FAR – – – 3.8% 10.5% 1.8% 3.1%
PDR ∼84% ∼73% ∼70% – – ∼86% ∼80%

Table 3: Effect of RFFA on performance.

Performance Metrics F-Rep. WF-Rep. CH WCH
FAR 3.1% 2.9% 7.1% 5.3%
PDR ∼78% ∼81% ∼70% ∼73%
in the second phase.The PDR of the CH cooperation scheme
is higher than that reported in [5, 6] but lower than the
PDR reported in [4, 13]. The reason for this is [4–6] use
mechanisms of retransmission, guide-path discovery, and
relay selection, respectively, which increases the overhead
significantly. In contrast, our work does not involve these
overheads and therefore, our results show a higher PDR and
lower FAR as compared to these works. Again, the PDR is
lower than that of [13] because the benefit of cooperation
has been reduced from full repetition (N nodes) to partial
repetition (C nodes) in the second phase.

Table 3 shows the FAR and PDR results of our proposed
RFFA scheme in both F-Rep. (N=18) and CH (C=5) coop-
eration methods. Notice that the FAR and PDR of both F-
Rep. and CH cooperation schemes drop down significantly
from that in Table 2 because of the deliberately induced error
in the cooperating nodes (3 nodes in case of F-Rep. and
1 node in case of CH cooperation). Using RFFA mitigates
this problem by using the reliability factor associated with
each node and improves the FAR and PDR as shown by
WF-Rep. and WCH columns in Table 3. This result shows
that our proposed RFFA helps in increasing the reliability of
the final decision even in the presence of adversely affected
sensor nodes because of communication link failure or node
failure. The reason for improved FAR and PDR in both F-
Rep. and CH cooperation methods is because the proposed
algorithmhelps reduce errors in the final decision at the BS by
disregarding the information from the compromised sensors
in the cooperation group.

5.4. Packet Error Rate. Figure 7 compares the packet error
rate (PER) of the proposed CH, F-Rep., relayed, and direct
transmission schemes. The results show that, using the
proposed RFFA, the error induced in either the intermediate
nodes (CH cooperation) or any of the cooperating nodes (F-
Rep. cooperation) is successfully mitigated, as shown by the
dashed lines for both WCH and WF-Rep. cooperation. The
F-Rep. cooperation and CH cooperation schemes achieve,
on average, 10−2 probability of error at almost 20 dB and 12
dB lower SNR compared with the direct (noncooperation)
schemes, respectively. Despite the extra energy (∼0.5 dB for
CH and ∼2 dB for F-Rep., 18 nodes, Figure 5) spent by the
network in performing cooperation, the amount of energy
saving that can be achieved by using the CH cooperation
and F-Rep. cooperation is ∼11 dB and ∼18 dB, respectively.
The reduced energy saving in CH scheme is a result of the

PER Rayleigh Theory
PER Direct Sim.
PER Relayed Sim.
PER CH Sim.

PER WCH Sim.
PER F-Rep. Sim.
PER WF-Rep. Sim.
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Figure 7: Comparison of the PER for direct, relayed, F-Rep. and
CH cooperation showing the proposed weighted CH and weighted
F-Rep. simulation results.

loss in performance due to using fewer nodes to relay the
cooperative packet as compared to F-Rep. cooperation. Using
the proposed RFFA mechanism, a further improvement of∼2 dB and ∼1 dB is achieved in energy savings for CH
and F-Rep. cooperation, respectively, at 10−3 BER. Thus,
the CH cooperation scheme is able to reduce the latency
and energy consumption of the network at the expense of
someperformance benefits. UsingRFFA (WCHandWF-Rep.
cooperation) allows us to save further energy and at the same
time, improve the PER of the received data.

6. Conclusion

In this paper, we have proposed an algorithm called reliability
factor feedback algorithm to improve the reliability of deci-
sionsmade after sensor data fusion in relay-based cooperative
WSNs to monitor the indoor industrial environment. We
have analyzed the SER, power consumption, and latency
of the proposed scheme. With the proposed algorithm, the
reliability of the final decisionhas been increased significantly
at the fusion center. Along with the increased reliability,
significant energy savings have been achieved, which can be
very beneficial in increasing the lifetime of the sensors.
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Data Availability

The code used to model the above described network and
generate the provided results can be found at https://infonet
.gist.ac.kr.
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Abstract: This paper reports a field-programmable gate array (FPGA) design of compressed sensing
(CS) using the orthogonal matching pursuit (OMP) algorithm. While solving the least-squares
(LS) problem in the OMP algorithm, the complexity of the matrix inversion operation at every
loop is reduced by the proposed partitioned inversion that utilizes the inversion result in the
previous iteration. By the proposed matrix (n × n) inversion method inside the OMP, the number
of operations is reduced down from O(n3) to O(n2). The OMP algorithm is implemented with a
Xilinx Kintex UltraScale. The architecture with the proposed partitioned inversion involves 722 less
DSP48E compared with the conventional method. It operates with a sample period of 4 ns, signal
reconstruction time of 27 µs, and peak signal to noise ratio (PSNR) of 30.26 dB.

Keywords: compressed sensing (CS); field programmable gate array (FPGA); high-level synthesis
(HLS); partitioned inversion; orthogonal matching pursuit (OMP)

1. Introduction

The compressed sensing (CS) can effectively acquire and reconstruct sparse signals with
significantly less samples than that required from the Nyquist–Shannon sampling theorem [1].
The reconstruction process in CS finds the best solution to an underdetermined system, with a linear
equation of the form y = Fx, where we know the measurement matrix, F, that model the sampling
system and the measurement vector, y, while the original signal, x, remains to be determined.

Various algorithms have been proposed to reconstruct the signal x from the compressively sensed
samples. Generally, two algorithms, the greedy pursuit [2,3] and the convex relaxation [4,5], are mainly
selected for sparse signal reconstruction. The greedy pursuit is a more useful CS algorithm than the
convex relaxation, because it uses floating point operations [6]. Orthogonal matching pursuit (OMP) is
one of the representative greedy-type solvers for CS, which finds columns of the measurement matrix,
F, that are mostly correlated with the current estimate, x̃, of the original signal for m-iterations, where m
is the sparse level, and updates an advanced signal estimate from a least-squares (LS) method.

In OMP, one of the major problems in the LS step is the matrix inversion, because it results in a high
computational complexity per iteration [7]. Several inversion methods for the OMP algorithm have
been proposed, such as the QR decomposition [8] and Cholesky-based factorization [7,9], to improve
the computation efficiency of the matrix inversion. However, OMP that utilizes the partitioned
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inversion has not been presented, to the best of authors’ knowledge, because the conventional
partitioned inversion may result in a low efficiency for computation. Thus, we propose a novel
matrix inversion with a better computational efficiency, based on the incremental computation of the
partitioned inversion targeting the OMP.

In this paper, we utilize three properties of the input matrix for the inversion in each OMP
iteration, namely: conjugate symmetry, positive definiteness, and overlapped regions. It is found that
the properties reduce the computation complexity by re-utilizing the computation results obtained
in the previous OMP iteration. In terms of the comparison of the computation complexity, the
novel partitioned inversion method improves the complexity over the conventional Cholesky-based
inversion and the conventional partitioned inversion based on our derived equations. In addition,
multiple measurement vectors (MMV) are applied to the OMP algorithm to improve the sparse signal
recovery compared to the single measurement vector (SMV) method, and it is called simultaneous
OMP (SOMP) [10]. Lastly, we have implemented SOMP with the proposed matrix inversion method
in the field-programmable gate array (FPGA) and measured the running time. The experiments
show that the total hardware utilization is significantly reduced compared with the conventional
partitioned inversion, and the reconstruction time is 27 µs. Section 2 introduces the overview of the
SOMP algorithm, and the conditions of the input matrix in LS problem are described in Section 3.
Section 4 proposes the novel partitioned inversion, and the experimental results are presented in
Section 5. Finally, Section 6 provides a conclusion.

2. Overview of SOMP Algorithm

2.1. Description of SOMP Algorithm

In the SOMP, the linear equation is defined by the following:

y = Fx, (1)

where y ∈ RM×L, F ∈ RM×N, and x ∈ RN×L. The SOMP process given in Algorithm 1 [11] consists
of the optimization problem (1 and 2) and the LS problem (3 and 4). For this process, the residue, r0

(when i = 1) is initially set to y. During the ith iteration, the optimization problem chooses one of
the columns of F, which is strongly correlated to the residue of y, and then searches the position, k,
of this column. The Fk is the sub-matrix including the column according to the k, and Fi is updated
by summing Fk with the previous sub-matrix. The LS problem removes the contributed column for
the new estimate, x̃, and then computes a new residue, r. Finally, when the m-iteration is achieved,
the final estimate of the original signal is computed.

Algorithm 1. Simultaneous orthogonal matching pursuit (SOMP).

Input:
•F ∈ RM×N: The measurement matrix
• y ∈ RM×L: The multiple measurement vector
Output:
• x̃ ∈ RN×L: The estimate of original signal
Variable:
• m: The sparsity level of original signal x
• r ∈ RM×L: The residue
Initialize: r0 = y, x̃ = 0
For ith iteration:
1. ki = argmax

j
‖〈ri−1, Fj〉‖2, where 1 ≤ j ≤ N, and k is an index

2. Fi = [Fki−1 Fki ]

3. x̃i = argmin
x
‖y− Fix‖2

4. ri = y− Fix̃i

Repeat process until i = m to generate the final estimate of the x.
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2.2. Least Square (LS) Problem

In the SOMP algorithm, the recovered signal, x̃, gradually becomes similar to the input signal, x,
with more iterations, and the equation for the new residue in the LS problem is as follows:

ri = y− ỹ = y− Fix̃i = y− Fi(Ui)
−1

(Fi)
H

y (2)

In Equation (2), the computation complexity reduction of the inverse of the input matrix, U, is a
challenge in the OMP algorithm.

3. Conditions of the Input Matrix in LS Problem

The input matrix, U, in the LS problem presents the various conditions, as below. The U is always
symmetric, as follows:

UT = (FTF)
T
= FT(FT)

T
= FTF (3)

which is a positive definite, and is expressed by the following:

xT(FTF)x = (Fx)T(Fx) = Fx2
2 > 0, If x 6= 0, then Fx 6= 0 (4)

Equation (4) indicates that the eigenvalue, Fx, is always greater than zero. That is, U(=FTF)
satisfies the positive definite condition, while following the characteristics: (1) U−1 exsits, (2) ctt > 0
for all t in diag (c11, c22, c33, · · · , ctt) and (3) principle sub-matrices, are also positive definite.

In step 2 of Algorithm 1, Fi is added one column per loop, and then the input matrix, U,
is determined. As the loop progresses, the next Ui includes the matrix Ui−1 for the previous loop,
as shown in Table 1. For example, U2 is an expanded matrix of U1 of the previous iteration. Thus, Ui is
divided into a previously obtained part and a newly added part.

Table 1. Overlapped region in input matrix.

Measurement Matrix Input Matrix

F1 =

 a1
a2
a3

 U1 = (F1)
HF1 = [c11]

F2 =

 a1
a2
a3

 b1
b2
b3

 U2 = (F2)
HF2 =

[
c11 c12
c21 c22

]
=

[ [
U1] c12
c21 c22

]

F3 =

 a1
a2
a3

 b1
b2
b3

 c1
c2
c3

 U3 = (F3)
HF3 =

 c11 c12 c13
c21 c22 c23
c31 c32 c33

 =

 [
U2] c13

c23
c31 c32 c33



4. Proposed Partitioned Inversion

By leveraging the properties of the input matrix as examined in Section 3, we propose a novel
partitioned inversion method after explaining the conventional partitioned inversion in this section.

4.1. Conventional Partitioned Inversion

The conventional partitioned inversion is a method to obtain the inverse matrix by dividing
the input matrix into four parts. This inversion is robust against noise, because of a low number of
conditions, and operates using lower parts of the input matrix in symmetric and positive definite (SPD)
characteristics. The step for the inverse matrix of the conventional way is introduced in the left column
of in Table 2. However, as the matrix size increases, the number of computations grows significantly.
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Table 2. Conventional partitioned inversion versus proposed partitioned inversion.

Input Matrix U =

[
A B
C D

]
Inversion of Input Matrix U−1 =

[
E F
G H

]
Conventional Partitioned Inversion Proposed Partitioned Inversion

Step
1. A−1

2. CA−1

3. A−1B
4. CA−1B
5. D− CA−1B
6. H =

(
D− CA−1B

)−1

7. F = −A−1B
(

D− CA−1B
)−1

8. G = −
(

D− CA−1B
)−1CA−1

9. A−1B
(

D− CA−1B
)−1CA−1

10. E = A−1 + A−1B
(

D− CA−1B
)−1CA−1

Step
1. CA−1

2. CA−1CT

3. D− CA−1CT

4. H =
(

D− CA−1CT)−1

5. GT , F = −(CA−1)
T(D− CA−1CT)−1

6. (CA−1)
T(D− CA−1CT)−1CA−1

7. E = A−1 + (CA−1)
T(D− CA−1CT)−1CA−1

4.2. Proposed Partitioned Inversion

In order to reduce the inversion computational complexity, the following relationships are
obtained by utilizing the input matrix properties presented in Section 3.

A = AT → A−1 = (A−1)
T

, D = DT → D−1 = (D−1)
T

, B = CT (5)

As the input matrix, U, is symmetric, the constituent matrices of the input matrix (A, B, C, and D)
satisfy Equation (5), which is used in the following optimization processes.

Step 1 in the conventional partitioned inversion in Table 2 is eliminated by the following
observation. In ith OMP iteration, Ui is portioned into four sub-matrixes containing Ui−1, as shown in
Figure 1. Unlike the conventional partitioned inversion, this step contains Ui−1, of which the inversion
is already available in the previous OMP iteration. Therefore, step 1 is unnecessary, by utilizing(
Ui−1)−1, shown in gray in Figure 1.

Steps 2 and 3 are decreased down to a single step based on Equation (5).(
A−1B

)T
=
(

A−1CT
)T

= C
(

A−1
)T

= CA−1 (6)

Steps 7 and 8 are also further simplified by Equation (5), as below.

F = −A−1B
(

D− CA−1B
)−1

(7)
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GT =
(
−
(

D− CA−1B
)−1CA−1

)T
=
(

A−1)TCT
((

D− CA−1B
)−1
)T

= −A−1B
(

D− CA−1B
)−1 (8)

From Equations (5)–(8), the number of steps in the inversion process is reduced from 10 to 7,
as shown in Table 2.

4.3. Computational Complexity for Proposed Partitioned Inversion

Table 3 shows the complexity comparison between three inversion techniques. The Cholesky-based
and conventional partitioned inversion continually calculates the inversion of the size-increased
matrix per iteration, whereas our inversion method computes the extra sub-matrices except for prior
iteration calculation. Accordingly, the proposed method improves the computational complexity for
multiplication, addition/subtraction, and division, depending on the input matrix size, where the
matrix size increases from 1× 1 to m×m per loop. To visualize the improved complexity, we executed a
MATLAB (2013b, The MathWorks, Natick, MA, USA) simulation for a computational comparison of the
total number between the Cholesky-based inversion, conventional partitioned inversion, and proposed
partitioned, depending on the matrix size (m × m), as depicted in Figure 2.

Table 3. Computation Complexity Comparison of input matrix inversion (for m × m matrix U and a
single supporter system).

Operation
Inversion Cholesky-Based [7] Conventional Partitioned Proposed Partitioned

Multiplication 4m3+3m2−7m
6 m3 −m 2m2 − 2m

Add/sub m3−m2

2 m3 − 2m2 + m 2m2 − 4m + 2
Division m m 1

Electronics 2018, 7, x FOR PEER REVIEW  5 of 10 

 

𝐺 = (−(𝐷 − 𝐶𝐴 𝐵) 𝐶𝐴 ) = (𝐴 ) 𝐶 ((𝐷 − 𝐶𝐴 𝐵) ) = −𝐴 𝐵(𝐷 − 𝐶𝐴 𝐵)  (8)

From Equations (5)–(8), the number of steps in the inversion process is reduced from 10 to 7, as 
shown in Table 2. 

4.3. Computational Complexity for Proposed Partitioned Inversion 

Table 3 shows the complexity comparison between three inversion techniques. The Cholesky-
based and conventional partitioned inversion continually calculates the inversion of the size-
increased matrix per iteration, whereas our inversion method computes the extra sub-matrices except 
for prior iteration calculation. Accordingly, the proposed method improves the computational 
complexity for multiplication, addition/subtraction, and division, depending on the input matrix size, 
where the matrix size increases from 1 × 1 to m × m per loop. To visualize the improved complexity, 
we executed a MATLAB (2013b, The MathWorks, Natick, MA, USA) simulation for a computational 
comparison of the total number between the Cholesky-based inversion, conventional partitioned 
inversion, and proposed partitioned, depending on the matrix size (m × m), as depicted in Figure 2. 

Table 3. Computation Complexity Comparison of input matrix inversion (for m × m matrix 𝐔 and a 
single supporter system). 

Inversion 
Operation Cholesky-Based [7] Conventional Partitioned Proposed Partitioned 

Multiplication 4𝑚 + 3𝑚 − 7𝑚6  𝑚 − 𝑚 2𝑚 − 2𝑚 

Add/sub 𝑚 − 𝑚2   𝑚 − 2𝑚 + 𝑚 2𝑚 − 4𝑚 + 2 

Division 𝑚  𝑚 1 

 

Figure 2. The total sum of number of operations for the Cholesky-based inversion, conventional 
partitioned inversion, and proposed partitioned inversion, depending on matrix size (m × m). 

4.4. Proposed Partitioned Inversion for Multiple Supporter System 

Computation complexity functions in Table 3 are only applied to a single supporter system; 
however, our inversion method is also used in the multiple supporter system, and the complexity 
equations are changed as Equations (9)–(11).  

• Multiplication: (2𝑚 − 1)𝑛 − 2𝑚𝑛 + 𝑛  (9)

• Add/sub: 

0 5 10 15
Matrix Size (m)

10 0

10 1

10 2

10 3

10 4

T
o

ta
l S

u
m

 o
f 

N
u

m
b

er
 o

f 
O

p
er

at
io

n
s

Conventional Partitioned
Cholesky-Based
Proposed Partitioned

Figure 2. The total sum of number of operations for the Cholesky-based inversion, conventional
partitioned inversion, and proposed partitioned inversion, depending on matrix size (m × m).

4.4. Proposed Partitioned Inversion for Multiple Supporter System

Computation complexity functions in Table 3 are only applied to a single supporter system;
however, our inversion method is also used in the multiple supporter system, and the complexity
equations are changed as Equations (9)–(11).

• Multiplication: (
2m2 − 1

)
n− 2mn2 + n3 (9)
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• Add/sub: (
2m2 − 2m + 1

)
n− 2mn2 + n3 (10)

• Division:
n (11)

where n is the number of the supporter. Although the computation complexity becomes larger as
n increases, the proposed inversion method can be applied to the multiple supporter system.

4.5. SOMP Structure with the Proposed Partitioned Inversion

The SOMP structure with the proposed partitioned inversion is organized as shown in Figure 3.
The correlation matching block (CRMB) finds the location, k, of the most correlated column of the
measurement matrix, F, and Fi is updated by the summing of Fi−1(which is saved by the F memory
block at the previous iteration) and Fki . Generating the U block (GUB) identifies the row of the
measurement matrix corresponding to k, and generates the matrix U by the inner-product. The inverse
of U is generated by the inversion U block (IUB), which is stored in the U−1 memory block, and the
memory offers the previous calculated inverse matrix of U. Thus, IUB can reduce the computational
complexity by using the previously computed inverse matrix of U. The least square block (LSB)
calculates the estimate, x̃, of the original signal, and the residual, ri, is generated by the residual block
(RB). Finally, the final estimate signal is obtained by the system at m-iteration.

Electronics 2018, 7, x FOR PEER REVIEW  6 of 10 

 

(2𝑚 − 2𝑚 + 1)𝑛 − 2𝑚𝑛 + 𝑛  (10)

• Division: 𝑛 (11)

where n is the number of the supporter. Although the computation complexity becomes larger as n 
increases, the proposed inversion method can be applied to the multiple supporter system. 

4.5. SOMP Structure with the Proposed Partitioned Inversion 

The SOMP structure with the proposed partitioned inversion is organized as shown in Figure 3. 
The correlation matching block (CRMB) finds the location, k, of the most correlated column of the 
measurement matrix,  Ф , and Ф  is updated by the summing of Ф (which is saved by the Ф 
memory block at the previous iteration) and Ф . Generating the 𝐔 block (GUB) identifies the row 
of the measurement matrix corresponding to k, and generates the matrix 𝐔 by the inner-product. The 
inverse of 𝐔 is generated by the inversion 𝐔 block (IUB), which is stored in the 𝐔  memory block, 
and the memory offers the previous calculated inverse matrix of 𝐔 . Thus, IUB can reduce the 
computational complexity by using the previously computed inverse matrix of 𝐔. The least square 
block (LSB) calculates the estimate, 𝐱, of the original signal, and the residual, 𝐫 , is generated by the 
residual block (RB). Finally, the final estimate signal is obtained by the system at m-iteration. 

 

Figure 3. Simultaneous orthogonal matching pursuit (SOMP) structure with the proposed partitioned 
inversion. 

5. Experiment Results 

5.1. FPGA Implementation Approach 

In our experiment, the Xilinx Kintex UltraScale board and the XCKU115-FLVA2104-2-I chipset 
was used to demonstrate the proposed inverse matrix and the operation of the entire SOMP 
algorithm. The board is advantageous to the design of a large algorithm, because it has a large 
number of DSP slices. 

The high-level synthesis (HLS) tool provided by Xilinx for the FPGA design offers many 
advantages, namely: (1) arbitrary precision data type, math, IP, linear algebra, and many other 
libraries; (2) the register-transfer level (RTL) can be extracted automatically, and RTL verification is 
easy, because of the provided co-simulation; (3) as C synthesis provides design resources, such as 
clock, area, and I/O port description, a user can easily change the design according to their intention; 
(4) it enables high-performance hardware design with little hardware knowledge, because it 
facilitates its utilization for the IP module in other design tools, such as the system generator. By 
leveraging these advantages, we convert the C/C++ code into the hardware description language 

CRMB  𝑟
  Ф

Atom 
Selection

  𝑘
GUB

  Ф
Ф

Memory  Ф

IUB

𝑈
 (𝑈 )

LSB

𝑼 𝟏
Memory

 (𝑈 )
 𝑦

RB  𝑟 𝑥

Figure 3. Simultaneous orthogonal matching pursuit (SOMP) structure with the proposed
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5. Experiment Results

5.1. FPGA Implementation Approach

In our experiment, the Xilinx Kintex UltraScale board and the XCKU115-FLVA2104-2-I chipset
was used to demonstrate the proposed inverse matrix and the operation of the entire SOMP algorithm.
The board is advantageous to the design of a large algorithm, because it has a large number of
DSP slices.

The high-level synthesis (HLS) tool provided by Xilinx for the FPGA design offers many
advantages, namely: (1) arbitrary precision data type, math, IP, linear algebra, and many other
libraries; (2) the register-transfer level (RTL) can be extracted automatically, and RTL verification is
easy, because of the provided co-simulation; (3) as C synthesis provides design resources, such as clock,
area, and I/O port description, a user can easily change the design according to their intention; (4) it
enables high-performance hardware design with little hardware knowledge, because it facilitates its
utilization for the IP module in other design tools, such as the system generator. By leveraging these
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advantages, we convert the C/C++ code into the hardware description language (HDL), such as Verilog,
which is subsequently synthesized to the gate level for the optimization of our design architecture.

Our device is based on a 16- and 32-bit fixed-point complex operation. Most of the calculations
were performed with 16-bit, but the partitioned inversion process relies on 32-bit, because the divide
operation requires more precise computation.

The parameters used in our experiment are as follows. The number of physical channels is four
and the dimensions of the measurement matrix (M × N) are 32 and 128, respectively. The channel
reuse factor is 8, MMV extension is 16, Nyquist bandwidth is 4 GHz, sampling frequency is 250 MHz,
Fp is 31.25 MHz, and FFT-point is 128.

5.2. Additional Optimisation in FPGA Implementation

In the SOMP algorithm, a large matrix inner product is needed. To express the matrix inner
product in the code, we require three for loops. We apply a pipeline to the second for loop to perform
real-time signal reconstruction. Although the number of DSP increases in proportion to the number of
the innermost for loop, the latency is greatly reduced, because the calculation can be parallel.

Most of the operations that occurred inside it are complex types, and is thus accompanied
by an increase in the computational complexity. Even if the partitioned inversion device requires
complex division, it can be replaced by two real divisions because the denominator is always a positive
real number.

5.3. SOMP Hardware Utilization

Various components are required for hardware realization of the SOMP algorithm. The block ram
(BRAM) effectively stores the vectors and matrices, namely: the measurement vector, y, measurement
matrix, F, and residue, r. The DSP is the pre-built multiply-accumulate (MAC) circuit in the FPGA
and is an essential hardware, because it quickly performs the multiplication and addition/subtraction
operations. Flip-flop (FF) is the shift register used to synchronize the logic. The total hardware
utilization for the proposed partitioned inversion is reduced compared to the conventional partitioned
inversion, as shown in Table 4. However, only the BRAM for our inversion method is increased
compared to the conventional approach because both the U matrix and previous U matrix must be
stored simultaneously.

Table 4. OMP hardware utilization comparison between conventional partitioned inversion and
proposed partitioned inversion. BRAM—block ram; FF—flip-flop.

Xilinx Kintex UltraScale XCKU115 Conventional Proposed

BRAM 283 (13.1%) 307 (14.2%)
DSP48E 2754 (49.9%) 2032 (36.8%)

FF 225,337 (17%) 210,577 (15.9%)
LUT 190,742 (28.7%) 153,447 (23.1%)

5.4. Signal Reconstruction

We executed the MATLAB simulation and HLS to validate the recovered signal from the input
sparse signal, and data precision is converted from 16(0.12) to 32(0.24) bits, where the data format
p(.f) with the precision (p) and factional bits (f). Figure 4a presents the input sparse signal, which is
mixed by the random carrier signals. The signal is well reconstructed by both the simulation and HLS,
as shown in Figure 4b,c, respectively.

From our experiment, we obtained the peak signal to noise ratio (PSNR) for an objective
evaluation [7], where PSNR is as follows:

PSNR = 20 log10

(
MAX√

MSE

)
(12)
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MSE =
1
N
×∑

i

[
xi − x̃i

]2
(13)

where MAX is the maximum possible value of the signal x, N is the total number of samples, x̃i is
the sample value at i in the reconstructed signal, and xi is the sample value at i in the original signal.
The PSNR of our SOMP structure was determined to be 30.26 dB for 16- and 32-bit data precision.
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Figure 4. Reconstruction of the sparse modulated by random carrier frequencies for (a) input signal,
(b) reconstruction signal by MATLAB, and (c) reconstruction signal by high-level synthesis (HLS) for
16- and 32-bit data precision.

5.5. Performance Comparison

Table 5 provides a comparison of the performance of existing sparse signal recovery algorithm
devices. Although the other works summarized in Table 5 focus on the OMP algorithm rather
than the inversion method, an objective comparison is required to highlight our proposed inversion
method. For this reason, we selected papers with the identical measurement matrix size (32 × 128),
while applying the different inversion methods (i.e., QR decomposition-based and Cholesky-based
inversions). Although our work uses a higher clock frequency than other works in Table 5,
our reconstruction time is sufficiently fast with larger sparsity than in the literature [7,12,13].
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Table 5. Performance comparison for the 32 × 128 measurement matrix size.

Sparsity Clock
Frequency

Reconstruction
Time Inversion Type Data Format

Intel Core Duo [7] 5 2.8 GHz 606 µs Cholesky-based 32-bit fixed-point real data

FPGA Virtex 7 [12] 5 0.165 GHz 18.3 µs QR decomposition-based 32-bit fixed-point hybrid
complex data

FPGA Virtex 5 [13] 5 0.039 GHz 24 µs Cholesky-based 32-bit fixed-point real data
FPGA Kintex

UltraScale [This Work] 8 0.25 GHz 27 µs Proposed partitioned
inversion

16- and 32-bit fixed-point
complex data

6. Conclusions

The SOMP algorithm generally results in a high computational complexity for the LS problem,
because of a very large inner product. In addition, the SMV model causes an increase of this complexity.
To reduce the complexity, we have proposed the SOMP algorithm for the MMV models, while applying
a novel partitioned inversion that omits the recalculation for the inversion of the input matrix at the
previous loop. Accordingly, our proposed inversion method restores a signal with less hardware
compared with the conventional partitioned inversion techniques. By using the Kintex UltraScale board
and HLS, we verified the signal reconstruction with a high PSNR and obtained a fast reconstruction
time. Therefore, in comparison with the conventional partitioned inversion and Cholesky-based
factorization, our proposed inversion is suitable to apply the diverse applications requiring the
high-level restoration with less hardware, such as bio-signals, bio-medical imaging, and radar.
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Intentional Aliasing Method to Improve
Sub-Nyquist Sampling System

Jehyuk Jang , Sanghun Im, and Heung-No Lee , Senior Member, IEEE

Abstract—A modulated wideband converter (MWC) has been
introduced as a sub-Nyquist sampler that exploits a set of fast al-
ternating pseudo random (PR) signals. Through parallel analog
channels, an MWC compresses a multiband spectrum by mixing it
with PR signals in the time domain, and acquires its sub-Nyquist
samples. Previously, the ratio of compression was fully dependent
on the specifications of PR signals. That is, to further reduce the
sampling rate without information loss, faster and longer-period
PR signals were needed. However, the implementation of such PR
signal generators results in high power consumption and large fab-
rication area. In this paper, we propose a novel aliased modulated
wideband converter (AMWC), which can further reduce the sam-
pling rate of MWC with fixed PR signals. The main idea is to induce
intentional signal aliasing at the analog-to-digital converter (ADC).
In addition to the first spectral compression by the signal mixer,
the intentional aliasing compresses the mixed spectrum once again.
We demonstrate that AMWC reduces the number of analog chan-
nels and the rate of ADC for lossless sub-Nyquist sampling without
needing to upgrade the speed or the period of PR signals. Con-
versely, for a given fixed number of analog channels and sampling
rate, AMWC improves the performance of signal reconstruction.

Index Terms—Sub-Nyquist sampling, modulated wideband con-
verter, sampling efficiency, intentional aliasing, compressed sens-
ing, random filter.

I. INTRODUCTION

A PPLICATIONS of electronic warfare (EW) systems, elec-
tronic intelligence (ELINT) systems, or cognitive radios

are demanding the observation of a multiband signal, i.e., a
collection of multiple narrow-band signals, each with different
center frequencies, scattered across a wide frequency range up
to tens of gigahertz (GHz). The Nyquist sampling rate is twice
the maximum frequency of the wide range. When a multiband
signal is sparse, i.e. consists of a few narrow bands, the signal
can be sampled without information loss at a sub-Nyquist rate
far less than the Nyquist rate. The theoretical lower limit of the
rate required for lossless sub-Nyquist sampling is the sum of
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the bandwidths, known as the Landau rate, when the spectral
locations of all the narrow-band signals are known [1]. When
spectral locations are unknown, the lower limit is doubled [2].

The modulated wideband converter (MWC) proposed by
Mishali et al. [3] is a lossless sub-Nyquist sampler that aims
at achieving the theoretical lower limit of sampling rate. Similar
to other sub-Nyquist samplers proposed in [4]–[6], MWC ex-
ploits pseudo-random (PR) signals, which periodically output
pulsed patterns. MWC has multiple analog channels, each of
which consists of a PR signal generator, signal mixer, low-pass
filter (LPF) for anti-aliasing, and low-rate analog-to-digital con-
verter (ADC) in sequence. The system compresses a multiband
spectrum through the mixing and LPF procedures, following
which it samples at a sub-Nyquist rate. The reconstruction of
the input multiband spectrum is guaranteed under some condi-
tions of the compressed sensing (CS) theory [7]–[11]. With the
help of CS reconstruction algorithms in [2], [12] developed for
the MWCs, it has been proved that an MWC can achieve the
theoretical lower limit of the lossless sub-Nyquist sampling rate.

However, to achieve the lower limit of the lossless sub-
Nyquist sampling rate, the previously proposed MWC by
Mishali et al. relied on a high-end PR signal generator, since
it was the only spectral compressor. The ratio of spectral com-
pression was fully dependent on the oscillation speed and length
of the pulsed patterns within a single period of the PR sig-
nals. Specifically, to improve the compression ratio for a sparser
multiband signal, PR signals with a greater pattern length were
required. In addition, the oscillation speed should be faster than
the Nyquist rate for a lossless compression. Unfortunately, in-
creasing the pattern length of a PR signal generator with tens of
GHz-range switching speed leads to difficult research problems
in the field of chip engineering, such as high power consumption
and large fabrication area due to the high chip speed [13], [14],
which hinder the commercial availability of such a PR signal
generator chip.

Recently, efforts to reduce the rate for lossless sub-Nyquist
sampling with MWC closer to the theoretical lower limit without
upgrading the PR signal generators have been made in [15],
[16]. In [15], the authors proposed a method that channelizes
the multiband spectrum into few orthogonal subbands before
mixing with the PR signals. Since the channelized signals have a
lower Nyquist rate than the original input, for a given oscillation
speed and pattern length of PR signals, the method achieves a
higher ratio of spectral compression. Although the method led
to a further reduction of the lossless sub-Nyquist sampling rate,
it requires additional hardware resources for the channelization,
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such as band-pass filters, local oscillators, and a greater number
of independent PR signal generators proportional to the number
of subbands. In [16], a method similar to that proposed in [15]
was presented, in which the input signal was divided into in-
phase (I) and quadrature (Q) channels before mixing it with PR
signals. The lossless sub-Nyquist sampling rate can be reduced
by the same principle as in [15], although the authors did not
mention this point. However, the system also required additional
hardware resources for the I-Q division.

In this paper, we propose an aliased MWC (AMWC), which re-
duces the lossless sub-Nyquist sampling rate for given practical
PR signals. The main idea of AMWC is to break the anti-aliasing
rule and induce intentional aliasing at the ADC of each spatial
channel by setting the bandwidth of the prior LPF to be greater
than the ADC sampling rate. In addition to the first spectral
compression by the mixing and LPF procedures, this intentional
aliasing leads to another spectral compression under a certain
relation between the ADC sampling rate and bandwidth of the
prior LPF. Through the two spectral compression procedures,
the compression ratio is improved without faster or longer PR
signals. Consequently, for a given and fixed PR signal generator,
the lossless sub-Nyquist sampling rate of AMWC is closer to the
lower limit than that of MWC.

The proposed AMWC achieves the same effect as in previ-
ous works [15], [16], i.e., reduction in the lossless sub-Nyquist
sampling rate without upgrading the PR signal generators, and
requires no additional hardware components. To our knowl-
edge, AMWC is novel in that no study has thus far improved
the sub-Nyquist sampling capability of MWC by improving the
utilization efficiency of given hardware resources.

In [17], [18], variations of MWC similar to AMWC that include
aliasing at the ADC have been investigated for analyzing chan-
nel capacity. Their main results indicate that suppressing non-
active subbands before spectral compression minimizes the loss
of information rate incurred by aliasing the noise spectrum. In-
terestingly, the authors of [18] introduced a rule for determining
the sampling rate of each spatial channel similar to that of AMWC
(see Section III-A for details). However, the rule was designed
to make a fair comparison with other filterbank-based systems
by flexibly controlling the bandwidth of subbands, rather than
to exploit the aliasing at the ADC to reduce the lossless sub-
Nyquist sampling rate. Additionally, according to our results,
the rule in [18] is insufficient and aliasing at the ADC may lead
to information loss.

Our main contribution is that the anti-aliasing rule of MWC is
shown to be unnecessary for lossless sub-Nyquist sampling. We
reveal a certain relationship between the ADC sampling rate and
bandwidth of the prior LPF so that AMWC can avoid the loss of
signal information during the additional spectral compression.
We demonstrate that, for given oscillation speed and pattern
length of PR signals, the sampling rate and analog channels of
AMWC required for the reconstruction of a multiband signal are
further reduced. For given sampling rate and number of analog
channels, we show that the reconstruction performance of AMWC
for a multiband signal with a given sparsity is improved.

Additionally, we show that the benefits from intentional alias-
ing can be further strengthened using a non-flat LPF. The

non-flat frequency response of LPF results in a different input-
output relationship for each frequency component of the sub-
Nyquist samples of AMWC. Simulation results show that the re-
duction of lossless sub-Nyquist sampling rate is boosted when
the filter response is samples of a random distribution as the
input-output relationships of different frequency components
become independent.

The remainder of this paper is organized as follows. In
Section II, we briefly introduce MWC with the anti-aliasing
rule and then define the goal of this paper. In Section III, we
propose AMWC and derive its input-output relationship. The re-
lationship between the sampling rate of ADC and bandwidth of
LPF to avoid information loss is also provided. In Section IV,
a revised input-output relationship of AMWC corresponding to
the use of a non-ideal LPF is provided. Simulation results are
provided in Section V. Section VI concludes the paper.

II. BACKGROUND AND PROBLEM FORMULATION

The modulated wideband converter (MWC) is a sub-Nyquist
sampling system for multiband signals. A signal x(t) is a multi-
band signal if its spectrum X(f) is composed of KB disjoint
continuous bands of maximum bandwidth B [2], [3]. We as-
sume that the maximum frequency of a target multiband signal
does not exceed fmax , i.e., X(f) = 0 for f ∈ FN Y Q

C , where

FN Y Q
Δ= [−fmax , fmax), andFN Y Q

C is the complementary set

of FN Y Q . We denote the Nyquist rate by fN Y Q
Δ= 2fmax .

A. System Constitution and Parameters

MWC consists of M analog channels in parallel (see
Fig. 1-(a)). Each channel consists of a PR signal generator,
a mixer, an LPF, and an ADC in sequence. Each PR signal pi(t)
for channel index i is Tp -periodic and outputs chips of an odd
length L within a single period Tp . Each chip lasts for a chip

duration Tc = TpL
−1 . We denote the chip speed by fc

Δ= T−1
c

and the repetition rate of the PR signal by fp
Δ= T−1

p . The LPF
has a cut-off frequency WLP F /2, where WLP F denotes the
bandwidth of the filter including the negative frequency. The
LPF bandwidth is set to WLP F = qfp , where q is the channel-
trading parameter, an odd positive integer. Finally, we denote
the sampling rate, which is equal at every channel, by fs . The
total sampling rate is the sum of sampling rates of all channels,

defined by fs,total
Δ= Mfs .

MWC first compresses the input multiband spectrum using PR
signals. After that, nonzero subbands of the multiband spectrum
are recovered by CS recovery algorithms. For the successful
CS recovery, all spectral components within the Nyquist range
FN Y Q of each PR signal are needed to be independent, which
requires a fast chip speed fc ≥ fN Y Q [3]. Throughout this pa-
per, we set fc = fN Y Q .

B. Conventional Modulated Wideband Converters

In the original paper [3] by Mishali et al., for lossless sub-
Nyquist sampling, the ADC followed the anti-aliasing rule, i.e.,
fs ≥ WLP F . This conventional rule has sufficed for lossless
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Fig. 1. Sampling system of AMWC. (a) Analog processing. (b) Digital pro-
cessing. The system is equivalent to cMWC when p = 1 and q ′ = q. In AMWC,
the sampling rate is p-times lower than the filter bandwidth with p > 1 to
intentionally induce aliasing.

sub-Nyquist sampling. We refer to MWC that follows the anti-
aliasing rule as conventional MWC (cMWC).

The input-output relationship of cMWC is given in [3]. The
input x(t) at the i-th channel is first mixed with the Tp -periodic
PR signal pi(t) that periodically outputs a sequence of L mixing
chips. By the periodicity, the Fourier transform (FT) of pi(t) is
an impulse train. The FT of the mixed signal si(t) = x(t)pi(t)
is the convolution ∗ of the two spectra:

Si (f) Δ=
∫ ∞

−∞
s (t) e−j2πf tdt

= Pi (f) ∗ X (f)

=
∞∑

l=−∞
ci,lX (f − lfp), (1)

where ci,l for l = −∞, . . . ,∞ are the Fourier series coefficients
of pi(t).The mixed signal si(t) and X(f − lfp) in (1) are fil-
tered by the LPF H(f). We let H(f) = 1 for f ∈ FLP F , and

otherwise, H(f) = 0, where FLP F
Δ= [−WLP F /2,WLP F /2).

Since X(f) is band-limited by FN Y Q , the infinite-order sum-
mation in (1) is reduced to a finite order as follows:

Yi (f) = Si (f) H (f)

=
L0 +q0∑

l=−(L0 +q0 )

ci,lX (f − lfp), for f ∈ FLP F , (2)

where L0 is computed by L0 = (L − 1)/2[3], and q0
Δ=

(q − 1)/2. Next, the ADC of rate fs = T−1
s takes samples of

yi(t), i.e., yi [n] = yi(t)|t=nTs
. By the conventional anti-aliasing

rule, we set fs = WLP F . Then, the discrete-time FT (DTFT) of
yi [n] preserves the spectrum of (2).

In (2), every subband X(f − lfp) is spectrally correlated with
nearby q − 1 subbands, since the bandwidth WLP F is wider than
the shifting interval fp . To make them spectrally orthogonal, the
samples yi [n] are modulated and low-pass filtered in parallel
through q digital channels by

zi,s [ñ] =
[(

yi [n] e−j2πsfp Ts n
) ∗ hfp

[n]
]∣∣

n= ñq
(3)

for s = −q0 , . . . , q0 , where hfp
[n] is a digital LPF with the cut-

off frequency of fp/2 and a flat passband response. The DTFT
of (3) is

Zi,s

(
ej2πf qTs

)
=

L0∑
l=−L0

ci,l+sX (f − lfp) for f ∈ Fp , (4)

where Fp
Δ= [−fp/2, fp/2). The subbands X(f − lfp) in (4)

are spectrally orthogonal to each other, since the bandwidth
equals the shifting interval. As X(f) is a multiband signal, only
a few subbands in (4) have nonzero values. If fp ≥ B , the upper
bound on the sparsity K of the subbands is K ≤ 2KB , since
the uniform grid of interval fp splits each band into two pieces
at most.

Consequently, each analog channel outputs q different se-
quences, and therefore, cMWC obtains totally Mq equations for
input reconstruction. Depending on the number of equations,
it was shown in [3] that the input spectrum can be perfectly
reconstructed. Previously, to obtain more equations for a fixed
number of channels M and for a given specification fp for PR
signal generation, cMWC has to rely on the increased sampling
rate fs = qfp by controlling the channel-trading parameter q. In
this paper, we aim to show there is another way to obtain more
equations and improve the input reconstruction performance,
without the cost intensive ways of increasing the total sampling
rate fs,total = Mfs or reducing fp , or both.

C. Sampling Efficiency

In (4), MWC splits the input spectrum into many subbands
along a uniform grid of a splitting interval, and it then takes sam-
ples of the weighted sum of subbands. We denote the splitting
interval by fI . Note that the splitting interval of cMWC fI ,cM W C

equals fp . From the samples, a CS recovery algorithm (e.g., [11],
[12], [19], [20]) finally recovers the K nonzero subbands con-
taining the split pieces of the KB multibands. Consequently, the
total sampling rate is consumed to take samples of K nonzero
subbands of bandwidth fI . This indicates that the total sam-
pling rate required for lossless sampling by an MWC would be
at least fs,total ≥ 2KfI , where the factor of 2 arises from the
unknown supports of the nonzero subbands. In contrast, a result
in [2] states that, for a general sub-Nyquist sampling system,
the minimum requirement for lossless sampling of a multiband
signal is fs,total ≥ 2KB B, where KB B is the upper bound of
the actual spectral occupancy of a multiband signal. That is,
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Fig. 2. Illustration of the sampling efficiency in the relation between the
maximum bandwidth B and splitting interval fI . (a) Inefficient sampling.
(b) Improved sampling efficiency. (a) When fI � B , MWC wastes a portion
of the total sampling rate because of the unused band in the nonzero subbands.
(b) The regulated fI improves the sampling efficiency.

when fI is far greater than B, MWC consumes a portion of the
total sampling rate inefficiently. Specifically, fI greater than B
yields a higher probability for the K nonzero subbands to be
comprised of unused bands, i.e., zeros. The inefficient use of
total sampling rate is illustrated in Fig. 2.

Ideally, when the splitting interval fI becomes finer and closer
to B while satisfying fI ≥ B, the sampling efficiency is im-
proved, as shown in Fig. 2. The efficiency is maximized when
KfI = KB B. Based on this observation, we define the sam-
pling efficiency α of MWC as the ratio between the actual spectral
occupancy of the multiband signal and the total bandwidth of
the recovered subbands, i.e.,

α
Δ=

KB B

KfI
. (5)

Note that, by the definition of K, α ≤ 1 always holds.
In summary, improving α has two advantages. First, for the

lossless sampling of a given multiband signal, it would reduce
the required total sampling rate fs,total closer to the theoreti-
cal minimum requirement fs,total ≥ 2KB B. By the definition,
the higher α closer to 1 indicates that a portion of fs,total in-
efficiently consumed for taking samples of the unused bands
in Fig. 2 is reduced. By the reduced fs,total , the number of
channels M or the sampling rate fs of ADC at each channel
is reduced. Secondly, for given and fixed fs,total , we will show
throughout the rest of paper that improving α yields more in-
dependent equations for signal reconstruction, and thus, more
complex multiband signals with higher KB can be recovered
perfectly.

D. Limitations in Conventional MWC

For cMWC, the sampling efficiency depends entirely on the
hardware capabilities of PR signal generators, which may result
in severe implementation problems. The sampling efficiency of
cMWC depends on the specifications of PR signal generators
since fI ,cM W C is fixed to fp . By the definition, the only way
to improve the sampling efficiency αcM W C of cMWC has been
to make the repetition rate fp of the PR signals closer to B. As
discussed, the chip speed fc of PR signals should not be less

than the Nyquist rate, i.e., fc ≥ fN Y Q . Thus, from the relation
fp = fcL

−1 , the chip length L is the only free parameter to
control fp . Since B is usually far smaller than fN Y Q , to fit fp

closer to B, a very long L is needed. However, in applications
where fN Y Q reaches tens of gigahertz, due to the extremely high
chip speed fc , implementing PR signal generators having a high
chip length L poses problems in terms of power consumption
and fabrication area [13], [14]. Hence, other means to improve
α without relying on the chip length L of the PR signals are
very important.

For example, suppose one is observing on-air radar signals of
bandwidth up to B = 30 [MHz] over an extremely wide obser-
vation frequency scope fmax = 40 [GHz]. This setting is rea-
sonable in radar systems [21], [22]. We discussed that the chip
speed should not be less than the Nyquist rate, i.e., fc ≥ fN Y Q ,
where fN Y Q = 80 [GHz]. In this example, to achieve fp ≈ B,
the chip length needs to be L = 211 − 1. Although hardware
implementations of such PR signal generators having fc =
80 [GHz] and chip length greater than L = 211 − 1 were pro-
posed in the literature [23], [24], they require very large fabri-
cation areas and high power consumption, which has hindered
practical uses thus far.

E. Problem Formulation

The goal of this paper is to introduce the proposed sampling
system, Section III, which aims to improve the sampling ef-
ficiency α with given and fixed specifications fp , fc , and L
for PR signal generation. Throughout this paper, we assume
small L and B and a large fN Y Q = fc , which implies fp large
enough compared to B and makes room for improving α. That
is, fp ≥ pB for a natural number p > 1. Then, improving α
can be made without upgrading the PR signal generators and
causing the said implementation issues such as higher power
consumption and larger fabrication area discussed in the previ-
ous subsection. Thus, very wideband signals can be losslessly
sampled using commercially available PR signal generators and
ADCs, while this was not possible in the past with the conven-
tional cMWC system.

III. ALIASED MWC

We propose Aliased modulated wideband converters (AMWC).
AMWC renders the anti-aliasing rule fs ≥ WLP F used in cMWC
unnecessary, as revealed later. Instead, AMWC intentionally in-
duces and exploits aliasing at the ADC to regulate the splitting
interval fI and improve α without relying on the specification
of PR signals.

In this section, we first discuss our method to induce con-
trolled aliasing at the ADC and derive revised input-output re-
lationships of AMWC. We then investigate how to control the
aliasing for lossless sampling. Finally, we compare the sam-
pling efficiency of AMWC with that of cMWC.

A. Intentional Aliasing Method

The AMWC system is depicted in Fig. 1. As mentioned al-
ready, compared to cMWC, AMWC is designed to not satisfy the
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TABLE I
PARAMETER COMPARISONS BETWEEN AMWC AND CMWC

anti-aliasing rule at the ADC; rather, it is designed to induce in-
tentional aliasing by setting the bandwidth of LPF greater than
the sampling rate. In fact, in both cMWC and AMWC, an aliasing
is introduced first by the mixer. The effect of this first aliasing is
shown in (2), where the mixer shifts, gives weights, and has the
signal spectrum X(f) overlapped with shifted versions of itself
at intervals of fp . By the second aliasing at the ADC, the over-
lapped spectrum is aliased again at intervals of new sampling
rate of AMWC f ′

s , which is smaller than the filter bandwidth.
By adjusting the relationship between fp and f ′

s , the splitting
interval fI , which is the interval at which X(f) is split in the
outputs of AMWC, is regulated.

Specifically, we set the new sampling rate f ′
s of AMWC:

f ′
s =

q′

p
fp , (6)

where q′ is the new channel trading parameter for AMWC and an
odd number. The bandwidth of LPF is WLP F = q′fp ,and there-
fore, WLP F = pf ′

s for the integer aliasing parameter p > 1. We
will show that coprime p and q′ with q′ > p is necessary for no
information loss of X(f). The new sampling rate induces addi-
tional aliasing and regulates the splitting interval fI to improve
the sampling efficiency. We let

f ′
p

Δ=
fp

p
(7)

denote the least common shifting interval (LCS), which will
become the splitting interval of AMWC, i.e., fI ,AM W C = f ′

p .
With the introduction of new sampling rate f ′

s in (6), it be-
comes easier to compare AMWC with cMWC. Specifically, with
the sampling rate fixed, the number of equations for the input
reconstruction obtained by cMWC and that by AMWC can be com-
pared; with the number of equations fixed, the sampling rates for
the two can be compared. For a given sampling rate f ′

s = q′fp/p,
we will show in this section, the number of equations obtained
by AMWC is Mq′. For a given sampling rate fs = qfp , from
Section II-B, the number of equations obtained by cMWC is Mq.
With the sampling rate fixed the same, i.e., fs = f ′

s , we note
that q′ = qp. This implies that AMWC has p-times more equa-
tions than that of cMWC. Table I presents an example of the
increase in the number of equations of AMWC. With the number

of equations fixed, i.e., Mq = Mq′, on the other hand, AMWC
requires p-times smaller sampling rate than cMWC does.

In [18], a variation of MWC using a sampling rate similar to
(6) was considered, to analyze the noise factor incurred by the
aliasing of subbands. There appear coprime relations between
p and q′ similar to that in this paper. However, the purpose of
using coprime p and q′ in [18] was completely different from
that of this paper, i.e., they regulated the splitting interval of the
subbands to make a fair comparison with other filterbank-based
sampling systems with regard to the effect of noise. No relation
between p and q′ for lossless sampling and improving sampling
efficiency was studied in [18].

To support intentional aliasing, AMWC requires an ADC with
an operating bandwidth wider than its sampling rate. Such an
ADC can be implemented by using a wideband track-and-hold
amplifier (THA) developed by Hittite Corp. for the applications
of EW and ELLINT in [25]. This THA has an 18 GHz bandwidth
and can be integrated at the front end of commercially available
ADCs of sampling rate up to 4 giga-samples per second.

To show that theAMWC obtains Mq′ equations, we observe the
input-output relationships of the aliased samples ỹi [n] in Fig. 1.
Without loss of generality, we assume q′ = q and fs = pf ′

s . By
the sampling theorem, the DTFT of ỹi [n] is the sum of shifts of
Yi(f):

Ỹi

(
ej2πf T ′

s

)
=

∞∑
r=−∞

Yi (f − rf ′
s)

=
∞∑

r=−∞

∞∑
l=−∞

ci,lX(f−rf ′
s− lfp)H(f−rf ′

s),

(8)

where T ′
s

Δ= (f ′
s)

−1 and Yi(f) given in (2) is the spectrum of
the output of the LPF H(f). Within only a single period of

Ỹi(ej2πf T ′
s ) in (8), i.e., F′

s(f0)
Δ= [f0 , f0 + f ′

s) for any f0 ∈ R,
because the bandwidth of Yi(f) is limited by the LPF H(f),
most of the shifts Yi(f − rf ′

s) for sufficiently large |r| are ze-
ros. In other words, there exist (f0 , R1 , R2) such that the infi-
nite order of the outer summation in (8) is reduced to a finite
order, i.e.,

Ỹi

(
ej2πf T ′

s

)
=

R2∑
r=R1

∞∑
l=−∞

ci,lX(f−rf ′
s − lfp)H(f− rf ′

s)

(9)
for f ∈ F′

s(f0). Assuming H(f) = 1 for f ∈ FLP F , if f0 , R1 ,
and R2 satisfy the conditions of Lemma 1, the LPF responses
in (9) are replaced with H(f − rf ′

s) = 1 for f ∈ F′
s(f0). Note

that, when p = 1, i.e., no aliasing exists at the ADC, R1 = R2 ,
which is equivalent to cMWC.

Lemma 1: Equation (9) is equivalent to (8) if f0 , R1 , and R2
with R1 < R2 ∈ Z satisfy

R2 − R1 = p − 1, (10)

and

f0 =
(
R2 − p

2

)
f ′

s . (11)
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Proof: See Appendix A.
We represent the shifting indices rf ′

s + lfp in (9) in terms of
the LCS f ′

p . Then,

Ỹi

(
ej2πf T ′

s

)
=

R1 +p−1∑
r=R1

∞∑
l=−∞

ci,lX
(
f − (rq′ + lp) f ′

p

)
(12)

for f ∈ F′
s(f0). To merge the inner and outer summations in

(12), we use Lemma 2.
Lemma 2: If p and q′ are coprime, the linear combination

rq′ + lp for r ∈ P Δ= {R1 , . . . , R1 + p − 1} and l ∈ Z spans
every integer.

Proof: We consider the following congruent relationship

k ≡ rq′ (modp) . (13)

By modular arithmetic, if p and q′ are coprime, there always
exists one-to-one correspondence between r and k in the least
residue system modulo p. Since |P| = p, rq′(modp) for r ∈ P
in (13) spans every number in the least residue system of modulo
p. Hence, for r ∈ P and l ∈ Z, rq′ + lp = k mod p + lp spans
every integer. �

By denoting k = rq′ + lp in (12), we have the equivalent
relationship

Ỹi

(
ej2πf T ′

s

)
=

∞∑
k=−∞

di,k (R1 , p, q′) X
(
f − kf ′

p

)
(14)

for f ∈ F′
s(f0), where di,k (R1 , p, q′) are the new sensing coef-

ficients of AMWC. Proposition 3 provides the rule to obtain the
coefficients di,k from the Fourier coefficients ci,l of PR signals.

Proposition 3: For coprime p and q′, let us define

I(k;R1 , p, q′) Δ=
1
p

{
k − q′

[(
(q′)−1

k −R1

)
modp +R1

]}
,

(15)
where (q′)−1(modp) is the multiplicative inverse of q′ modulo
p. Equation (14) is equivalent to (12) if

di,k (R1 , p, q′) = ci,I (k ;R1 ,p,q ′) . (16)

Proof: See Appendix B.
In (14), the bandwidth of the subbands X(f − kf ′

p) for f ∈
F′

s(f0) equals f ′
s and is q′ times wider than their shifting interval

f ′
p . Therefore, every subband is correlated with the closest q′ −

1 subbands. By making these subbands spectrally orthogonal,
the M relationships for i = 1, . . . ,M are expanded to Mq′

equations to enhance the input reconstruction performance. A
similar work was done for cMWC through (3) to (4), which
further divides the observing frequency domain F′

s(f0) (14)
into q′ tiny domains. Specifically, for u = 0, . . . , q′ − 1, the u-
th tiny frequency domain is defined by F′

p(f0 + uf ′
p), where

F′
p (f0)

Δ=
[
f0 , f0 + f ′

p

)
. (17)

Then, the corresponding divided outputs have relationships

Ỹ
(u)
i

(
ej2πf T ′

p

)

=
∞∑

k=−∞
di,k

(
R1 , p, q′

)
X
(
f − kf ′

p

)
for f ∈ F′

p

(
f0 + uf ′

p

)
,

(18)

for u = 0, . . . , q′ − 1. Finally, we define the output
Z̃i,u (ej2πf T ′

p ) of AMWC as follows:

Z̃i,u

(
ej2πf T ′

p

)
Δ= Ỹ

(u)
i

(
ej2πf T ′

p

)∣∣∣
f =f +uf ′

p

=
∞∑

k=−∞
di,k+u (R1 , p, q′) X

(
f − kf ′

p

)

(19)

for f ∈ F′
p(f0). The final output z̃i,u [ñ] in the discrete-time

domain can be obtained by performing digital frequency modu-
lation and low-pass filtering on ỹi [n], as similarly done forcMWC
in (3). The specific design of the digital processing system is
shown in Fig. 1-(b).

Consequently, in (19), the input X(f) is split into spectrally
orthogonal subbands at intervals of f ′

p . Therefore, the splitting
interval of AMWC equals the LCS f ′

p :

fI ,AM W C = f ′
p

Δ=
fp

p
, (20)

which is p times lower than fI ,cM W C . By reducing the splitting
interval by controlling the aliasing parameter p, the sampling
efficiency of AMWC in (5) is improved. Fig. 3 illustrates how
AMWC regulates the splitting interval and improves the sampling
efficiency. In contrast, as discussed in Section II-D, regulating
the splitting interval of cMWC requires a very costly solution of
advanced PR signal generators with a larger chip length. Conse-
quently, both cMWC and AMWC obtain Mq = Mq′ equations for
input reconstruction, although AMWC consumes a p-times lower
total sampling rate (6). In Section III-C, we show that the Mq′

equations of AMWC are independent.

B. Matrix Form of Input–Output Relationship

For convenience of analyzing and solving linear simultaneous
Mq′ (19), we cast them as a matrix equation. To this end, we
first reduce the infinite summation in (19) to be finite. We then
discretize the continuous spectra to form a matrix with a finite
number of columns.

Since X(f) is band-limited to f ∈ FN Y Q , within the limited
frequency range f ∈ F′

p(f0), the infinite summation order in
(19) is reduced to a finite order as follow:

Z̃i,u

(
ej2πf T ′

p

)

=
N2∑

k=N1

di,k+u

(
R1 , p, q′

)
X
(
f− kfI ,AM W C

)
for f ∈F′

p (f0) ,

(21)

where N1 and N2 are, respectively, the smallest and largest
index k of the subbands X(f − kfI ,AM W C ) that contain some
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Fig. 3. Principle of improving the sampling efficiency by AMWC at a single analog channel is illustrated, with setting q = 3, q′ = q, p = 2, and M = 3.
(a) Spectral processing comparison between cMWC and AMWC. (b) Output relationship between cMWC and AMWC. (c) Input-output relationship of cMWC. (d) Input-
output relationship of AMWC. At the first stage, the input spectrum X (f ) is aliased by mixing it with the PR signal and low-pass filtering it. This aliased-version of
X (f ) is depicted as Yi (f ). In (a), the main difference between cMWC and AMWC is how to take time-samples of Yi (f ). cMWC prevents the spectrum from being

aliased in taking time-samples. AMWC, on the contrary, aims to make the spectrum Yi (f ) intentionally aliased once again, as depicted as Ỹi (f ) in (b). In (c), as a
result, the splitting-interval of cMWC is fp , whereas in (d), that of AMWC is halved to f ′

p . Thus, the sampling efficiency of AMWC becomes doubled (as p = 2).

active value of X(f) within f ∈ FN Y Q . Namely, these indices
N1 and N2 indicate X(f − kfI ,AM W C ) = 0 for k < N1 and
k > N2 , and thus help us obtain a matrix equation of (21) with
finite dimensions. To mathematically define N1 and N2 , note
that the k-th subband X(f − kfI ,AM W C ) in (21) observes the
frequency range

Fk
Δ=
[
f0 − kfI ,AM W C , f0 − kfI ,AM W C + f ′

p

)
(22)

of X(f). Then, the indices N1 and N2 are defined by

N1
Δ= min {k ∈ Z : Fk ∩ FN Y Q �= Ø}

= min {k ∈ Z : f0 − kfI ,AM W C < fmax}
(23)

and

N2
Δ= max {k ∈ Z : Fk ∩ FN Y Q �= Ø}

= max
{
k ∈ Z : f0 − kfI ,AM W C + f ′

p > −fmax
}

,
(24)

respectively. Using the parameters and relations given in Table II
and Lemma 1, the two problems (23) and (24) turn into

N1 = min
{

k ∈ Z : R2q
′ − (q′ + L) p

2
< k

}
(25)

and

N2 = max
{

k ∈ Z : R2q
′ − (q′ − L) p

2
+ 1 > k

}
(26)

respectively. As both q′ and L are odd positive integers, the so-
lutions of two problems (25) and (26) are determined as follow:

N1 = R2q
′ − (q′ + L) p

2
+ 1, (27)

and

N2 = R2q
′ − (q′ − L) p

2
. (28)

Finally, the output spectrum Z̃i,u (ej2πf T ′
p ) in (21) turns into a

linear combination of unknown subbands X(f − kfI ,AM W C )
for f ∈ F′

p(f0). The matrix-multiplication form Z = DX of
(21) is provided in (30) as shown at the bottom of the next page.
We denote the number of subbands, i.e., the dimension of matrix
X, by N , which equals

N = N2 − N1 + 1

= Lp. (29)
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TABLE II
SUMMARY OF AMWC PARAMETERS (CMWC WHEN p = 1 AND q ′ = q)

Since X(f) consists of KB narrow bands over the wide Nyquist
range, only a few of its subbands X(f − kfI ,AM W C ) for f ∈
F′

p(f0) have nonzero values. Therefore, the matrix X in (30) is
row-wise sparse with a sparsity K related to KB .

To draw a relationship between the analytic result (30) and
actually acquired samples z̃i,u [ñ], we convert the DTFT (30) to
the DFT of z̃i,u [ñ] by taking the frequency samples of the infi-
nite columns of Z and X. When the input is observed for a finite
duration To , taking samples of the spectrum (21) at frequency
intervals of Δf = T−1

o does not cause any information loss.
The samples of spectrum Z̃i,u (ej2πf T ′

p ) is obtained by taking
the DFT of the actually acquired time-samples zi,u [ñ]. Conse-
quently, for a finite observation time To = 2WT ′

p for a sample
length 2W , we rewrite the matrix-multiplication form (30) as

Z2W = DX2W , (31)

where columns of Z2W ∈ CM q ′×2W and X2W ∈ CN ×2W are
sub-columns of Z and X, respectively, at frequency intervals
of Δf . This concept will be exploited in Section IV to derive
a revised input-output relationship of AMWC for using LPF with
a non-flat frequency response.

Fig. 4. Independency rates under various p and q ′ for which randomly selected
Mq ′ columns of the sensing matrix D ∈ CM q ′×N of AMWC are independent.
When p and q ′ are coprime and q ′ > p, every selection of Mq ′ columns is
linearly independent.

C. Choosing the Aliasing Parameter

For a given total sampling rate, AMWC obtains more equations
used for input reconstruction than cMWC does. What remains is
to check if the extended equations provide independent infor-
mation. We reveal a condition on the aliasing parameter p that
necessitates the linear system (30) to be well-posed for every
K-sparse signal matrix X.

Proposition 4: There exists the unique solution of (30) for
every K-sparse signal X only if p and q′ are coprime and q′ > p.

Proof: See Appendix C.
Proposition 4 gives a condition q′ < p for coprime p and q′

that makes AMWC an ill-posed system. This indicates that, within
the set of coprime q′ > p, there may be a subset that makes
AMWC guarantees the existence of unique solution of (30) for
every K-sparse signal matrix X.

In [11], a CS result states there exist the unique solution of
a multiple measurement vector (MMV) CS equation Z = DX
for every K-sparse signal X if

2K < spark (D) − 1 + rank (X) , (32)

where spark is the minimum number of linearly dependent
columns in D. Meanwhile, the spark of an Mq′-by-N ma-
trix is upper bounded to Mq′ + 1 by the Singleton bound [26].
Based on these results, we find a sufficient condition on p and
q′ from Monte Carlo experiments in Section V-A (Fig. 4) that
maximizes the spark of D.

Main Result 5. Let Mq′ ≥ 2K. For every K-sparse signal
X, there exists the unique solution of (30), and therefore, AMWC

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Z1,0
(
ej2πf T ′

p
)

...

Z1,q ′−1
(
ej2πf T ′

p
)

Z2,0
(
ej2πf T ′

p
)

...

ZM,q ′−1
(
ej2πf T ′

p
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Δ=Z∈CM q ′×∞

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1,N1 d1,N1 +1 · · · d1,N2

...
...

...
d1,N1 +(q ′−1) d1,N1 +(q ′−1)+1 · · · d1,N2 +(q ′−1)

d2,N1 d2,N1 +1 · · · d2,N2

...
...

...
dM,N1 +(q ′−1) dM,N1 +(q ′−1)+1 · · · dM,N2 +(q ′−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Δ=D∈CM q ′×N

⎛
⎜⎜⎜⎜⎝

X
(
f − N1f

′
p

)
X
(
f − (N1 + 1) f ′

p

)
...

X
(
f − N2f

′
p

)

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Δ=X∈CN ×∞

(30)
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does not lose any information of K-sparse signal X, if p and q′

are coprime and q′ > p.
Meanwhile, we choose p to minimize the maximum of the

sparsity K, which is the number of nonzero subbands of X(f) at
splitting intervals fI ,AM W C = f ′

p . The sparsity K is dependent
on the center frequencies of KB multibands and their maximum
bandwidth B. When fI ,AM W C ≥ B, every multiband occupies
at most two subbands, which implies K ≤ 2KB . On the other
hand, when fI ,AM W C < B, some multibands may occupy more
than two subbands, which provides an opportunity to increase
K beyond 2KB . Hence, we recommend choosing the aliasing
parameter p as

p ≤
⌊

fp

B

⌋
. (33)

D. Sampling Efficiency Analysis

We compare the sampling efficiencies of AMWC, αAM W C ,
and cMWC, αcM W C , defined in (5). The sampling efficiencies
are functions of the sparsity K, which is a random variable in
general. We denote the sparsity of cMWC and AMWC by KcM W C

and KAM W C , respectively. To make them deterministic, we put
assumptions on KcM W C and KAM W C that in both cMWC and
AMWC, the KB bands in X(f) respectively occupies exactly
one subband, i.e., KcM W C = KAM W C = KB . This occurs
with high probability when fpp

−1 � B and the center frequen-
cies of multibands are far enough apart from each other with a
small KB .

Under the assumption above, the sampling efficiencies of
cMWC and AMWC are obtained by

αcM W C =
KB B

KcM W C fI ,cM W C
=

B

fp
, (34)

and

αAM W C =
KB B

KAM W C fI ,AM W C
=

pB

fp
, (35)

respectively. Note that if p = 1, AMWC and cMWC are completely
identical, and therefore αAM W C = αcM W C . When p > 1, the
intentional aliasing of AMWC takes effect and improves the sam-
pling efficiency proportionally to p.

IV. NON-IDEAL LOW-PASS FILTERS

The input-output relationship in the previous section is based
on the ideal LPF H(f) having a flat pass-band response. How-
ever, in real applications, the pass-band response of an LPF
significantly fluctuates. In the case of cMWC, a post digital-
processing technique to equalize the effects of non-flat filter
responses was proposed in [27]. Unfortunately, owing to the
aliasing at ADC, the equalizations cannot be applied to AMWC.
In this section, we instead provide a revised input-output rela-
tionship of AMWC based on the fluctuated LPF G(f). Without
loss of generality, we assume all analog channels use the same
LPF. We assume that the response G(f) is nonzero and known
within the pass-band f ∈ FLP F and is zero for f ∈ FLP F

C .
We derive a revised input-output relationship reflecting the

effect of G(f). Paradoxically, our empirical results in Sec-
tion V conclude that, for a given sampling efficiency, an ir-
regularly fluctuated filter response is helpful to further de-
crease the total sampling rate required for lossless sub-Nyquist
sampling.

The derivation starts from substituting H(f) in the input-
output relations of (8)–(12) with G(f). Without loss of gener-
ality, we assume q′ = q and fs = pf ′

s . Equation (9) then turns
into

Yi

(
ej2πf T ′

s

)

=
R2∑

r=R1

∞∑
l=−∞

ci,lX
(
f − (rq′ + lp) f ′

p

)
G
(
f − rq′f ′

p

)
(36)

for f ∈ F′
s(f0), where R1 and R2 are chosen from Lemma 1.

By Lemma 2, we substitute rq′ + lp = k and merge the outer
and inner summations:

Yi

(
ej2πf T ′

s

)

=
N2∑

k=N1

di,k (R1 , p, q′) X
(
f − kf ′

p

)
G
(
f − γp (k) f ′

p

)
(37)

for f ∈ F′
s(f0), where the sensing coefficients di,k (R1 , p, q′),

N1 , and N2 are, respectively, computed from Proposition 3,
(27), and (28). We define the function γp of k that maps k in
(37) to the corresponding rq′ in (36) so that the two equations
are equivalent. Lemma 6 reveals the mapping rule for γp(k).

Lemma 6: Under the conditions of Lemma 1 and
Lemma 2, (36) and (37) are equivalent if the mapping rule
of γp is assigned by

γp (k) = k − pI (k;R1 , p, q′) , (38)

where the picking regularity I(k;R1 , p, q′) is defined in (15).
Proof: See Appendix B.
As done in (14) to (19), the final outputs z̃i,u [ñ] for u =

0, . . . , q′ − 1 are obtained by processing the time-samples yi [n]
of the spectrum (37) using the digital system given in Fig. 1-(b).
Then, those spectra Zi,u (ej2πf T ′

p ) have the following input-
output relationships:

Z̃i,u

(
ej2πf T ′

p

)

=
N2∑

k=N1

di,k+u (R1 , p, q′) X
(
f − kf ′

p

)
G
(
f + uf ′

p

− γp (k + u) f ′
p

)

=
N2∑

k=N1

di,k+u (R1 , p, q′) G
(
f− γ′

p (k, u) f ′
p

)
X
(
f− kf ′

p

)

(39)

for f ∈ F′
p(f0), where γ′

p(k, u) Δ= γp(k + u) − u.
Consequently, the linear coefficients on the subbands

X(f − kf ′
p) in (39) become frequency-selective. To numeri-

cally solve (39), we discretize the continuous frequency, as
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discussed in Section III-B. We assume that the signal is ob-
served for the finite duration To = 2WT ′

p , where 2W is the
length of the discretized signal. Then, the samples of spectrum
are defined by

Z̃i,u [w] Δ= Z̃i,u

(
ej2πf T ′

p

)∣∣∣
f =wT −1

o

=
N2∑

k=N1

di,k+u

[
G
(
f − γ′ (k, u) f ′

p

)
X
(
f − kf ′

p

)]
f =wT −1

o

=
N2∑

k=N1

b(i,u),k [w] X
(
f − kf ′

p

)∣∣
f =wT −1

o
(40)

for w ∈ W Δ= {f0To, . . . , (f0 + f ′
p)To − 1}, where the

frequency-selective sensing coefficients b(i,u),k [w] are
defined as

b(i,u),k [w] Δ= di,k+uG
(
f − γ′ (k, u) f ′

p

)∣∣
f =wT −1

o
(41)

for w ∈ W . Note that, by the relation between DFT and DTFT,
the spectrum samples (40) are obtained by taking the DFT as
follows:

Zi,u [w] =
2W −1∑
ñ=0

zi,u [ñ]ej2π ñ
2 W (w mod 2W ) for w ∈ W, (42)

where zi,u [ñ] are the output sequences of AMWC.
For convenience, we represent the input-output relation of

(40) for w ∈ W in a vector form as

Z [w] = B [w]X [w] , (43)

where the elements of the output column vector Z[w] ∈
CM q ′

are Zi,u [w] for row indices i = 1, . . . ,M and u =
0, . . . , q′ − 1. The unknown column vector X[w] ∈ CN con-
sists of X(f − kf ′

p)|f =wT −1
o

for row indices k = N1 , . . . , N2 .
The frequency-selective sensing matrix B[w] ∈ CM q ′×N con-
sists of b(i,u),k [w] with row indices i and u and column index k.
The CS model (43) is called MMV with different sensing ma-
trices, for which many numerical solvers have been developed
[9], [28].

The existence of unique solution of (43) depends on the spark
of sensing matrix B[w]. Note that from (41), the elements of
B[w] are multiplications of the elements of D and the samples
of the low pass filter G(f). In [29], Davies et al. proved that the
spark of a matrix from an independent continuous distribution
achieves the Singleton bound with probability one. When the
filter response G(f) is designed to be irregular, i.e., its samples
are drawn from an independent random distribution, the spark
of B[w] after multiplication with the samples of G(f) should
grow closer to achieving the Singleton bound. When the spark
of B[w] indeed achieves the Singleton bound and the condition
(32) holds, for every K-sparse signal X the unique solution to
(43) always exists.

V. SIMULATION

A. Spark of Sensing Matrix

To support Main Result 5, the sufficiency of lossless sub-
Nyquist sampling by AMWC, we demonstrate that the sensing
matrixDwith coprime parameters q′ > p achieves the Singleton
bound.

Monte Carlo experiments were performed under various set-
tings of p and q′. With L = 127, we used the maximum length
sequences of length L as the chip values of PR signal for each
channel i = 1, . . . ,M . We set the number of analog channels to
M = 3. For 5 × 105 independent trials, we randomly selected
Mq′ columns of D and counted the rate for which the selected
columns are linearly independent.

Fig. 4 shows how the linear independency of columns in D
varies as p and q′ change. The white points in the plot indicate
the pairs of p and q′ where every selection of Mq′ columns
of D is linearly independent. The dark points indicate that at
least one selection of Mq′ columns has linear dependency. The
upper triangular area indicates the region of (p, q′) with q′ > p
where all points except for the points that p and q′ are not
coprime belong to the white set. That is, for coprime q′ > p,
all the selections of Mq′ columns are linearly independent, and
thus the spark of D achieves the Singleton bound. This result is
consistent with Proposition 4 and supports Main Result 5.

B. Reduction of Total Sampling Rate

We demonstrate that, with the improved sampling efficiency,
AMWC indeed reduces the total sampling rate required for lossless
sub-Nyquist sampling for given specifications of PR signals.
Additionally, when the frequency response of low-pass filters is
drawn at random, the reduction of total sampling rate is boosted.
The reduction of total sampling rate reduces the number of
channels as well as the sampling rate of each channel.

For simulation, we generated real-valued multiband inputs
x(t) as the sum of KB narrow band signals of bandwidth
B = 5 [MHz]. The energies of narrow bands are equal. The
center frequencies of narrow band signals were drawn at ran-
dom, while those spectra were not overlapped with each other.
The maximum frequency of x(t) does not exceed fmax =
10 [GHz]. The signals last for the duration To = 2WT ′

p seconds
with W = 15. The parameters of PR signals were L = 127,
fp = 2fmaxL

−1  157.48 [MHz]. We used maximum length
sequences with different initial seeds as the chip values of PR
signals for channel indices i = 1, . . . , M. We expressed the con-
tinuous signals in simulation on a dense discrete-time grid with
intervals of (2q′fN Y Q )−1 seconds. The bandwidth of low-pass
filters and the sampling rate followed the parameter relations
of AMWC, i.e., WLP F = q′fp and f ′

s = p−1WLP F . We consid-
ered the ideal LPF H(f) with a flat passband response and the
non-ideal LPF G(f) with an irregular passband response. In
simulation, the impulse response of G(f) was drawn initially
from the normal distribution, windowed to limit the filter band-
width, and then held fixed throughout the whole simulation. We
call G(f) the random LPF with this irregular passband response.
Under various settings of p, q′, and KB with coprime q′ > p, we
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Fig. 5. Rate of successful support recovery of cMWC and AMWC as a function of total sampling rate for various aliasing parameters p and multibands KB . The
number of channels was fixed to M = 3. Ideal ((a)-(b)) and random ((c)-(d)) low-pass filters were used. (a) KB = 10, ideal low-pass filters. (b) KB = 20, ideal
low -pass filters. (c) KB = 10, random, low-pass filters. (d) KB = 20, random low-pass filters.

Fig. 6. Rate of successful support recovery of cMWC and AMWC as a function of total sampling rate when SNR=3 [dB]. The number of channels was fixed to
M = 3, and the number of multibands in X (f ) is fixed to KB = 10. (a) Ideal low-pass filters. (b) Random low-pass filters.

measured the rate of successful recovery of the supports of X by
the distributed CS orthogonal matching pursuit (DCS-SOMP)
algorithm [28]. For single supports estimation, DCS-SOMP was
run for 2KB iterations. It aimed to find one distinct support per
each iteration out of K supports, given K ≤ 2KB . Once the
supports are found, x can be reconstructed by the least squares.
The successful support recovery was declared if S ⊆ Ŝ , where
S and Ŝ are, respectively, the true and found supports. The
support recovery rate in simulations was defined as the number
of successful support recovery divided by total 500 trials with
randomly regenerated x(t).

Fig. 5 shows the support recovery rate of AMWC as a function
of total sampling rate when M = 3. We set KB = {10, 20}.
Plots (a) and (b) are results of using the ideal LPF H(f). It is
demonstrate that compared to cMWC, AMWC reduces the total
sampling rate required for reconstruction of given multiband
signals. Inversely, for a given total sampling rate, AMWC takes

TABLE III
THE TOTAL SAMPLING RATE REQUIRED FOR 90% SUPPORT RECOVERY RATE

WITH VARIOUS SNR AND VALUES OF p

The floating numbers in cells indicate the minimal total sampling rate in GHz which
achieves the support rate recovery of 90%. The number of analog channels and multi-
bands were set to M = 3 and KB = 10, respectively.
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Fig. 7. Rate of successful support recovery of cMWC and AMWC as a function of sampling rate of each channel for various aliasing parameters p and the number
of channels M . The number of multibands was fixed to KB = 10. (a) Ideal low-pass filters. (b) Random low-pass filters.

sub-Nyquist samples of more multibands than cMWC does, with-
out information loss.

However, when p increases, although the sampling efficiency
is improved proportionally to p from (35), the total sampling rate
does not decrease anymore. This is caused by the lack of degrees
of freedom in the sensing matrix D. The elements of D are
made of the Fourier coefficients ci,l of the PR signals, and most
elements are repeatedly reused. Although it was demonstrated in
the previous sub-section that D has the maximum spark and well
preserves the sparse signal X, recovering X by non-optimal CS
algorithms requires D to have a large degrees of freedom [10].
This limitation is overcome by using the random LPF G(f).

Plots (c) and (d) are the results of using the random LPF G(f).
It is shown that AMWC further reduces the total sampling rate re-
quired for successful support recovery as the sampling efficiency
improves. Consequently, the random response of G(f) enhances
the degrees of freedom of sensing matrices B[w] for different
frequency indices w and improves the recovery performance by
the non-optimal algorithm DCS-SOMP. This enhancement can-
not be applied for cMWC, since the effect of random response
becomes removable by equalization [27].

In Fig. 6, additive white Gaussian noise n(t) of SNR =
3 [dB] was considered, where the signal-to-ratio noise (SNR)

in decibel is defined as SNR Δ= 10 log10(‖x‖2/‖n‖2). We fixed
KB = 10. Plots (a) and (b) are the results for using the ideal
LPF and the random LPF, respectively. Despite the additive
noise, the results show that AMWC still reduces the total sam-
pling rate or improves the recovery performance. Including the
results in Fig. 6, we conducted more simulations under various
SNR ={−6,−3, 0, 3, 12} [dB] but omitted to repeat the plots as
the graphs exhibit the similar pattern. Instead, we summarized
the minimal sampling point results in Table III, where the min-
imal sampling point is defined as the minimal total sampling
rate which achieves the support recovery rate of 90%. In the
results, as p and/or SNR increase, the minimal sampling point
gets smaller, which is expected.

Fig. 7 demonstrates that AMWC reduces the number of chan-
nels required for the support recovery. We set KB = 10 and
compared the support recovery rates of cMWC and AMWC for
various M and given sampling rate of each channel. In plot (a),
the support recovery rate of AMWC slightly outperforms cMWC,
although AMWC uses fewer channels with a lower sampling rate
of each channel than cMWC. Additionally, in plot (b), when the

random low-pass filter is used, AMWC using a single channel
outperforms cMWC using six channels.

As the increase in the number of rows in Z in (30) or in
(43) by p-times, the performance of AMWC is improved but
the computational complexity (CC) for the support recovery
with AMWC inevitably increases as well. The CC of a com-
pressed sensing algorithm depends on the sizes of matrices in
the linear inverse problem Z = DX. Let Qequation , Qsample ,
and Qsubband denote the number of rows and columns of Z
and the number of rows of X for cMWC problem, respectively.
We make note of the report that the CC of DCS-SOMP with
cMWC is O(Q2

equationQsubbandQsample) [28]. When the two
total sampling rates fs,total of cMWC and f ′

s,total of AMWC are
equal to each other, the number of rows of Z of AMWC becomes
pQequation and that of X becomes pQsubband , respectively, as
discussed in Section III-A. In addition, since the bandwidth of
the subbands ofAMWC is p-times narrower than that ofcMWC, the
number of columns of Z becomes p−1Qsample . Thus, the CC of
DCS-SOMP with AMWC is O(p2Q2

equationQsubbandQsample).

VI. CONCLUSION

We proposed a new MWC system called AMWC which im-
proves the sampling efficiency by intentionally inducing an
aliasing at the ADC. We showed that the improved sampling
efficiency leads to reduction on the sampling rate and num-
ber of channels required for obtaining a certain number of
equations for signal reconstruction. We provided conditions
that the sensing matrix of the equations obtained by AMWC
achieves the Singleton bound, and thus no loss from sampling
is guaranteed. In summary, the improved sampling efficiency of
AMWC reduces the total sampling rate required for lossless sam-
pling. In other words, with fewer channels and less sampling
rate of each channel than those of the conventional MWCs, a
multiband signal can be captured without information loss by
AMWC. Conversely, for given hardware resources, the input re-
construction with AMWC outperforms the conventional MWCs.
Extensive simulation demonstrated that AMWC indeed reduces
the total sampling rate or improves the reconstruction perfor-
mance significantly. Additionally, it was demonstrated that the
benefits ofAMWC are maintained in various SNRs. Moreover, use
of LPF with random passband response, it was shown, further
improves the sampling efficiency.
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APPENDIX A
PROOF OF LEMMA 1

With the relationship fLP F = pf ′
s , the pass-band fre-

quency of H(f − rf ′
s) in (8) is given by f ∈ [rf ′

s

− pf ′
s

2 , rf ′
s + pf ′

s

2 ). When we observe (8) only for a single pe-
riod F′

s(f0), since WLP F > f ′
s , some of H(f − rf ′

s), the pass
bands of which include the frequency domain F′

s(f0), can be
replaced by the constant frequency response. Without loss of
generality, we set the pass-band response to one, i.e., H(f) = 1
for f ∈ FLP F . Then, for r ∈ Z satisfying

rf ′
s −

pf ′
s

2
≤ f0 (44)

and

rf ′
s +

pf ′
s

2
≥ f0 + f ′

s , (45)

the shifts of filter responses in (8) are replaced with
H(f − rf ′

s) = 1 within f ∈ F′
s(f0). Let R1 and R2 be the

minimum and maximum integers r satisfying (44) and (45),
respectively. Additionally, for (8) and (9) to be equivalent, we
add some conditions on R1 and R2 such that the pass bands of
H(f − rf ′

s) for r smaller than R1 and greater than R2 have no
intersection with f ∈ F′

s(f0)C . In other words, we have follow-
ing conditions on R1 and R2 :

(R2 + 1) f ′
s −

pf ′
s

2
≥ f0 + f ′

s (46)

and

(R1 − 1) f ′
s +

pf ′
s

2
≤ f0 (47)

so that H(f − rf ′
s) = 0 within f ∈ F′

s(f0) for r < R1 or r >
R2 . By combining (44) and (46), we have a condition on R2
that

R2f
′
s −

pf ′
s

2
= f0 , (48)

and from (45) and (47), we have a condition on R1 that

R1f
′
s +

pf ′
s

2
= f0 + f ′

s . (49)

Finally, combining (48) and (49) provides the conditions of
Lemma 1. �

APPENDIX B
PROOFS OF PROPOSITION 3 AND LEMMA 6

A. Proof of Proposition 3

We track the input-output relation starting from (12):

Yi

(
ej2πf T ′

s

)
=

R2∑
r=R1

∞∑
l=−∞

ci,lX
(
f − (lp + rq′) f ′

p

)

for f ∈ F′
s(f0), where R1 , R2 , and f0 satisfy Lemma 1. Alter-

natively, by using r′ = r − R1 , we have

Yi

(
ej2πf T ′

s

)
=

R2 −R1∑
r ′=0

∞∑
l=−∞

ci,lX
(
f − (

lp +
(
r′ + R1

)
q′
)
f ′
p

)

=
p−1∑
r ′=0

∞∑
l=−∞

ci,lX
(
f − (

lp +
(
r′ + R1

)
q′
)
f ′
p

)

(50)

for f ∈ F′
s(f0), where R2 − R1 = p − 1 by Lemma 1. We re-

place the term (r′ + R1)q′ in (50) by a combination of its quo-
tient μp(r′; q′, R1) and remainder ρp(r′; q′, R1) by divisor p,
which are, respectively, defined by

μp (r′; q′, R1)
Δ=
⌊

(r′ + R1) q′

p

⌋
(51)

and

ρp (r′; q′, R1)
Δ= ((r′ + R1) q′) mod p. (52)

By substituting (r′ + R1)q′ = p · μp(r′; q′, R1) + ρp(r′; q′,
R1) into (50), we have

Yi

(
ej2πf T ′

s

)

=
∞∑

l=−∞

p−1∑
r ′=0

ci,lX
(
f − (lp + p · μ (r′) + ρ (r′)) f ′

p

)

=
∞∑

l=−∞

p−1∑
r ′=0

ci,l−μ(r ′)X
(
f − (lp + ρ (r′)) f ′

p

)
(53)

for f ∈ F′
s(f0), where the notations μp(r′; q′, R1) and

ρp(r′; q′, R1) are simplified to μ(r′) and ρ(r′), respectively.
When p and q′ are coprime, by modular arithmetic, there exists
one-to-one correspondence between ρ(r′) and r′ modulo p. We
arrange the order of inner summation of (53) by introducing a

utility variable v
Δ= ρ(r′) ∈ {0, . . . , p − 1}:

Yi

(
ej2πf T ′

s

)

=
∞∑

l=−∞

p−1∑
v=0

ci,l−μ(ρ−1
p (v ;q ′,R1 ))X

(
f − (lp + v) f ′

p

)
(54)

for f ∈ F′
s(f0), where the inverse ρ−1

p (v; q′, R1) of the remain-
der ρp(r; q′, R1) modulo p is computed by

ρ−1
p (v; q′, R1)

Δ=
(
v(q′)−1 − R1

)
mod p, (55)

where (q′)−1 mod p is the multiplicative inverse of q′ modulo
p. We simplify the expression ρ−1

p (v; q′, R1) to ρ−1(v). From
Lemma 2, we can merge the inner and outer summations of (54)
as follows:

Yi

(
ej2πf T ′

s

)
=

∞∑
k=−∞

ci,� k
p �−μ(ρ−1 (k mod p))X

(
f − kf ′

p

)

(56)
for f ∈ F′

s(f0).
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We now simplify the picking regularity of the coefficients
ci,J (·) in (56), which is defined by

J (k;R1 , p, q′) Δ=
⌊

k

p

⌋
− μ

(
ρ−1 (k mod p)

)

=
⌊

k

p

⌋
− μ

(
ρ−1 (k)

)
. (57)

Meanwhile, by the definitions of the quotient μ(·) and re-
mainder ρ(·), we have

μ
(
ρ−1 (k)

)
=

⌊(
ρ−1 (k) + R1

)
q′

p

⌋

=
1
p

((
ρ−1 (k) +R1

)
q′−

((
ρ−1 (k)+R1

)
q′
)

mod p
)

=
1
p

((
ρ−1 (k) + R1

)
q′ − ρ

(
ρ−1 (k)

))

=
1
p

((
ρ−1 (k) + R1

)
q′ − k mod p

)
. (58)

By substituting (58) into (57),

J (k;R1 , p, q′) =
⌊

k

p

⌋
+

k mod p

p
−

(
ρ−1 (k) + R1

)
q′

p

=
k

p
−

(
ρ−1 (k) + R1

)
q′

p

=
1
p

{
k − q′ ·

[(
k(q′)−1 − R1

)
mod p + R1

]}

= I (k;R1 , p, q′) . (59)

Thus, the proof is completed.

B. Proof of Lemma 6

We track the input-output relation starting from (36):

Yi

(
ej2πf T ′

s

)

=
R2∑

r=R1

∞∑
l=−∞

ci,lX
(
f − (rq′ + lp) f ′

p

)
G
(
f − rq′f ′

p

)

for f ∈ F′
s(f0). Under the conditions of Lemma 1 and

Lemma 2, by using r′ Δ= r − R1 , we have

Yi

(
ej2πf T ′

s

)

=
R2 −R1∑

r ′=0

∞∑
l=−∞

ci,lX
(
f − (lp + (r′ + R1) q′) f ′

p

)

G
(
f − (r′ + R1) q′f ′

p

)

=
p−1∑
r ′=0

∞∑
l=−∞

ci,lX
(
f − (lp + (r′ + R1) q′) f ′

p

)

G
(
f − (r′ + R1) q′f ′

p

)
(60)

for f ∈ F′
s(f0). As done in (50) to (54), we introduce

a utility variable v
Δ= ρ(r′) and substitute (r′ + R1)q′ = p ·

μ(ρ−1(v)) + v into the inputs of X and G in (60). It then follows

Yi

(
ej2πf T ′

s

)

=
∞∑

l=−∞

p−1∑
v=0

(
ci,J (k ;R1 ,p,q ′)X

(
f − (lp + v) f ′

p

)
· G (

f − (
pμ

(
ρ−1 (v)

)
+ v

)
f ′

p

)
)

(61)

for f ∈ F′
s(f0). After merging the inner and outer summations

based on Lemma 2, we obtain (37)

Ỹi

(
ej2πf T ′

s

)

=
∞∑

k=−∞
di,k (R1 , p, q′) X

(
f − kf ′

p

)
G
(
f − γp (k) f ′

p

)

for f ∈ F′
s(f0), where γp(k) is defined by

γp (k) Δ= pμ
(
ρ−1 (k mod p)

)
+ k mod p

= pμ
(
ρ−1 (k)

)
+ k mod p. (62)

By (58) and the definition of ρ−1(k) in (55), (62) turns into

γp (k) =
(
ρ−1 (k) + R1

)
q′

= q′
[(

kq−1 − R1
)

mod p + R1
]
. (63)

By the definition of I(k;R1 , p, q′) in (15), we finally have

γp (k) = k − pI (k;R1 , p, q′) . (64)

Thus, the proof is completed. �

APPENDIX C
PROOF OF PROPOSITION 4

We first show that if p > q′ for coprime p and q′, at least
two columns of D are identical. Then, from a result in [11],
this violates a necessary condition for the unique existence of a
K-sparse solution.

We first mathematically formulate the meaning of two
columns of D being identical. From Proposition 3 and (30),
the entries di,k+u (R1 , p, q′) of D are picked from ci,I (k ;R1 ,p,q ′) ,
where k and u in di,k+u represent the column and row position,
respectively. To search for identical columns in D, we investi-
gate the existence of pairs (k∗, ω∗) of a column index k∗ and
shift index ω∗ such that di,k ∗+u = di,k ∗+u+ω ∗ for every row

index u ∈ Q Δ= {0, . . . , q′ − 1}. In other words, we find pairs
(k∗, ω∗) satisfying

I (k∗ + ω∗ + u;R1 , p, q′) = I (k∗ + u;R1 , p, q′) . (65)

for every u ∈ Q, where the function I is defined in (15). We use

a computation result of I(k) Δ= I(k;R1 , p, q′) in the second line
of (59):

I (k) =
k

p
−

(
ρ−1 (k) + R1

)
q′

p
, (66)

where ρ−1(k) Δ= ρ−1
p (k; q′, R1) is a function modulo p de-

fined in (55) by ρ−1
p (k; q′, R1)

Δ= (k(q′)−1 − R1) mod p. By
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substituting (66) into (65), we rewrite (65) as

I (k∗ + ω∗ + u) = I (k∗ + u)
⇔ ρ−1 (k∗ + ω∗ + u) = ρ−1 (k∗ + u) + ω ∗

q ′ .
(67)

We show that, if p > q′ and coprime, there exists at least one
pair (k∗, ω∗) of the column index k∗ and shifting index ω∗ that
satisfy (67) for every row index u ∈ Q. Before proceeding, we
check a computation of ρ−1(k + q′ + u) for every u ∈ Q. By
the definition, it follows

ρ−1 (k + q′ + u
)

=
((

k + q′ + u
) (

q′
)−1 − R1

)
mod p

=
((

(k+ u)
(
q′
)−1−R1

)
mod p + 1

)
mod p

=
(
ρ−1 (k + u) + 1

)
mod p. (68)

Note that (68) indicates when ω∗ is chosen to q′, it satisfies
(67) , for k∗ ∈ Z such that ρ−1(k∗ + u) < p − 1.

What task remains is to show the existence k∗ satisfies
ρ−1(k∗ + u) < p − 1 for every row index u ∈ Q, which im-
plies the existence of identical columns in D and completes
the proof. To this end, we find a set of k(modp) such that
ρ−1(k + u) = p − 1. From the definition, we have

ρ−1 (k + u
) ≡ p − 1 (modp)

(
k + u

)
(q′)−1 − R1 ≡ p − 1 (modp)

k ≡ (p − 1 + R1) q′ − u (modp)

k ≡ (R1 − 1) q′ − u (modp) . (69)

Note that (R1 − 1)q′ is a constant. Since the right-hand side of
(69) varies by u ∈ Q, the cardinality of set of k(modp) such that
ρ−1(k + u) = p − 1 is |Q| = q′. Since p > q′, this implies there
exists k∗(modp) ∈ {0, 1, . . . , p − 1} such that ρ−1(k∗ + u) <
p − 1, and k∗ ∈ Z such that ρ−1(k∗ + u) < p − 1 exists as well.

Consequently, if coprime p > q′, there must exist at least
one pair of identical columns in D. The existence of identical
columns in D implies spark(D) = 2. Theorem 2 in [11] states
that there exist the unique solution of a linear equation Z = DX
for every K-sparse solution X only if

K <
spark (D) − 1 + rank (X)

2
, (70)

where spark is the minimum number of linearly dependent
columns in D. If spark(D) = 2, for signals X with rank(X) ≤
2K − 1, the condition p > q′ violates (70). �
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Abstract: Ultrasound images are corrupted with multiplicative noise known as speckle, which
reduces the effectiveness of image processing and hampers interpretation. This paper proposes a
multiplicative speckle suppression technique for ultrasound liver images, based on a new signal
reconstruction model known as sparse representation (SR) over dictionary learning. In the proposed
technique, the non-uniform multiplicative signal is first converted into additive noise using an
enhanced homomorphic filter. This is followed by pixel-based total variation (TV) regularization
and patch-based SR over a dictionary trained using K-singular value decomposition (KSVD). Finally,
the split Bregman algorithm is used to solve the optimization problem and estimate the de-speckled
image. The simulations performed on both synthetic and clinical ultrasound images for speckle
reduction, the proposed technique achieved peak signal-to-noise ratios of 35.537 dB for the dictionary
trained on noisy image patches and 35.033 dB for the dictionary trained using a set of reference
ultrasound image patches. Further, the evaluation results show that the proposed method performs
better than other state-of-the-art denoising algorithms in terms of both peak signal-to-noise ratio and
subjective visual quality assessment.

Keywords: ultrasound; speckle reduction; medical image processing; sparse representation;
K-singular value decomposition; dictionary learning; B-mode imaging

1. Introduction

In the last 20 years, there has been growing interest in the use of ultrasound imaging for a
variety of applications, such as observing the blood flow through an organ or other structures;
determining bone density; imaging the heart, a fetus, or ocular structures; or diagnosing cancers [1,2].
Ultrasound imaging has been widely applied owing to its ability to produce real-time images and
videos. Ultrasound images are captured in real-time by transmitting high frequency sound waves
through body tissue. It comprises an array of transducer elements that sequentially echo the signal
for each spatial direction to generate a raw line signal. The scan is converted to construct a Cartesian
image from the processed raw line signal [2].

In recent years, many researchers have attempted to develop computer-aided diagnostic (CAD)
systems for diagnosing liver and breast cancers [3–6] based on ultrasound imaging. The aim of
these systems is to differentiate benign and malignant lesion tissues as well as cysts [7]. A CAD
system carries out the diagnosis in four stages: data preprocessing, image segmentation, feature
extraction, and classification [4]. Data preprocessing is the first and most vital step in the CAD system
process because it reconstructs an image without eliminating the important features by reducing
signal-dependent multiplicative noise called speckle [8].

The development of a precise speckle reduction model is an important step to achieve efficient
denoising filter design. Recent review articles [4,9], reported that speckle reduction filters are
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categorized into two broad approaches: spatial filtering and multiscale methods. Techniques under
spatial domain filtering include enhanced Frost filtering [10], Lee filtering [11], mean filtering [12], Wiener
filtering [13], Kuan filtering [14], and median filtering [15]. Spatial filters utilize local statistical properties
to reduce speckle noise. However, small details may not be preserved [9]. Several methods [16–19]
use multiscale filtering, which uses the wavelet transform to preserve the image signal regardless
of its frequency content. Donoho et al. [20] proposed reducing noise in the wavelet domain by
soft thresholding. However, their approach lacked translation invariance when using the discrete
wavelet transform. This is resolved by eliminating up and down samplers in the wavelet transform
by using a stationary wavelet transform [21], which is a redundant technique because the number of
input and output samples at each level is the same. A multiresolution technique called translation
invariant image enhancement was proposed in [22]. The proposed technique incorporates noise
reduction and directional filtering. Directional filtering is executed using eigenvalues by analyzing the
structure of each pixel’s neighborhood. Rudin et al. [23,24] and Perona et al. [25] proposed successful
image denoising techniques called total variation (TV) and anisotropic smoothing, respectively.
These models were improved and extended upon in later works [26,27]. However, all these methods
are computationally expensive. In recent years, more efficient denoising techniques such as sparse
representation (SR) have been proposed [28–31]. In digital image processing, many signals are sparse;
i.e., they contain many coefficients either equal to or close to zero in a specific domain. The objective of
SR is to efficiently reconstruct the signal with a linear combination of a few dictionary atoms from the
transformed signal domain [32].

This study was conducted with the objective of developing filtering algorithm that can reduce
noise without losing significant features or eliminating edges. To this end, this paper proposes,
a technique that reduces the speckle noise in ultrasound imaging systems by applying a relatively
new signal reconstruction model known as SR [32] to deal with complicated noise properties. Sparse
representation provides superior estimation even in an ill-conditioned system [33], and has been found
to be very useful in medical imaging applications. However, one challenge of designing this system is
the presence of a multiplicative speckle signal because dictionary learning methods are not effective
on multiplicative and correlated noise. We overcome this by using two different methods. Firstly,
the speckle noise is transformed into additive noise using an enhanced homomorphic filter that can
also capture high and low frequency signal of the image. Secondly, we introduced TV regularization
of the image and sparse prior over learned dictionaries. Total variation regularization is efficient for
noisy image, while the patch-based dictionaries are well adapted to texture features [34], and reduces
the artifacts in smooth pixel regions [35]. The advantage of the sparse prior is that it utilizes fewer
dictionary columns to reconstruct a noiseless ultrasound image without losing many important features
of the signal. Therefore, in our proposed model we combined the two approaches, the patch-based SR
over learned dictionaries and the pixel-based TV regularization method, for efficient speckle reduction.
The K-singular value decomposition (KSVD) algorithm [36] is used to learn two modified dictionaries
from reference ultrasound image datasets and the corrupted images; these are referred to as dictionaries
1 and 2, respectively. The results are evaluated on both dictionaries and compared with conventional
algorithms to show that the speckle noise is suppressed effectively in the ultrasound image using SR.

The rest of the paper is organized as follows. Noise model and related works are described in
Section 2. The proposed SR framework for speckle reduction in ultrasound imaging is presented in
Section 3. In Section 4, the experiments and results obtained are discussed. The paper is concluded in
Section 5.

2. Background

2.1. Ultrasound Noise Model

Ultrasound imaging system are often affected by multiplicative speckle [37]. Scattering time
differences lead to constructive and destructive interference of the ultrasound pulses that are reflected
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from biological tissues. Speckle patterns can be classified depending on the spatial distribution,
number of scatters per resolution cell, and properties of the imaging system [9]. Speckle noise affects
the detectability of the target and reduces the contrast and resolution of the images, making it difficult
for a clinician to provide a diagnosis.

In ultrasound, the multiplicative noise models are based on the product of the original signal and
noise. Thus, the intensity of a noisy signal depends on the original image intensity. The mathematical
expression for a multiplicative speckle model is given by

y(i, j) = x(i, j)h(i, j), (1)

where y(i, j) is the speckled image, x(i, j) is the original image, and h(i, j) is the speckle noise.
The spatial location of an image is represented using indexes i and j, where index i ranges from
1 to N, and index j from 1 to M.

2.2. Related Work on Multiplicative Noise Reduction

Several algorithms have been proposed to deal with more complex multiplicative and additive
speckle noise models [38]. For instance, the Kuan, Frost, Lee filters, and speckle reducing anisotropic
diffusion (SRAD) filter [39] are effective on the multiplicative noise model. Other filters, specifically
the median, Wiener, and wavelet filters [40], are designed for the additive noise model [4]. However,
each filter has certain advantages and limitations [38]. In a few filter models, the quality of the
processed image is affected by the window size: large window sizes cause image blurring, degrading
the fine details of an image. Conversely, small window sizes do not denoise the image sufficiently.
Other widely used multiplicative noise reduction algorithms are based on the TV regularization
term [23,41], nonlocal methods [42,43], and wavelet-based approaches [16]. Total variation-based
methods effectively remove flat-region-based noise and preserve the edges of images. However, fine
details are lost because of over-smoothed textures. Nonlocal algorithms depend on similarities of
image patches. Their performance is limited by dissimilar image patches. However, wavelet-based
approaches preserve texture information better than TV-based methods. This approach assumes
that images in the SRs are based on a fixed dictionary [29,36]. However, certain characteristics of
the processed image might not be captured because the dictionary does not contain any similar
image content.

To overcome the above disadvantages, over the past few years, researchers have sought to develop
an algorithm based on SR in the field of image and signal processing [32]. This is because the pattern
similarities of image signals such as textures and flat regions, mean that the signal can be efficiently
approximated as a linear combination using a dictionary of only a few functions called atoms [29,34,36].
Elad and Aharon [36] proposed an image denoising algorithm using an adaptive dictionary called
KSVD that is based on sparse and redundant representations. It includes sparse coding and dictionary
atoms that are updated to better fit the data. The advantage of KSVD compared to fixed dictionaries is
that it is effective at removing additive Gaussian noise using the linear combinations of a few atoms,
by learning a dictionary from noisy image patches and then reconstructing each patch.

A dictionary A ∈ RNr×Nc , composed of Nc columns of Nr elements, is called a sparse-land
model [36]. K-singular value decomposition seeks the best signal representation of image signal y from
the sparsest representation α:

_
α = argmin‖α‖0 subject to ‖y− Aα‖2 ≤ ε,

where the vectorization of y(i, j) is denoted by vector y ∈ RM×1 and ε is the few number of non-zero
entries in α. K-singular value decomposition replaces the dictionary update and sparse coding stages
with a simple singular value decomposition. The orthogonal matching pursuit (OMP) method [44]
is an effective method to find the sparse approximation. In the OMP, if the noise level is below the
approximation, the image patches are rejected. The singular value decomposition constructs better
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atoms by combining patches to reduce noise for ultrasound speckle reduction. K-singular value
decomposition has also proved to effectively reduce the speckle produced by additive white Gaussian
noise on corrupted images [29,36].

The filtering algorithm comprises two steps. First, the dictionary is trained from a set of image
data patches or from noisy image patches based on KSVD. The next step uses

_
α to compute SR using

dictionary A and denoises the image [29].
The method proposed in [45] also uses a dictionary learning approach for denoising ultrasound

images. A homomorphic filter is used to convert multiplicative noise into additive white Gaussian
noise and then the noiseless signal is reconstructed over image patches (atoms) to create the SR from a
learned dictionary. However, noise in flat regions still exists and poor edges make the reconstructed
images difficult to analyze. In [34], the authors proposed an image denoising technique that operates
directly on multiplicative noise and is based on three terms: SR over an adaptive dictionary, a TV
regularization term, and a data-fidelity term. However, the proposed model is nonconvex because of
the product between the unknown dictionary and sparse coefficients and the data-fidelity term is a log
function. Therefore, solving the squared l2 norm is difficult. This optimization problem is overcome
by the split Bregman technique. However, these methods do not contain high- and low-frequency
components of the image. We obtain this information using an enhanced homomorphic filter designed
to improve the final image. Furthermore, we utilize the advantages of combining a TV regularization
term and SR learned over two modified dictionaries.

3. Sparse Representation Framework for Speckle Reduction

As discussed above, we define our proposed scheme for ultrasound speckle reduction by
considering the multiplicative noise model [37] obtained by an ultrasound transducer. Equation (1)
can thus rewritten as

y∂(i, j) = x<(i, j)nσ(i, j), (2)

where y∂(i, j) is the degraded B-mode image signal [46], x<(i, j) represents the ideal image that must
be recovered, and nσ(i, j) represents the speckle noise, generally modelled as a Rayleigh probability
density function with random variables [11,47]. Each term includes coordinates (i, j) defined according
to the acquisition geometry.

In general, a homomorphic filter [48] is a well-proven technique for converting multiplicative
noise. In this study, we modified it by taking the log of the multiplicative noisy signal and filtering the
image using a Butterworth high-pass (BW-HP) filter to attenuate low frequencies in the transmitted
signal while preserving the high frequencies in the reflected component. The equation of the BW-HP
filter is

HB(u, v) =
1

1 +
[

D0/
√

u2 + v2
]2 f , (3)

where, D0 is the cut-off frequency and f is the order of the filter. We varied the frequency values u
and v of the i and j spatial coordinates. We used the BW-HP filter because it generates fewer ringing
artifacts on the image signal.

We also used a Gaussian low pass (GLP) filter to smooth the low-frequency signal component in
the log domain. The equation of the GLP filter is

HG(u, v) = e−D2(u,v)/2D0
2
, (4)

where D(u,v) is the distance from the origin in the frequency plane. Finally, the additive noise signals
were estimated by applying inverse transform.

Figure 1 shows the steps used to convert an original noisy image into an image with additive
noise using the enhanced homomorphic transform. This technique consists of five steps. We first
take the log on both sides of Equation (2) and use a two-dimensional fast Fourier transform (FFT)



Appl. Sci. 2018, 8, 903 5 of 17

to represent the image in the frequency domain. Then, the Fourier image is filtered with two filter
functions, those are the BW-HP and GLP filters [12]. The BW-HP filter increases the contrast of the
image signal corresponding to the high-frequency component. The GLP filter smooths the noise signal
without eliminating the entire low-frequency component. Both filtered signals are applied to the
two-dimensional inverse fast Fourier transform (IFFT). Finally, taking the exponent of the image, we
obtain the transformed image. This process is discussed in detail below.
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Step 1: Take the log on both sides of the x<(i, j) and the nσ(i, j) signal; now the multiplicative
noise can written as

log(y∂(i, j)) = log(x<(i, j)) + log(nσ(i, j)), (5)

After being transformed logarithmically, the signal now contains Gaussian additive noise [49].
We remove log(x<(i, j)) from the speckled ultrasound image by applying an additive noise suppression
algorithm. Thus, the problem is now to estimate log(x<(i, j)) from noisy data.

Step 2: Apply FFT to convert the image into the frequency domain. Equation (5), thus becomes,

y∂(u, v) = Fx<(u, v) + Fnσ (u, v), (6)

where, Fx<(u, v) and Fnσ (u, v) are the FFT of log(x<(i, j)) and log(nσ(i, j)), respectively.
Step 3: Apply BW-HP and GLP to the y∂(u, v) by means of two filter function HB(u, v) and

HG(u, v) from Equations (3) and (4) respectively in the frequency domain. The filtered version of
S(u, v) is written as

S(u, v) = HB(u, v)y∂(u, v) + HG(u, v)y∂(u, v). (7)

Step 4: Take the inverse Fourier transform of Equation (7) to get the converted signal in the
spatial domain

S(i, j) = F−1{S(u, v)}.

Step 5: Finally, we obtain the transformed image t(i, j) by taking the exponent of the image using
the following equation

t(i, j) = exp
{

S(i, j)
}

.

In this paper, we model the transformed image as additive noise degradation W(i, j) of the
original image x<(i, j), i.e.,

t(i, j)x<(i, j) + W(i, j). (8)
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This completes how we have used the homomorphic filter to transform the speckle noise into
additive noise. The two filter functions are utilized to improve edge information by enhancing contrast
and smooths the additive noise of the transformed image.

Figure 2 shows the output of the enhanced homomorphic filter at the BW-HP and GLP filter
stages. It is clear that the image in Figure 2b has an increased intensity because the low frequency
signal is attenuated and the image in Figure 2c is smoothed by the GLP filter. The sum of these two
signals is the final transformed noisy image.
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An ultrasound image x<(i, j) can be represented as sparse in the gradient domain. We thus define
here a difference signal. A pixel-based TV regularization can be performed on the transformed image
for more effective denoising. The horizontal and vertical difference matrices are defined below [50].

Vix<(i, j) =

{
x<(i + 1, j)− x<(i, j), i f i < n

0, i f i = n

Vjx<(i, j) =

{
x<(i, j + 1)− x<(i, j), i f j < m

0, i f j = m

Further, the difference signal of x<(i, j) is defined as

Vi,jx<(i, j) =

(
Vix<(i, j)
Vjx<(i, j)

)
.

We can show that there exists a dictionary A ∈ RNr×Nc with which the original image can be
sparsely represented as

x< = Aα,

where x< is the vectorization of the recovered signal x<(i, j) such that x< ∈ RNr . If a signal x< is
K-sparse in the dictionary A ∈ RNr×Nc for Nc > Nr, we imply that the signal can be represented with
K columns of the dictionary. The column vector α ∈ RNc×1 is the vector of the coefficients. Then,
by optimizing the following convex problem, the signal x< can be recovered:

min‖α‖0,
subject to ‖t− Aα‖2

2 ≤ ε.
(9)

In Equation (9), a NM× 1 column vector t is the vectorization of the transformed image t(i, j),
note that NM = Nr. Also note that ε is a utility parameter selectable according to the noise strength.
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This convex constrained problem can be transformed into an unconstrained optimization problem
using the Lagrange multiplier method [51]:

min‖t− Aα‖2
2 + τ‖α‖0. (10)

Using the unconstrained problem, we are able to combine a regularization term, which is weighted
by parameter τ > 0 and a quadratic data-fidelity term. Equation (10) is not ready for use yet since
we do not know the sparsity dictionary A. Therefore, we use the following approach where the
dictionary, the sparse representation coefficient vector α, and the image vector x< are estimated
altogether. The overall optimized discrete sparse model proposed in this paper, for denoising the
ultrasound image, can be written as{

x̂<,
_
α ij,

_
A
}

= min
x< ,αij ,A

λ‖VxR‖1 + τ ∑
ij
‖Rijt− Aαij‖2

2 + τ ∑
ij
‖αij‖0, (11)

where Rij is an operation that extracts a square image patch from the transformed image t located at the
i, j pixels of the image. The notation ‖.‖1 is used to imply the l1 norm, which is the sum of the absolute
values of the argument signal, which in this case is the difference signal VxR. There are two positive
parameters λ and τ used to balance the contribution of different terms. In Equation (11), the first and
second terms are the TV regularization norm and the sparse representation prior. Optimization in
Equation (11) seeks to find a solution with which each patch of the recovered image can be represented
by a dictionary matrix with sparse coefficient α in the sense of a bounded error. The l0 norm gives the
sparsity constraint which controls the sparsity coefficients of any small image patch.

As mentioned in Related Work Section 2.2, there is a sparse coding stage that utilizes the KSVD
iterative process. In the first stage, sparse coding is performed assuming fixed x< and A. In the second
stage, dictionary A is updated to minimize using known sparse coefficients α and x<. The sparse
coefficients

_
α ij are computed using the OMP method [52] because of its efficiency and simplicity.

Elad et al. [29] showed that learning a dictionary trained from good quality image patches and noisy
images results in better performance.

In this paper, we use two approaches to train the dictionary. The first approach is to use a group of
image patches taken from many ultrasound reference images. We call the dictionary obtained from this
approach Dictionary 1. The second approach is to use the corrupted images and call them Dictionary 2.
We aim to compare the performance difference based on these two approaches. The comparison is
made in the Results section.

It should be noted that Equation (11) is non-convex because of the non-differentiable TV
regularization term and the product of the unknowns A and αij. We overcome this by using the
split Bregman iterative approach [53].

Overall, the proposed algorithm can be summarized as follows:

1. Convert the multiplicative noise into additive noise using an enhanced homomorphic filter and
capture the high- and low-frequency components to retain detailed information.

2. Apply pixel-based TV regularization to smooth the filtered image signal.
3. Apply patch-based sparse representation over a dictionary trained using the KSVD algorithm.

We employed two modified dictionaries—one trained with a set of reference ultrasound image
patches and another trained using the speckled image patches.

4. Iterate between the TV regularization and sparse representation procedure to improve the
reconstructed image.

Figure 3 summarizes the proposed algorithm.
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3.1. Performance Estimation

The reconstructed denoised image using the proposed algorithm were compared with the original
image. Two image quality metrics were used for quantitative performance measurements: peak
signal-to-noise ratio (PSNR) and mean structural similarity (MSSIM) [54]. Peak signal-to-noise ratio is
defined as:
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where Nmax represents the maximum fluctuations in the input image. Here, Nmax = (2n − 1),
Nmax = 255, when the components of a pixel are encoded using eight bits. N denotes the number of
pixels processed, x(n, m) is the original signal, and

_
x (n, m) is the recovered image signal. In MSSIM,

the structures of the two images are compared after normalizing the variance and subtracting the
luminance as follows:
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where l
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)
denotes luminance, c

(
_
x , x

)
denotes contrast, and s

(
_
x , x

)
denotes structure comparison

functions. Further, α, β, and r are weighted parameters that are used to adjust the relative importance
of the three components.

4. Experimental Results and Discussion

4.1. Simulations on Synthetic Images

In this section, we analyze the performance of the proposed approach on the synthetic
Shepp–Logan phantom test image [55] (Figure 4a) with a speckle noise variance of σ = 10 (Figure 4b)
of a 256 × 256 pixel size. This result helps us to understand the effectiveness of the simulated image,
clearly determine the distinctive features of the image, and optimize the algorithm before testing on
the clinical datasets. We compared the proposed algorithm with some standard speckle reduction
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filters for ultrasound liver images [4]. The compared algorithms were local statistical filters such as
the Frost filter [10], Lee filter [11], 3 × 3 Weiner filter [13], Kuan filter [14], 3 × 3 median filter [15],
and speckle reducing anisotropic diffusion (SRAD) filter [39]. In addition, multiscale filters such as
wavelets [40] were evaluated. The despeckled images in Figure 4e–g show that the Frost, wavelet, and
Kuan filters do not effectively reduce noise. In contrast, Figure 4h–j show that the median, Weiner,
and SRAD filters, reduce most noise; however, the edges are not preserved and artificial noises can
be introduced to a certain extent. This result verifies that the proposed SR technique reduces noise
and preserves the edges better than the conventional methods on synthetic images. Table 1 shows the
PSNR value and MSSIM value. The proposed algorithm reconstructs the original image with a PSNR
value of 36.86 dB with Dictionary 1 and 37.04 dB with Dictionary 2.
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Figure 4. (a) Original image; (b) noisy image. Results of the proposed method with (c) Dictionary
1 and (d) Dictionary 2; Results of the (e) Frost; (f) wavelet; (g) Kuan; (h) median; (i) Weiner; and (j)
speckle reducing anisotropic diffusion (SRAD) filters.

Table 1. Peak signal-to-noise ratio (PSNR) and mean structural similarity (MSSIM) for the synthetic
images for σ = 10.

Models PSNR (dB) MSSIM

Noise image 32.113 0.727
Frost 32.466 0.768

Wavelet 33.214 0.801
Kuan 32.895 0.794

Median 34.597 0.839
SRAD 33.434 0.827
Weiner 33.782 0.834

Proposed: Dictionary 1 36.862 0.953
Proposed: Dictionary 2 37.044 0.967
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4.2. Clinical Liver Ultrasound Images

The proposed algorithm efficiency was estimated using a set of B-mode greyscale ultrasound liver
images. The images were obtained using the ECUBE 12R ultrasound research system from Alpinion
medical systems, Seoul, Korea. The components used to generate the ultrasound images include a
128-element linear transducer at a center frequency of 5 MHz, a lateral beam width of 1.5 mm, and a
pulse length of 1 mm. In our experiment, sparse coding was performed using two dictionaries with a
64 × 256 size, designed to handle patches of 8 × 8 size pixels (N = 64 and K = 256)—one trained from a
noisy image and the other trained from a set of reference images.

The training data were constructed from a dataset comprising 3245 reference ultrasound images.
The random collection of 16× 16 dictionary atoms (K = 256) is presented in Figure 5a and the dictionary
trained on the noisy image itself by overlapping patches is represented in Figure 5b. Where, every
dictionary atom occupies a cell of 8 × 8 pixel (N = 64). We performed the tests on the three ultrasound
reference images shown in Figures 6a, 7a and 9a. The KSVD algorithm was initialized with a trained
dictionary and executed 180 iterations, as recommended in [29].
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Figure 5. The random collections of 16 × 16 atoms (K = 256) of trained dictionary from (a) a reference
set of 3245 ultrasound images and (b) a noisy image.

The numerical evaluation was performed using PSNR and MSSIM (as discussed in Section 3.1) on
the proposed algorithm and compared with the denoising methods Frost filter [10], Lee filter [11], 3 × 3
Weiner filter [13], Kuan filter [14], 3 × 3 median filter [15], SRAD filter [39], and wavelet filter [40].

Figure 6a, shows a right lobe liver image with size 256 × 256 pixels, where the lateral size is
given by the x-axis, and the axial size is given by the y-axis. In this original image, we included a
speckle noise parameter σ = 10 and the PSNR was calculated using Equation (12). It is clear that
detailed information of the image is highly distorted, as shown in Figure 6b with a PSNR value of
28.148 dB. Figure 6c,d show the denoising results obtained by the proposed method using Dictionary 1
with a PSNR value of 35.033 dB and Dictionary 2 with a PSNR value of 35.537 dB. It is clear that the
SR over learned dictionaries improves both edges and smooth features by eliminating the noise and
reconstructs the image as much closer to the original image, as shown in Figure 6a.

Figure 7 shows the comparative experimental results obtained on real-time ultrasound images.
For this experiment, we obtained a 256 × 256-pixel liver image of a healthy person with a PSNR
value of 24.6271 dB. The radio frequency (RF) frames were obtained using a linear transducer with
a frequency range of 8 MHz. This frequency range was selected because of its suitability for liver
imaging, and we considered natural speckle noise for these experiments. The original speckled image
was then denoised using the proposed algorithm with both dictionaries and also using conventional
algorithms. To assess the speckle reduction, we selected two regions in of the speckled image. The two
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regions in the case of Figure 7a are displayed as a red square and a green square. The red one indicates
the diaphragm of a liver and the green square shows the presence of an excessive noisy region observed
from deeper tissue. The differences can be noticed from the filtered images in dashed red and the
green square. Figure 7d–f show that detailed information lost by the blurring effect on the results
obtained with Frost filter, median filter, and Kuan filter. In particular, the wavelet filter, Weiner filter,
and the SRAD filter are not very effective in reducing speckle and perform poorly in retrieving sharp
edge information, as can be seen in Figure 7g–i. Figure 7b shows the results for the proposed method
using Dictionary 1 (PSNR = 30.3345 dB) and Figure 7c shows the results for the proposed method
using Dictionary 2 (PSNR = 30.8073). It is clear that the image denoised using the proposed SR method
reconstructed image very close to the original image. It can also be seen that the dictionary trained on
the noisy image gives better results than using a set of multiple references images. The results of this
comparative experiment show that the proposed algorithm not only reduces the speckle noise but also
preserves the edge information. Table 2 shows the PSNR and MSSIM values to quantify the results
numerically for noise parameter σ = 15.
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Figure 6. Reconstruction of liver right lobe images. (a) Original ultrasound image; (b) Speckled
ultrasound image (PSNR = 28.148 dB); Images reconstructed using (c) Dictionary 1 (PSNR = 35.033 dB)
and (d) Dictionary 2 (PSNR = 35.537 dB).

Table 2. PSNR and MSSIM for the ultrasound liver image for σ = 15.

Models PSNR (dB) MSSIM

Frost 28.966 0.822
Median 25.497 0.659
Wavelet 27.772 0.782
SRAD 28.766 0.813
Kuan 28.279 0.801

Weiner 29.218 0.834
Proposed: Dictionary 1 30.334 0.901
Proposed: Dictionary 2 30.807 0.926
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Figure 7. Despeckled results obtained for the ultrasound liver dataset using a linear transducer with a
frequency of 8 MHz. The red and the green boxes highlight the differences observed from the noisy and
filtered images. (a) Speckled image and results yielded by the proposed method using (b) Dictionary 1
and (c) Dictionary 2 as well as results using the (d) Frost; (e) median; (f) Kuan; (g) wavelet; (h) Weiner;
and (i) SRAD filters.

Speckle is an arbitrary granular texture noise that degrades ultrasound image quality.
This experiment was performed to evaluate different noise variances by comparing the PSNR obtained
using the proposed algorithm and other despeckling algorithms. The simulated result using the noise
levels 10, 15, 20, 25, and 30 are illustrated in Figure 8. The results clearly depict that, for different noise
variances, the proposed algorithm gives the best PSNR value of all the algorithms on speckle reduction.
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diffusion.

The experiments presented above were performed on ultrasound liver images, and the
performance compared with conventional methods. However, our algorithm can also be utilized for a
wide range of ultrasound images. To prove this, we conducted experiments on a real thrombus (blood
clot) image with a left ventricular mass [56]. The visual assessment was performed using the proposed
technique and the results compared to those obtained by various other algorithms. The reference
image size was 256 × 256 pixels in order to fit our proposed model. The data were obtained from
an open medical imaging dataset on GitHub [57]. The ultrasound image along with a marked note
are shown in Figure 9a. The dashed white box in Figure 9b–j indicate regions of the ventricular mass.
The thrombus data-set results presented in Figure 9h–j show that the wavelet, Weiner, and SRAD filters
performed very poorly in noise reduction. The difference can be seen from the white note marked on
the right atrium of the reference ultrasound image in Figure 9a. Figure 9e–g shows that Frost, median,
and Kuan reduces speckle but tends to over-smooth the image, which leads to the loss of a distinctive
feature of the unclear mass. Among all the methods, Figure 9c,d show good results for the SR-based
on learned dictionaries 1 and 2. Several details are well preserved and the speckle noise is reduced
efficiently. Figure 10 shows the zoomed sub-images of Figure 9 to observe a clear visualization of
the despeckled images. The red box highlights the texture details in the noisy image and the filtered
image for a comparative visual assessment. It can be noted that from the Frost, Median, and Kuan
filtered data displayed in Figure 10d–f, an unclear mass (blood clot) and texture feature are blurred and
over smoothed. Figure 10h,i show that the Weiner and SRAD filters are not much more effective on
speckle reduction. These filters also greatly reduce the contrast, making images more indistinguishable
from the background. This effect is especially noticeable in the case of the Wavelet filter as shown in
Figure 10g. It was found that the anatomical structure was more clearly visible in Figure 10b,c obtained
using the SR framework, where the speckle is reduced around the unclear mass without removing its
features such as edges and texture. These results were comparatively better than those of Figure 10d–i
of the standard despeckling methods. Thus, the proposed algorithm has various advantages for use in
CAD systems based on image analysis, such as segmentation and edge detection. Future work will
include extensive laboratory and clinical testing on diseased and healthy subjects for a more rigorous
validation of the system. In conclusion, our approach reconstructs the detailed information in real
ultrasound images, not only by preserving edge information but also by eliminating artifacts and
reducing speckle noise.
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and (c) Dictionary 2. Results using the (d) Frost; (e) median; (f) Kuan; (g) wavelet; (h) Weiner; and (i)
SRAD filters.

5. Conclusions

In this paper, we presented a method that reconstructed ultrasound images by suppressing
multiplicative speckle noise using the SR framework. The proposed method utilizes an enhanced
homomorphic filter, TV regularization, and sparse prior over two learned dictionaries. In addition, the
KSVD algorithm is used to train the two dictionaries—one trained with a set of reference ultrasound
image patches and another trained with the speckled image patches. Both training options were
tested with the synthetic images and various clinical ultrasound images. The experimental results
obtained for different noise levels proved superior to those of other standard denoising methods. The
results also show that the two modified dictionaries performed well with sparse and TV regularization
terms. Overall, the proposed SR framework reconstructs the image signals by removing speckle noise
while preserving the texture and yielding a smoother image than conventional methods without
eliminating edges.
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a b s t r a c t

Most animals that have compound eyes determine object distances by using monocular cues, especially motion
parallax. In artificial compound eye imaging systems inspired by natural compound eyes, object depths are
typically estimated by measuring optic flow; however, this requires mechanical movement of the compound eyes
or additional acquisition time. In this paper, we propose a method for estimating object depths in a monocular
compound eye imaging system based on the computational compound eye (COMPU-EYE) framework. In the
COMPU-EYE system, acceptance angles are considerably larger than interommatidial angles, causing overlap
between the ommatidial receptive fields. In the proposed depth estimation technique, the disparities between
these receptive fields are used to determine object distances. We demonstrate that the proposed depth estimation
technique can estimate the distances of multiple objects.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Compound eyes, such as those of arthropods, have attracted
widespread research interest owing to their unique features – such
as wide fields of view (FOVs), excellent motion detection capability,
and sensitivity to light intensity – that indicate their great potential
for use in numerous applications, including unmanned aerial vehicles
and endoscopic medical tools [1–4]. Recently, cameras inspired by
compound eyes found in nature have been developed using curved
optics and electronics [5,6] and discrete component integration at
macroscopic levels [7].

Visual methods for depth estimation can be grouped into two main
categories based on whether they use binocular or monocular cues [8].
Binocular cues are obtained from the minor disparities between the
views of two eyes when the eyes are located close to one another and
have overlapping views. These slightly different images of the same
scene are sent to the brain and integrated into a single image containing
depth information [9]. By contrast, monocular cues are obtained from
two-dimensional images captured by a single eye; these cues include
interposition, motion parallax, relative size and clarity, texture gradient,
linear perspective, and light and shadow [8].

Some insects, such as praying mantids, that have binocular vision
systems in the fronts of their heads use binocular cues to estimate target
distances [9,10]. However, unlike humans’ camera-like eyes that can
focus on objects by changing the shapes or positions of their lenses,

* Correspondence to: #C317, School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju
61005, Republic of Korea.

E-mail addresses: wblee@gist.ac.kr (W.-B. Lee), heungno@gist.ac.kr (H.-N. Lee).

insects’ compound eyes are inherently immobile and unable to focus
owing to their structural limitations [8]. Thus, the binocular cues
used for depth estimation in compound eyes are much less efficient,
yielding images with low spatial resolutions and limited effective depth
estimation ranges [11,12].

Insects can also estimate object distances using monocular cues.
The motion parallax of objects in a visual scene that is caused by the
relative motion between the observer and the objects yields information
about object distances [8,13]. Specifically, nearby objects produce
more apparent motion than distant ones. Insects’ visual systems can
easily detect the depths of objects that move independently of their
surroundings by using motion parallax. For example, grasshoppers judge
depths accurately by using the motion parallax generated by peering
movements, that is, by moving their head from side to side [9], and
bees measure distances by monitoring the apparent motion of an object
relative to its surroundings [14].

Recently, artificial compound eyes that mimic natural compound
eyes have been proposed. In these eyes, each ommatidium (individual
imaging unit) has a limited acceptance angle, thus avoiding optical
crosstalk among neighboring ommatidia [5–7,13]. In [6,13], object
depths were estimated using monocular cues from optic flows (i.e.,
pattern of apparent motion) based on the phenomenon in which a closer
object appears to move faster than a farther one. However, this method
requires rotation or movement of the compound eye.
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In this paper, we propose a method for estimating object depths
in a monocular compound eye imaging system based on the compu-
tational compound eye (COMPU-EYE) framework described in [15].
In COMPU-EYE, each ommatidium has a larger acceptance angle than
its interommatidial angle, causing the ommatidial receptive fields to
overlap significantly. As in binocular depth estimation methods, depth
estimation in COMPU-EYE involves processing the multiple and slightly
differing views received by the ommatidia by using a proposed digital
signal processing (DSP) technique. Depth information can be estimated
by using the dependences of the disparities between the ommatidial
observations on object distance. We perform a numerical experiment to
verify the effectiveness of the proposed method. In our experiment, we
demonstrate that the proposed depth estimation technique can not only
estimate the distances of multiple objects but also reconstruct object
images with high resolution.

Depth estimation using the disparities between multiple subimages
has been studied in multicamera systems such as integral imaging [16].
Integral imaging is a three-dimensional imaging and sensing system that
uses an array of optical units. Each optical unit consists of a microlens
and an array of photosensors, and it produces an elemental image. From
multiple elemental images, a three-dimensional image is reconstructed
optically or computationally [17]. In [18], an iterative reconstruction
algorithm was proposed for improving image quality given distance
information. A stereo matching method that used the spatial variations
of parallax shifts in elemental images was proposed for depth estimation
[2,19]. We note that multicamera setups are essentially different from
our work. First, our structure can be considered a degraded integral
imaging system with a single photosensor in each elemental image; this
imitates the structure of apposition compound eyes found in nature.
The number of sensors is thus reduced dramatically, and the sensors
can be implemented in a fully hemispherical structure that provides
a large FOV [5]. Some studies on integral imaging considered curved
surfaces for realizing a large FOV [20]. However, with planar sensors,
they require additional optical components like random phase masks;
otherwise, mismatch occurs [20]. Second, three-dimensional informa-
tion is highly compressed using a single photosensor per lens. Thus,
more sophisticated reconstruction algorithms are required for imaging
and depth estimation.

In Section 2, we describe the COMPU-EYE system model and the
principle of depth estimation. In Section 3, we propose our depth
estimation method, and in Section 4, we discuss the results. Finally, we
present our conclusions in Section 5.

2. COMPU-EYE system model and depth estimation

2.1. COMPU-EYE system model

We consider an apposition compound eye imaging system in which
a hemispherical eye observes a planar object. The hemispherical com-
pound eye can be implemented by reformulating a stretchable set of a
microlens and photodetector array [5]. As a result, this compound eye
has a large FOV. This compound eye consists of a two-dimensional array
of M ommatidia that are uniformly spaced with an interommatidial
angle of Δ𝜙. As illustrated in Fig. 1(a), each ommatidium receives
incident light within its acceptance angle Δ𝜑. Based on the object’s
location, each observation at each ommatidium can be specified by a
transfer function that describes the fraction of the input light that each
ommatidium observes. We assume that the object is located a distance
d (measured in millimeters) away from the compound eye and that
the image to be reconstructed consists of N pixels that form an N ×
1 input vector 𝐱 =

[

𝑥1,… , 𝑥𝑁
]𝑇 in lexicographic order. Let 𝑦𝑖 denote

the output sample obtained by a photodetector at the 𝑖th ommatidium
for 𝑖 ∈ {1, 2,… ,𝑀}. Through ray tracing analysis, 𝑦𝑖 can be obtained
using the linear equation 𝑦𝑖 = 𝒂𝑖,𝑑𝐱, where 𝒂𝑖,𝑑 is a 1 × 𝑁 vector
whose elements represent the visibility of the 𝑖th ommatidium at each
of the N pixels of the object located at a distance of d [15]. Given

the structure of the compound eye, specifically, the acceptance angles,
interommatidial angles, and sizes of the compound eye and ommatidia,
the receptive fields of ommatidia at a distance of d are determined.
Each element of 𝒂𝑖,𝑑 is obtained by calculating the intersection area
of the receptive field of the 𝑖th ommatidium and the 𝑗th pixel in the
object for 𝑗 ∈ {1, 2,… , 𝑁}. The data acquisition model for M ommatidial
observations can be expressed as a system of linear equations as follows:

𝐲 = 𝐀𝑑𝐱 + 𝐧, (1)

where 𝐲 =
[

𝑦1,… , 𝑦𝑀
]𝑇 is a set of M output samples, 𝐀𝑑 ∈ R𝑀×𝑁

denotes a measurement matrix whose 𝑖th row is 𝒂𝑖,𝑑 , and n is an 𝑀 × 1
noise vector.

A signal is typically considered sparse if it can be represented
with few nonzero elements. We note that any natural image can be
represented as a sparse signal in a certain domain, such as by applying
a wavelet, discrete cosine, or discrete Fourier transform [21]. That is,
𝐱 = 𝐰𝑇 𝐬 and 𝐰𝐱 = 𝐬, where s is a sparse 𝑁 × 1 vector and w is an 𝑁 ×𝑁
sparsifying matrix. By exploiting the sparse representation of x, Eq. (1)
can be expressed as

𝐲 = 𝐀𝑑𝐰𝑇 𝐬 + 𝐧. (2)

To obtain sufficiently high resolution, the number of pixels to be
reconstructed is set to be larger than the number of ommatidia, that
is, N >M. Then, Eq. (2) becomes an underdetermined system of linear
equations. Given 𝐀𝑑 and y, s can be obtained by solving the following
convex optimization problem [22]:

�̂� = min
𝐬

|𝐬|1 subject to ‖

‖

‖

𝐲 − 𝐀𝑑𝐰𝑇 𝐬‖‖
‖2

< 𝜀, (3)

where 𝜀 is a small constant. From �̂�, the object image can be recon-
structed by solving �̂� = 𝐰𝑇 �̂�.

2.2. Distance and measurement matrix

The COMPU-EYE imaging system proposed in [15] yields resolution
improvements beyond the number of ommatidia owing to its use of large
ommatidial acceptance angles in combination with a DSP technique. The
large acceptance angles enable each pixel to be observed multiple times
by multiple ommatidia with different perspectives. However, these
ommatidial observations are severely distorted owing to the overlap
in the ommatidial receptive fields. Given a measurement matrix, DSP
can be used to reconstruct high-resolution images from the distorted
observations by solving the underdetermined linear system in Eq. (1).
The measurement matrix strongly depends on the object’s properties,
such as its distance. In [15], the object distance was assumed to be fixed
and known, and the measurement matrix corresponding to this distance
was given to the DSP system. However, assuming prior knowledge about
object distances is impractical in reality. The reconstruction process
works well only if the measurement matrix is correct; if an inappropriate
measurement matrix is used, then the reconstructed image is severely
distorted.

In the framework of COMPU-EYE imaging, we propose a new depth
estimation method. In conventional compound eyes, Δ𝜑 is designed to
be smaller than or equal to Δ𝜙 to avoid aliasing [5,6,23]. As shown
in Fig. 1(a), each ommatidium observes an independent section within
Δ𝜑. Consider two objects, 𝑃1 and 𝑃2, that are located at different
distances from a compound eye. If the objects are observed by a single
ommatidium in Fig. 1(a), their distances cannot be inferred. In contrast,
the COMPU-EYE system has enlarged, overlapping ommatidial receptive
fields, because Δ𝜑 is much larger than Δ𝜙, as seen in Fig. 1(b). We note
that a large acceptance angle can be realized by increasing the diameter
of the photodetector, decreasing the focal length of the microlens, or
using a material of higher refractive index for the microlens [15]. This
configuration is shown in Fig. 1(b), in which object 𝑃2 is observed by two
ommatidia; thus, the compound eye can deduce that object 𝑃2 is farther
away than object 𝑃1. When many ommatidia are present, the number of
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Fig. 1. Structures and fields of view of (a) Conventional compound eye with Δ𝜑1 ≤ Δ𝜙 and (b) Proposed COMPU-EYE system with Δ𝜑2 ≫ Δ𝜙.

ommatidia viewing the object and the area of the object that is visible
by the ommatidia depend upon the object distance. The variation of
these quantities with object distance is used for depth estimation in the
proposed method.

Here, we give an example of the variation for different object dis-
tances. In Fig. 2, the measurement matrices and corresponding number
of nonzero elements per column are shown, in which a compound
eye consists of 5 × 5 ommatidia with a radius of 6.92 mm, focal
length of micro lens of 1.35 mm, Δ𝜙 = 12◦, and Δ𝜑 = 30◦. Three
objects are located at 𝑑1 = 2 mm, 𝑑2 = 20 mm, and 𝑑3 = 40 mm
from the compound eye. The object plane is composed of 12 × 12
pixels with a uniform distribution. As the object moves away from the
compound eye, the areas of the ommatidial receptive fields and the
overlap between them both increase. Accordingly, as shown in Fig. 2(a),
the number of nonzero elements in the measurement matrix increases
with object distance. In Fig. 2(b), the number of nonzero elements
per column in the measurement matrices varies with respect to the
object distances, implying that each pixel is uniquely observed by a
different set of ommatidia with different perspectives. Thus, a unique
measurement matrix is generated with respect to object distance. By
using the relationship between the unique measurement matrix and the
object distance, we propose the following method for estimating object
distances.

2.3. System model for depth estimation

First, we set the range of interest 𝑅 =
[

𝑑min, 𝑑max
]

, where 𝑑min and
𝑑max are the minimum and maximum distances, respectively. The range
of interest can be application-specific; for example, it can be 10–25 mm
for endoscopic applications [24]. For DSP, we assume that the object dis-
tance can be sampled as a set of discrete distances 𝐝 =

{

𝑑1, 𝑑2, … , 𝑑𝐿
}

within the range of interest, where L is the number of distance elements.
In this paper, we consider uniform discrete distances within the range
of interest. The depth resolution Δ𝑑 =

(

𝑑max − 𝑑min
)

∕𝐿 depends on the
number of distance elements and depth range of interest. According to
the predetermined 𝐝, a measurement matrix 𝐀𝑑𝑙 for 𝑙 ∈ {1, 2,… , 𝐿}
can be obtained from the structure of the compound eye and the object
located a distance 𝑑𝑙 away from the compound eye. By concatenating L
measurement matrices, a dictionary matrix 𝐀 ∈ R𝑀×(𝐿⋅𝑁) can be formed
as 𝐀 =

[

𝐀𝑑1𝐀𝑑2 … 𝐀𝑑𝐿

]

. Then, the linear representation of y in Eq. (1)
can be rewritten in terms of all possible measurement matrices as

𝐲 =
𝐿
∑

𝑖=1
𝐀𝑑𝑖𝐱𝑖 = 𝐀𝐗, (4)

where 𝐗 =
[

𝐱𝑇1 ,… , 𝐱𝑇𝐿
]𝑇 =

[

𝑥1,1,… , 𝑥1,𝑁 , … , 𝑥𝐿,1,… , 𝑥𝐿,𝑁
]𝑇 ∈

R(𝐿⋅𝑁)×1. When an object is located at a certain distance in the set 𝐝,
a valid observation y can be sufficiently represented by a linear combi-
nation of the columns from the corresponding measurement matrix. For

example, when the object distance matches the 𝑙th measurement matrix,
the linear equation becomes

𝐲 = 𝐀𝐗0, (5)

where 𝐗0 =
[

0,… , 0, 𝑥𝑙,1,… , 𝑥𝑙,𝑁 , 0,… , 0
]𝑇 is a sparse coefficient vector

whose entries are zero except for those associated with the 𝑙th measure-
ment matrix. x can be sparsely represented as 𝐱 = 𝐰𝑇 𝐬. Similarly, X can
be sparsely represented as 𝐗 = 𝐖𝑇 𝐒. Here, S is an 𝐿 ⋅𝑁 ×1 sparse vector
and W is a block diagonal matrix containing L instances of w, that is,
𝐖 = 𝑑𝑖𝑎𝑔(𝐰,… ,𝐰

⏟⏞⏟⏞⏟
𝐿

) ∈ R(𝐿⋅𝑁)×(𝐿⋅𝑁), where 𝑑𝑖𝑎𝑔 (⋅) represents a diagonal

matrix. By using S, Eq. (4) becomes

𝐲 = 𝐀𝐖𝑇 𝐒 = 𝐁𝐒, (6)

where 𝐒 =
[

𝐬𝑇1 ,… , 𝐬𝑇𝐿
]𝑇 =

[

𝑠1,1,… , 𝑠1,𝑁 ,… , 𝑠𝐿,1,… , 𝑠𝐿,𝑁
]𝑇 ∈ R(𝐿⋅𝑁)×1

and 𝐁 = 𝐀𝐖𝑇 . As does Eq. (3), 𝑙1 norm minimization provides a sparse
vector �̂�:

�̂� = arg min
𝐒

‖𝐒‖1 subject to ‖

‖

‖

𝐲 − 𝐀𝐖𝑇 𝐒‖‖
‖

≤ 𝜂, (7)

where 𝜂 is a small constant.

3. Depth estimation method

After �̂� has been obtained from Eq. (7), the problem of estimating
object distances can be reformulated as a classification problem whose
objective is to find the distances at which the object has the high-
est probability of being located. Because the compound eye imaging
system can be sparsely represented in Eq. (6) and the measurement
matrices are uniquely generated with respect to object distances, sparse-
representation-based classification (SRC) can be used to estimate object
locations. SRC has been widely studied, and its accuracy has been
demonstrated in many applications including face recognition [25] and
brain computer interface systems [26]. SRC usually finds the most
compact representation of a test sample, where the representation
is expressed as a linear combination of columns in an overcomplete
dictionary matrix, and then, it determines a class that contributes most
to represent the test sample [27]. In this paper, we use SRC to estimate
the depths of multiple objects. Unlike conventional SRC, the observed
signal in this depth estimation framework is superposed with respect to
the number of objects. Therefore, our problem is defined as a multiclass
classification problem. We first describe an SRC-based depth estimation
algorithm in the compound eye imaging system; we then propose an
iterative depth estimation method that updates dictionaries in a coarse-
to-fine manner.

We first specify a classification rule by using sparse signal reconstruc-
tion. As 𝑙1 norm minimization provides a sparse solution for Eq. (7),
most of the nonzero components in �̂� reside in the class in which the
object exists with high probability. One of the classification rules is
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Fig. 2. (a) Measurement matrices and (b) their number of nonzero elements per column for 𝑑1 = 2 mm, 𝑑2 = 20 mm, and 𝑑3 = 40 mm, where 𝑀 = 5 × 5, 𝑁 = 12 × 12, Δ𝜙 = 12◦, and
Δ𝜑 = 30◦.

Table 1
SRC-based depth estimation algorithm.

Initial parameters: 𝐲,𝐝 =
{

𝑑1 , 𝑑2 ,… , 𝑑𝐿
}

,𝐰, 𝜂, 𝛼
Step 1: Set 𝐀 =

[

𝐀𝑑1𝐀𝑑2 … 𝐀𝑑𝐿

]

and 𝐖 = 𝑑𝑖𝑎𝑔(𝐰,… ,𝐰
⏟⏞⏟⏞⏟

𝐿

).

Step 2: Solve Eq. (7) from y given A and W, and obtain �̂�.
Step 3: Calculate the regularized residuals:

𝑟𝑙 ∶=
‖

‖

‖

‖

𝐲 − 𝐁𝛿𝑙
(

�̂�
)

‖

‖

‖

‖

2
∕
‖

‖

‖

‖

𝛿𝑙
(

�̂�
)

‖

‖

‖

‖

2
for 𝑙 = 1,… , 𝐿.

Step 4: Obtain the class of existence 𝐼𝑒 =
{

𝑙|𝑟𝑙 < 𝛼
}

and the estimated
distance of the object �̂� =

{

𝑑𝑙|𝑙 ∈ 𝐼𝑒
}

.

to use the residuals [22]. For each class, we define its characteristic
function 𝛿𝑙 ∶ R𝐿⋅𝑁 → R𝐿⋅𝑁 that selects the coefficients of �̂� associated
with the 𝑙th class while nullifying the coefficients of other classes. Thus,
for �̂� ∈ R𝐿⋅𝑁 , 𝛿

(

�̂�
)

∈ R𝐿⋅𝑁 is obtained by including the elements
corresponding to the 𝑙th class and nulling all elements of �̂� from other
classes. By using the characteristic function, we denote the regularized
residuals as

𝑟𝑙 ∶=
‖

‖

‖

‖

𝐲 − 𝐁𝛿𝑙
(

�̂�
)

‖

‖

‖

‖

2
∕
‖

‖

‖

‖

𝛿𝑙
(

�̂�
)

‖

‖

‖

‖

2
. (8)

If the object is located at 𝑑𝑙, the 𝑟𝑙 value is smaller than those at other
distances. We denote 𝐼𝑒 as a set of the indices of estimated distances at
which the objects are expected to be located. With 𝑟𝑙 for 𝑙 = 1,… , 𝐿, the
classification rule is given by

𝐼𝑒 ∶=
{

𝑙|𝑟𝑙 < 𝛼
}

, (9)

where 𝛼 is an arbitrary constant. A set of distances �̂� where the object
is expected to be located can be determined by

�̂� =
{

𝑑𝑙|𝑙 ∈ 𝐼𝑒
}

. (10)

Then, the images that only correspond to the estimated distances are
reconstructed by solving �̂�𝑙 = 𝐰𝑇 �̂�𝑙 for 𝑙 ∈ 𝐼𝑒. The SRC-based depth
estimation algorithm is summarized in Table 1.

Thus far, depth estimates have been obtained by finding locations
in a dictionary, where the signals have small residuals. To improve the

depth accuracy, the number of distance elements L must be increased
in the form of the dictionary. However, the dictionary cannot include
infinitely many possible distances owing to computational complexity
and memory storage. To solve Eq. (7), 𝑂(𝑀 ⋅ 𝑁 ⋅ 𝐿) computations
for every iteration and 𝑂(𝑀 ⋅ 𝑁 ⋅ 𝐿) storage are required; these are
proportional to the number of distance elements [28]. We note that
the 𝑙1 norm minimization in Eq. (7) finds a sparse solution whose
nonzero elements are most closely associated with the most correlated
measurement matrix. By using the fact that the measurement matrices
of neighboring distances are relatively more correlated than those of
farther distances in dictionary matrix A, we propose an iterative depth
estimation method that is more efficient in terms of computational
complexity and memory storage. Instead of universally searching for
the object distances at once, we iteratively refine the set of distances
in a coarse-to-fine manner [29]. The distances are investigated in detail
only around regions where objects are expected to be present.

For iteration index i, we first choose a set of coarse distances within
the range of interest 𝑅(𝑖) as 𝐝(𝑖)𝑙 for 𝑙 = 1, 2,… , 𝐿𝑖, at which the objects
can potentially be located. The depth interval is Δ𝑑(𝑖) = 𝑑(𝑖)𝑙+1 − 𝑑(𝑖)𝑙 .
Accordingly, 𝐀(𝑖) and 𝐖(𝑖) can be generated from the structure of the
compound eye imaging system. The sparse signal �̂� is reconstructed
by solving Eq. (7), and the estimate of distances �̂�(𝑖) can be obtained
by solving Eq. (8)–(10). Then, the set of distances is updated by
refining the range of interest and the depth interval. The range of
interest is refined around the estimated distances, that is, 𝑅(𝑖+1) =
[

𝑑(𝑖)𝑗 − Δ𝑑(𝑖)∕2, 𝑑(𝑖)𝑗 + Δ𝑑(𝑖)∕2
]

for 𝑗 = 1,… , ||
|

�̂�(𝑖)||
|

, where |⋅| represents
the cardinality. The depth interval is refined as Δ𝑑(𝑖+1) = Δ𝑑(𝑖)∕𝐾 for
a positive real number 𝐾 > 1. Then, the updated set of finer distances is

𝐝(𝑖+1) =
{

𝑑(𝑖+1)𝑗,𝑘

}

(11)

where 𝑑(𝑖+1)𝑗,𝑘 =
(

𝑑(𝑖)𝑗 − Δ𝑑(𝑖)∕2
)

+ (𝑘 − 1)Δ𝑑(𝑖+1) for 𝑗 = 1,… , ||
|

�̂�(𝑖)||
|

and 𝑘 = 1,… , ⌈𝐾⌉. We repeat this process until the depth interval is
sufficiently fine. The iterative coarse-to-fine depth estimation algorithm
is summarized in Table 2.
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Table 2
Iterative depth estimation algorithm.

Initial parameters: 𝐲, 𝑅(1) ,𝐝(1) =
{

𝑑(1)
1 , 𝑑(1)

2 ,… , 𝑑(1)
𝐿1

}

,𝐰, 𝜂, 𝛼, i = 1

Step 1: Set 𝐀(𝑖) =
[

𝐀𝑑(𝑖)
1

… 𝐀𝑑(𝑖)
𝐿𝑖

]

and 𝐖(𝑖) = 𝑑𝑖𝑎𝑔(𝐰,… ,𝐰
⏟⏞⏟⏞⏟

𝐿𝑖

).

Step 2: Solve Eq. (7) from y given 𝐀(𝑖) and W, and obtain �̂�.
Step 3: Calculate the regularized residuals:

𝑟𝑙 ∶=
‖

‖

‖

‖

𝐲 − 𝐁𝛿𝑙
(

�̂�
)

‖

‖

‖

‖

2
∕
‖

‖

‖

‖

𝛿𝑙
(

�̂�
)

‖

‖

‖

‖

2
for 𝑙 = 1,… , 𝐿.

Step 4: Obtain the set of indices of estimated distances 𝐼 (𝑖)
𝑒 =

{

𝑙|𝑟𝑙 < 𝛼𝑖
}

.
Step 5: Update

𝑅(𝑖+1) =
[

𝑑(𝑖)
𝑗 − Δ𝑑(𝑖)∕2, 𝑑(𝑖)

𝑗 + Δ𝑑(𝑖)∕2
]

,

Δ𝑑(𝑖+1) = Δ𝑑(𝑖)∕𝐾 for 𝐾 > 1, 𝐝(𝑖+1) =
{

𝑑(𝑖+1)
𝑗,𝑘

}

and 𝐿𝑖+1 = |𝐝(𝑖+1)|,

where 𝑑(𝑖+1)
𝑗,𝑘 =

(

𝑑(𝑖)
𝑗 − Δ𝑑(𝑖)∕2

)

+ (𝑘 − 1)Δ𝑑(𝑖+1)

for 𝑗 = 1,… , ||
|

�̂�(𝑖)||
|

and 𝑘 = 1,… , ⌈𝐾⌉.
Step 6: Set i = i +1 and repeat from Step 1 until the depth resolution is

sufficiently fine.

4. Results

To evaluate the performance of our depth estimation technique, we
consider a hemispherical compound eye with a radius of 6.92 mm,
where each ommatidium has a height of 1.35 mm [5]. The compound
eye consists of an M = 80 × 80 array of uniformly spaced ommatidia
with Δ𝜙 = 1. 8◦ and Δ𝜑 = 45◦, such that Δ𝜑 ≫ Δ𝜙. The 200 × 200
mm object consists of N = 100 × 100 pixels. Thus, each measurement
matrix has dimensions of 6400 × 10000. For the sparsifying basis w, we
use a db2 wavelet transform and a level of two. To solve Eq. (7), we use
the fast and efficient alternating direction method [28].

First, we determine the depth estimation accuracy for the proposed
compound eye. Because the measurement matrices corresponding to
neighboring distances are more correlated with each other, we set a
distance of 108 mm from the compound eye as the reference distance
and compare with other distances by increasing the depth intervals.
To evaluate the depth estimation accuracy with respect to the depth
interval, we consider a sparse signal as an input, that is, w = I, where
I represents an identity matrix. In each assessment, a sparse signal
dimension of 10000 × 1 with 5%, 7.5%, and 10% of randomly located
nonzero elements is used. The distance of the input signal is randomly
chosen between the reference distance and the comparison distance.
The tolerance 𝛼 in Eq. (9) is set to be 0.1. This assessment is repeated
100 times. As seen in Fig. 3, as the object distances increase, the
accuracy of the proposed depth estimation increases. For signals with
5% sparsity, if the depth intervals are larger than 0.3 mm, the proposed
depth estimation works with more than 97% accuracy. For the 𝑙1 norm
minimization in Eq. (7), the reconstruction performance depends on the
sparsity of the input signal, that is, low accuracy for the input signal
with large sparsity. Thus, as the sparsity increases, the performance of
the proposed depth estimation deteriorates as well.

The proposed COMPU-EYE imaging system used for evaluating the
image reconstruction is shown in Fig. 4. The hemispherical compound
eye observes an object consisting of four characters: G, i, S, and T. The
characters are located at three different distances from the compound
eye. G is 108 mm away from the compound eye, i and S are 109 mm
away, and T is 112 mm away, as shown in Fig. 4(b). As shown in
Fig. 4(c), the characters overlap one another, preventing the distance
information from being inferred. The DSP technique introduced in
Section 3 can be used to decompose each letter given its distance.

We demonstrate the performance of the proposed depth estimation
method when the object distances are included in the set of potential
distances in the dictionary. We assume that the depth range of interest
is from 108 mm to 112 mm and the target depth resolution is 1 mm.
Within the range of interest, the distances are uniformly sampled with
1-mm resolution, that is, 𝐝 = {108, 109, 110, 111, 112}. For depth estima-
tion and object reconstruction, we construct a dictionary matrix 𝐀 =
[

𝐀108 𝐀109 𝐀110 𝐀111 𝐀112
]

in accordance with the potential distances.

Fig. 3. Depth estimation accuracy (%) with respect to depth interval.

Fig. 4. Proposed COMPU-EYE imaging system: (a) Three-dimensional, (b) Top, and (c)
Front views.

GivenA, we can solve Eq. (7) to obtain �̂� from y. Then, �̂� can be obtained
by calculating �̂� = 𝐖𝑇 �̂�. The reconstructed �̂� and �̂� are shown in
Fig. 5(a) and (b), respectively. Owing to the sparse signal reconstruction,
most of the nonzero signals in Fig. 5(a) are concentrated in the set of
indices corresponding to distances of 108 mm, 109 mm, and 112 mm.
We note that the reconstruction errors in Fig. 5(a) and (b) for 110 mm
and 111 mm are caused by coherence among neighboring measurement
matrices. As indicated in Fig. 5(c), the regularized residuals of the set
of indices corresponding to distances of 108 mm, 109 mm, and 112 mm
are smaller than those corresponding to the other distances. As a result,
the index set of the estimated distances and the estimated distances of
the objects are determined as 𝐼𝑒 = {1, 2, 5} and �̂� = {108, 109, 112},
respectively. In Fig. 5(d), the reconstructed signals �̂�𝑙 = 𝐰𝑇 �̂�𝑙 for 𝑙 ∈
{1, 2, 5} are represented as images. Note that the observation is highly
distorted owing to the overlap among the ommatidial receptive fields.
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Fig. 5. (a) Reconstruction of �̂�, (b) Reconstruction of �̂�, (c) Normalized regularized residuals, and (d) Ommatidial observations and reconstructed images with respect to estimated
distances.

The reconstructed characters at 108, 109, and 112 mm are clearly
visible. This result indicates that COMPU-EYE achieves 1-mm depth
resolution. We note that the reconstruction resolution is also improved
by 1.56 times because 100 × 100-pixel images are reconstructed from
80 × 80-pixel ommatidial observations.

We now investigate the performance of the iterative depth estimation
for the object shown in Fig. 4. We assume that the potential object
locations are unknown and that the range of interest is from 100
mm to 120 mm, that is, 𝑅(1) = [100mm, 120mm]. For the SRC-based
depth estimation method in Table 1 to achieve a depth resolution of
1 mm, the dictionary requires 21 concatenated measurement matrices
with dimensions of 6400 × 210000. The computational complexity of
this task necessitates the use of the iterative depth estimation method
described in Table 2. We first formulate a set of coarse distances 𝐝(1) =
{100, 110, 120} and 𝐀 =

[

𝐀100 𝐀110 𝐀120
]

correspondingly. The result of
iterative depth estimation is shown in Fig. 6. At the 1st iteration, because
the objects are located at around 110 mm, the residual value at 110 mm
is the smallest. Thus, the object distance is estimated as 110 mm for
𝛼 = 0.3 at the 1st iteration. For detailed depth estimation, we further set
a dictionary with finer distances at around 110 mm. The range of interest
is refined as 𝑅(2) = [105, 115] and the depth interval, as Δ𝑑(2) = 3 for 𝐾 =
3.33. Then, the set of distances is updated as 𝐝(2) = {105, 108, 111, 114}.
At the 2nd iteration, the residual values at distances of 108 mm and
111 mm are smaller than those at other distances. Thus, we estimate
that the objects are located at around 108 mm and 111 mm for 𝛼 = 0.2.
The range of interest is refined as 𝑅(3) = [107, 109] ∪ [110, 112] and the
depth interval as Δ𝑑(3) = 1 for 𝐾 = 3. Then, the set of distances is
updated as 𝐝(3) = {107, 108, 109, 110, 111, 112}. At the 3rd iteration, the
object distances are estimated as 108 mm, 109 mm, and 112 mm from
the compound eye for 𝛼 = 0.1. As a result, the objects are efficiently
reconstructed by using the proposed iterative depth estimation method.

Now, we aim to demonstrate depth estimation for an object with
continuous depths. As a target, we consider a plane object that is
slanted at 23◦ toward the compound eye and located 108 mm away
from the compound eye. When the range of interest is from 108 mm
to 111 mm, the object distance can be uniformly sampled as 𝐝 =
{108, 109, 110, 111} in Fig. 7(b). The proposed depth estimation method
provides a depth map of the object with 1-mm depth resolution, as
shown in Fig. 7(d). Consequently, an object with continuous depths
can be well reconstructed by using the estimated distances, as seen in
Fig. 7(c). In this manner, continuous depths can be estimated. We note
that if we densely sample the range of distance, the depth map will be
more accurate; however, there is a limit to the depth resolution, as seen
in Fig. 3.

5. Conclusion

We have proposed a depth estimation method based on the COMPU-
EYE imaging system, in which the ommatidial acceptance angle is
much larger than the interommatidial angle. The ommatidial receptive
fields overlap, and the disparities the between ommatidial observations
vary with object distance. As a result, the uniqueness of the generated
measurement matrix depends upon the object distance. In the proposed
technique, the dependences of the disparities between the ommatidial
observations and the measurement matrix uniqueness on object distance
are used to estimate the depth. This work helps not only to estimate
object distances but also to reconstruct objects with high resolution,
and it is therefore essential for future development of the COMPU-EYE
system.

Generally, disparity-based depth estimation methods have limita-
tions for very distant objects because the disparities decrease [30].
By varying the acceptance angles of the ommatidia or arranging the
ommatidia irregularly, the range of depth estimation can be extended
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Fig. 6. An example of the iterative depth estimation method.

(a) Target object. (b) Sampled depth map.

(c) Reconstruction. (d) Reconstructed depth map.

Fig. 7. Depth estimation and object reconstruction for a slanted object.

adaptively, that is, large acceptance angles for small distances and small
acceptance angles for large distances [31]. Our future work will focus
on improving the depth resolution by designing COMPU-EYE to have
high incoherence among measurement matrices with respect to object
distances. Furthermore, we will improve the depth estimation perfor-
mance by applying the 𝑙0-norm based minimization to solve Eq. (6).

This has been shown to provide better reconstruction performance than
the 𝑙1-norm minimization [32].
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ABSTRACT The modulated wideband converter (MWC) is well-known for a sub-Nyquist wideband
sampling capability based on compressed sensing (CS) theory. In this paper, our goal is to use the MWC
as a base to design a sub-Nyquist radar electronic surveillance (ES) system. Our focus is then to extend the
capabilities of the previous MWC system in order to meet the challenges, i.e., a very long acquisition time,
a much larger simultaneous monitoring bandwidth, and a faster digital signal processing receiver. To this end,
we present a new performance analysis framework and then a new digital domain receiver. The proposed
performance analysis framework will be useful in comparing signal-acquisition performance of the proposed
ES system with those of other sub-Nyquist receivers, including those of the classical Nyquist rate receivers,
without resorting to extensive simulations. This framework can also be used to study the complex interplays
of important system parameters of MWC, such as the sampling rate, the number of parallel channels,
the period of Pseudo random sequence, and thus guides us in selecting the right system dimensions and
parameters for desired performance. Radar surveillance application has its inherent needs for very long
acquisition time and simultaneous monitoring of very large frequency range. To meet this challenge, a fast
signal recovery system needs to be developed, so that radar signal logistics can be retained and recovered
from compressed samples. We have proposed a split and synthesis process in which the radar signal recovery
problem over a long signal acquisition time can be divided into many small CS signal recovery problems,
and the solutions for small pieces are put together later on at the end. In addition, a sub-sampling method
is proposed to have the multiple measurement vector problem complete signal recovery faster without
noticeable performance loss.

INDEX TERMS Compressed sensing, electronic surveillance, modulated wideband converter, multiple
measurement vectors, radar signal.

I. INTRODUCTION
Electronic surveillance (ES) systems monitor radar signals
emitted from opponent radar systems, which detect sub-
jects by transmitting radar signals and receiving them when
reflected back from the subjects. Radar ES systems are useful
for recognizing the intent of a threat in advance. Opponent
radar signals are spectrally sparse, spread around a wide
frequency band, and are unknown in advance, presenting
unique challenges for signal processing.

Radar ES systems can utilize a Nyquist-rate receiver,
such as the rapidly swept superheterodyne receiver
(RSSR) [1], [2]. RSSR chronologically samples the sub-
bands of a wideband region. However, RSSR inevitably

misses some of the signals. For wideband signals, the sweep-
ing period must be relatively long, though opponent radar
signals are brief in duration. As shown in Fig. 1, although
a signal may appear in some frequency bands for a while,
the RSSR’s sweep samples empty sub-bands and fails to
catch the signal. The inevitable failure of catching some
signals from the RSSR sweep can become a critical problem
depending on its applications such as detecting missiles and
monitoring hostile aircraft.

To take samples of spectrally sparse signals at a rate far
below the Nyquist rate without information losses, the mod-
ulated wideband converter (MWC) [3], [4] and random mod-
ulation pre-integration (RMPI) [5], [6] have been proposed.
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FIGURE 1. Signal model and signal acquisition schemes of the RSSR and
MWC denoted as blue and red colored integers, respectively.

Based on the compressive sensing (CS) theory [7], [8], both
systems compress the received spectrum by mixing it with
rapidly alternating pseudo-random sequences, takes the low-
rate samples over a certain acquisition time, and finally recon-
structs the original spectrum from the collected samples in
the digital domain. We aim to design an ES system based
on MWC.

Notably, in terms of the probability of successful sig-
nal acquisition, MWC has not been compared with other
sub-Nyquist receivers or conventional Nyquist receivers with
similar hardware costs. To this end, one can construct proto-
types and repeat hundreds of signal-acquisition tests. How-
ever, that is inefficient and expensive. Thus, a performance
analysis model which predicts the signal acquisition perfor-
mance of systems with similar hardware costs will be of
highly valuable.

In the ES scenario, owing to tactical purposes such as the
avoidance of reverse tracing by the enemy, modern radar
systems frequently switch their signal characteristics. The
longer radar samples are acquired, the more information of
foe’s intention can be scrutinized. In the ES system exploit-
ing MWC, since CS reconstruction algorithms deal with
only a finite length of compressed sample, the reconstructed
samples possibly contain only a portion of a radar signal.
Hence, for MWC to retain sufficient amount of information
for the intention analysis, a sufficiently long acquisition time
is needed. A CS signal reconstruction algorithm covering the
entire acquisition time would give the best performance, but
such an algorithm would require a very high computational
complexity. To compound the matter, the signal bandwidth
we aim to study is very large as well. As radar systems cover
very wide frequency regions including C-band (4-8GHz),
X-band (8-12GHz) and Ku-band (12-18GHz) [9], the band-
width of interest for simultaneous monitoring purpose needs
to be wider than the 2GHz bandwidth of the previously
studied MWC [3]. As the result, the radar ES system we aim
to study in this paper requires very large system dimension for
any CS signal reconstruction algorithm towork. Large system
dimension entails high computational complexity. Our goal
therefore is to focus on how to divide the observation time
into small segments of time to reduce complexity of signal

reconstruction, and how to put the segmented signals of
interest together without losing quality.

Our contributions in this paper are two fold, one is a novel
signal-acquisition probability analysis and a low complexity
radar ES system design for very wide bandwidth monitoring
applications. First, we present a new performance evalua-
tion framework which allows analytic comparison of the
signal-acquisition performances of several wideband signal
receivers. This allows us to compare receiver architectures
while avoiding realization of all the receivers and exhaustive
testing in simulation. Our analysis demonstrates the spe-
cific benefits of MWC over conventional RSSR. In addition,
the analytic method can be applied to other sub-Nyquist
receivers based on CS. For example, analysis applied on
RMPI is included. This framework can also return design
parameters for the radar ES system.

Second, the design of a low complexity and a wideband
monitoring ES receiver usingMWC is presented in this paper.
We show how a long acquisition time is divided into continu-
ously disjoint timeslots, how a CS reconstruction algorithm
works for each segment in a single time slot, and how all
of the reconstructed segments are synthesized. We call this
split and synthesis process and show this effort reduces the
total computational complexity required for reconstruction
of radar signals for a long acquisition time at the cost of
slight degradation in reconstruction performance. In addition,
a sub-sampling method is presented aiming to further reduce
the computational complexity of a CS reconstruction algo-
rithm working within a time slot. Namely, the subsamples are
selected based on the principle components of the received
signal.

In Section II, we briefly introduce wideband signal
receivers, including RSSR, RMPI, and MWC, and formulate
problems for the radar ES system. Section III details the anal-
ysis of signal-acquisition probabilities. Section IV presents
our sub-Nyquist radar ES system design, including the split-
process and synthesis process. A pre-processing method for
the CS reconstruction algorithm is detailed in Section V.
Sections VI and VII present the results of our simulations and
our conclusions, respectively.

II. PROBLEM FORMULATION AND BACKGROUND
The input x(t) is modeled as an aggregation of radar sig-
nals generated from a range of radar systems. In particular,
the input is defined by the following equation:

x (t) =
∑N

i=1
ri (t), 0 ≤ t <∞, (1)

where ri(t) is a radar signal from the i-th radar system
and is located widely within FNYQ = [−fmax, fmax], where
fmax can be of the order of GHz. Including the carrier
frequencies, the pulse description words (PDWs) such as
pulse repetition intervals (PRIs), time-of-arrivals (TOAs),
time-of-departures (TODs), pulse widths, and duty cycles
are unknown a priori. For each ri (t), we model the carrier
frequency ranges within [0, fmax), and the bandwidth Bi is
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truncated to Bmin ≤ Bi ≤ Bmax. For separable ri (t), we
assume that the spectra of ri (t) are disjointed. In addition,
the aggregation x (t) is sparse in the frequency domain,
i.e., 2NBmax � fmax. Briefly, we acquire a successively
incoming signal x (t), which is regarded as a spectrally sparse
multiband signal [3] with unknown parameters.

A. RAPIDLY SWEPT SUPERHETERODYNE RECEIVER
The RSSR [1] is a representative Nyquist receiver designed
to cover wideband regions with a low rate of analog-
to-digital convertors (ADC). RSSR receives a multiband
signal and divides the entire spectrum into multiple subbands
by exploiting a bank of bandpass filters. The subbands are
then sampled by an ADC. With time-division multiplex-
ing [2], RSSR chronologically takes time-domain samples of
the subbands in sequence. The blue boxes in Fig. 1 depict
the time-division multiplexing, where the numbered regions
in time-frequency domain are the signal acquiring subbands
of RSSR.

Despite the simple system structure of RSSR, in Fig. 1,
it inevitably fails to acquire some of radar signals outside
the current acquiring subband. One can reduce the failures
of signal acquisitions by using faster ADC in the state of the
art [10], but such ADC have many implementation problems
such as prohibitive cost, high energy consumption, low mem-
ory, and low ADC resolution [6], [11]. The implementation
limits also restricts to wider the bandwidth fmax of signal
acquisition. Intuitively, the probability that RSSR fails to
acquire the whole radar signals would increase as the number
of signals and/or the range of the input spectrum increases.
In Section III, we compute the probability of successful signal
acquisition by RSSR.

B. RANDOM MODULATION PRE-INTEGRATION
RMPI [5] is a channelized sub-Nyquist receiver that acquires
a multiband signal at one acquisition time Tacq. For each
channel, the multiband signal is mixed with a pseudoran-
dom (PR) sequence and the result is then integrated. An ADC
samples the mixed result at the sub-Nyquist rate fs after
the integrating module. If m is the number of channels,
the channel-end sampling rate [6] fbs is defined as follows:

fbs , mfs. (2)

With the system matrix from the analog architecture, RMPI
reconstructs multiband signal with a CS algorithm. However,
because the matrix is block diagonal in form, the system
matrix is considerably large to compute expeditiously. For
one block, the number of rows and columns corresponds to
the number of channels and fnyq/fs respectively, and each
block is repeated fnyq/fbs times. This large block-diagonal
matrix causes high computational complexity and long recon-
struction times, which renders RMPI impractical for the ES
applications.

In addition, the range of the sample sequence containing
signal information corresponds to Nyquist frequency and is
digitized at an interval of 1/Tacq. Hence, for N given signals

and a minimum bandwidth Bmin, the number of nonzero
entries in a sampled sequence is more than 2NBminTacq. The
large number of nonzero entries impedes RMPI’s signal-
acquisition performance.

C. MODULATED WIDEBAND CONVERTER
To resolve missing signals in the RSSR and avoid the compu-
tational limits of RMPI, we examined the MWC [3] for ES,
which comprises analog and digital modules. In the analog
module, the MWC takes samples containing compressed
information of x (t) at a rate below the Nyquist rate. In the
digital module, the post-digital signal process (DSP) and a
CS recovery algorithm reconstruct the compressed samples
into the Nyquist-rate sample of x (t).

FIGURE 2. Analog module of the MWC.

The analog module of the MWC comprises m channels,
including a series of mixers, low-pass filters (LPFs), and
ADCs, as shown in Fig. 2. For each channel, the multiband
signal is mixed with a Tp-periodic PR sequence, pi(t). The
spectrum of the sequence has M = 2M0 + 1 weighted
impulses at intervals of fp = T−1p . The mixed signal
passes through an anti-aliasing LPF whose cutoff frequency
is defined as fs/2 = qfp/2, where q = 2q0 + 1 > 0 is an
odd integer. As a result, the mixer and LPF divide the input
frequency range [−fmax−q0fp , fmax+q0fp] into L = 2L0+1
sub-bands at intervals of fp, as presented in [3]. The sub-
bands are then compressed by multiplying them with the
Fourier coefficients ci,l of the PR sequence and projecting
into [−fs/2, fs/2). Next, the ADC samples the compressed
sub-bands at the rate of fs. For the i-th channel, the discrete-
time Fourier transform (DTFT) of the output of the ADC can
be expressed by

y̆i
(
ej2π fTs

)
=

∑L0

l=−L0
ci,lX(f − lfp) (3)

for −fs/2 ≤ f < fs/2 [3]. From the projection into
[−fs/2, fs/2), the information from q = fs/fp subbands are
piled in a single row of the X matrix. Note that M ≤ L
Fourier coefficients of pi (t) are unique and q − 1 = L −M
coefficients are repetitions. The MWC then reconstructs the
Nyquist sample of x (t) from the compressed samples in the
digital module of the MWC.
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In the DSP, the channel expansion method [3] is applied
to extend the number of the equation (3) by disjointing the
correlations of the q−1 repeated Fourier coefficients ci,l . The
channel expansion method is represented by the following
equation:

y̆i,k [
_n] = (yi[n]e−j2πkfpnTs ) ∗ hD[n]

∣∣∣
n=ñq

= (yi[n]e−j2πkn/q) ∗ hD[n]
∣∣∣
n=ñq

, (4)

where k ∈ {−q0, · · · , q0}. As shown in (4), for each k ,
yi[n] is modulated with a different frequency kfp and convo-
luted with q LPFs hD[n], whose cutoff frequencies are π/q.
The sequence is then decimated by q. As a result, the outcome
of channel expansion is

Y̆i

(
ej2π fTp

)
=

∑M0

l=−M0
ci,(l+k)X(f − lfp) (5)

for −fp/2 ≤ f ≤ fp/2. Consequently, we can obtain mq
equations from m analog channels. With the continuous-to-
finite (CTF) block in [3], the DTFT Y̆i

(
ej2π fTp

)
becomes

a finite sequence. For m channels, (5) can be expressed as
follows:

Y̆[n] = C̆Z̆[n], (6)

where the measurement matrix Y̆ ∈ Rmq×v corresponds to
the output from the MWC, C̆ ∈ Cmq×M is the sensing matrix,
Z̆ ∈ RM×v contains the signal information, v is the length of
column in Y̆ yielded from the CTF block, andM = 2M0+ 1.
The matrix equation (6) is exploited to reconstruct the multi-
band signal through a CS recovery algorithm, at which point
the MWC has successfully acquired signals.

The main difference between the MWC and RMPI is how
to sparsify the original continuous spectrum. First, the CS
model of RMPI discretizes the continuous spectrum at the
Nyquist rate. Since the received spectrum in the ES scenario
usually consists of disjoint continuous narrow bands, the dis-
cretization of such a spectrum yields not only a huge size of
CS model but also high sparsity. CS theory states the sparse
reconstruction of the original spectrum is successful only for
a low sparsity. While, the CS model of MWC divides the
continuous spectrum into disjoint subbands X

(
f − lfp

)
for

l ∈ {−M0, · · · ,M0} at intervals fp. The sparsity of MWC
is counted as the number of nonzero subbands, where the
spectra of radar signals ri (t) are contained. With the low
sparsity and the small size of CS model, we design an ES
system based on MWC.

D. PROBLEM FORMULATION
Although MWC was designed to acquire a multiband signal,
this architecture is difficult to directly implement in a radar
ES system. Radar ES faces a tradeoff between acquisition
time and post-processing time. When the acquisition time is
shorter than the post-processing time, the ES system faces
a bottleneck in outputting the acquired signal. As a result,
continuous incoming signals stack up and are not included in
the output. Meanwhile, the reconstruction process includes

complex computations in both the DSP and CS algorithms.
In the DSP, for a given compressed sample length v, the com-
putational complexity of (4) is a function of O

(
v2
)
, which

grows as v , Tacq/Ts increases. One option to reduce
computational complexity would be to increase the sampling
period Ts of the ADC and/or reduce the acquisition time Tacq
to reduce the length v. However, increasing the sampling
period is impractical because it reduces the channel expansion
factor q in (4). With the reduced q, the channel expansion
method is no longer useful. Moreover, the acquisition time
cannot be reduced. Because opponent radar systems fre-
quently change their radar signal characteristics, a radar ES
system is needed to acquire signals over a long acquisition
time to efficiently detect an enemy radar system. Another
option would involve dividing a long acquisition time
into several timeslots to reduce computational complexity.
However, this division scheme raises the problem of time-
aliasing [12]. When segments of a long signal are processed
individually and concatenated into the original signal, time-
aliasing degrades the reconstructed signal at the borders of
the segments. If we resolve the time-aliasing problem, we can
greatly reduce computational complexity with sufficiently
accurate reconstruction.

Processing a large number of samples acquired over a long
acquisition time entails high computational complexity in the
CS recovery algorithm. The problem of (6) in the MWC
is referred to as the multiple measurement vector (MMV)
problem, and the computational complexity of the algorithm
is greatly influenced by the size of the measurement matrix.
By reducing themeasurementmatrixwithoutmissing signals,
computational complexity can be reduced for the radar ES
system.

III. SIGNAL-ACQUISITION PROBABILITY ANALYSIS
This section compares the signal acquisition performances
of the MWC, RMPI, and RSSR using a novel probabil-
ity analysis. These receivers aim to watch out a very wide
bandwidth of frequencies where unknown radar signals of
interest may exist. Signals of no interest can be removed
from consideration easily for the receivers, such as radar
signals from friendly forces and commercial signals. In this
analysis, therefore, for the frequency bands of interest, we
assume uniform distribution of the occurrences of unknown
carrier frequencies. We also assume that receivers aim to
receive multiple radar signals each having bandwidth of BHz
over a very wide range of frequencies up to fnyq. From the
analytic results, we observe that the analysis guides the design
of system parameters such as the number of channels m,
the ADC sampling rate fs, and the cycle of PR sequence f −1p .
Our analytic method allows for instant comparisons without
building and simulating each receiver.

From the perspective of sampling theory, the success of
lossless sub-Nyquist sampling by the MWC at a given sam-
pling rate depends proportionally on the sum of the band-
widths of the occupied sub-bands. Hence, once we learn the
number of occupied sub-bands, we can expect successful
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lossless acquisition for a given number of input signals.
To calculate the probability of successful signal acquisition,
we generate random variables representing the numbers of
input signals, split spectra, and totally occupied sub-bands
and derive their distributions.

First, we derive a lower bound of probability for sig-
nal acquisition via the MWC. Let X denote the number of
received signals in a timeslot and Y denote split signals. Then,
the conditional probability mass function (PMF) of Y given
X can be defined as follows:

PY |X (y|x) = xCy
(
ps,MWC

)y (1− ps,MWC)x−y , (7)

where ps is the probability that a signal is split by the grid
of sub-bands. By assuming that the carrier frequency of the
signal can be uniformly drawn, we calculate ps using the
equation of:

ps,MWC = 1−
M0∑

i=−M0

∫ ifp+
fp
2 −

B
2

ifp−
fp
2 +

B
2

1
fNYQ

dx

=
B
fp
, (8)

whereB < fp is the bandwidth of each signal. Focusing on the
positive sub-bands corresponding to real signals, the number
of split and un-split spectra occupants K can be defined as
K = (X − Y )+ 2Y = X +Y . Note that the occupants do not
overlap. The conditional PMF of occupant K is expressed as

PK |X (k|x) = PX+Y |X (x + y|x)

≡ PY |X (y|x)

= PY |X (k − x|x) . (9)

The moment generating function of the occupant is derived
as follows:

MK |X (µx)

=

2x∑
k=x

eµxk · PK |X (k| x)

=

2x∑
k=x

eµxk · PY |X (k − x| x)

=

2x∑
k=x

eµxk · xCk−x
(
ps,MWC

)k−x (1−ps,MWC)x−(k−x) (10)

Assuming that the MWC achieves lossless sub-Nyquist sam-
pling if and only if K ≤ κMWC , using the Chernoff bound,
the lower bound of successful sampling is obtained by the
following equation:

PMWC (Successful sampling)

= PK |X (k ≤ κMWC | x)

> 1− min
µx≥0

e−µxκMWCMK |X (µx) , (11)

where κMWC is the maximum sparsity that allows the CS
problem to be exactly solved. κMWC can be determined by

the equation in [3], which can be written as follows:

mq ≈ 2κMWC log (M/κMWC ) . (12)

As presented in [13], the parameters µx can be obtained by
solving the following equation:

µx = argmin
µx≥0

(
ln
(
E[eµxx]

)
− µxκMWC

)
. (13)

By substituting κMWC and the last expressions of (8) and (10)
into (11), the lower bound of successful sampling can be
expressed in terms of system parameters:

PMWC (Successful sampling)

> 1− min
µx≥0

e−µxκMWC
(
fp − B√
Bfp

)2x 2x∑
k=x

xCk−x

(
eµxB
fp − B

)k
(14)

Note that fp = fnyq/M .
Second, we derive the probability of signal acquisition for

the RMPI. Owing to the architecture of the RMPI, the occu-
pants correspond to digitized signal bands B/T−1acq among the
digitized Nyquist range fnyq/T−1acq. For N received signals, the
signals occupy at least N

⌊
BTacq

⌋
slots. Because the band is

not always exactly fit to the digitized graduation, the prob-
ability of extra occupants exceeds a portion of B compared
to the width of the minimum occupants T−1o

⌊
BTacq

⌋
at one

bin T−1acq, i.e.,

ps,RMPI =
(
B− T−1acq

⌊
BTacq

⌋)
/T−1acq = BTacq −

⌊
BTacq

⌋
.

(15)

We then express the maximum recoverable sparsity of RMPI
κRMPI as mRMPI/2 = fnyq/2fs. For the l0 minimization
problem, which is the optimal but mathematically intractable
solver, the algorithm estimates the sparsity as half of the
number of equations [14]. If the RMPI fails to acquire a signal
with higher κRMPI than κMWC , MWC is superior. As found
in (11), the RMPI fails at sampling when the minimum occu-
pants N

⌊
BTacq

⌋
> κRMPI and succeeds when the maximum

occupantsN
(⌊
BTacq

⌋
+ 1

)
< κRMPI . In the remaining cases,

the probability of successful sampling is the complement
of the sampling failure, which is the number of occupants
over κRMPI with ps,RMPI . Consequently, the probability of
successful sampling for RMPI can be expressed as follows:

PRMPI (Successful sampling)

=


0, bBTacqc > κRMPI

1, N (bBTacqc+1)<κRMPI

1−
N∑

i=dκRMPI−NbBTacqce

pis,RMPI , o.w.

(16)

Lastly, we calculate the signal-acquisition probability for
the RSSR. Because only the information of signals whose
spectrum is fully located in a band currently being acquired
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by an activated filter bank is preserved in the output samples
from the RSSR, the probability of successful acquisition
under the assumption of uniform distribution of the signals
in the frequency domain can be described by the following
equation:

PRSSR (Successful Sampling) =
(
WBPF − B
fnyq/2− B

)x
, (17)

where WBPF is the bandwidth of the filter banks.

FIGURE 3. The probability of signal acquisition among the MWC, RMPI,
and RSSR.

Fig. 3 shows that the MWC has the highest rate of signal
acquisition. For a fair comparison, it was necessary to assign
the same number of channels and sampling rates to all the
receivers, including the RSSR. MWC and RMPI require a
sampling rate of at least fs = qfp for m channels. In other
words, a necessary requirement for the total sampling rate
is mqfp. Because RSSR uses a single ADC with a sampling
rate of WBPF , we can set the ADC sampling rate to WBPF =

mqfp. For the simulation, we set the conditions as m = 4,
fnyq = 4Ghz, fs = 220Mhz, fp = 31.5Mhz, Tacq = 1.11µs,
and B = 0.1fp or 0.6fp. We acquired empirical simula-
tion results from the MWC by the simultaneous orthogonal
matching pursuit (SOMP) algorithm [15]. The simulation
found that the probability that many samples will be split
signals was lower than it would have been in theory because
superposition is avoided when the test signal is generated.
As shown in Fig. 3, compared to the MWC’s performance
at κMWC = 4, the RMPI could not acquire the signals with
B = 0.6fp even though the more successful sampling criteria
with κRMPI = 9 was applied. For that signal bandwidth, high
sparsity occurred, which cannot be recovered by the SOMP
algorithm. This advantage of the MWC is one reason that we
adopted it for our radar ES system design. In addition, use
of (13) helped facilitate the design process by allowing easy
prediction of the system’s signal-acquisition performance in
terms of system parameters.

IV. SPLIT-SYNTHESIS METHOD
The high computational complexity makes the signal recon-
struction consumes longer time and may result in failure
in continuous signal acquisition. A failure occurs when the
signal reconstruction time for the acquired sample obtained
over the preceding acquisition time exceeds the acquisition
time for the next sample acquisition. Even for the SOMP
algorithm [15] which is one of the simplest signal reconstruc-
tion algorithms, the reconstruction time can easily exceed
the acquisition time. Thus, to reduce the rate of failure of
continuous signal reconstruction over a long acquisition time,
careful new design on reducing the computational complexity
is needed. Here we propose a split and synthesis method.
Given a long signal acquisition time, the split-synthesis
method trades-offs the computational complexity with the
performance of signal reconstruction. Fig. 4 depicts the split-
synthesis method.

A. SPLIT-PROCESS
After the MWC samples an aggregated radar signal over
a long acquisition time Tacq, for example 0.13msec [9],
the radar ES system imposes a uniform grid on the acquisition
time at intervals of time slot Tslot . The aggregated radar
signals in (1) are then reformulated as follows:

x(t) =
G∑
j=1

xj(t − (j− 1)Tslot ) (18)

for 0 ≤ t < Tslot , where xj(t) corresponds to the slice of
aggregated radar signal in the j-th time slot. The number of
time slots G is chosen to reduce computational complexity,
and this choice is discussed later in this section. For the
j-th time slot, the MWC output (3) can be expressed as
follows:

Yj[n′] = CZj[n′], (19)

where the measurement matrix is Yj ∈ Rm×l̃d , C ∈ Cm×L is
the sensing matrix, Zj ∈ RL×l̃d contains information of the
aggregated radar signal, and

l̃d =
Tslot
Ts
= q ·

Tslot
Tp
= q · ld . (20)

The relation (19) can be represented in matrix form as
follows:

yj,1 [1] · · · yj,1
[
l̃d
]

...
...

yj,m [1] · · · yj,m
[
l̃d
]


=

 c1,−L0 · · · c1,0 · · · c1,L0
...

...
...

cm,−L0 · · · cm,0 · · · cm,L0
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FIGURE 4. Block diagram of the proposed radar electronic surveillance system.

×



zj,−L0 [1] · · · zj,−L0 [l̃d ]
...

...

zj,0[1] · · · zj,0[l̃d ]
...

...

zj,L0 [1] · · · zj,L0 [l̃d ]

 (21)

The next step is to extend the number m of channels in (19).
We present a straightforward channel expansion method

to enlarge the rows of the measurement matrix Yj and the
sensing matrix C in (19); we then adopt the zero-padding
technique that alleviates time aliasing discussed Section II-D.
Before expanding the channels, qk zeros are added to the
right side of each row of Yj in (21), where k < ld . There-
after, as presented at (3), we exploit the way in which the
q = fs/fp sub-bands are piled in a single row of the Zj
matrix. By disassembling the q piled sub-bands, the rows of
Yj and C can be expanded via a fast Fourier transform (FFT)
and simple matrix reorganization. If the zero-paddings before
the FFT are not included, severe time aliasing occurs because
the results from FFT beyond l̃d are lost, whereas they should
be retained for the next timeslot. Thus, we can begin with
padding zeros and performing the FFT on the right side
of (21) to change the column indices of Yj as the frequency
axis. In other words, yj,i[n′] becomes yj,i[fn′ ] for fn′ =
1, 2, . . . , l̃d + qk .
By disjointing q piled sub-bands for the i-th row, we reor-

ganize Yj to be a qm× (ld + k) matrix such that

y̆j,i+v[f̆n′ ] =
∑q−1

v=0
yj,i [v · (ld + k)+ fn′ ] (22)

for f̆n′ = 1, 2, . . . , ld+k . In the sensing matrixC, by disjoint-
ing q−1 repeated ci,l times, such that ci,M0+s = ci,−M0+(s−1)
for s ∈ [−q0 + 1, q0], C is also expanded as follows:

c̆i+v,l =
∑q−1

v=0
ci,−L0+v+l (23)

for l = 0, 1, . . . ,M . Consequently, with the channel expan-
sion step, the relationship at (19) is transformed as follows:

Y̆j[f̆n′ ] = C̆Z̆j[f̆n′ ], (24)

where Y̆j ∈ Rmq×(ld+k), C̆ ∈ Cmq×M , and Z̆j ∈ RM×(ld+k).
The equal effect of qm enlarged equations helps to recover
the input signals [14].

Compared to the conventional convolution method of (4),
computational complexity is reduced by FFT expansion. For
one channel, the computational complexity of the convolution
method is O

(
l̃2d
)
, whereas the FFT method reduces it to

O
(
l̃d log l̃d

)
. When the FFT is performed in tandem with

the split process, the computational complexity is reduced
to O

((
l̃d + Gk

)
log

(
l̃d/G+ k

))
. Because the ES system

samples radar signals over a long acquisition time, the effect
of k additional zeros is negligible, i.e., k � l̃d . To reduce the
computational complexity, the number of timeslots G can be
calculated as follows:

G = argmin
G∈N

(
l̃d + Gk

)
log

(
l̃d/G+ k

)
. (25)

For example, when ld = 256, k = 2, and G = 76, the
computational complexities of the convolution expansion,
FFT alone, and FFT with signal division are 65536, 2048,
and 685, respectively. The reduced computational complexity
of the split process shortens the system’s computation time.

B. SYNTHESIS PROCESS
A CS algorithm recovers the signal information as Z̃j[f̆n′ ] ∈
R4N ·(ld+k) by solving the MMV problem of (24), while Z̃j[n̆]
is generated by applying an inverse of FFT. The proce-
dures from the split process through generation of Z̃j[n̆] are
repeated for each of the G timeslots, and the results from all
the timeslots are synthesized as follows:

Ẑ[n]=
∑G−1

j=1
Z̃j[n̆− (j− 1)ld ]+Z̃G[n̆− (G− 1)ld ], (26)

where the matrix Z̃G of the last timeslot decimates the
columns in [ld + 1, ld + k]. As depicted in Fig. 4, each Z̃j
is delayed for ld using buffers and then synthesized such
that the [ld + 1, ld + k] columns of Z̃j−1 are added to
the k front- columns of Z̃j to alleviate the time-aliasing.
With (22), (23) and the synthesis process, we address the
time-aliasing, as verified in Section VI.

Time-wise information, including PRI, TOA, and TOD,
can be found from the reconstructed radar waveform or the
estimation method presented in [16]. The carrier frequencies
can be estimated with pulse spectrum density estimation [17].
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Direction-of-arrival (DOA) can also be estimated using a
crossed-loop/monopole antenna and a multiple signal clas-
sification (MUSIC) algorithm [18].

TABLE 1. Parameters of the radar ES system.

The parameters of the proposed system are listed
in Table 1. For a given analog system, the PR sequence
parameters, ADC sampling rate, and number of channels are
the dependent parameters. The long acquisition time Tacq
used to capture reliable radar signals rapidly increases the
computational complexity in the digital signal reconstruction.
Note that the long acquisition time also improves frequency
resolution. However, the split-synthesis process can reduce
the reconstructing time. In addition to the split-synthesis
process over the long acquisition time, we provide a sub-
sampling method to reduce the computational complexity of
MMV algorithm for every timeslot.

V. MMV ALGORITHM PRE-PROCESSING
This section proposes a sub-sampling method which uses
pre-processing to proportionally reduce the computational
complexity of the MMV recovery algorithm in each timeslot.
As discussed in the previous section, the radar ES system
could greatly reduce the computational complexity of the
channel expansion by splitting a long period of acquisition
time into discrete timeslots. However, because there are still
unnecessary measurement vectors in (24) and the total com-
putational complexity of MMV recovery for G timeslots is
still high owing to the long acquisition time, the reconstruc-
tion time can still exceed the acquisition time and cause
bottlenecks. Because the MMV recovery algorithm involves
matrix multiplication and/or inversion, the computational
complexity of the algorithm rapidly increases with the num-
ber of measurement vectors. In addition, [19] shows that the
recovery performance of the MMV algorithm is saturated
with the number of measurements. Thus, we propose a sub-
sampling method as a preliminary step to reduce the compu-
tational complexity of the following MMV algorithm. This
method strategically selects a subset of measurement vectors
without missing the support set which indicate the indices

of nonzero sub-bands. The sub-sampling method is detailed
in Section V-A and the benefits in terms of computational
complexity and support recovery performance are presented
in Section V-B.

A. SUB-SAMPLING METHOD
By the linearity of (24), selecting columns of Y̆j is equivalent
to selecting columns of the signal matrix Z̆j. We therefore
select the columns of Y̆j based on the structure of the signal
matrix Z̆j. The rows of Z̆j contain spectrally orthogonal sub-
bands of the discrete spectrum of x (t) at intervals of fp. From
the discrete Fourier transform, the column indices represent
the frequency grid in intervals of 1/Tslot . Each narrow-band
spectrum of xj (t) is contained within the rows. Some of the
narrow-band spectra may be split by the borderline of the
sub-bands based on their center frequencies.

FIGURE 5. Selected columns of measurement matrix contain essential
signal information for detecting a support set while reducing
computational burden.

To address this scenario, we propose the sub-sampling
method depicted in Fig. 5. This method generates subsets
by classifying columns of Y̆j at intervals less than the
minimum signal bandwidth, Bmin. For each subset, the sub-
sampling method selects the column that has the maximum
energy. When the subset comprises fewer columns than Bmin,
the method avoids the situation where several signals are
present in a subset and do not overlap in columns. In this
situation, only one of the signals within the sampling window
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will be selected, whereas the others are missed. However,
a sub-sampled matrix Yd ∈ Rmq×lr , the union of selected
columns, includes components of all of the signals while still
reducing the size of the measurement matrix. The number of
sub-sampled columns is calculated as follows:

lr = dld/ bBminTsubce , (27)

where bBminTsubc is the element number of each subset. The
notation Z̆j also becomes Zd ∈ RM×lr . Because this simple
sub-sampling method works in one step before the following
iterative MMV recovery algorithm, the computational com-
plexity added by the sub-sampling is negligible. The reduced
column lr reduces computational complexity proportionally
in the following MMV recovery algorithm. We chose the
SOMP algorithm [15] as an example to verify the compu-
tational complexity benefits and the recovery performance of
the support set.

B. DISCUSSION ON COMPUTATIONAL COMPLEXITY
To verify the computational complexity benefit of our
sub-sampling method, we adopted the SOMP algorithm [15],
which is commonly used to solve MMV problems. Note
that the sub-sampling method is independent of SOMP.
Although there are advanced MMV algorithms, such as
MMV basic matching pursuit (M-BMP), Regularized MMV
FOCUS (M-FOCUS), Bayesian, and group OMP (GOMP),
these are inappropriate for our radar ES system because
M-BMP has problems with signal reconstruction perfor-
mance, and the other algorithms require high computational
complexity. To implement our radar ES system with field
programmable gate array, the high computational complexity
becomes a problem. M-BMP works by matching a column
of the sensing matrix with measurement vectors. However,
according to terminal conditions, the algorithm provides an
accurate solution with high sparsity or an inaccurate solution
when the algorithm terminates with a predetermined sparsity
amount [20]. Meanwhile, the other algorithms require higher
computational complexities compared to SOMP [20]–[22].
Regularized M-FOCUS algorithms contain a concatenation
of three matrices compared to the two matrices required of
SOMP. Bayesian has a conversion of MMV to single mea-
surement vector, and the dimension of the sensing matrix is
increased with the number of measurements [22]. The num-
ber of rows and columns of the sensing matrix in GOMP are
proportionally increased with the group size parameter [21].
From these reasons, we adopted SOMP because it not only
shows the effect of our sub-sampling method but also it
requires low complexity.

The SOMP is an iterative algorithm. At each iteration, the
algorithm recovers the indices of nonzero rows of a signal
matrix Zd , i.e., the support set, in (24) by matching the
MMVmatrix Yd with the bases of the sensing matrix C̆. The
procedure of SOMP is adjusted for the radar ES system to
enhance the algorithm’s efficiency and reduce computational

complexity. The terminal condition is

‖Yd‖2 ≤ EPS. (28)

When (28) is satisfied, SOMP determines that signals do not
exist. Until this condition is satisfied, the algorithm continues
to estimate a support among a set 3, defined as row indices
of Zd , which is expressed as follows:

J = argmax
3

∥∥∥CH
3Yresidue[i]

∥∥∥
2
, (29)

where C3 is a column of C̆ and i is the iteration index. In the
first iteration, the original MMV Yd replaces the residual
matrixYresidue. From the conjugate symmetry of a real-valued
radar signal, the selected and symmetric supports can be
stored in Si gathered at S, i.e., S = {Si| i = 1, 2, . . . ,N }.
After estimating the support set S containing 2i elements,
the residual of Yd is generated by the following equation:

Yresidue = Yd − CS · C
†
SYd , (30)

where C†
S is a Moore–Penrose pseudoinverse of the outcome

by extracting the columns of S from C̆ in (24). Note that N
real-valued radar signals can yield up to 4N supports. SOMP
detects the support set� for the upmost 2N iterations instead
of 4N iterations. The signal information is reconstructed as
follows:

Z̃j[f̆n] = C†
� · Y̆j[f̆n]. (31)

The result of (31) can be used for the synthesis process
explained in Section IV-C.

To verify computational complexities, we focus on the
matrix multiplication and inverse operations (29) and (30) in
the algorithm because these are the main factors that enlarge
computational complexity. For a time slot, the sizes of the
measurement and sensing matrices are m̆ × ld and m̆ × M ,
respectively, where m̆ = mq. For (29), the computational
complexity is O(Mm̆ld ). In (30), the computational complex-
ities are different for each i-th iteration owing toCS ∈ Cm̆×2i,
but we can ignore this effect for easy verification as long as
i < m̆. Thus, the computational complexity of (30) becomes
O(m̆2(ld + 2)+ 16m̆). As a result, the total complexity for N
signals becomes

O (2N (ld m̆ (M + m̆+ 2)+ 16m̆)) . (32)

Next, we compute the computational complexity of the pre-
processing method. The computational complexity becomes

O (2N (lr m̆ (M + m̆+ 2)+ 16m̆)) , (33)

where lr < ld is the number of sub-sampled columns. In (33),
we see the computational complexity reduced in proportion
to the small lr .
Fig. 6 plots the support recovery rate versus the number

of sub-sampled columns of the measurement matrix. The
support recovery rate is defined as one when the recovered
support set is a subset of the original signal. We simulated
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FIGURE 6. Support recovery rate versus the number of sub-sampled
columns of measurement matrix using SOMP.

the support recovery rate along the number of subsets corre-
sponding to the number of sub-sampled columns compared
to the original columns, ld = 35. The minimum bandwidth
of the signal was Bmin = 0.1fp = 3.15MHz. From (27),
lr is 12, which is a similar recovery performance to original
full columns as shown in Fig. 6. This implies that the sub-
sampled MMV Yd does not miss the signal information and
includes all of the essential parts of the original MMV Y̆j.
In this scenario, the sub-sampling method reduced compu-
tational complexity by a third. Consequently, we can con-
clude that this sub-sampling method proportionally reduces
computational complexity while maintaining recovery
performance.

VI. SIMULATIONS
Through simulations, we verified that the radar ES system
can successfully trade-off between the reduction of compu-
tational complexity and degradation of signal reconstruction
performance. For the simulations, we generated three pulsed
radar signals whose carrier frequencies appeared randomly
from fmin = 0.5GHz to fmax = 2GHz. We gave as an
input 5 dB pulsed radar signals where the signal to noise
ratio (SNR) and signal type were not discussed. The SNR is
defined as 10 · log

(
‖x‖22 / ‖n‖

2
2

)
, where x and n are the input

signals and noise vectors, respectively. We considered a four-
channel MWC system; the remaining system parameters are
listed in Table 1. The SOMP algorithm discussed in Section V
was used to reconstruct the multiband signal.

First, we tested the improvement to the relative error in the
reconstructed signal gained by the split-synthesis process of
the radar ES system. In this simulation, the relative error was
defined as follows:

relative_error[i] := ‖x[i]− xr [i]‖22 , (34)

where x[i] is the input radar value at the i-th time and xr is the
reconstructed radar vector. To clearly verify the reduction of
the relative errors at the borders of the timeslots, we shortened

FIGURE 7. The relative errors at the borders of the timeslots are alleviated
with the split-synthesis process of the proposed radar ES system.

FIGURE 8. Reconstruction performance of radar ES system with pulsed
signal and continuous wave (CW) for varying SNRs.

the acquisition period GTslot = 1.29µs. As shown in Fig. 7,
the errors among the timeslots are clearly reduced with the
split-synthesis process. Although the trade-off parameter k
discussed at the Section IV-A yields k additional columns in
the channel-expanded measurement matrix, compared to the
original column number ld = 35, our simulation showed that
even a small k = 2 yields some benefit. The Table 2 com-
pares computational complexity between the conventional
MWC and the split-synthesis process of the proposed radar
ES system. Note that the order of computational complexity
was discussed at the Section IV-A. With the small trade-
off parameter k = 2, the split-synthesis of (22)-(26) can
considerably reduce the computational complexity at the cost
of negligible degradation of signal reconstruction as shown in
the Fig. 7.

Second, we verified the robustness of noise along SNRs
for continuous waves (CWs) and pulsed signals [9]. In this
simulation, theMSE is defined as ‖x − xr‖22 / ‖x‖

2
2. As can be

seen in Fig. 8, the pulsed signal was reconstructed better than
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TABLE 2. Comparison of computational complexity.

the CW. For the purpose of this study, our radar ES system
can successfully monitor up to three radar signals above 2 dB
as we pursued the detection of three radar signals under 5%
of the MSE.

VII. CONCLUSION
In this study, we verified and compared the signal-acquisition
performances among RSSR, RMPI, and MWC with a novel
probability analysis. In the analysis, the MWC performed
better than the other receivers. In addition, this analysis may
be extended for comparison between CS-based sub-Nyquist
receivers. Our proposed radar ES systemwithMWCwas able
to monitor incoming wideband signals in a simulation. In this
ES system, the split-synthesis process considerably reduced
the computational complexity with the trade-off parame-
ter to alleviate the degradation of signal reconstruction.
Pre-processing with sub-sampling before the MMV algo-
rithm was able to proportionally reduce computational
complexity while maintaining signal recovery performance.
We plan to implement and test this signal-acquisitionmethods
using the hardware that is currently being developed. As a
future work, it would be meaningful to consider the problem
of estimating the PDW of radar signals, including spatial
location of carrier frequencies.
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Visible and UV photo-detection in 
ZnO nanostructured thin films via 
simple tuning of solution method
Richa Khokhra1, Bandna Bharti1, Heung-No Lee2 & Rajesh Kumar1,2

This study demonstrates significant visible light photo-detection capability of pristine ZnO 
nanostructure thin films possessing substantially high percentage of oxygen vacancies V( s)o  and zinc 
interstitials Zn( s)i , introduced by simple tuning of economical solution method. The demonstrated 
visible light photo-detection capability, in addition to the inherent UV light detection ability of ZnO, 
shows great dependency of V so  and Zn si  with the nanostructure morphology. The dependency was 
evaluated by analyzing the presence/percentage of V so  and Zn si  using photoluminescence (PL) and X-ray 
photoelectron spectroscopy (XPS) measurements. Morphologies of ZnO viz. nanoparticles (NPs), 
nanosheets (NSs) and nanoflowers (NFs), as a result of tuning of synthesis method contended different 
concentrations of defects, demonstrated different photo-detection capabilities in the form of a thin film 
photodetector. The photo-detection capability was investigated under different light excitations (UV; 
380~420 nm, white ; λ > 420 nm and green; 490~570 nm). The as fabricated NSs photodetector 
possessing comparatively intermediate percentage of V so  ~ 47.7% and Zn si  ~ 13.8% exhibited superior 
performance than that of NPs and NFs photodetectors, and ever reported photodetectors fabricated 
by using pristine ZnO nanostructures in thin film architecture. The adopted low cost and simplest 
approach makes the pristine ZnO-NSs applicable for wide-wavelength applications in optoelectronic 
devices.

Photodetectors have a wide range of applications in many important areas such as; space communication, air 
quality monitoring, flame monitoring, industrial quality control, optical imaging, optoelectronic circuits, military 
surveillances etc.1. Conventional photodetectors employ crystalline semiconductor materials such as; silicon, ger-
manium, gallium arsenide etc. However, in these materials certain issues still need to be addressed; for instance, 
requirement of high temperature conditions for device fabrication, possibility of blurring, cross talk of optical 
signals between neighboring pixels2 and limited freedom in material design. To overcome these problems, studies 
on inorganic semiconductor nanostructures3,4 such as; ZnS, InSe, CdS, CdSe etc. and metal-oxide semiconduc-
tor5 such as; ZnO6, CeO2

7,V2O5
3 etc. could pave the way of fabricating a suitable photodetector. Nonetheless, these 

materials in nanostructure form provide a higher degree of freedom for material’s properties tuning as well as the 
reduced dimensionality of the active device8,9. However, as a key issue, these materials in their pristine form work 
only for ultra violet (UV) photo-detection applications, as allowed by their wide bandgap structure. Most of the 
studies correlate their wide bandgap with UV applications; however, in addition to the UV applications there are 
many areas that urgently require photodetector’s sensitivity for visible-light region, and thus there is a great need 
to achieve a wide spectral response of the proposed nanostructured semiconductor materials. In other words, the 
widening of photodetector’s spectral response (extended wavelength photo-detection) would enhance their appli-
cation area. In this view, studies on the detection of visible spectrum by achieving a broadband photo-detection 
capability of nanostructured semiconductor materials, specifically metal-oxide semiconductors, have attracted a 
great attention in the last few years7,10.

The wide spectral applications of metal-oxide semiconductor materials require tuning of optical properties 
(bandgap) of semiconductor nanostructures; therefore, normally they are doped with metals11, non-metals12, 
combined with other materials/functional groups13–15, and formed as composites with another semiconductor 
materials1,7,16. However, it is noteworthy that most of these processes applied for tuning of optical properties, 
require complicated and expensive equipments, and a complex device structure to achieve visible-light detection 
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response. Moreover, in these approaches, the requirement of high temperature and pressure conditions is an 
another issue. In this concern of application, when considering morphology, the one dimensional (1D) nanos-
tructures owing to their large surface to volume ratio and Debye length (that influence electronic/optical proper-
ties and thus exhibiting superior photosensitivity) show better performance in the photo-detection applicaion3,5.

While talking about metal-oxide semiconducting materials, investigated for photo-detection applications, 
the ZnO is found most promising candidate due to its many peculiar properties such as; high efficiency, low cost, 
non-toxicity, stability, high temperature operation capability, and environmental compatibility. Looking to the 
superior photosensitivity of morphologically 1D nanostructure, the ZnO itself is also studied mostly in 1D form 
with various modifications such as; decorating with gold nanoparticles17 and CdS18, doping with Cu19, Mn20 and 
making heterostructures21,22 to show multi-spectral visible and UV light photo-detection capability. In principle, 
in the modifications, mid-gap electronic levels of dopant/s are introduced which generate charge carriers upon 
visible-light irradiation and thus make the material sensitive to visible light.

In a further and recent advancement10, undoped ZnO nanowires with a vertical alignment have been pre-
sented to exhibit an extended-range of visible light photo-detection capability upon annealing in hydrogen gas. 
The hydrogen annealing creates porosity on the surface of the nanowires that makes the assembled nanowire 
photodetector as a visible-light sensor by the phenomenon comprising antireflection, multiple scattering and 
defect state excitation induced mechanism. Similarly, the undoped ZnO structures have demonstrated 
visible-light activity upon vacuum deoxidation23, where oxygen energy levels are introduced in the energy band 
of ZnO. The introduction of oxygen levels in the band gap enables ZnO as an active material for visible and 
UV-light photo-detection. Despite of many efforts, in the case of undoped ZnO nanostructures, it is still a chal-
lenging issue to make a simple and economical photodetector that could use an easily fabricated nanostructure to 
work in broad spectrum region (ultraviolet and visible), except the lD nanostructures, and avoids the require 
sophisticated instrumentation. From the reported studies, it is ensured that for an undoped/pristine ZnO photo-
detector, it is only the multiple scattering or defects (V so ,Zn si  and antsites) that enables the visible-light/broadband 
response. Therefore, the tuning of morphology of undoped ZnO nanostructures, capable of broadband 
spectral-response through the combined effect of multiple scattering and formation of V so  and Zn si , synthesized 
by the simple solution method would be highly valuable for making an economical photodetector.

In this work, different morphologies of undoped ZnO nanostructures; NSs, NFs and NPs were formed simply 
by low temperature chemical route engineering. The V so  and Zn si  were introduced intentionally during the forma-
tion, so as to avoid the cost effective approaches23 which involve high temperature and vacuum conditions for 
inclusion of V so  and Zn si . Thus generated V so  and Zn si  levels in the energy band of ZnO exhibited significant 
photo-response in the visible as well as UV spectral region. The photo-response of these nanostructures was 
investigated in terms of generated photovoltages by wide range of spectral illumination i.e. λ ≈ 380~420 nm 
(UV), λ ≈ 490~560 nm (green), and λ > 420 nm (white light). We found that from the fabricated nanostructures, 
the NSs photodetector in a thin film form shows a faster rise and decay time both in the UV and visible spectrum 
region than that of the co-fabricated NPs and NFs photodetectors, and the ever reported sophisticated single ZnO 
nanowire based photodetector working only in UV region24–26. Based upon the observations, simply fabricated 
NSs, a low-cost photodetector could be a highly competent candidate for the applications requiring detection of 
wide range spectrum.

Results and Discussion
Morphological and X-ray analysis. Surface morphology of the samples prepared by varying the synthesis 
parameters such as; variation in the concentration of precursor solutions, ratio, reaction time and solvent, was 
investigated using FE-SEM (Supplementary Figures S2 and S3 for C2H5OH medium and S4, S5 for H2O medium). 
The large number of synthesis reaction performed using the precursor ‘ZnCl2’ in solvent media C2H5OH and 
H2O resulted mainly in three types of nanostructures i.e. NPs (for 15 minutes of reaction time in both the reaction 
media), NSs and NFs that were formed as the only distinguishable forms of the product as shown in Fig. 1. The 
solvent media C2H5OH and H2O play a significant role in the different aggregations of initially formed nanoparti-
cles that resulted in NSs and NFs after 4 hours of reaction time. The FE-SEM images show that an abrupt addition 
of ZnCl2 solution in alkali solution resulted preliminary in the formation of NPs (Fig. 1a) for both the solvent 
media, which then aggregated differently as NSs (Fig. 1b) and NFs (Fig. 1c), respectively. The XRD patterns 
are shown in the right of Fig. 1. There are five prominent diffraction peaks, in all the cases, at diffraction angles 
2θ = 32.7°, 34.5°, 36.42°, 47.44°and 56.58°, which are indexed as lattice planes (100), (002), (101), (102), and (110) 
with the lattice constants (a = 0.325 nm and c = 0.5211 nm), corresponding to Wurtzite crystal structure of ZnO. 
The size of nanocrystals estimated for maximum intensity peak, using Debye-Scherrer formula D = 0.9λ/βcosθ 
is 17.41 nm, 21.57 nm and 23.29 nm for NP, NS and NF, respectively; with an average crystallite sized 20.16 nm, 
24.44 nm and 20.44 nm for NP, NS and NF, respectively, indicates a successive growth mechanism of nanostruc-
tures evolving from the nanoparticles.

Optical absorbance of the samples obtained by UV-Visible spectroscopy is shown in Fig. 2. These absorption 
spectra appear to be extended from UV to visible-region, with a sharp UV excitonic peak at wavelength, 315 nm 
for NPs (Fig. 2a), 355 nm for NSs (Fig. 2b) and 365 nm for NFs (Fig. 2c). The presence of excitonic peak in UV 
region along with an extended absorption region reveals their UV as well as visible-light activity10. The shift in the 
excitonic peak from NPs (315 nm) to NSs (355 nm) and then to NFs (365 nm), corresponds to a red shift in the 
spectrum. With the shift in the excitonic peaks, the overall absorbance also increases from NPs to NSs and then to 
NFs (Fig. 2d). This result is analogous to the observations of enhanced absorbance in the porosity induced antire-
flections leading to visible-light photo-activity10. A rough estimation of the porosity order as NFs > NSs > NPs, 
can be made from the FE-SEM images of ZnO films (Fig. 1). Among these nanostructures, the NFs are expected 
to have comparatively more multiple reflections of light rays once they enter the film, and these large multiple 
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reflections may lead to higher absorption10 in the NFs film in comparison with NSs and NPs films as shown in 
Fig. 2d.

PL and XPS studies. Emission/absorption in the UV and visible-region by ZnO nanostructures were inves-
tigated via analyzing defects states (vacancies, interstitials and antisite) in the studies conducted by PL and XPS 
experiments. Figure 3 shows a room temperature PL spectrum of NPs, NSs and NFs nanostructures. For excita-
tion energy ~3.36 eV (corresponding to wavelength ~370 nm, equivalent to the typical band gap of ZnO), the PL 
spectra of NPs, NSs and NFs samples show near-band emission; respectively, at 386 nm (3.21 eV) (Fig. 3a), 393 nm 
(3.15 eV) (Fig. 3b) and 396 nm (3.12 eV) (Fig. 3c) which is attributed to the transitions from excitonic levels and/
or zinc interstitials Zn( )i  to the conduction band (CB)27 and is analogous to the previous studies28,29. Along with 
these near-band emissions, all three samples exhibit visible emissions in the spectrum region 420–569 nm 
(Fig.  3d) consisting distinct peaks at 420 nm (2.95 eV),456 nm (2.71 eV),484 nm (2.56 eV), 511 nm 
(2.42 eV),530 nm (2.34 eV) and 568 nm (2.43 eV). Basically, transition from VB to CB and from VB to shallow 
levels occurs upon photoexcitation in the PL, which then give the subsequent transitions; CB → deep levels, shal-
low levels → VB, shallow level → deep levels and hole capture at deep levels gives violet, blue and green emissions 
according to energy levels difference. Since the exciting energy (3.36 eV) is equivalent to ZnO energy gap; there-
fore, the electrons excited from the valance band (VB) can jump to the CB as well as shallow defect levels.

Figure 1. FE-SEM images and XRD results of ZnO nanostructures. (a) NPs formed in 15 minutes by using 
C2H5OH solvent, (b) ZnO-NSs formed in 4 hours using C2H5OH solvent and (c) ZnO-NFs formed in 4 hours 
using H2O solvent. In the right side, there are XRD plots indicating similar crystallographic structures for all the 
morphologies.
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Generally, oxygen vacancies (V *o , V Vando o
+ ++) are considered as green emission centers, where V *o  is neutral-

ized oxygen vacancy that lies 0.86 eV below the CB, and the ++Vo  a double ionized vacancy lies ~2.18 eV below the 
CB. The single ionized oxygen vacancy Vo

+ is reported to have two energy locations; 0.9 and 2.47 eV above the VB 
in the band gap30,31. Besides the oxygen vacancies, oxygen antisite O( )Zn  located 2.33 eV below the CB do corre-
sponds to green emission of shorter wavelength30. Other defects such as; zinc interstitials Zn si , natural Zn( )i , sin-
gly and doubly ionized interstitials (Zni

+, ++Zni ) are responsible for blue emission27,32,33. Zni being located 
0.22 eV below the CB edge34 gives violet emission around 390 nm in the PL. However, some studies show more 
deeper location of Zni (~0.37 eV below CB) to explain violet-blue emission27. Other two Zn defects; +Zni  and 
Zni

++ lie 0.56 and 0.63 eV below the CB minima27, respectively; whereby the transitions to zinc vacancy V( )Zn  and/
or VB results in blue emissions of higher wavelengths35. Except Zn si  and V ,Zn  the oxygen interstitial O( )i  generally 
located in the band gap at position 0.4 eV above the VB, also participates in the blue emission35,36.

PL spectra in Fig. 3 show co-existence of violet emission peak in the range 386–398 nm (corresponding to 
excitonic emissions) and visible emission peak in the range 420–568 nm. All three types of nanostructures; NPs 
(3a), NSs (3b) and NFs (3c) show common visible light emission peaks at 420 nm (2.95 eV), 456 nm (2.71 eV), 
484 nm (2.56 eV), 511 nm (2.42 eV), 530 nm (2.34 eV) and a low intensity peak at 568 nm (2.43 eV), whereas UV 
region emission peaks are located at different wavelengths. The UV emission peak shows a red shift in a order 
NPs → NSs → NFs as can be seen in Fig. 3d. This red shift in PL is analogues to the observed red shift in UV-Vis 
spectrum (Fig. 2), indicating slightly different excitonic energy levels in the band gap of synthesized nanostruc-
tures. As reported earlier ZnO possesses stable excitonic states just below its CB33 minima, whereby transition to 
VB gives near band violet emissions. Thus in our case, the observed peak in PL of NPs at position 386 nm 
(3.21 eV) can be assigned to the transition from excitonic states to its VB. In other words, the decay of self-trapped 
exciton to the CB, causes near band violet emission as shown in Fig. 4. Similarly, the UV emissions in NSs and 
NFs at 393 nm (3.15 eV) and 398 nm (3.12 eV) are close to the electronic transition from a slightly lower energy 
excitonic state or Zn interstitial Zni (lying ~0.22 eV below the conduction band) to the VB. The possible transi-
tion scheme, corresponds to all the peaks in the PL shown in Fig. 4b, is given in Fig. 4a.

In the visible region, the observed blue emission peak at 420 nm (2.95 eV) corresponds to the transition from 
Zni  to VB, considering that Zni  lies ~0.41 eV deeper to the CB edge, this is alike to the previous reports24, 

wherein energetic location of Zni  is considered 0.38 eV deeper in the energy band. The another possibility is the 
transition CB → oxygen interstitial Oi (located 0.4 eV above VB as proposed earlier35) that also gives blue emission 

Figure 2. UV-Vis spectroscopy absorbance spectra. (a) NPs having excitonic peak at 315 nm and extended 
absorbance in the visible spectrum region, (b) NSs having excitonic peak at 355 nm and showing extended 
visible region, (c) NFs having excitonic peak at 365 nm with comparatively higher absorbance, and (d) shows 
increasing absorbance from NPs to NSs and then to NFs.
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at 420 nm. In fact, the second one is rather in a good agreement as the energy level difference (2.96 eV) between 
CB edge and Oi  is close to the obtained emission energy (2.95 eV). Nonetheless, the excitation energy (3.36 eV) is 
quite enough to pump the electrons from VB to CB that make a transition CB → Oi and emit blue radiation of 
420 nm, indicating the latter transition more plausible. The another blue emission at ~456 nm (2.71 eV) is assigned 
to the transition from extended Zni  states → VB. The extended Zni states are generally; localized Zni 
states, ++Zni  and complex defects, whose energetic locations deep in the band gap depend upon the fabrication 
methods27,35. In our case, the blue emission (2.71 eV) is in close agreement to the energy of transition Zni

++ → CB 
(2.73 eV), indicating the presence of Zni

++ states in the band gap. Third blue emission peak located at 484 nm 
(2.56 eV) corresponds to the transition from +Zni  → VZn, as the energy difference between these levels (2.52 eV) is 
in close agreement to the observed emission energy.

Green emissions falling in the spectral region 511–568 nm, possesses three emissions peaks at 511 nm 
(2.42 eV), 530 nm (2.34 eV) and 568 nm (2.18 eV). When the electrons from CB, recombine with doubly ionized 

++Vo  located at an energy level 1.12 eV above the VB, generate green emission of wavelength 568 nm37. The sec-
ond green emissions peak centered at 530 nm may come from the transition +Vo  → VB or CB → OZn. The first 
transition ( +Vo  → VB) occurs due to the formation of unstable +Vo  state of +Vo  by capturing electrons form CB38. 
This unstable state, when recombine with photoexcited hole in the VB, would generate green emission around 
530 nm39. The second transition CB → OZn also has a strong possibility as the exciting energy is enough to pump 
the electrons to CB that after falling to OZn will give rise a green emission at 530 nm. Coming back to the Vo

+ states, 
in the energy band, there may be occurrence of complex Vo

+  states along with isolated Vo
+  centers. The complex 

states lying deeper in the band gap also give a possible explanation of the green emission around 530 nm, whereas 
the isolated +Vo  states suitably explain the emission around 511 nm38 through the transition +Vo  → VB. As men-
tioned previously, two possible energetic locations of isolated +Vo  states are estimated theoretically at 0.9 and ~ 
2.47 eV above the VB. The transition Vo

+ → VB (corresponding to 2.47 eV energy level position of Vo
+) gives 

511 nm emission as shown in the scheme of Fig. 4a, and the transition CB → Vo
+ (corresponding to 0.9 eV energy 

level position of +Vo ) will give 510 nm emission as shown in the scheme of Fig. 4a by dashed line. Both of the tran-
sitions have equal possibility to generate emission around 510 nm in the PL. All these observations in the PL, 
indicate that all of the samples possess defects states such as; V so , Zni, Oi, VZn and OZn.

Figure 3. Photoluminescence spectra of nanostructures. (a)NPs show violet emissions at 386 nm, (b) NSs show 
violet emissions at 393 nm and (c) NFs show violet emission at 398 nm. Blue emissions at wavelengths positions 
420, 456 and 848 nm and green emissions at wavelengths 511, 530 and low intensity peak at 568 nm are common 
in all nanostructures.
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XPS studies were performed to get information about chemical bonding and defects states present in the ZnO 
samples. Figure S6(a–c) shows XPS survey spectra recorded at room temperature for NPs, NSs and NFs samples. 
The overview of survey spectra reveals the presence of O1s and Zn2p (Zn2p3/2 and Zn2p1/2) peaks in all the sam-
ples. In order to further examination, the high-resolution peaks were deconvoluted in satellite components at 
different binding energies. Figure 5(a–c) illustrates high-resolution XPS spectra for all the samples corresponding 
to O1s core level. These spectra are fitted with three Gaussian peaks. In the NPs case (Fig. 5a), deconvoluted peaks 
are located at binding energies 530.8, 530.93 and 532.5 eV. Here, the lower binding energy peak is attributed to 
lattice oxygen (OL) which contributes to the perfect hexagonal structure of ZnO lattice, the presence of middle 
peak at binding energy 530.93 eV is ascribed to vacancies (V so )40 in ZnO lattice. The observation of V so  supports 
the presence of green emission line in PL. The higher binding energy peak at 532.5 eV corresponds to chemisorbed 
oxygen (OH ,−  −CO3, adsorbed H2O, and O2 (OC))41,42. Similarly, the peaks in high-resolution deconvoluted XPS 
spectrum of NSs and NFs, when analyzed do correspond to OL, V so  and chemisorbed oxygen. However, there is 
shift in the binding energy values of the corresponding deconvoluted peaks for NSs and NFs with respect to that 
of NPs, which is ascribed to the difference in their morphologies and synthesis approaches43,44. Further, the 
change in the percentage of oxygen content related to each deconvoluted peak was estimated by the change in 
percentage area of the peaks. From the calculations of percentage area, we found that the lattice oxygen in NPs is 
about 17%, whereas in case of NSs and NFs it reduces to ~ 12%. At the same time, the percentage area of oxygen 
vacancies (Vo

∗, + ++V Vando o )45,46, increases from 21.8% (in NPs) to 47.7% (in NSs) and 54.5% (in NFs), and that 
of the chemisorbed oxygen decreases from NPs (60.3%) to NSs (40.9%) and then to NFs (37.6%).

Figure 6(a–c) represents high-resolution XPS spectra for Zn peaks in the NPs, NSs and NFs samples, respec-
tively. In these spectra, the energy separation between two Zn components; Zn2p3/2 and Zn2p1/2 for NPs is 
23.11 eV, NSs is 23.09 eV and NFs is 23.13 eV, which are in agreement with the reported values of ZnO47,48. The 
difference of binding energies of these deconvoluted peaks for NPs, NSs and NFs (given in Table S2) is ascribed to 
the difference in their morphologies and synthesis approaches43,44. The peak Zn2p3/2 in NPs sample is deconvo-
luted in three peaks at binding energies 1022.02 eV (lower side), 1022.41 eV (middle) and 1022.35 eV (higher), 
also the peak Zn2P1/2 is deconvoluted in three peaks at binding energies 1044.92 eV (lower), 1045.51 eV (middle) 
and 1045.64 eV (higher) as shown in Fig. 6a. The middle peaks (1022.41 and 1045.51 eV) have an energy differ-
ence of 23.1 eV, which is in good agreement with the spin-orbit splitting value of divalent Zn bounded in ZnO 
structure49,50, and thus suggesting that the middle peak corresponds to lattice Zn. The lower energy peaks cen-
tered at 1022.02 and 1044.92 eV correspond to metallic Zn in the sample51. And, third peaks centered at higher 
energies 1022.35 and 1045.64 eV, correspond to +2 oxidation state of Zn due to the presence of Zn(OH)2 or/and 
ionized Zni interstitials. It is found37,52 that the binding energy location of satellite peak of 2p3/2 lying between 

Figure 4. Emission scheme with PL spectra. (a) Schematic representation of emission scheme in the prepared 
samples of NPs, NSs and NFs nanostructures, (b) PL emission showing different peak position in violet region 
386–398 nm, and common emission peaks in the visible region 420–568 nm in all samples.
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1022.70 and 1021.80 eV corresponds to Zn(OH)2, and therefore the +2 oxidation state is due to the presence of 
Zn(OH)2. Whereas in our case for NPs sample, the satellite peak 2p3/2 (at 1022.35 eV) lies between the referred 
energy limits, which suggests the presence of Zn(OH)2 or +2 oxidation state by hydroxide form of Zn. This can 
be further correlated with the corresponding peak in the O1s spectrum of NPs (shown in Fig. 6a), which is 
assigned as chemisorbed oxygen (generally in OH− and/or water molecules). In the O1s spectrum, the obtained 
higher percentage (60.39%) of chemisorbed oxygen can be assigned to −OH  group as confirmed form Zn2p3/2 
spectrum; however, there should co-exist a small percentage of interstitial Zn as well, as to produce emission in 
the corresponding PL spectrum (as the PL of nanoparticles shows the presence of interstitials). Moreover, the 
lower PL emission intensity of NPs than that of NSs and NFs indicates comparatively smaller interstitial percent-
age in NPs. Next, in case of NSs, each of the peaks Zn2p3/2 and Zn2P1/2 (Fig. 6b) is deconvoluted in three satellite 
peaks at energies 1022.81, 1023.62, 1024.16 eV and 1045.37, 1046.6, 1048.66 eV, respectively. The middle peaks 
centered at binding energies 1023.62 eV and 1046.6 eV have energy difference of 22.98 (approximately 23.0 eV), 
that again corresponds to lattice Zn with two valance state in ZnO. The satellite peak at lower energy side is 
assigned to metallic Zn alike to that of the NPs sample. However, in this sample the higher energy satellite peaks 
1024.16 and 1048.66 eV located at significantly higher energies do not correspond to Zn(OH)2; instead it indicates 
that the Zn atom is surrounded by more than one oxygen atoms and is occupied at interstitial positions37. These 
interstitial Zn could be neutral Zni, extended states of Zn ;i  single and double ionized zinc interstitials (Zni

+ and 
++Zni ). Similarly, in the samples of NFs, the Zn2p spectrum is deconvoluted in three peaks as shown in 

Fig. 6c. Here also, the higher energy satellite peaks are located at much higher energies as 1024.34 and 1074.04 eV 
should correspond to the interstitial Zn similar to that of NSs sample. However, the area percentage in NFs is 
more than that of NSs, suggesting a higher content of interstitials in NFs, which is in good agreement with PL 
observation (Fig. 4b) showing higher intensity, revealing the higher Zn interstitials in NFs sample.

Performance of ZnO photodetectors. To study the performance of ZnO photodetectors, photo-response 
was measured in terms of photovoltage by applying a bias voltage ‘Vb = 5 V’ as shown in Figure S1. Figure 7 shows 
photovoltage versus time plots for all the three types of nanostructures; NPs (Fig. 7a), NSs (Fig. 7b) and NFs 
(Fig. 7c) thin film photodetectors under the illuminations; violet, white and green. In the photovoltage meas-
urements, rise time is the time required in 90% rise of photovoltage form its initial value (after switching ON 

Figure 5. High-resolution XPS spectra for O1s. (a) ZnO-NPs different percentages of lattice oxygen, oxygen 
vacancies and chemisorbed oxygen, (b) ZnO-NSs and (c) ZnO-NFs show variations in the peak positions, and 
constituent percentages are given in respective tables.
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the illumination), and fall time is the time taken in the falling of maximum photovoltage to 10% (after switching 
‘OFF’ the illumination)53. For each photodetector, the period of ON and OFF time was taken different by con-
sidering their response time as different, and also to eliminate the heating effects on the sample surface39,54. In 
the experiments, the ON and OFF time was controlled using a camera shutter. The photo-response of all ZnO 
nanostructure photodetectors (in the region ultraviolet to visible) is given in Table 1.

The mechanism of photodetector response with light illumination can be explained by desorption and adsorp-
tion of O2 and/or H2O on its surface26,55–58. In a dark condition, O2 and H2O molecules present in the air get 
adsorbed on ZnO surface, which by capturing electrons from the conduction band of ZnO becomes negatively 
charged ions (chemisorbed) that results in the increased depletion barrier height. When the illumination is 
turned on, the chemisorbed O2 gets H2O is/are desorbed by two ways; (i) capturing a photo-generated hole and/
or (ii) direct photo-excitation of captured electron to the conduction band of ZnO24. The desorption mechanism 
occurs in accordance to the energy level of illuminating radiation (above-band or below-band energy). While 
using above-band illumination ‘UV radiation’, electron and hole are generated directly since the illumination 
energy is higher than the band gap of ZnO. Thus the produced photo-holes migrate to the chemisorbed ions sites, 
and release the electron by neutralizing the ions. The desorption of ions decreases barrier height and releases 
electrons in the conduction band of ZnO. These released electrons along with the photo-electrons would enhance 
the concentration of carriers in the CB of ZnO, and thus give rise to its photoconductivity. In case of below-band 
illumination, desorption of O2/H2O occurs by direct photo-excitation of the captured electrons to the conduction 
band of ZnO that also increases photoconductivity. In the present study, we used above-band (UV) as well as 
below-band (white and green) illuminations which resulted in the generation of photovoltage. Thus the observed 

Figure 6. High-resolution XPS spectra of Zn2p. (a) ZnO-NPs possessing dominating Zn peak at higher 
energy side is due to the hydroxide form as mentioned in table, (b) ZnO-NSs and (c) ZnO-NFs spectra 
have dominating interstitial Zn peak at higher energy. The position of peaks and their area percentages are 
mentioned in the corresponding tables.
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photovoltage might involve both of the desorption mechanisms explained above, according to the illumination 
conditions.

First of all, we compare photo-response curves corresponding with different illuminations in the NPs photo-
detector. In the NPs photodetector, the photovoltage initially at ~0 V (dark voltage) reaches the saturation voltage 
3.35 V within 2 sec upon UV exposure (Fig. 7a), and at 3.12 V and 2.85 V within 4 sec after white and green illu-
minations (Fig. 7(b,c)), respectively. Here, the illumination ON and OFF time were taken as 50 sec and 200 sec, 
respectively. While looking at the photo-response curve of NPs photodetector, the rise time corresponding to 
different illuminations have small variations, whereas their decay time have large difference, and are much longer 
in comparison with the corresponding rise time as 93 sec for green, 121 sec for UV and greater than 200 sec for 
white illumination. After turning OFF the illuminations, the photodetector does not achieve its original dark 

Figure 7. Response of nanostructured thin film photodetectors. (a–c) NPs photodetector, (d–f) NSs 
photodetector and (g–i) NSs photodetector for UV, white and green illuminations, dashed lines are plotted 
for clear observation of photo-generated ON state saturation voltages and OFF state dark voltages by different 
illuminations. In each photodetector, the illumination time is taken as short as required to avoid the heating 
effects. The applied bias voltage in all three cases is 5 V.
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voltage; instead it remains at a minimum voltage such as; 0.635 V for UV, 0.241 V for green illuminations, whereas 
for white illumination, it remains unsaturated even after 200 sec as can be seen in Fig. 7a.

The observed difference in the photovoltage rise time with UV, white and green illuminations can be under-
stood by the difference in their illumination energies. UV illumination being an above-band energy, generates 
carriers both by desorption of adsorbed ions as well as direct excitation of electrons from VB to CB, whereas in 
case of white and green illuminations the charge carriers are generated only by desorption of the adsorbed ions. 
Thus for UV illumination, the reduction in depletion region height should be larger, enhancing charge carriers 
mobility59, and hence the fast rise in the photovoltage (Table 1). In the response curves, the ON state saturation 
voltage is also a reflection of different illumination energies. Based upon the energy levels of the illuminations, 
different concentrations of charge carriers are generated that give rise to the different values of saturation photo-
voltages as shown in Fig. 7. The decay of photovoltage after turning OFF the illuminations is due to re-adsorption 
of O2/H2O. The re-adsorption/decay curve shows two regions, fast decaying and slows decay regions. The fast 
decay is due to an instantaneous electron capture by adsorbed chemisorbed O2/H2O on the surface V so , and slower 
decay is due to the adsorption of O2/H2O deep into the surface between nano-crystallites60. The latter involves 
rate-limited diffusion and rearrangement of O2/H2O in a closed packed structure for adsorption on the surface 
that makes the process slower60. Just after turning OFF the illuminations, the decrease in photovoltage is faster 
and almost similar for all three illuminations (UV, white and green), which successively becomes slower on the 
latter stage and acquires different decreasing rate for each illumination.

A model governing the rate-limited diffusion controlled adsorption process can be represented as60;

dNi t
dt

Ns Ni t( ) ( )
(1)τ

=
−

where Ni represents density of charged ions (after capturing electrons), Ns is saturation density of ionized species 
which prevents further ionization and τ is adsorption rate.

Since for the green illumination, the photo-generated voltage is comparatively lower due to small number 
of generated charger carriers. As soon as the illumination is turned OFF, the produced smaller number of elec-
trons will be captured by adsorbed O2/H2O at a faster rate than that for UV illumination59. Nevertheless, by UV 
illumination, electrons and holes are separated away in space that also increases their recombination life time25. 
However, the slow decay response in case of white illumination is unclear. When looking to the minimum value 
of dark voltage in the OFF state, there exists a shift in the dark voltage for each illumination. This may be ascribed 
to the presence of neutralized oxygen on the surface of ZnO-NPs. The neutralized oxygen residing on the surface 
would occupies a part of the surface, and thus will not allow the newly coming oxygen for electron capture, and 
thus resulting in a shift of photovoltage60. The observed shift in the dark voltage is in accordance with the energy 
leaves of illuminating radiation. The UV radiation, being a high energy, would neutralize more ions as compared 
with white and green illuminations, and therefore shows a larger shift in dark voltage (Fig. 8(a–c)).

Now let’s compare the photo-response of NPs, NSs and NFs photodetectors with respect to different illumina-
tions (UV, white and green). The NSs and NPs photodetectors show similarity in their photovoltage rise time as 
2 sec for UV, 4 sec for white and 5 sec for green; however, their ON state saturation voltages are different as shown 
in Fig. 8(a–c). NSs photodetector has smaller value of ON state saturation voltage than that of NPs photodetector. 
The NFs photodetector shows further smaller value of ON state saturation photovoltages as1.62 V for UV, 1.53 V 
for white and 0.72 V for green, whereas the photovoltage rise time is longer than that of NPs and NSs. The differ-
ence in the saturation photovoltages can be correlated with the different densities of illumination centers/defects 
in the nanostructures as detected by PL spectra (Fig. 4b). The observed PL intensities in the order, INF > INS > INP 
are representative of densities of illumination centers/defects in the respective nanostructure. These intensities/
densities are adverse to the ON state saturation photovoltages. Indubitably, not all the peaks observed in PL do 
correspond to the generated photovoltage61, rather it indicates the possibility that a corresponding photovoltage 
may be generated upon illumination when any/all of the defect states participate in the photovoltage generation 
mechanism. The observed adverse effect of defect states over the ON state saturation voltage indicates that there 
should be capturing/scattering of photo-generated charge carriers during transportation62,63. In other words, the 
higher is defect density, lower is photo-generated voltage or vice versa. In whole of the process; however, unfor-
tunately we could not obtained variation of defect states within a single morphology (either of NPs, NSs or NFs), 

Structures/
photodetectors

Saturation photovoltage 
for each illumination (V)

Growth time for each 
illumination (sec)

Decay time for each 
illumination (sec)

Surface area 
(m2/gm)

NPs

Violet: 3.35 UV ~ 2 Violet~121

20.5White: 3.12 White ~ 4 White > 200

Green: 2.85 Green ~ 4 Green ~ 93

NSs

Violet: 2.87 UV ~ 2 Violet ~ 10

11.8White: 2.45 White ~ 4 White ~ 8

Green: 2.27 Green ~ 5 Green ~ 10

NFs

Violet: 1.62 UV ~ 15 Violet ~ 15

10.0White: 1.53 White ~ 18 White ~ 20

Green: 0.72 Green ~ 10 Green ~ 10

Table 1. Shows comparison of the performance of ZnO nanostructures-based photodetectors under different 
spectral illumination using 5 V bias voltage.
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as that could have been a further better examination of the effect of defects states variation over the ON state 
saturation voltage.

For decay/off state recovery time of photovoltages, it is known that the decay time depends mainly upon three 
factors; the available defect states (Vos and Znis in our case), surface area and adsorbate (O2 or H2O). The XPS 
results (Figs 5a and 6a) demonstrate that NPs possess smaller content of V so  (21.8%) and smaller content of Zn si  
(as the main contribution being from hydroxide formation), whereas larger content of adsorbed O2/H2O (60.39%) 
along with a large surface area (20.5 m2/g) in comparison to that of NSs and NFs. The smaller percentage of Vos 
and Znis spreading over a larger surface area would initially promote fast chemisorption process of O2/H2O after 
turning OFF the illumination. The fast-initial decay can also be seen in NSs and NFs photodetectors, which latter 
on becomes slower and different in all the photodetectors. The fast decay, after turning OFF the illumination, 
indicates that initially the decay is essentially through a chemisorption process that is considered as a fast process. 
The surface states are then saturated by initial chemisorption process, and O2/H2O diffuse through the 
inter-crystallite deep into the surface, where they can find sites for adsorption; this corresponds to the slower 
decay64 of photovoltages. In NPs, the content of adsorbed O2/H2O (60.39%) over the 21.8% of V so  and a smaller 
percentage of Zn si  is larger, this shows that during the slower decay step, a large amount of O2/H2O, in compari-
son to the chemisorption, is physisorbed on the surface of NPs. Therefore, physisorption process is dominating in 
the case of NPs photodetector. Since the physisorption process involves rearrangement of adsorbate on the sur-
face, so it will result in an increasing decay time of NPs photodetector (Fig. 8a). On the other hand, NSs photode-
tector, in comparison with NPs photodetector, has higher content of V so  (47.7%) and Zn si  (~13.3%), and smaller 
content of adsorbed (O2/H2O ~40.95%) along with smaller surface area (11.8 m2/g) would decay prominently 
through the chemisorption process due to the abundance of defect states to facilitate chemisorption process. Thus 

Figure 8. Comparison of photovoltage vs time curves of ZnO photodetectors thin films for UV, white 
and green illuminations. (a) NPs photodetector response showing high photo-generated voltage, (b) NSs 
photodetector shows fast response for both rise and fall time, and (c) NFs photodetector is slow for rise time 
and intermediate for fall time, also in this case the photo-generated voltage is smaller than that of NPs and NSs 
photodetectors.
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the larger content of Vos and Znis than the adsorbed O2/H2O leads to dominating fast chemisorption process that 
results in faster decay of NSs photodetector (Fig. 8b). Next, the NFs photodetector decay time shows totally dif-
ferent behavior, which is adverse to the trend obtained from NPs to NSs photodetectors. In this case, an increased 
decay time despite of higher content of V so  (54.5%) and .Zn s(28 6%)i , and smaller content of adsorbate (37.6%), 
surface area (10 m2/g) is observed. Here, the excess of defect states (Vos and Znis) appears to creates adverse effect 
on photoconductivity, similar to the reduction in the ON state saturation photovoltage (peak voltage in the 
Fig. 8(a,c)), and thus increases photovoltage decay time in NFs photodetector (Fig. 8c). The photovoltage rise time 
of NFs photodetector (15 sec for UV, 18 sec for white and 10 sec for green illuminations) is also longer than that of 
both the NSs and NPs photodetectors (Table 1). Here also, the deterministic factor appears to be the different 
content of Vos and Znis in nanostructures64; as the higher content of Vos and Znis in nanostructure photodetector 
results in longer photovoltage rise time. The NPs have lower percentage of Vos and Znis that would desorb rapidly 
and thus fast release of charge carriers upon illumination.

Form the above discussed observations, the UV and visible photo-response of thin film NSs is found better in 
comparison with NPs and NFs photodetectors (as compared in Table 1). Another important feature of NSs photo-
detector is its similarity in the rates of decay curves for both UV and visible illuminations despite of having differ-
ent saturation voltages. The photo-response of the NSs photodetector in film architecture is even better than that 
of a sophisticated architectures consisting a single ZnO nanowire that performs only in UV illumination24–26,57.

Conclusion
As a conclusion, a significant visible light photo-detection along with UV photodetection is achieved in pristine 
ZnO nanostructure based thin films. The defect states Vos and Znis along with morphology giving rise to the 
visible-light photo response are generated simply by tuning of solution method. The results of PL, XPS and pho-
tovoltages show that although the defect states Vos and Znis are responsible for exhibiting photo response in the 
visible-region of spectrum but at the same time their excess reduces the performance of photodetector as 
observed ~54% of V so  and ~28% of Zn si  in NFs photodetector, which is probable by scattering/capturing of charge 
carriers during their transportation. The ZnO-sheet based photodetector possessing moderate amount of 
~ ~V Zn ss( 47%) and ( 13%)o i  in comparison with ZnO-particle and ZnO-flower photodetectors, shows faster 

response to photovoltage growth time and decay time under the UV as well as visible-light illumination. The ZnO 
nanosheet based photodetector can be used as an efficient material for photodetector applications in broad-band 
spectral applications.

Materials and Methods
Synthesis of ZnO-NPs, ZnO-NSs, ZnO-NFs, and fabrication of photodetectors. The simple 
chemical route was tuned for the formation of surfactant free ZnO nanostructures. Detailed synthesis experi-
ments listed in the Tables S1 and S2 of the supplementary information were performed with the variation of 
synthesis time, precursors, solvents and their molar ratio that resulted in the different ZnO morphologies. In the 
detailed experiments, a new approach was adopted to introduce V so  and Zn si  in the lattice of ZnO which enabled 
the ZnO nanostructures active for the visible light photo-detection. In the approach, an abrupt/fast mixing of 
precursor solution with alkali solution in the reaction chamber resulted in the formation of V so  and Zn si  as iden-
tified by XPS and PL studies. From the detailed synthesis experiments, we found that surfactant free ZnO-NSs 
and ZnO-NFs resulted only for specific conditions of precursor concentration (0.5 M), precursor’s molar ratio 
(1:1) and reaction time (4 hours). For NSs synthesis, 0.5 M solution of zinc chloride (ZnCl2) (purity 99.99%, 
Sigma-Aldrich, USA)) and 0.5 M solution of sodium hydroxide (NaOH) (purity 98%, Merck India Ltd.) were 
dissolved in ethyl alcohol (C2H5OH) separately. Then the prepared precursor solution of ZnCl2 was added 
abruptly in the solution of NaOH under vigorous stirring conditions at room temperature (~30 °C). After 4 hours 
of reaction time, the formed precipitate was collected, filtered, and washed with deionized water and C2H5OH to 
remove Cl− and Na+ ions, which was finally dried at 60 °C. In the second set of experiments for the synthesis of 
NFs, all the conditions were kept same as that in case of NSs formation, the only solvent C2H5OH was replaced 
with deionized water. In this case, ZnO-NFs rather than NSs were obtained for the specific condition of precursor 
concentrations 0.5 M, precursor’s molar ratio 1:1 and reaction time 4 hours. The NPs were formed in both of the 
synthesis cases for precursor concentration 0.1 M, molar ratio of precursors 1:4 (NaOH: ZnCl2) and reaction time 
15 min. In order to fabricate the photodetector of as synthesized ZnO nanostructures, they were dispersed in 
C2H5OH solutions and sonicated for 30 minutes. Then these dispersed nanostructures were spray coated on ultra-
sonically cleaned glass substrates to make uniform films of thickness about 4 µm. For spray coating, N2 was used 
as a carrier gas in the nozzle at spray rate of 1 ml/min. After drying, silver (Ag) interdigitated fingers were printed 
on the surface of films to make electrical contacts. The width of Ag interdigital electrodes was taken about 1 mm 
with fringe separation of 2 mm as shown in Figure S1.

Characterizations of materials and photodetectors. The morphology of ZnO nanostructures was 
investigated by field-emission electron microscopy (FE-SEM, Hitachi S-4700, Tokyo, Japan), optical proper-
ties (absorbance and bandgap) were investigated by using UV-Vis spectrophotometer (Perkin-Elmer Lambda 
750) and structural study was done by X-ray diffractometer (XRD) (Rigaku, radiation Cu kα, λ = 1.5406 Å). 
Photoluminescence (PL) (LS-55 Luminescence, Perkin Elmer, Germany), and X-ray photoelectron spectroscopy 
(XPS) were used to investigate defect states in the nanostructures. To estimate photovoltage in the visible region, 
a mercury lamp (power 100 watt) was used as a light source, whose intensity on the surface of photodetectors 
was adjusted 1 mW cm−2. The photovoltage of fabricated photo-detectors was recorded at room temperature 
using digital multimeter. In the photo-detection experiments, bias voltage of 5 V was applied. UV diode and 
optical filters with transmittance wavelength in the range 380~420 nm, 490~560 nm and λ > 420 nm (white 
light) were used to select different spectrum regions, respectively. The ‘ON’ and ‘OFF’ state of incident radiations 
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were controlled by using a camera shutter. Schematic layout of the experimental set-up for the measurement of 
photo-generated voltage is shown in Figure S1.
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An Information-Theoretic Study for Joint Sparsity
Pattern Recovery With Different Sensing Matrices
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Abstract— In this paper, we study a support set reconstruction
problem for multiple measurement vectors (MMV) with different
sensing matrices, where the signals of interest are assumed to be
jointly sparse and each signal is sampled by its own sensing
matrix in the presence of noise. Using mathematical tools, we
develop upper and lower bounds of the failure probability of the
support set reconstruction in terms of the sparsity, the ambient
dimension, the minimum signal-to-noise ratio, the number of
measurement vectors, and the number of measurements. These
bounds can be used to provide guidelines for determining the
system parameters for various compressed sensing applications
with noisy MMV with different sensing matrices. Based on the
bounds, we develop necessary and sufficient conditions for reli-
able support set reconstruction. We interpret these conditions to
provide theoretical explanations regarding the benefits of taking
more measurement vectors. We then compare our sufficient
condition with the existing results for noisy MMV with the same
sensing matrix. As a result, we show that noisy MMV with
different sensing matrices may require fewer measurements for
reliable support set reconstruction, under a sublinear sparsity
regime in a low noise-level scenario.

Index Terms— Compressed sensing, support set reconstruction,
joint sparsity structure, multiple measurement vectors model.

I. INTRODUCTION

CONVENTIONALLY, signals sensed from sensors such
as microphones and imaging devices are sampled fol-

lowing the Shannon and Nyquist sampling theory [1] at a rate
higher than twice the maximum frequency for signal recon-
struction. As the number of samples decided by this theory is
often large, the samples go through a compression stage before
being stored. Therefore, taking numerous samples, where most
of them will be discarded in this stage, is inefficient. Because
compressed sensing (CS) [2]–[7] removes the inefficiency,
CS has been applied in various areas such as wireless commu-
nications [8]–[11], spectrometers [12], multiple input multiple
output (MIMO) radars [13], magnetic resonance imaging [14],
and imaging/signal processing [15]–[17].

The CS theory states that signals that are sparsely rep-
resentable in a certain basis are compressively sampled
and reconstructed from what we thought is incomplete
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in information. Let x ∈ R
N be a K-sparse vector with a support

set I := {i |x (i) �= 0 } whose indices indicate the positions of
the nonzero coefficients of x. It is compressively sampled by
a model called single measurement vector (SMV) as follows:

y = Fx + n (1)

where y ∈ R
M is a (noisy) measurement vector, F ∈ R

M×N

is a sensing matrix, and n ∈ R
M is a noise vector, whose

elements are independent and identically distributed (i.i.d)
Gaussian with a zero mean and a σ 2 variance. Once the
support set is correctly reconstructed, then (1) can be well-
posed, which allows us to obtain an accurate estimate of x
using the least square approach. We thus aim to focus on the
support set reconstruction problem.

A. Information-Theoretic Works for CS With SMV

Works [18]–[23] have studied the support set reconstruc-
tion problem from an information-theoretic perspective. For
reliable support set reconstruction, sufficient and necessary
conditions were established in the linear and sublinear sparsity
regimes.

For support set reconstruction, Wainwright [18] used the
union bound to establish a sufficient condition on the number
of measurements M for a maximum likelihood (ML) decoder
and used Fano’s inequality [24] to obtain a necessary condition
on M . This ML decoder was analyzed by Fletcher et al. [19]
to establish a necessary condition on M . Aeron et al. [20]
used Fano’s inequality to form necessary conditions on both
M and σ 2. Then, they used the union bound to obtain sufficient
conditions on both M and σ 2 for their sub-optimal decoder.
Akcakaya and Tarokh [21] used the union and the large
deviation bounds based on empirical entropies to get sufficient
conditions on M for their joint typical decoder. They used
the converse of the channel coding theorem to get necessary
conditions on M . Scarlett et al. [22] extended this decoder [21]
with the assumption that the distribution of the support set
is provided. For a uniform distribution case, their necessary
and sufficient conditions are equivalent to those of [21].
However, they are better for a non-uniform distribution case.
Scarlett and Cevher [23] linked the support set reconstruction
with the problem of coding over a mixed channel, where
information spectrum methods were used to obtain necessary
and sufficient conditions on M .

B. Information-Theoretic Works for CS With MMV

CS has many applications in wireless sensor net-
works (WSNs) [8]–[11] and MIMO radars [13]. In these
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applications, the signals of interest xs ∈ R
N , s = 1, 2, · · · , S

are often modeled as jointly K-sparse vectors, implying that
I = I1 = I2 · · · = IS , where Is is the support set of xs and
|I| = K , which is referred to as a joint sparsity structure.

There are two models for sampling jointly K-sparse vectors.
The first model is called multiple measurement vectors (MMV)
with the same sensing matrix [25], in which they are sampled
by the same sensing matrix. The second model is named as
MMV with different sensing matrices [8], [9], in which each
one is sampled by its own sensing matrix.

The authors of [26]–[28] have conducted information-
theoretic research to obtain conditions under which the sup-
port set of both the models was reconstructed with a high
probability. In noisy MMV with the same sensing matrix,
Tang and Nehorai [26] used the hypothesis theory to obtain
necessary and sufficient conditions on both the number of
measurements M and the number of measurement vectors S,
and proved that the success probability of the support set
reconstruction increases with S, if M = �

(
K log N

K

)
.

Jin and Rao [27] exploited the communication theory to
establish necessary and sufficient conditions on M and demon-
strated the benefits of the joint sparsity structure based on their
conditions. A detailed comparison between the results of our
paper and those of [27] will be presented in Section IV. Finally,
Duarte et al. [28] studied noiseless MMV with different sens-
ing matrices, and formed necessary and sufficient conditions
on M . However, it is difficult to apply the conditions to noisy
MMV with different sensing matrices.

Meanwhile, works [8], [29], [30] have presented con-
ditions of practical algorithms for a reliable support set
reconstruction. In noiseless MMV with the same sensing
matrix, Blanchard and Davies [30] obtained conditions for
a reliable reconstruction from rank aware orthogonal match-
ing pursuit (OMP). In noisy MMV with the same sensing
matrix, Kim et al. [29] created compressive MUSIC, and
presented its sufficient condition. In noiseless MMV with
different sensing matrices, Baron et al. [8] produced trivial
pursuit (TP) and distributed compressed sensing-simultaneous
OMP (DCS-SOMP). By analyzing TP with the assumption
that each sensing matrix contains i.i.d. Gaussian elements and
that the nonzero values of each sparse vector are i.i.d. Gaussian
variables, they demonstrated that with M ≥ 1, TP reconstructs
the support set as S is sufficiently large. They conjectured that
M ≥ K + 1 suffice for DCS-SOMP to reconstruct the support
set as S is sufficiently large, based on its empirical results.

To the best of our knowledge, no information-theoretic
study has been published to get necessary and sufficient con-
ditions for reliable support set reconstruction in noisy MMV
with different sensing matrices. Besides, these conditions have
not been provided from the practical recovery algorithms for
CS with noisy MMV with different sensing matrices.

C. Motivations of This Paper

CS with noisy MMV with different sensing matrices has
been applied in many applications and the benefits facili-
tated by the joint sparsity structure have been empirically
reported in [10] and [14]. In WSNs, Caione et al. [10]
used the joint sparsity structure to reduce the number of

transmitted bits per sensor and reported that each sensor can
reduce its transmission cost. In magnetic resonance imag-
ing (MRI), Wu et al. [14] modeled multiple diffusion tensor
images (DTIs) as jointly sparse vectors. They exploited the
joint sparsity structure to reduce the number of samples
per DTI, while retaining the reconstruction quality. Using the
joint sparsity structure, they also empirically reported that the
reconstruction quality of each DTI can be improved for a fixed
number of samples per DTI.

To theoretically explain the above empirical benefits facil-
itated by the joint sparsity structure, theoretical tools are
required to measure the performance of CS with noisy MMV
with different sensing matrices. Such tools can be useful as
guidelines for determining the system parameters in various
CS applications with noisy MMV with different sensing
matrices. For example, if the number of samples per DTI is
fixed in the MRI [14], the theoretical tools may enable us to
determine the number of DTIs required for achieving a given
reconstruction quality. Thus, the first motivation of this paper
is to provide the theoretical tools by establishing sufficient and
necessary conditions for reliable support set reconstruction.

Next, for noiseless MMV with the same sensing matrix,
let YA = F × [

x1 x2 · · · xS
] ∈ R

M×S . Also, for
noiseless MMV with different sensing matrices, let YB =[
F1x1 F2x2 · · · FSxS

] ∈ R
M×S . Then, all the elements

of YB are uncorrelated because all the sensing matrices are
independent. In contrast, those of YA are correlated because
they are taken from the same sensing matrix. Now, we consider
a case where we set S > K and M > K . Then, it is
clear that rank (YB) = min (S,M) with a high probability
and rank (YA) ≤ K . Therefore, for this case, we conclude
that rank (YB) > rank (YA). This implies that a more reliable
support set reconstruction can be expected in noiseless MMV
with different sensing matrices for this case. Thus, the second
motivation is to verify this perception in the presence of noise,
by comparing our results with the existing ones in noisy MMV
with the same sensing matrix [27].

D. Contributions of This Paper

The contributions of this paper are as follows: First, we
derive upper and lower bounds of a failure probability of the
support set reconstruction from Lemmas 1 and 2, by exploiting
Fano’s inequality [24] and the Chernoff bound [31]. These
bounds are used for measuring the performance of CS with
noisy MMV with different sensing matrices.

Next, we develop necessary and sufficient conditions for
reliable support set reconstruction. Theorem 1 states that

M > K

(
1 + 1

S f (SNRmin)

)

suffices to achieve reliable support set reconstruction in the
linear sparsity regime, i.e., lim

N→∞
K
N = β ∈ (0, 1/2), and it

also states that

M > K

(
1 + 1

S f (SNRmin)
log

N

K

)

suffices to achieve reliable support set reconstruction in
thesublinear sparsity regime, i.e., lim

N→∞
K
N = 0, where
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f (SNRmin) is an increasing function with respect to the
minimum signal-to-noise ratio SNRmin defined in (4). Next,
for a finite S, N , K , and SNRmin, Theorem 3 states that

M <
2K log N

K − 2 log 2

S log (1 + K × SNRmin)

is necessary for reliable support set reconstruction. The nec-
essary and sufficient conditions can be useful as guidelines to
determine the system parameters of CS applications with noisy
MMV with different sensing matrices. Corollaries 1 and 2
indicate that reliable support set reconstruction is possible
as sufficiently many measurement vectors S for a fixed
M are taken at a low SNRmin. For a fixed N and K ,
Theorem 2 shows that M ≥ K + 1 measurements suffice for
reconstructing the support set, as S is sufficiently large. Then,
for a fixed N , K, and M = K + 1, Corollary 3 provides a
sufficient condition on S for reliable support set reconstruction.
We provide theoretical explanations of the benefits of the
joint sparsity structure, which conform with the empirical
results of CS applications with noisy MMV with different
sensing matrices [10], [14]. Finally, we compare the sufficient
condition (11) with the known one (26) for noisy MMV
with the same sensing matrix [27]. Therefore, we demonstrate
that if S ≥ K , noisy MMV with different sensing matrices
may require fewer measurements M for reliable support set
reconstruction than noisy MMV with the same sensing matrix
under a low noise-level scenario. It confirms the superiority
of MMV with different sensing matrices.

II. NOTATIONS, SYSTEM MODEL &
PROBLEM FORMULATION

A. Notations

The following notations will be used in the whole paper.
1. P, E and V denote the probability, expectation and

(co)variance, respectively.
2. A small (capital) bold letter f (F) is a vector (matrix).
3. A sub-vector (sub-matrix) formed by the elements

(columns) of f (F) indexed by a set I is denoted
by fI (FI).

4. For a given matrix F, its inversion, transpose, trace
and the i th eigenvalue are denoted by F−1, FT , tr [F]
and λi ( F), respectively. Also, its orthogonal projection
matrix is defined by

Q (F) := IM − F
(

FT F
)−1

FT (2)

where Q (F) maps an arbitrary vector to the space
orthogonal onto the space spanned by the columns of F.

5. For given sets I and J , the relative complements of J
in I is denoted as J \ I. The cardinality of a set I is
denoted by |I|.

6. For a given function f (x), its nth derivation with respect
to x is denoted by f n (x).

7. The linear sparsity regime is defined by
lim

N→∞
K
N = β ∈ (0, 1/2).

8. The sublinear sparsity regime is defined by
lim

N→∞
K
N = 0.

9. The expression f (x) = � (g (x)) denotes | f (x)| ≥
c |g (x)| as x → ∞ for a constant c > 0.

B. System Model

Let x1, x2, · · · , xS be jointly K-sparse vectors with a sup-
port set I that belongs to

S := {H|H ⊂ {1, 2, · · · , N } , |H| = K } .
Thus, the number of nonzero coefficients of each sparse vector
is K , the indices of the nonzero coefficients of all the sparse
vectors are the same and the indices belong to the support set.

In noisy MMV with different sensing matrices, each sparse
vector is sampled by its own sensing matrix, i.e.,

ys = Fsxs + ns s = 1, 2, · · · S (3)

where all the sensing matrices have i.i.d. Gaussian elements
with a zero mean and a unit variance, and all the noise vectors
have i.i.d. Gaussian elements with a zero mean and a σ 2

variance. We assume that all the noise vectors and all the
sensing matrices are mutually independent. Then, we let xmin
be the smallest nonzero magnitude of all the sparse vectors
and SNRmin be the minimum signal-to-noise ratio given by

SNRmin := x2
min/σ

2. (4)

C. Problem Formulation

We extend Akcakaya and Tarokh [21]’s decoder for noisy
MMV with different sensing matrices. It takes all the mea-
surement vectors as its input and yields a support set decision
as its output

d : {∀s
(
ys ,Fs)} 
→ Î ∈ S, s = 1, 2, · · · , S.

Its decision rules are given in Definition 1.
Definition 1: All the measurement vectors

{
y1, y2, · · · , yS

}

and a set J ∈ S are δ jointly typical if the rank of Fs
J ,

s = 1, . . . , S, is K and
∣
∣
∣
∣

(∑S

s=1

∥
∥Q
(
Fs
J
)

ys
∥
∥2

2

)
− S (M − K ) σ 2

∣
∣
∣
∣ < SMδ. (5)

As each sensing matrix contains i.i.d. Gaussian elements,
the rank of each Fs

J , s = 1, . . . , S, is K with a high
probability. The decision rule is to find sets that satisfy (5)
for all the given measurement vectors and δ > 0. In the
entire paper, the support set is denoted by I and any incorrect
support set is denoted by J , where their cardinalities are K ,
i.e., |I| = |J | = K .

We define the failure events, wherein the joint typical
decoder fails to reconstruct the correct support set. First,

Ec
I :=

{∣∣
∣
∣

(∑S

s=1

∥
∥Q
(
Fs
I
)

ys
∥
∥2

2

)
− S (M − K ) σ 2

∣∣
∣
∣ ≥ SMδ

}

(6)

implies that the correct support set is not δ jointly typical with
all the measurement vectors. Next, for any J ∈ S \ I,

EJ :=
{∣∣∣
∣

(∑S

s=1

∥∥Q
(
Fs
J
)

ys
∥∥2

2

)
− S (M − K ) σ 2

∣
∣∣
∣< SMδ

}

(7)
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implies that an incorrect support set is δ jointly typical with
all the measurement vectors. Based on these failure events,
we define a failure probability and give its upper bound as
follows:

perr := P

{
Î �= I

∣∣
∣ x1, · · · , xS

}

= P

⎧
⎨

⎩
Ec
I
⋃

J ∈S\I
EJ

⎫
⎬

⎭

≤ P
{Ec

I
}+

∑

J ∈S\I
P
{EJ

}
(8)

where P
{Ec

I
}

is taken with respect to all the noise vectors

and P
{EJ

}
is taken with respect to all the noise vectors

and all the sensing matrices. We establish Lemmas 1 and 2
given in Appendix A to give upper bounds of the probabili-
ties of the failure events. Combining these lemmas with (8)
yields

perr ≤ P
{Ec

I
}+

∑

J ∈S\I
P
{EJ

}

≤ 2 p (d1)+
(

N
K

)
p
(
d2,α∗ − 1

)

where p is defined in (31), d1 = Mδ
(M−K )σ 2 , d2,α∗ =

(M−K )σ 2+Mδ
(M−K )α∗ , and α∗ = σ 2 + x2

min.
It is of interest to examine why P

{Ec
I
}

depends only on the
noise vectors. As shown in Lemma 3, the random variable to
define the event Ec

I in (6) is
∑S

s=1

∥
∥Q
(
Fs
I
)

ys
∥
∥2

2/σ
2, where

the measurement vector in (3) consists of the two parts: the
noise part ns and the signal part Fs

Ixs
I . The signal part belongs

to the space spanned by the columns of Fs
I . Then, as specified

in (2), the orthogonal projection matrix Q
(
Fs
I
)

maps the
measurement vector to the space orthogonal onto the space
spanned by the columns of Fs

I . Thus, the random variable is
a function of the noise vectors only.

III. MAIN RESULTS

As the main contribution of this paper, this section presents
sufficient and necessary conditions on M for reliable support
set reconstruction, i.e., perr converges to zero, in noisy MMV
with different sensing matrices. We then interpret the condi-
tions to demonstrate the benefits facilitated by the joint sparsity
structure.

A. Sufficient Conditions on M

In [18] and [21], the authors have shown that fewer
measurements M for a reliable support set reconstruction
are required for noisy SMV in the linear sparsity regime,
compared to the sublinear sparsity regime. Based on the results
of [18] and [21], we are motivated to examine if the same
result can be observed in noisy MMV with different sensing
matrices.

Theorem 1: For anyρ > 1, we let δ = ρ−1 (1 − K/M) x2
min.

If the number of measurements satisfies

M > K + υ1
K

S
(9)

then the failure probability perr defined in (8) converges to
zero in the linear sparsity regime, i.e., lim

N→∞
K
N = β ∈ (0, 1/2),

where

υ1 = − 2 (1 − logβ)

log

(
1 − 1−ρ−1

1+SNR−1
min

)
+ 1−ρ−1

1+SNR−1
min

> 0. (10)

Also, under the same conditions on ρ and δ, if the number of
measurements satisfies

M > K + υ2
K

S
log

N

K
(11)

then the failure probability perr defined in (8) converges to
zero in the sublinear sparsity regime, i.e., lim

N→∞
K
N = 0, where

υ2 = − 2

log

(
1 − 1−ρ−1

1+SNR−1
min

)
+ 1−ρ−1

1+SNR−1
min

> 0. (12)

Proof: The proof is given in Appendix C.
In terms of N , K , and S, the asymptotic order of the

sufficient condition on M for the linear sparsity regime
is �

(
K + K

S

)
, whereas the order for the sublinear sparsity

regime is �
( K

S log N
K

)
. It confirms that fewer measurements

are required in the linear sparsity regime, compared to the sub-
linear sparsity regime. Next, from the sufficient conditions, we
observe an inverse relationship between M and S, owing to the
joint sparsity structure. This relationship implies that taking
more measurement vectors S reduces the number of required
measurements M for reliable support set reconstruction. Then,
the relationship can be used for explaining the empirical results
of Caione et al. [10] and Wu et al. [14]. In [10], the authors
have reported that the number of transmitted bits per sensor
could be inversely reduced by the number of sensors, which
implies that the transmission cost of each sensor could be
saved. The result can be confirmed by our inverse relationship
by considering S and M as the number of sensors and the
number of transmitted bits per sensor, respectively. In [14],
S and M are considered as the number of DTIs and the number
of samples of each DTI, respectively. Again, it has been
observed from [14] that the joint sparsity structure enabled
the number of samples of each DTI to be inversely reduced
by the number of DTIs, reducing the acquisition time for
each DTI. These results can be confirmed by our inverse
relationship.

Theorem 2: For any ρ>1, we let δ = ρ−1 (1 − K/M) x2
min,

N and K be fixed. If the number of measurements satisfies
M ≥ K + 1, the failure probability perr defined in (8)
converges to zero as the number of measurement vectors is
increased to the infinity.

Proof: The proof is given in Appendix C.
Theorem 2 suggests that with M ≥ K + 1, reliable support

set reconstruction for noisy MMV with different sensing matri-
ces is possible when a large number of measurement vectors
is available. The sufficient conditions in Theorem 1, i.e., (9)
and (11) have SNRmin values as shown in (10) and (12).
They disappear in the sufficient condition of Theorem 2, i.e.,
M ≥ K + 1. The support set reconstruction problem becomes
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robust against noise when the number of measurement vectors
is large.

B. Discussions on the Sufficient Conditions

We now examine the effect of SNRmin on the sufficient
conditions of Theorem 1. The aim is to determine the rela-
tionship among S, M and SNRmin for reliable support set
reconstruction.

Corollary 1: For any ρ > 1, we let δ =
ρ−1 (1 − K/M) x2

min. The sufficient conditions of Theorem 1
are rewritten as

M > K +
⎛

⎜
⎝

−1
√

S +
(√

S × SNRmin

)−1

1 − ρ−1

⎞

⎟
⎠

2

4K log
N

K
(13)

in the sublinear sparsity regime, i.e., lim
N→∞

K
N = 0, and

M > K +
⎛

⎜
⎝

−1
√

S +
(√

S × SNRmin

)−1

1 − ρ−1

⎞

⎟
⎠

2

4K (1 − logβ)

(14)

in the linear sparsity regime, i.e., lim
N→∞

K
N = β ∈ (0, 1/2).

Proof: The proof is given in Appendix D.
Corollary 1 suggests that for a fixed M , reliable support

set reconstruction is possible as the number of measurement
vectors S is increased to infinity, although SNRmin is low.
Namely, we observe a noise reduction effect, which shows
that using the joint sparsity structure leads to an increase in
SNRmin or a decrease in σ 2 by the square root of S. This effect
can explain the improvement in the reconstruction quality of
the DTIs, as empirically reported in [14].

We then improve our noise reduction effect by considering
that SNRmin is larger than a certain value.

Corollary 2: For any ρ > 3, we let δ =
ρ−1 (1 − K/M) x2

min and α = 2/3. If

SNRmin ≥ α

1 − ρ−1 − α
= 2ρ

ρ − 3
, (15)

the sufficient conditions of Theorem 1 are rewritten as

M > K + S−1 + (S × SNRmin)
−1

1 − ρ−1 4K log
N

K
(16)

in the sublinear sparsity regime, i.e., lim
N→∞

K
N = 0, and

M > K + S−1 + (S × SNRmin)
−1

1 − ρ−1 4K (1 − logβ) (17)

in the linear sparsity regime, i.e., lim
N→∞

K
N = β ∈ (0, 1/2).

Proof: The proof is given in Appendix D.
First of all, Corollary 2 requires ρ > 3 to ensure that

the lower bound in (15) is positive. A simple computation

shows that Corollary 2 requires fewer measurements in both
the regimes compared to Corollary 1 because
⎛

⎜
⎝

−1
√

S +
(√

S × SNRmin

)−1

1 − ρ−1

⎞

⎟
⎠

2

= S−1

(
1 + SNR−1

min

1 − ρ−1

)2

≥ S−1

(
1 + SNR−1

min

1 − ρ−1

)

= S−1 + (S × SNRmin)
−1

1 − ρ−1

where the second inequality is owing to
1+SNR−1

min
1−ρ−1 = 1

t > 1

for any ρ > 3 and t defined in (61). Besides, Corollary 2
improves the noise reduction effect observed in Corollary 1
by showing that SNRmin is increased by S for the region of
SNRmin in (15).

Theorem 2 suggests, it is to be noted, that M = K +1 is suf-
ficient for reliable support set reconstruction if S is sufficiently
large with a fixed N and K . Then, it would be interesting
to determine how large S should be required for achieving
the minimum number of measurements at each sensor, i.e.,
M = K + 1. In wireless sensor networks [34], energy sources
used in sensors are very limited due to limitation of sensor
sizes. Thus, minimizing the energy used for transmission of
data at each sensor which often leads to extending the lifetime
of the sensor battery is a value of importance. This point is
noted in Caione et al. [10] as an advantage of using distributed
compressed sensing on joint sparse model-2 signal ensembles
(see Section V there). Corollary 3 which aims to provide a
sufficient condition on S for achieving M = K + 1 thus is
motivated.

Corollary 3: Let N and K be fixed and finite. For any ρ > 1,
we let δ = ρ−1 (K + 1)−1 x2

min and M = K +1. If the number
of measurement vectors satisfies

S >
(

log
((

N
K

)
+ 2
)

− log ε
)

× max

[∣∣
∣
∣

1

logμI

∣∣
∣
∣ ,
∣∣
∣
∣

1

logμJ

∣∣
∣
∣

]

︸ ︷︷ ︸
:=S∗

(18)

reliable support set reconstruction is possible, i.e., perr < ε
for sufficiently small ε ∈ (0, 1), where logμI and logμJ are
defined in (63) and (65), respectively. The sufficient condition
on S is decreasing with respect to SNRmin.

Proof: The proof is given in Appendix D.
To the best of our knowledge, the sufficient conditions on S

for a reliable support set reconstruction have not yet been
developed. A similar result has been reported by Tang and
Nehorai [26], in which they reported that M = �

(
K log N

K

)

and S = log N
log log N suffice for a reliable support set reconstruc-

tion in noisy MMV with the same sensing matrix, as N is
sufficiently large.

It is of interest to examine whether the sufficient condi-
tion S∗ in (18) is good. For this, we implement the joint
typical decoder in (5) and conduct experiments for different
values of SNRmin and K, for a fixed N = 50. We count
the number of failure occurrences, wherein the joint typical
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decoder fails to reconstruct the support set. We obtain the
smallest Semp such that the ratio of the failure occurrences is
smaller than ε = 0.01. By comparing Semp with S∗ in (18),
we see that S∗ approaches Semp , as SNRmin is sufficiently
large. For example, we see that Semp = 8 and S∗ = 12 at
SNRmin = 20 [dB], K = 2, and Semp = 5 and S∗ = 6
at SNRmin = 30 [dB], K = 2. A similar trend is observed
with a bigger K , i.e., at K = 5. For example, we see that
Semp = 12 and S∗ = 19 at SNRmin = 20 [dB], and Semp = 7
and S∗ = 10 at SNRmin = 30 [dB].

Fletcher et al. [19] have reported that the ML decoder
requires M = K + 1 measurements for a reliable support
set reconstruction in noisy SMV, when the signal-to-noise
ratio is sufficiently large. This result can be observed from
Corollary 3. Specifically, we assume that SNRmin is suffi-
ciently large for a fixed N and K . Then, from (63) and (65),
it is easy to see that

lim
SNRmin→∞ logμI = −∞,

lim
SNRmin→∞ logμJ = 2−1

(
1 − ρ−1 − logρ

)
.

Hence, (18) is simplified to

S >
(

log
((

N
K

)
+ 2
)

− log ε
)

×
∣∣
∣
∣2
(

1 − ρ−1 − logρ
)−1
∣∣
∣
∣.

(19)

Note that N , K , and ε are fixed. Thus, for a large ρ, we have
∣
∣
∣1 − ρ−1 − logρ

∣
∣
∣ 2

(
log
((

N
K

)
+ 2
)

− log ε
)
, (20)

which leads to S ≥ 1. This result suggests that the joint
typical decoder requires M = K +1 measurements for reliable
support set reconstruction in noisy SMV, whenever SNRmin is
sufficiently large and ρ satisfies (20).

C. Necessary Condition on M

We specify a necessary condition that must be satified
by a decoder for reliable support set reconstruction in noisy
MMV with different sensing matrices. Unlike the sufficient
conditions of Theorem 1, the necessary condition is presented
for a finite N and K .

We begin by transforming (3) into
⎡

⎢
⎣

y1

...

yS

⎤

⎥
⎦

︸ ︷︷ ︸
=:y∈RSM

=
⎡

⎢
⎣

F1

. . .

FS

⎤

⎥
⎦

︸ ︷︷ ︸
=:F̃∈RSM×SN

⎡

⎢
⎣

x1

...

xS

⎤

⎥
⎦

︸ ︷︷ ︸
=:x∈RSN

+
⎡

⎢
⎣

n1

...

nS

⎤

⎥
⎦

︸ ︷︷ ︸
=:n∈RSM

(21)

where x is an SK-sparse vector belonging to an infinite set

Xxmin :=
{

x ∈ R
S N
∣
∣
∣ |x (i)| ≥ xmin,∀i ∈ I, |I| = SK

}

where x (i) is the i th element of x and I is the support set of x.
Owing to the joint sparsity structure, the number of possible
support sets is

(
N
K

)
. Then, we define a failure probability as:

perr := EF̃ sup
x∈Xxmin

P

{
Î �= I

∣
∣
∣ x, F̃

}
(22)

where Î is an estimate of the support set based on y and F̃
in (21). Then, Lemma III-3 of [20] yields

sup
x∈Xxmin

P

{
Î �= I

∣
∣
∣ x, F̃

}
≥ min

x̂∈X{xmin}
max

x∈X{xmin}
P

{
x̂ �= x

∣
∣ x, F̃

}

(23)

where x̂ is an estimate for x based on y and F̃ in (21) and

X{xmin} :=
{

x ∈ R
S N
∣
∣∣ x (i) = xmin,∀i ∈ I, |I| = SK

}

which is a finite set. Assume that x is uniformly distributed
over this finite set. Applying Fano’s inequality [24] to (23)
yields

max
x∈X{xmin}

P

{
x̂ �= x

∣
∣ x, F̃

}
≥ P

{
x̂ �= x

∣
∣ F̃
}

≥ 1 −
I

(
x; y| F̃

)
+ log 2

log
(∣∣X{xmin}

∣
∣− 1

) (24)

where x and x̂ belong to the finite set X{xmin} and I (x; y) is
the mutual information between x andy. We get a necessary
condition on M to ensure that the lower bound in (24) is
bounded away from zero, as follows:

Theorem 3: Let N and K are fixed and finite. In (21), if the
number of measurements satisfies

M <
2K log N

K − 2 log 2

S log (1 + K × SNRmin)
(25)

then the failure probability perr defined in (22) is bounded
away from zero.

Proof: The proof is given in Appendix C.

IV. RELATIONS TO THE EXISTING

INFORMATION-THEORETIC RESULTS

A. Relations to Noisy MMV With the
Same Sensing Matrix [27]

Jin and Rao [27] have exploited the Chernoff bound to
obtain a tight sufficient condition on M for a reliable support
set reconstruction for noisy MMV with the same sensing
matrix in the sublinear sparsity regime. Owing to the compli-
cated form of their sufficient condition, they could not clearly
show the benefits facilitated by the joint sparsity structure.
Thus, they simplified their condition under scenarios such
as: i) a low noise-level scenario and ii) a scenario with
S identical sparse vectors. In Table I, we summarize our
sufficient conditions on M , and compare them to that of [27]
under the low noise-level scenario in the sublinear sparsity
regime.

First, in a low noise-level scenario, as shown in Table I,
the sufficient condition [27] for noisy MMV with the same
sensing matrix is

M = �

(
K log N

min (K , S)

)
. (26)

If S < K , the sufficient conditions (11) and (26) have the
same order, implying that there is no significant performance
gap in the support set reconstruction between the models.
However, if S > K , (26) is M = � (log N), whereas (11) is
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TABLE I

SUFFICIENT CONDITIONS ON M FOR SUPPORT SET RECONSTRUCTION

M = �
( K

S log N
)
. It implies that noisy MMV with different

sensing matrices is superior to noisy MMV with the same
sensing matrix or S > K , with respect to M for reliable
support set reconstruction. The result of this comparison
supports the perception presented in Section I-C, wherein a
more reliable support set reconstruction could be expected in
a noiseless MMV with different sensing matrices owing to the
linear independency of the measurement vectors. Moreover, it
validates the perception, even in the presence of noise.

Second, we consider a scenario with S identical sparse
vectors. Then, the sufficient condition of [27] is

M = �

(
K log N

log
(
1 + S ‖x‖2

2/σ
2
)

)

. (27)

From (27), we observe that σ 2 is reduced by a factor of S.
However, the noise reduction effect for noisy MMV with the
same sensing matrix requires a restriction, where all the sparse
vectors should be identical, which can be hardly achieved in
practice. In contrast, the noise reduction effect for noisy MMV
with different sensing matrices does not require this restriction,
as shown in Corollaries 1 and 2.

B. Relations to Noisy SMV [21]

Akcakaya and Tarokh [21] have used the joint typical
decoder to establish the sufficient conditions on M for a reli-
able support set reconstruction in noisy SMV. They exploited
the exponential inequalities [32] to obtain the upper bounds on
the sum of the weighted chi-square random variables. In this
subsection, we demonstrate that the approaches developed in
this paper are superior to the use of the exponential inequal-
ities. Thus, we use the exponential inequalities to generalize
their bounds for noisy MMV with different sensing matrices.
We give Propositions 1 and 2 to prove that the generalized
bounds are worse than the bounds of Lemmas 1 and 2.

Proposition 1: For any positive δ, we have

P
{Ec

I
} ≤ 2 p (d1) ≤ 2 p1,exp

where both p (d1) and d1 are given in Lemma 1, and

p1,exp := exp

(
− Sδ2

4σ 4

M2

M − K + 2δM/σ 2

)
. (28)

Proof: The proof is given in Appendix E.
Proposition 2: For any J ∈ S \ I and any δ > 0 such that

0 < δ < (1 − K/M) x2
min,J , (29)

we have

P
{EJ

} ≤ p
(

d2,λmin(RJ ) − 1
)

≤ p2,J ,exp

where both p
(

d2,λmin(RJ ) − 1
)

and d2,λmin(RJ ) are given in
Lemma 2 and

p2,J ,exp := exp

(

− S2 (M − K )

4
∑S

s=1 α
2
J ,s

(
x2

min,J − Mδ

M − K

)2
)

(30)

and αJ ,s is defined in (39) and x2
min,J is defined in (43).

Proof: The proof is given in Appendix E.
If S = 1, we can see that p1,exp and p2,J ,exp are

equivalent to the bounds of Akcakaya and Tarokh [21].
Propositions 1 and 2 state that the bounds on the failure
probability of Lemmas 1 and 2 are tighter than the bounds
of [21] for noisy SMV.

V. CONCLUSIONS

We have studied a support set reconstruction problem for CS
with noisy MMV with different sensing matrices. The union
and Chernoff bounds have been used to obtain the upper bound
of the failure probability of the support set reconstruction, and
Fano’s inequality has been used to obtain the lower bound
of this failure probability. As we have obtained the upper
bound by analyzing an exhaustive search decoder, the bound
is used to measure the performance of CS with noisy MMV
with different sensing matrices. We have then developed the
necessary and sufficient conditions in terms of the sparsity K ,
the ambient dimension N , the number of measurements M , the
number of measurement vectors S, and the minimum signal-
to-noise ratio SNRmin. They can be useful as guidelines to
determing the system parameters in various CS applications
with noisy MMV with different sensing matrices.

The conditions are interpreted to provide theoretical expla-
nations for the benefits facilitated by the joint sparsity structure
in noisy MMV with different sensing matrices:

i. From the sufficient conditions of Theorem 1, we have
observed an inverse relationship between M and S. Due
to the inverse relation, we take fewer measurements M
per each measurement vector for reliable support set
reconstruction by taking more measurement vectors S.

ii. From the sufficient conditions of Corollaries 1 and 2,
we have observed a noise reduction effect, which shows
that the usage of the joint sparsity structure results in an
increase in SNRmin or a decrease in σ 2 by a factor of S.
Therefore, the support set reconstruction can be robust
against noise as the number of measurement vectors is
increased to infinity.

iii. From Theorem 2, we have shown that M = K + 1
is achieved for a fixed N and K, as S is sufficiently
large. From Corollary 3, we have provided the sufficient
condition on S to reconstruct the support set for a fixed
N , K , and M = K + 1.

The theoretical explanations confirm the benefits of the joint
sparsity structure, as empirically shown in CS applications
with noisy MMV with different sensing matrices [10], [14].
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We have compared our sufficient conditions for noisy
MMV with different sensing matrices with the other existing
results [27] for noisy MMV with the same sensing matrix.
For a low-level noise scenario with S ≥ K , we have shown
that the number of measurements for reliable support set
reconstruction for noisy MMV with different sensing matrices
is lesser than that for noisy MMV with the same sensing
matrix. Also, [27] has shown the noise reduction effect.
This was achieved under a rather restricted condition though,
i.e., all sparse vectors are the same. While such a restricted
condition is not required in the noisy MMV problem with
different sensing matrices studied in this paper, the noise
reduction effect has also been observed, which is a significant
improvement.

APPENDIX A
LEMMAS 1 AND 2

This section presents Lemmas 1 and 2, which give upper
bounds of the probabilities of the failure events defined in (6)
and (7), respectively. Also, for simplicity, we define

p (x) = exp

(
− S (M − K )

2
x

)
(1 + x)

S(M−K )
2 . (31)

Lemma 1: For any positive δ, we have

P
{Ec

I
} ≤ 2 exp

(
− S (M − K )

2
d1

)
(1 + d1)

S(M−K )
2

= 2 p (d1) (32)

where the function p is defined in (31), and

d1 := Mδ

(M − K ) σ 2 > 0. (33)

Proof: From (6), we have

P
{Ec

I
} = P {ZI ≤ W1} + P {ZI ≥ W2} (34)

where ZI is defined in Lemma 3, and

Wi = S (M − K )+ (−1)i SMδ/σ 2, i = 1, 2.

Applying the Chernoff bound [31] to (34) yields

P
{Ec

I
} ≤

∑2

i=1
exp (−ti Wi )E

[
exp (ti ZI)

]

=
∑2

i=1
exp (−ti Wi ) (1 − 2ti )

−S(M−K )/2
︸ ︷︷ ︸

=: f (ti ;Wi )

(35)

where the equality is from Lemma 3, t1 < 0 and t2 ∈ (0, 1
2

)
.

As each f (ti ; Wi ) is convex, ti = t∗i at f (1) (ti ; Wi ) = 0 yields
the minimizer of f (ti ; Wi ), where

t∗i = 2−1
(

1 − W−1
i S (M − K )

)
, i = 1, 2.

Thus, f (ti ; Wi ) ≥ f
(
t∗i ; Wi

)
for each i . If W1 ≤ 0, it is clear

that P {ZI ≤ W1} = 0 because ZI is quadratic. Thus,

P
{Ec

I
} = P {ZI ≥ W2} ≤ f

(
t∗2 ; W2

) = p (d1) (36)

where p (d1) and d1 are defined in (32) and (33), respectively.
If W1 > 0 then f

(
t∗1 ; W1

) ≤ f
(
t∗2 ; W2

)
because

log f
(
t∗1 ; W1

)− log f
(
t∗2 ; W2

)

= S (M − K )
[
d1 + 2 log (1 − d1)− 2 log (1 + d1)

]
< 0.

Thus,

P
{Ec

I
} = f

(
t∗1 ; W1

)+ f
(
t∗2 ; W2

) ≤ 2 f
(
t∗2 ; W2

)

= 2 exp

(
− S (M − K )

2
d1

)
(1 + d1)

S(M−K )
2 . (37)

Finally, combining (36) and (37) leads to (32). �
Lemma 2: Let J ∈ S \ I and a matrix RJ be

RJ =
⎡

⎢
⎣

αJ ,1IM−K
. . .

αJ ,SIM−K

⎤

⎥
⎦ (38)

where

αJ ,s := σ 2 +
∥
∥
∥xs

I\J
∥
∥
∥

2

2
> 0. (39)

Consider any positive δ such that

0 < δ < (1 − K/M)
(
λmin

(
RJ
)− σ 2

)

where λmin
(
RJ
)

is the smallest eigenvalue of RJ . Then,

P
{EJ

} ≤ exp

(
− S (M − K )

2

(
d2,λmin(RJ ) − 1

))
d

S(M−K )
2

2,λmin(RJ )

= p
(

d2,λmin(RJ ) − 1
)

≤ p
(
d2,α∗ − 1

)
(40)

where the function p is defined in (31),

d2,λmin(RJ ) := (M − K ) σ 2 + Mδ

(M − K ) λmin
(
RJ
) ∈ (0, 1), (41)

α∗ := σ 2 + x2
min, (42)

and

x2
min = min

J ∈S\I
min

s∈{1,2,··· ,S}

∥
∥
∥xs

I\J
∥
∥
∥

2

2
︸ ︷︷ ︸

=:x2
min,J

. (43)

Proof: From (7), we have

P
{EJ

} = P
{
ZJ < W1

}− P
{
ZJ < W2

} ≤ P
{
ZJ < W1

}

(44)

where ZJ is defined in Lemma 4, and

Wi = S (M − K ) σ 2 − (−1)i SMδ, i = 1, 2. (45)

Applying the Chernoff bound [31] to (44) yields for t < 0,

P
{EJ

} ≤ exp (−tW1)E
[
exp
(
tZJ

)]

= exp (−tW1)
∏S(M−K )

i=1

(
1 − 2tλi

(
RJ
))−1/2

≤ exp (−tW1)
(
1 − 2tλmin

(
RJ
))−S(M−K )/2

=: f (t; W1) (46)

where the equality is from Lemma 4 and the second inequality
is due to that all the eigenvalues are positive. We then define
a function h (t) := log f (t; W1). Then,

h(2) (t) = 2S (M − K ) λ2
min

(
RJ
) (

1 − 2tλmin
(
RJ
))−2

> 0
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which implies that h is convex with respect to t . It leads
to that f in (46) is logarithmically convex. Thus t = t∗ at
f (1) (t; W1) = 0 yields the minimizer of f (t; W1) where

t∗ = 2−1
(
λ−1

min

(
RJ
)− W−1

1 S (M − K )
)
< 0.

Substituting t∗ in (46) yields

P
{EJ

} ≤ f
(
t∗; W1

)

= exp

(
− S (M − K )

2

(
d2,λmin(RJ ) − 1

))
d

S(M−K )
2

2,λmin(RJ )

= p
(
d2,λmin(RJ ) − 1

)
(47)

where d2,λmin(RJ ) is defined in (41) and p is defined in (31).
Next, let β = 2−1S (M − K ) and x = d2,λmin(RJ )

in the upper bound (47). Then, we have p (x − 1) =
xβ exp (−β (x − 1)), where

∂p (x − 1)

∂x
= βxβ exp (−β (x − 1))

(
x−1 − 1

)
> 0 (48)

and
∂x

∂λmin
(
RJ
) = −x < 0. (49)

Due to (48) and (49),

∂p (x − 1)

∂λmin
(
RJ
) = ∂p (x − 1)

∂x

∂x

∂λmin
(
RJ
)

= −βxβ−1 exp (−β (x − 1))
(

x−1 − 1
)
< 0

which shows that the upper bound in (47) is decreasing
with respect to λmin

(
RJ
)
. Then, remind that the matrix

in (38) is the covariance matrix of a multivariate Gaussian
vector b in (58). Then for any incorrect support set, its smallest
eigenvalue can be easily computed and lower bounded by

λmin
(
RJ
) = min

s∈{1,2,··· ,S}αJ ,s = σ 2 + x2
min,J ≥ α∗ (50)

where x2
min,J is defined in (43) and α∗ is defined in (42).

Thus, for any incorrect support set J ∈ S \ I, we conclude
that

P
{EJ

} ≤ p
(

d2,λmin(RJ ) − 1
)

≤ p
(
d2,α∗ − 1

)

which completes the proof. �

APPENDIX B
LEMMAS 3 AND 4

First of all, we give the Scharf’s theorem [33] to com-
pute the moment generating function of a quadratic random
variable. We then make Lemmas 3 and 4 to give the moment
generating functions of the random variables of Ec

I and
EJ that were used in the proofs of Lemmas 1 and 2,
respectively.

Scharf’s Theorem [33, p. 64]: Let b ∈ R
N be a multivariate

Gaussian vector with a mean m and a covariance R. Then
a random variable Q � (b − m)T (b − m) is quadratic with
E [Q] = tr [R] ,V [Q] = 2tr

[
RT R

]
and for any t

E
[
exp (t Q)

] =
∏N

i=1
(1 − 2tλi (R))−1/2.

Lemma 3: In (6), define a quadratic random variable

ZI :=
∑S

s=1

∥∥Q
(
Fs
I
)

ys
∥∥2

2/σ
2. (51)

Then, E [ZI ] = S (M − K ) , V [ZI ] = 2S (M − K ) and for
any 0 < t < 0.5,

E
[
exp (tZI)

] = (1 − 2t)−S(M−K )/2 . (52)

Proof: The orthogonal projection matrix is decomposed
as

Q
(
Fs
I
) = Us

IDs (Us
I
)T

where Ds is a diagonal matrix, whose first M – K diagonals
are ones and the remains are zeros, and Us

I is a unitary matrix.
Then,

ZI =
∑S

s=1

∥
∥Q
(
Fs
I
)

ys
∥
∥2

2/σ
2 =

∑S

s=1

∥
∥Q
(
Fs
I
)

ns
∥
∥2

2/σ
2

=
∑S

s=1

∥
∥
∥
∥∥
∥
∥

Ds (Us
I
)T ns/σ 2

︸ ︷︷ ︸
=:ws

∥
∥
∥
∥∥
∥
∥

2

2

=
∑S

s=1

∥∥Dsws
∥∥2

2 (53)

where ws is a multivariate Gaussian vector with mean
0M and covariance IM . Since the first M – K diag-
onal elements of each diagonal matrix are ones, we
have

ZI =
∑S

s=1

∥
∥Dsws

∥
∥2

2 =
∑S

s=1

∑M−K

i=1

∣
∣ws (i)

∣
∣2

=
∑S

s=1

(
ws
P
)T ws

P = wT w (54)

which is quadratic, where

ws
P = [ws (1) ws (2) · · · ws (M − K )

]T

and

w =
[ (

w1
P
)T (

w2
P
)T · · · (

wS
P
)T
]T
. (55)

In (53), ws is determined by Us
I and ns . Since the ele-

ments of Us
I and ns are independent, wi and w j are

mutually independent for any 1 ≤ i �= j ≤ S.
The covariance matrix of w is an identity matrix. Thus,
applying the Scharf’s theorem to ZI completes the
proof. �

Lemma 4: In (7), for any J ∈ S \ I, define a quadratic
random variable

ZJ :=
∑S

s=1

∥
∥Q
(
Fs
J
)

ys
∥
∥2

2
. (56)

Then, E
[
ZJ
] = tr

[
RJ
]
, V

[
ZJ
] = 2tr

[
RT
J RJ

]
and for

any t ,

E
[
exp

(
tZJ

)] =
∏S(M−K )

i=1

(
1 − 2tλi

(
RJ
))−1/2

,

where RJ is given in (38).
Proof: Similar to the proof of Lemma 3,

Q
(
Fs
J
) = Us

J Ds (Us
J
)T
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where Ds is a diagonal matrix, whose first M – K diagonals
are ones and the remains are zeros, and Us

J is a unitary matrix.
Then,

ZJ =
∑S

s=1

∥
∥Q
(
Fs
J
)

ys
∥
∥2

2
=
∑S

s=1

∥
∥Q
(
Fs
J
)

cs
∥
∥2

2

=
∑S

s=1

∥∥
∥
∥
∥
∥∥

Ds (Us
J
)T cs

︸ ︷︷ ︸
=:bs

∥∥
∥
∥
∥
∥∥

2

2

=
∑S

s=1

∥
∥Ds bs

∥
∥2

2 (57)

where bs is a multivariate Gaussian vector with mean 0M and

V
[
bs] =

(
σ 2 +

∥
∥
∥xs

I\J
∥
∥
∥

2

2

)
IM

and cs = ns + ∑
u∈I\J fs

u xs (u). Since the first M – K
diagonal elements of each diagonal matrix are ones, we have

ZJ =
∑S

s=1

∥
∥Ds bs

∥
∥2

2 =
∑S

s=1

∑M−K

i=1

∣
∣bs (i)

∣
∣2

=
∑S

s=1

(
bs
P
)T bs

P = bT b (58)

which is quadratic, where

bs
P = [ bs (1) bs (2) · · · bs (M − K )

]T

and

b =
[ (

b1
P
)T (

b2
P
)T · · · (

bS
P
)T
]T
.

In (57), bs is determined by Us
J , ns and

{
fs
u : u ∈ I\J }.

Since the elements of Us
J , ns and

{
fs
u : u ∈ I\J } are inde-

pendent, bi and b j are mutually independent for any 1 ≤
i �= j ≤ S. The covariance matrix of b is diagonal as shown
in (38). Thus, applying the Scharf’s theorem to ZJ completes
the proof. �

APPENDIX C
PROOFS OF THEOREMS 1, 2 AND 3

A. Proof of Theorem 1

It is clear that K goes to infinity as N goes to infinity in
the linear sparsity regime. Then, let M = cK where c > 1.
From (32),

log P
{Ec

I
} ≤ 2−1SK (c − 1) (log (1 + d1)− d1)︸ ︷︷ ︸

=:A
+ log 2

where A < 0 due to (33). Thus,

lim
N→∞ P

{Ec
I
} ≤ lim

K→∞ exp
(

2−1SK (c − 1) A + log 2
)

= 0

implying that the probability that the correct support set is not
δ jointly typical with all the measurement vectors vanishes.

Next, from (40),

log
∑

J ∈S\I
P
{EJ

} ≤ log
((

N
K

)
p
(
d2,α∗ − 1

))

= log(N
K )+ 2−1SK (c−1) (log(1−t)+ t)

︸ ︷︷ ︸
=:γ

≤ K

(
1 + log

N

K
+ 2−1S (c1 − 1) γ

)

︸ ︷︷ ︸
=:η

(59)

where the last inequality is due to
(

N
K

)
≤ exp

(
K log

Ne

K

)
. (60)

In (59), γ < 0 for any t where

t = 1 − ρ−1

1 + SNR−1
min

∈ (0, 1). (61)

If c > 1 + S−1υ1, then η < 0, which yields

lim
N→∞

∑

J ∈S\I
P
{EJ

} ≤ lim
K→∞ exp (Kη) = 0

implying that the probability that all incorrect support sets are
δ jointly typical with all the measurement vectors vanishes.
Thus the failure probability perr defined in (8) converges to
zero if M satisfies (9).

Next, the remain is to derive (11) in the sublinear sparsity
regime. Similarly, let M = K + cK log N

K wher c > 1.
From (32),

log P
{Ec

I
} ≤ 2−1ScK log

N

K
(log (1 + d1)− d1)︸ ︷︷ ︸

=:A
+ log 2

where A < 0 due to (33). Thus,

lim
N→∞ P

{Ec
I
} ≤ lim

N→∞ exp

(
2−1ScK A log

N

K
+ log 2

)
= 0

implying that the probability that the correct support set is not
δ jointly typical with all the measurement vectors vanishes.

Then, from (40),

log
∑

J ∈S\I
P
{EJ

} ≤ log
((

N
K

)
p
(
d2,α∗ − 1

))

= log(N
K )+2−1ScK (log(1−t)+ t)

︸ ︷︷ ︸
=:γ

log
N

K

≤ K
(

1 + 2−1Scγ
)

︸ ︷︷ ︸
=:η

log
N

K
+ K

where the last inequality is due to the bound in (60) and γ < 0
for any t in (61). If c > S−1υ2, then η < 0, which yields

lim
N→∞

∑

J ∈S\I
P
{EJ

} ≤ lim
N→∞ exp

(
Kη log

N

K
+ K

)
= 0

implying that the probability that all incorrect support sets are
δ jointly typical with all the measurement vectors vanishes.
Thus, the failure probability perr defined in (8) converges to
zero if M satisfies (11), which completes the proof. �

B. Proof of Theorem 2

From Lemma 1,

P
{Ec

I
} ≤ 2

⎛

⎜⎜
⎜
⎝

exp

(
− M − K

2
d1

)
(1 + d1)

M−K
2

︸ ︷︷ ︸
=:μI

⎞

⎟⎟
⎟
⎠

S

. (62)
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If M ≥ K + 1, we have

logμI = 2−1 (M − K ) (log (1 + d1)− d1) < 0 (63)

due to (33), which implies μI < 1. From Lemma 2,

P
{EJ

} ≤

⎛

⎜
⎜
⎜
⎝

exp

(
− M − K

2

(
d2,α∗ − 1

)
)

d
M−K

2
2,α∗

︸ ︷︷ ︸
=:μJ

⎞

⎟
⎟
⎟
⎠

S

. (64)

Similarly, if M ≥ K + 1, we have

logμJ = 2−1 (M − K ) (log (1 − t)+ t) < 0 (65)

due to (61), which implies μJ < 1. Thus, we conclude

lim
S→∞ perr ≤ 2 lim

S→∞μ
S
I +

(
N
K

)
lim

S→∞μ
S
J = 0

for M ≥ K + 1 which completes the proof. �

C. Proof of Theorem 3

The mutual information in (24) is bounded by

I

(
x; y| F̃

)
= h

(
y| F̃
)

− h
(

y| x, F̃
)

≤ h (y)− h (n)

≤
∑S M

i=1
h (yi)− h (n)

≤ 2−1SM
(
log
(
2πe

(
K x2

min+σ 2
))

−log
(
2πeσ 2

))

= 2−1SM log (1 + K × SNRmin)

where h (x) is the differential entropy of x, and h (x| y) is the
conditional entropy of x given y. The last inequality is due
to that the Gaussian distribution maximizes the differential
entropy. The denominator in (24) is bounded by

log
(∣∣X{xmin}

∣
∣− 1

) = log
((

N
K

)
− 1
)
> K log

N

K

for sufficiently large N . Then,

perr = EF̃ sup
x∈Xxmin

P

{
Î �= I

∣∣
∣ x, F̃

}

≥ EF̃ min
x̂∈X{xmin}

max
x∈X{xmin}

P

{
x̂ �= x

∣
∣ x, F̃

}

> 1 − 2−1SM log (1 + K × SNRmin)+ log 2

K log N
K

. (66)

From (66), the failure probability is bounded away from
zero by zero if (25) is satisfied, which completes the proof.�

APPENDIX D
PROOFS OF COROLLARIES 1, 2 AND 3

A. Proof of Corollary 1

From the inequality log (1 + x) ≤ 2x
2+x for x ∈ (−1, 0],

υ2 = − 2

log (1 − t)+ t
<

4 − 2t

t2 <
4

t2 (67)

where t is defined in (61). Then,

υ2

S
<

4

St2 . (68)

From (61),

√
St = 1 − ρ−1

−1
√

S +
(√

S × SNRmin

)−1 . (69)

Combining (11), (68) and (69) leads to (13). This approach is
used to get (14) using the following equality

υ1 = υ2 (1 − logβ) (70)

where lim
N→∞

K
N = β ∈ (0, 1/2), which completes the proof. �

B. Proof of Corollary 2

Substituting α = 2
3 in (15), and rearranging the result with

respect to t can yield 2
3 ≤ t < 1, where t is defined in (61).

Then from (67), a simple computation yields that

υ2 <
4 − 2t

t2 ≤ 4

t
which immediately yields that

υ2

S
<

4

St
. (71)

where

St = 1 − ρ−1

S−1 + (S × SNRmin)
−1 . (72)

Combining (11), (71) and (72) leads to (16). This approach is
used to get (17) using (70), which completes the proof. �

C. Proof of Corollary 3

We assume that μI ≥ μJ and

perr ≤ P
{Ec

I
}+

∑

J ∈S\I
P
{EJ

} ≤
((

N
K

)
+ 2
)
μS
I < ε < 1.

(73)

Then, if the number of measurement vectors satisfies

S >
log ε − log

((
N
K

)+ 2
)

logμI
> 0, (74)

(73) is achieved for small ε, and hence, reliable support set
reconstruction is possible. If μI < μJ , we obtain inequalities
similar to (73) and (74) by replacing μI by μJ , where

S >
log ε − log

((
N
K

)+ 2
)

logμJ
> 0. (75)

Combining (74) and (75) yields (18).
Next, a simple computation yields that for any d1 in (33),

∂ logμI
∂d1

= − d1

2 (1 + d1)
< 0

where logμI is given in (63). From (33), we see d1 ∝ SNRmin
that leads to logμI ∝ SNR−1

min. Also, for any t in (61),

∂ logμJ
∂ t

= − t

2 (1 − t)
< 0

where logμJ is given in (65). From (61), we see t ∝ SNRmin
that leads to logμJ ∝ SNR−1

min. Hence, the sufficient condition
on S in (18) turns out to be a decreasing function with respect
to SNRmin, which completes the proof. �
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APPENDIX E
PROOFS OF PROPOSITIONS 1 AND 2

First of all, we introduce the exponential inequalities [32],
and use them in the proofs of Propositions 1 and 2.

A. The Exponential Inequalities [32]

Let Yi , i = 1, 2, · · · , D be i.i.d. Gaussian variables with a
zero mean and a unit variance. Then, let αi , i = 1, 2 · · · , D
be non-negative. We set

|α|∞ = sup |αi | , |α|22 =∑D
i=1 α

2
i

and let

Y =
∑D

i=1
αi

(
Y 2

i − 1
)
. (76)

Then, the following inequalities hold for any positive x

P
{
Y ≥ 2 |α|2

√
x + 2 |α|∞ x

} ≤ exp (−x) (77)

P
{
Y ≤ −2 |α|2

√
x
} ≤ exp (−x) . (78)

B. Proof of Proposition 1

In the proof of Lemma 3, ZI is represented by

ZI =
∑S

s=1

∑M−K

i=1
ws (i)2

where ws (i) is Gaussian with a zero mean and a unit variance.
Define a random variable Y as

Y = ZI − S (M − K )

=
∑S

s=1

∑M−K

i=1

(
ws (i)2 − 1

)

which is of the form of (76). Then,

P
{Ec

I
} = P

{
Y ≤ −SMδ/σ 2

}

︸ ︷︷ ︸
=:A

+ P

{
Y ≥ SMδ/σ 2

}

︸ ︷︷ ︸
=:B

.

Combining A with (78) gives

P

{
Y ≤ −SMδ/σ 2

}
= P

{
Y ≤ −2

√
S (M − K ) x

}

≤ exp

(
− SM2δ2

4 (M − K ) σ 4

)

︸ ︷︷ ︸
=:C

and combining B with (77) gives

P

{
Y ≥ SMδ/σ 2

}
= P

{
Y ≥ 2

√
S (M − K ) x + 2x

}

≤ p1,exp

where p1,exp is defined in (28). It is readily seen that p1,exp ≥
C, which leads to P

{Ec
I
} ≤ 2 p1,exp.

Next, from (32) and (28),

log p (d1) = 2−1S (M − K ) (log (1 + d1)− d1)

and

log p1,exp = −2−1S (M − K ) d2
1 (2 + 4d1)

−1

where d1 > 0 is defined in (33). Then, we have

log
p(d1)

p1,exp
= S(M − K )

2

(
log(1+d1)−d1+d2

1 (2+4d1)
−1
)

︸ ︷︷ ︸
=:g(d1)

.

For any d1 > 0, ∂g(d1)
∂d1

=
−d2

1 (2 + 3d1) (1 + d1)
−1 (1 + 2d1)

−2 < 0 and
max
d1>0

g (d1) = 0. Thus, we conclude log p(d1)
p1,exp

≤ 0, which

completes the proof. �

C. Proof of Proposition 2

In the proof of Lemma 4, ZJ is represented by

ZJ =
∑S

s=1

∑M−K

i=1
bs (i)2

=
∑S

s=1

∑M−K

i=1
αJ ,s gs (i)2

where αJ ,s is defined in (39) and gs (i) is Gaussian with a
zero mean and a unit variance. Define a new random variable
Y as

Y = ZJ − S (M − K )

=
∑S

s=1

∑M−K

i=1
αJ ,s

(
gs (i)2 − 1

)

which is of the form of (76). Then, from (44)

P
{EJ

} ≤ P

{
Y < SMδ − (M − K )

∑S

s=1

∥
∥∥xs

I\J
∥
∥∥

2

2

}

≤ P

⎧
⎪⎨

⎪⎩
Y < SMδ − S (M − K ) x2

min,J︸ ︷︷ ︸
=:A

⎫
⎪⎬

⎪⎭

≤ p2,J ,exp (79)

where p2,J ,exp is defined in (30), the last inequality is due
to (78). Due to (29), A is negative. Thus the exponential
inequality of (78) gives the upper bound p2,J ,exp.

Next, from (40) and (30),

log p
(

d2,λmin(RJ ) − 1
)

= 2−1S (M − K ) (t + log (1 − t))

and

log p2,J ,exp ≥ − S (M − K )

4

(
x2

min,J − Mδ
M−K

x2
min,J + σ 2

)2

= −4−1S (M − K ) t2

where t ∈ (0, 1), is defined in (61) and the inequality is due
to (50). Then,

log
p
(
d2,λmin(RJ ) − 1

)

p2,J ,exp
≤ S(M−K )

4

(
t2+2t+2 log(1−t)

)

︸ ︷︷ ︸
=:g(t)

.

For any t ∈ (0, 1) , ∂g(t)
∂t = −2t2 (1 − t)−1 < 0 and

max g (t) = 0. We conclude log
p

(
d2,λmin(RJ )−1

)

p2,J ,exp
≤ 0.

It completes the proof. �
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Abstract—In this paper, a coexistence decision making (CDM) 

system for efficient TV whitespace (TVWS) sharing among 

whitespace objects (WSOs), registered in coexistence managers in 

IEEE 802.19.1 system, is introduced. The proposed system is 

considered versatile in functionality as it jointly takes care of 

three distinct channel allocation features; a) optimizing system 

quality of service (QoS) performance metrics, b) improving 

TVWS utility and c) satisfying WSO channel demands. Regarding 

system QoS performance metrics, the TVWS sharing problem is 

defined as an optimization problem with an aim to maximize the 

system throughput and minimizing unfairness in allocation. 

Supporting the WSOs channel demands in a TVWS sharing 

problem is a multifold task which requires elaborate 

consideration in different aspects of the system performance. To 

this end, the variations of the SNR of wireless frequency channels 

which result in variable throughput gain of the WSOs are also 

taken care of the proposed CDM system. A fast channel allocation 

algorithm is then designed that implements the TVWS sharing 

mechanism in a reasonable amount of time. Additionally, the 

proposed algorithm improves the TVWS utility by promoting a 

novel frequency reuse method by exploiting the inter-WSO 

interference information. Simulation results show the superiority 

of the proposed algorithm over existing TVWS sharing 

algorithms.  
 

Index Terms— Frequency Reuse, Lagrangian Relaxation, 

Linear Approximation, Proportional Fairness, TV Whitespace  

 

I. INTRODUCTION 

N unprecedented increase in the deployment of content 

delivery networks (CDNs) has resulted in the rapid growth 

of IP traffic. It is reported that by the end of 2016, global IP 

traffic exceeded 1 zettabytes ( 2110 bytes) per year, of which 

62% is attributed to CDNs [1]. It is also anticipated that by 2019, 
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nearly two-thirds of global IP traffic will originate from non-PC 

devices, mainly portable and mobile devices [1]. On the other 

hand, currently available wireless spectrum is considered 

insufficient for accommodating such large volumes of data. 

Fortunately, the digitization of TV transmission has partially 

relinquished VHF and UHF spectrum [2]. Owing to its low loss 

and excellent propagation characteristics, the TV spectrum is 

considered a promising candidate for supporting the growing 

traffic over wireless channels. Considering the growing demand 

of the wireless spectrum, the regulatory bodies worldwide [3], 

[4], [5], have permitted unlicensed use of the TV spectrum under 

certain limits to protect the incumbents. However, the problem of 

coexistence of secondary devices operating in the same TV band 

was not dealt by the regulatory bodies.  

The coexistence among secondary devices operating in TV 

spectrum is considered a challenging task due to signal 

propagation characteristics of TV channels, spatiotemporal 

variation of TV spectrum and disparity in network technologies 

of devices operating in the TV spectrum [6]. These diversities 

may cause coexistence issues, such as an unresolvable 

interference, spectrum congestion, diversity in network size, etc., 

as explained in [6], [7], [8], [9]. To address coexistence issues 

and regulate access to TV spectrum, IEEE has proposed an 

802.19.1 standard [10]. The standard provides a set of procedures 

to enable coexistence among secondary networks operating in 

heterogeneous network technologies in TVWS, namely WSOs.  

A set of procedures that ensures peaceful coexistence among 

a set of WSOs operating in the same spectrum is referred to as 

CDM [11]. In this paper, we define an 802.19.1 compliant CDM 

system that performs TVWS sharing among a set of WSOs, 

operating in dissimilar MAC/PHY layer technologies and 

registered in the coexistence manager (CM); an entity in 

802.19.1 coexistence system as shall be defined in section III-A. 

Note that the TVWS refers to the TV spectrum not in use by 

licensed operators in a spatio-temporal region [10]. The TVWS 

sharing problem is modeled as an optimization problem with an 

aim to maximize the system performance metrics like system 

throughput and fairness in TVWS allocation. The optimization 

problem is constrained that the channel demands of the WSOs 

registered in the neighboring CMs are satisfied. In this 

perspective, variations of the SNR of wireless frequency 

channels which result in variable throughput gain of the WSOs 

are taken care of. Note that the neighboring CMs refer to the set 

of CMs whose WSOs create interference to each other and such 

WSOs are neighboring WSOs. Thus, the proposed CDM 
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system differs from the notion of traditional node-based, 

link-based or base-station based channel allocation as reported 

in the TVWS sharing literature. Moreover, the proposed system 

also improves the TVWS utility by implementing a frequency 

reuse (FR) method to spatially reuse the available TV spectrum 

in a joint time-frequency domain in an ad hoc coexisting 

environment. In this paper, the ad hoc coexisting environment 

refers to the coexistence of both, infrastructure based WSOs 

like WLAN, and ad hoc WSOs like personal area network. An 

ad hoc WSO accounts for a local area network that is built 

spontaneously, as devices connect with each other. The CDM 

system proposed in this paper is unique, to the best of our 

knowledge, in the sense that it jointly focuses three distinct 

TVWS sharing objectives; a) optimizing system performance 

metrics during TVWS sharing among WSOs registered in 

neighboring CMs in 802.19.1 system b) improving the TVWS 

utility by implementing the FR in a joint time-frequency 

domain, c) taking care of the channel demands of the 

heterogeneous-WSOs. Such a joint focus to implement 

multiple distinct channel allocation features makes the 

proposed system a versatile CDM system. 

The remainder of the paper is organized as follows. Section 

II reviews some related studies. Section III summarizes 

technical background required to establish the baseline for the 

techniques used in the paper. The system description and 

problem formulation are defined in Section IV. Section V 

discusses the solution method and the proposed algorithm. 

Section VI presents the simulation results and compares the 

proposed algorithm with existing algorithms. Finally, Section 

VII concludes the paper. 

II. PREVIOUS WORK 

In this section, we summarize some standards and algorithms 

developed for achieving coexistence among secondary users.  

IEEE 802.15.2 [12] and 802.15.4 [13] have partially addressed 

the coexistence issue among devices operating on wireless local 

area networks and low power wireless personal area networks, 

respectively. However, these networks operate on industrial, 

scientific, and medical bands. On the other hand, IEEE 802.22 

has recently defined PHY and MAC layer extensions for TVWS. 

Similarly, IEEE 802.11af [14] has adopted new cognitive radio 

features to protect incumbents and achieve efficient spectrum 

utilization among unlicensed devices. IEEE 802.22.1 has also 

defined methods for peaceful coexistence when a low-power 

licensed device such as a microphone broadcaster and an 

unlicensed device both coexist and share the same channel [15]. 

The European Computer Manufacturers Association (ECMA) 

has also defined a specification (ECMA 392) for 

personal/portable cognitive wireless networks operating in 

TVWS [16]. However, all these standards define 

self-coexistence in TVWS operations. Non-availability of 

cross-platform coexistence mechanisms shall cause issues such 

as an inability to diagnose interference among networks with 

dissimilar network technologies and may lead to inefficient 

utilization of the scarce wireless spectrum [11]. Perceiving the 

need for cross-platform coexistence mechanisms, IEEE has 

defined an 802.19.1 standard. This standard provides coexistence 

protocols and policies for efficient utilization of TVWS across 

platforms [10].  

On algorithmic perspective, a CDM algorithm that results in 

fair TVWS sharing among neighboring CMs is presented in [10]. 

The algorithm applies max-min fairness technique to establish 

fair share distribution during the TVWS sharing process. The 

issue with the algorithm in [10] is that it focuses fairness in 

allocation while no consideration to effective utilization of the 

available TVWS is taken care. Considering the scarcity of the 

TV spectrum, especially in highly congested spectrum 

environments, the effective utilization of the available TV 

spectrum is also an important factor to be considered. Hessar and 

Roy [17] have discussed the TVWS sharing formulations in 

secondary cellular networks. The authors adopt heuristic based 

approaches to defining greedy algorithms to tackle the identified 

TVWS sharing problems. However, the proposed greedy 

algorithm for throughput maximization sub-problem searches 

the entire network to find an optimal solution. For such an 

algorithm, search over the space of a possibly very large number 

of network and channel collocation combinations leads to a high 

runtime complexity to find an optimal solution. An algorithm for 

opportunistic whitespace sharing among secondary networks has 

been presented as a graph coloring problem in [18]. The channel 

sharing algorithm in [18] solves the sharing problem by 

classifying the sharing process as network wide channel sharing 

and its localized version. This scheme, however, has 

performance issue when interference among neighboring access 

points is relatively high. This situation is quite common in highly 

congested areas where many collocated WSOs are deployed. 

Bahrak and Park [10] proposed an algorithm for CDM among 

heterogeneous networks. The sharing problem in [10] is modeled 

as a weighted-sum multi-objective optimization problem 

(MOOP) that is solved using a modified Boltzmann machine. 

However, an issue in the weighted-sum approach is that it does 

not find Pareto optimal points in non-convex regions of the 

solution space boundary [19]. Thus, some of the potential Pareto 

optimal points are possibly missed by the weighted-sum method.  

Khalil et al., have also performed TVWS sharing among 

heterogeneous networks by defining an interference graph of the 

networks [20]. A two-stage algorithm is then designed to achieve 

spectrum sharing among graph nodes. The algorithm maximizes 

fairness by maximizing the frequency reuse.  However, the 

channel sharing algorithm in [20] has polynomial runtime 

complexity 3( )N , for the number of networks (N). This 

complexity shows that in areas with a high number of deployed 

networks, the algorithm shall require substantial channel 

allocation time. Zhang et al., [21] adapt ecology based species 

competition model to develop a coexistence mechanism called 

ecological Species Competition based HEterogeneous networks 

coexistence MEchanism (SCHEME). The SCHEME enables 

each coexisting network to adjust achieved bandwidth per its 

QoS requirements dynamically. However, the SCHEME 

requires the number of channels to be larger than the number of 

coexisting networks. Such condition cannot be fulfilled in highly 

congested urban areas where a limited number of TV channels is 

available for unlicensed use. We have addressed this issue in the 



channel allocation mechanism defined in this paper. 

On the other hand, some of the existing TVWS sharing 

algorithms have implemented the concept of FR. For example, in 

[22], Bian et al., have implemented the concept of FR in sharing 

a single TV channel among Cognitive Radios (CR). The CR 

networks operating in orthogonal frequency division multiple 

access apply the uplink soft FR concept [23]. Again, the 

proposed method is defined for CR systems deployed in cellular 

infrastructure. Similarly, Hessar and Roy [17] have presented an 

FR method in cellular networks operating in TVWS. Moreover, 

the algorithm proposed in [17] orthogonalizes WSOs in 

frequency domain only. None of the existing TVWS sharing 

algorithms reuses TVWS in a joint, time-frequency domain for 

WSOs operating in an ad hoc coexisting environment. Spectrum 

reuse in both time and frequency domains shall result in even a 

better utilization of the available TVWS, as discussed in Section 

VI-C.  

Some genetic algorithms (GA), defined for implementing the 

channel sharing problem, also exist in the literature. For 

example, the authors in [24] use a GA-based reliability model 

to assign channels to mobile hosts based on the reliability of the 

base station and the channels to enhance the overall reliability 

of the mobile network system. The results show that this 

method requires higher number of iterations and generally 

higher number of available channels than the number of mobile 

hosts in order to achieve higher reliability. Similarly, Shrestha 

et. al., proposes a GA-based joint out-of-band spectrum sensing 

and channel allocation scheme for cognitive radio networks 

[25]. The joint sensing and resource allocation optimization 

problem has been formulated using fitness functions of sensing 

utility and the data transmission utility. Jao and Joe consider a 

new cognitive radio network model with heterogeneous 

primary users operating simultaneously via multi-radio access 

technology [26]. It focuses on energy efficient resource 

allocation and use a GA-based scheme to obtain an optimal 

solution in terms of power and bandwidth. The authors in [27] 

proposed solutions for the problem of efficient resource 

allocation (radio spectrum and power) in the OFDMA-based 

multicast wireless system that balances the tradeoff between 

maximizing the total throughput and ensuring a flexible and 

controllable spectrum sharing among multicast groups. It 

proposes two separate optimization methods for subcarriers and 

power and a GA-based joint optimization scheme is used. 

Results show that the proposed schemes can attain a high total 

sum-rate and more flexible and fair distribution of the available 

bandwidth among multicast groups.  

The GA in these and such literature work [28], [29] are well 

suited for multi-objective optimization problems that require 

searching over a large space under several constraints. 

However, GA-based methods are computationally expensive 

and therefore not suitable for the optimization problem with 

single objective function and a small search space, like the one 

defined in this paper. Therefore, GA suffers from the 

drawbacks of slow convergence speed, and low stability. The 

channel allocation in highly dynamic spectrum environments 

requires an algorithm that can do allocation process in a quick 

runtime. Therefore, rather than applying the GA method, the 

nonlinear, binary constrained optimization problem, defined in 

this paper is transformed into linear optimization problem. 

Such formulation helps us to apply linear programming solvers 

to solve the optimization problem and complete the allocation 

process in a quick, linear runtime.  

III. TECHNICAL TERMS AND RESEARCH FOCUS 

A. Technical Terms 

In this section, we define technical terms that form baseline of 

the proposed TVWS sharing system, defined in the next section. 

The proposed system is based on the coexistence system 

architecture as described in [10] and shown in Fig. 1. The 

coexistence system in [10] has three logical components: 

coexistence manager (CM), coexistence enabler (CE), and a 

coexistence discovery and information server (CDIS).  

 The CE registers a WSO to the CM and acts as a 

communication bridge by translating messages between 

the WSO and the CM serving the WSO. 

 The CM makes coexistence decisions for WSOs registered 

in it. Moreover, it is required to interact with other CMs, 

called as neighboring CMs in [10] to resolve coexistence 

issues among WSOs served by neighboring CMs. In 

general, it sends configuration commands and control 

information to the CE. 

 The CDIS provides coexistence discovery services like 

coexistence set information to CMs for registered WSOs. 

 The TVWS database (TVDB), as shown in Fig. 1, is not part 

of the coexistence system architecture. It contains 

information about channels available in the geographic 

region of each WSO registered with the 802.19.1 system. 

The TVWS database provides information about the set 

of TV channels free for whitespace activity to the CMs. 

A WSO may register with the IEEE 802.19.1 system before 

operating in the TV spectrum. In the registration process, a 

general principle for a WSO to acquire a TV channel is defined 

in IEEE 802.19.1, summarized as follows. A WSO may 

perform spectrum sensing to identify and select an available 

free TV channel or alternatively, it may send a channel 

 

 
Fig. 1. IEEE 802.19.1 TVWS system architecture. The TVWS database and 

WSOs interact with the 802.19.1 architecture externally. 

  



allocation request to its serving CM. If no free channel is 

available in the geographic region of the WSO, the CM may 

perform channel sharing among the requesting WSO and the 

WSOs pre-allocated a TV channel. If such WSOs are registered 

with other CMs, the CM serving the channel requesting WSO 

interacts with the other CMs to perform channel sharing. These 

CMs are called as neighboring CMs to the requesting CM. In 

this channel sharing procedure, two types of topologies are 

defined in the 802.19.1 [10]. A distributed CDM topology 

where neighboring CMs mutually interact to perform channel 

sharing among WSOs registered within them. A centralized 

CDM topology where multiple CMs agree to select one of them 

a master CM (MCM) and rest of the CMs become slave CM 

(SCM) [10], as shown in Fig. 1. Each SCM provides essential 

information about operating parameters, including the channel 

characteristics of each WSO registered within it and its channel 

demands to the MCM. The MCM performs coexistence 

services like radio resource allocation to WSOs registered in 

the SCMs. Some other terms used in the paper are defined as 

follows.  

 A WSO is an entity in 802.19.1 system that represents a 

TVWS device or network of devices. 

 The channel occupancy is the duty cycle in a percentage 

that a network (WSO) occupies a channel [10]. 

 The window time is a slot duration of a scheduling 

repetition period that satisfies the essential system QoS 

performance [10]. 

 The Coexistence Set (CS) of a wth WSO is a set of WSOs 

that are registered in the neighboring CMs that may affect 

the performance of the wth WSO. In other words, it is a set 

of WSOs which create interference to the wth WSO. 

B. Research Focus 

The TVWS sharing problem is defined as, 

Given a set of available TV channels, a set of CMs with each CM 

having at least one WSO registered in it and WSOs channel 

demands, share the TV channels among WSOs such that the 

following objectives are achieved. 

1) Maximize the system throughput, 

2) Minimize unfairness in allocation among WSOs 

registered in neighboring CMs, and 

3) Fulfill desired channel demands of the allocated WSOs. 

These objectives contradict each other. For example, 

maximizing the system throughput shall decrease fairness in 

allocation. Note that from a spectrum allocation perspective, 

fairness is regarded as equity in access to the resource, the TV 

spectrum. In other words, being free to use, each network 

should have an equal opportunity to an access to the given TV 

spectrum. 

 Similarly, fulfilling the second and third objectives in 

conjunction, under the scarcity of the available TVWS, restricts 

the system accommodating as many as WSOs in the TVWS. 

Thus, maximizing the fairness while satisfying the channel 

demands of each allocated WSO is quite complicated in highly 

congested spectrum environments [30]. Therefore, the fairness 

in allocation is measured at CM level. The fairness among CMs 

is deemed at minimum if at least a single WSO in each CM gets 

the channel.  

Considering the above conditions, we design a CDM 

system, as will be defined in Section IV-A. The system is 

designed to implement at the MCM in the centralized topology 

in 802.19.1, as shown in Fig. 1. The system makes use of the 

information from information messages defined in the 802.19.1 

[10] to apply various procedures for defining the proposed 

TVWS sharing problem as an optimization problem. For 

example, the WSO registration clause in [10] defines different 

information acquiring messages that permit a CM to collect 

desired channel demands, channel statistics, coexistence set 

elements, available TV channels and related information from 

WSOs registered within it or with neighboring CMs. Moreover, 

the inter-CM information sharing messages are also defined in 

[10]. We assume that using such message templates, the 

neighboring CMs exchange respective WSOs information with 

MCM. In order to solve the TVWS sharing problem, the CDM 

system in MCM then implements a channel allocation process, 

as will be defined in section V-C. The algorithm makes use of 

such information available at MCM to implement the 

subgradient method to solve the TVWS sharing dual problem, 

Section V-B, to identify a set of WSOs to allocate the TV 

channels.  

The channel allocation process also implements a novel 

spectrum reuse in Table 3 to have an efficient use of the available 

TVWS. The spectrum reuse step is also made in compliant with 

the 802.19.1 by repeated channel allocation using an interference 

matrix. The CDM defines the interference matrix using the 

WSOs’ CS information available at MCM, as shall be discussed 

in Section V-D. Note that the CS information is provided by the 

coexistence discovery algorithm as defined in [10]. The channel 

allocation process is then executed repeatedly to spatially reuse 

the TV spectrum to the unallocated WSOs that should not cause 

interference to pre-allocated WSOs. The proposed channel 

allocation solution is thus made smoothly integrable to the 

802.19.1 system. 

IV. SYSTEM DESCRIPTION AND PROBLEM FORMULATION 

In the following section, a centralized CDM system is 

designed that implements a channel allocation process, as shall 

be discussed in Section V, to implement the TVWS sharing 

problem defined in Section III-B.  

A. System Model 

The CDM system is defined as follows, 

 

( , , , , )TVWSX .                 (1) 

 

The system parameters are defined as follows. Let c be an index 

to a set of C neighboring CMs in the system, denoted as  in 

Table 1. Let ,c c   be a set of network IDs of WSOs 

registered in the cth CM, as shown in Table 1. Let the network 

ID, c

wNID   represents an identifier of the network the wth 

WSO, registered in cth CM, represents. For example, in the case 

of IEEE 802.11 type WSO, the NID contains the basic service 

set identifier used by the WSO.  

Let j be an index to the set of all permissible TV whitespace 

channels,  1,2, , J , where each set element 

corresponds to a TV channel number, defined on the basis of 



the regulatory authority rulings. For example,  in USA where 

FCC defines each TV channel to be 6 MHz bandwidth in 

V/UHF band, therefore,  2,3, ,36,38, ,51  in the 

USA. Since, the availability of a TV channel to a wth WSO is a 

function of geographic location of the WSO and the primary 

user activity in the region. Therefore, the availability of a TV 

channel for the secondary use varies spatiotemporally and 

needs to be determined. We assume that a channel sensing 

mechanism, as defined in [10] is implemented such that the 

TVDB contains the set of TV whitespace channels available in 

the geographic region of each WSO registered in the CMs in the 

system. Let j be an index to the set , then, jth channel 

availability status to the wth WSO, registered in cth CM, is 

represented by an indicator function defined as,  

 

     ,

1, if channel in is available to  WSO
:

0, otherwise

th th
c

w j

j w
z





   (2) 

 

The availability of J channels to the wth WSO, registered in cth 

CM, are thus represented by a vector of indicator functions 

defined as,  

 ,1 ,, ,c c c

w w w Jz zz . 

The set of channels available to W WSOs registered in cth CM is 

defined as,  

 
T

1 2, , , ,c c c c

W c  Z z z z . 

The system parameter  is then defined as follows, 

 

               1 2, , , .C Z Z Z               (3) 

 

The parameter  in the system in (1) represents the set of 

window times for the channels in the set . In 802.19.1, an 

algorithm is provided that enables CMs to define the slot 

duration of the window time. We assume the CMs implement 

such an algorithm to define the window time, ,jT j  , 

which is then used to define system parameter as, 

 

 1, , JT T .           (4) 

  

The system parameter  in (1) encodes channel demands of 

CMs, defined as follows. In 802.19.1 [10], a Discovery 

Information abstraction is provided that allows WSOs to send 

channel statistics and channel demands like SINR, desired 

channel occupancy, desired bandwidth etc., to their serving CM 

[10]. Such information of heterogeneous-WSOs is used to 

define a set of channel demands of wth WSO as follows.   

Let ,
c
w jSINR  represents the quality of jth channels to wth 

WSOs registered in cth CM. The channel quality is measured in 

terms of signal to interference and noise ratio (SINR) which 

depends on interference from primary-to-secondary users and 

noise floor due to environmental factors. We assume that an 

interference discovery mechanism is in place that enables each 

WSO to measure SINR value on each of the channels in , as 

will be further discuss in Section V-D. The quality of all J 

channels to wth WSO is then defined as, 

 ,1 ,2 ,, , , ,c c c c c
w w w w JSINR SINR SINR w   s . 

Let ,

c

w jp  be the allowed transmission power to wth WSO in 

the jth channel. The allowed transmission power to wth WSO on J 

channels is then defined as,  

 ,1 ,, , ,c c c c

w w w Jp p w   p . 

Let c

wB  be the bandwidth demand of wth WSO. The number 

of channels required by wth WSO is then calculated as, 

, ,
c
w

j

Bc
w b

cn w c      

where jb  represents the channel bandwidth. Let ,

c

w jO  

translates to a timeslot, here called as channel occupancy time 

(COT) in a window time, such that the wth WSO registered in cth 

CM can achieve its desired channel occupancy in the allocated 

jth channel. The relation of COT to a channel window time is 

shown in Fig. 2 where three WSOs are scheduled in the window 

time in a single TV channel. The COTs of wth WSO in J TV 

channels are then represented as, 

TABLE 1 

DEFINED PARAMETERS  

Input Variables 

Symbol Description Value 

 A set of C CMs in the system.  ,21 , ,C  

c  A set of NID of W WSOs 
registered in the cth CM. 

 1 2, , ,c
WNID NID NID  

 A set of permissible TV channels 

in the system. 

{1,2, }J  

 Channel demands of WSOs, as 

defined in the system in (1). 

- 

,

c

w jO  COT that translates desired 

occupancy demand of wth WSO on 

a jth channel. 

, , 0,1
,

j

c c c
w w j w j TJ

O O
   

  
 

O  

 ,w mI j

 

Indicator variable encoding mth 

WSO interference to wth WSO on  

a jth channel. 

 ,

1 if interfers
:

0 otherwise
w m

m w
I j


 


 

,w j  Set of WSOs  m   such that 

mth WSO transmission interferes 

wth WSO transmission on jth 
channel 

 ,w j m   

,w jy  A variable indicating whether mth  

WSO interferes  wth  WSO on the 
jth channel? 

,

,

1 :
:

0

w j

w j

w m
y

else

  
 


 

,
c
w jz  An element of the matrix 

Z defining accessibility of  jth 

channel to  wth WSO. 

1 if accessible to WSO

0 else

thj w

  

Output Variables 

,
c
w jx  Element of matrix X  defining 

allocation status of wth  WSO on jth  

channel  

,

1 if channelallocated
:

0 otherwise

c
w jx
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Fig. 2. Scheduling transmission periods for three WSOs on a TV channel. 

  



 ,1 ,, ,c c c

w w w JO O o . 

The channel demand set of wth WSO is then defined as follows,  

 

    , , , , ,c c c c c
w w w wn c w      s p o         (5) 

 

The channel demand set of cth CM is then defined using channel 

demands of its registered WSOs as follows, 

 

      , , , ,c c c c cN c   s p o ,          (6) 

where  1 , ,c c c
W

 s s s ,  1 , ,c c c
W

 p p p ,  1 , ,c c c
WN n n  and 

 1 , ,c c c
W

 o o o . Let  1 2, ,
T

CS s s s ,  1 2, ,
T

CP p p p ,  

 1 2, ,
T

CN N NN ,  1 2, ,
T

CO o o o , the system parameter 

 is then defined using the channel demands of all 

neighboring CMs as follows, 

 

   , , , S P N O .                         (7) 

 
The system in (1) then executes the channel allocation 

algorithm, as will be discussed in Section V, to allocate TV 

channels to the WSOs registered in the neighboring CMs such 

that the allocation satisfies the required system QoS 

performance. The system QoS performance is preserved if the 

following allocation condition is satisfied,  

 

   , ,
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w j j
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where Tj refers to the window time in a jth channel. The 

algorithm proposed in Section V solves the TVWS sharing 

optimization problem, as will be defined in (14) and outputs a 

channel allocation matrix X , defined as follows. Let 

 , 0,1c

w jx  , be a binary decision variable such that if 
, 1c

w jx  , 

the jth channel is allocated to the wth WSO registered in cth CM; 

otherwise , 0c

w jx  . The allocation status of WSOs registered in 

the neighboring CMs is then represented by a matrix X as,  

1 1 1

1 1 1

1,1 1,2 1,

1 1 1

,1 ,2 ,

2 2 2

1,1 1,2 1,

,1 ,2 ,

:

C C C

J

W W W J

J

C C C

W W W J

x x x

x x x

x x x

x x x

 
 
 
 
 
 
 
 
 
 
  

X ,          (9) 

 

where ,ccW c   , i.e., the number of WSOs registered 

in the cth CM. The wth row in the X  represents the channels 

allocation status, in the set , to the wth WSO registered in cth 

CM. The jth column in the X  represents the channels allocation 

status of all the WSOs, from all the CMs in the set . The 

allocation matrix X  thus orthogonalizes WSOs, registered in the 

neighboring CMs, in a joint frequency-time domain. The WSOs 

scheduled on different channels can transmit at the same time 

using their respective allotted channel (frequency slot) while 

WSOs scheduled on the same channel can transmit in their 

respective time slot (here COT).  

The system in (1) thus, implements the TVWS sharing 

problem, defined in Section III-B, as an optimization problem, as 

discussed in the following section. 

B. Problem Formulation 

In this section, the proposed TVWS sharing problem is 

formulated as an optimization problem using well-established 

proportional fairness method. It is because the proportional 

fairness is considered one of the most suitable methods to 

achieve a trade-off between two competing interests [31], [32], 

[33]. Originally, Kelly defined the proportional fairness as an 

adjustment process which adjusts the rates of users according to 

the charges they pay. The proportional fairness method thus was 

defined for elastic traffic in computer network services [34]. 

Similarly, in the channel sharing literature, a proportionally fair 

allocation mostly has been achieved by adjusting the rates of the 

users based upon some performance criteria like maximizing the 

resource utilization, etc. [35], [36]. However, applying the 

proportional fairness in its original to model the TVWS sharing 

problem proposed in this paper is not suitable. It is because, the 

third objective in the problem defined in Section III-B makes the 

resource allocation as binary decision allocation, i.e., a channel is 

either allocated to a WSO, , 1c

w jx   or not , 0c

w jx  . Therefore, 

WSO allocation (here COT) adjustment is not possible. 

Consequently, we rewrite the proportional fairness in a binary 

decision allocation perspective as follows.  

Let the maximum data rate the wth WSO can achieve on jth 

channel be defined by using Shannon channel capacity formula,  

 

 , ,log 1c c

w j j w jr b SINR  .             (10) 

The maximum rate , , cc

w jr w   is then used to defined a utility 

function as a normalized rate achieved by cth CM in jth channel as 

follows, 
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where 
, 0c

w jO
  defines Kronecker delta function as: 
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1, if 0,
:

0, otherwise.
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This function prevents denominator term in (11) from 

becoming zero. The utility function in (11) measures the worth 

of the resource (channel) to cth CM, i.e., given a channel is 

allocated to the WSOs in the cth CM for the duration of 

,
c

c
w j

w

O


 , how does it translate for the CM in terms of the 

achieved throughput. In other words, maximizing the function in 



(11) shall prefer a CM with WSOs achieving high data rate and 

lower channel occupancy demand over a CM with WSOs 

achieving low data rate and high channel occupancy demand. 

Such preference based allocation shall lead to an efficient use of 

the resources (TVWS). The distribution ,c j C J
   U  is then said 

to be proportionally fair if it is feasible and for all other feasible 

solutions ,c j C J
v


   V , the following holds [34], 
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c j c j

c j c j

v

 


 .         (12)    

It has been shown in [34], [37] that the rates achieved by users 

become proportionally fair if the sum of logarithmic rates 

obtained is optimized. Moreover, it is shown in [38] that if all 

rates are proportionally fair, they maximize the throughput over 

all other feasible throughputs. Therefore, if the logarithmic sum 

of the utility function in (11) is maximized, the normalized rate 

achieved by neighboring CMs shall become proportionally fair. 

Let a jth channel is said to be allocated to the cth CM if at least one 

of its registered WSO is scheduled on the channel. The 

allocation status of the channels in the , to the cth CM, is then 

defined as follows, 

 

1,1 1,2 1,

,1 ,2 ,

:

c c c

c c c

J

c

c c c

W W W J

x x x

x x x

 
 

  
 
 

x .       (13) 

 

Let  
1

1,1, ,1
J

1 . Let  j O O  be the jth column vector in 

COT demand matrix in the system parameter , defined as, 

 1

1 1 1 2
1, 2, 1,, ,

, , , , , , C

T
C

j j j jW j W j
O O O O OO  where 

,ccW c   . Let j X X  represents the jth column 

vector of the allocation matrix X . The TVWS sharing problem 

is then defined as follows,  
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The constraint in (14b) ensures that a channel can be allocated 

to the WSOs registered in cth CM only if the channel is available 

in their respective region, i.e.,  , ,1 iff 1c c c c
w j w j wx z   x z . 

The constraint in (14c) ensures that the WSOs scheduled in a jth 

channel preserve the system QoS performance, as defined in (8), 

i.e., the total allocated channel occupancy time of coexisting 

WSOs must preserve the channel window time. The constraint in 

(14d) ensures that the number of channels allocated to the cth CM 

is restricted by the number of channels desired by its WSOs. 

Finally, (14e) forces the decision variable to be binary valued. 

The constraints in (14e) and (14c) helps the system in (1) to 

satisfy the third objective of TVWS sharing problem in Section 

III-B. The optimization problem in (14) seeks to optimize a 

concave objective function over a convex set. The problem in 

(14) has a unique solution, as from the optimization theory [39], 

maximizing a concave function over a convex set has a unique 

solution. A solution approach to the problem in (14) is presented 

in the following section. 

V. SOLUTION METHOD 

The nonlinear objective function (14a) and binary-valued 

constraint (14b) makes the problem in (14) a nonlinear 

combinatorial optimization problem. Determining the optimal 

solution of such a problem is a challenging task as the problem 

becomes intractable as the number of discrete variables increases 

[40]. Therefore, to ease the solution approach, the problem in 

(14) is transformed into a linear programming problem with 

relaxed binary constraint. 

A. Linearization 

The objective function (14a) is linearized using a piecewise 

linear approximation. In this process, tangent line approximation 

is used to approximate the objective function in (14a), denoted 

as, F. The detailed description of linear approximation is 

provided in Appendix A. Using this function, the problem in (14) 

is linearized as, 
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To tackle the binary-valued constraint (15b), we apply 

Lagrangian relaxation as explained followings. 

B. Lagrangian Relaxation 

Lagrangian relaxation [41] relaxes a subset of constraints by 

adding them to the objective function with a penalty term called 

the Lagrangian multiplier. Let ,: w j W J



   λ be the Lagrangian 

multipliers matrix. Then, the relaxed problem can be defined as, 
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For a given λ , the Lagrangian relaxation can be defined as, 

 

         max , : constraints(16 ), (16 ), (16 )h P b c d
X

λ X λ  (17) 

Then the generalized dual problem of the relaxed problem is 

defined as followings, 



       * min : 0L h 
λ

λ λ .        (18) 

The solution to (17) is the upper bound of the solution to the 

original problem (16). Note that (17) is a concave function. For 

a concave function, a gradient-based approach is generally used 

to compute a value as close as desired to the optimal value. Thus, 

if h would have been differentiable, we can use a gradient 

descent method to have a convergence toward the optimal 

value. The proposed problem, however, cannot be solved using a 

gradient descent method. It is because the objective function is 

piecewise linear which is non-differentiable at the intersection 

point of adjacent linear pieces, but sub-differentiable at this 

point. The subdifferential of  h λ  at such a point is the set of all 

subgradients at that point. Thus, we need to compute a sequence 

of  k

k
λ such that either  kh λ  converges to the optimal 

solution using the subgradient method, which is given in the 

following dual algorithm. The convergence property of the 

subgradient algorithm is presented in Appendix B. 

C. Subgradient Algorithm for Lagrangian Relaxation based 

TVWS Sharing Problem 

The algorithm defined in Table 2, can be described as 

follows. In Step 0, the input parameters to the algorithm are 

defined as follows. The initial values of 0λ  are defined 

randomly. The parameter   is used in defining step size kt , 

defined in the range min 2    [41].  The iter  with upper 

limit of max iter  counts the number of iterations after which the 

parameter  is updated. The maxk  is defined as stopping criteria 

for the algorithm. 

 The algorithm uses variables initialized in Step 0 to apply a 

linear programming (LP) solver to solve the dual problem and 

obtain the kth iteration allocation matrix kX . LP solvers are 

available on both the commercial and freeware basis. The 

entries in kX  are then adjusted based upon the corresponding 

entries in cZ  such that , ,c c c
w j k k kx   x x X  are set equal to 

zero if the corresponding element, , ,c c c c
w j w wz   z z Z  is zero. 

This validation ensures the constraint in (14b). 

The algorithm then applies the FR process in Step 3 in Table 

2. In this process, the algorithm makes use of the current 

allocation vector, kX  and interference matrix, as shall be 

discussed in Section IV-D, to identify a set of WSOs which do 

not get the channel. The algorithm then repeatedly applies LP 

solver to performs channel allocation to the unallocated WSOs 

such that they do not cause interference to the allocated WSOs 

of neighboring CMs. The FR process is detailed in Section V-E. 

The outcome of FR process is an updated allocation matrix kX  

which is then used to compute the function values in (16a) and 

the fairness in allocation among neighboring CMs.  

Several fairness measures or metrics are used in the 

literature to determine whether networks are receiving a fair 

share of spectrum or not. For example, max-min fairness, Jain’s 

fairness index, fairly shared spectrum efficiency, worst-case 

fairness. In this paper, we adopt Jain’s fairness index [42] to 

measure fairness in allocation among neighboring CMs. The 

reason is that it satisfies the desired properties of fairness 

measure like population size independence, continuity etc., as 

listed in [43]. These properties are important to be considered in 

measuring the fairness in allocation. For example, the 

continuity property shows any slight change in the allocation of 

individual WSO. Thus, an inefficient use of the TVWS is 

identified by the fairness index as a WSO with bad channel 

characteristics gets a high proportion of the spectrum. It is 

ensured through the use of the continuous allocation metric like 

fraction of throughput demand, as defined in (19). Such an 

allocation metric is suitable to measure the fairness in 

allocation for the case where WSOs demand unequal channel 

bandwidth [43]. Therefore, based on the fraction of throughput 

demand of CMs, an allocation metric is defined as follows,  

 ,
c

c

c

d

d
T c


  ,                (19) 

 

where cd and cd represents the maximum data the cth CM 

desire to transmit and it can transmit using its allocated 

channels, respectively. These terms are defined as follows. Let 

the maximum data the cth CM can transmit using its allocated 

channels is defined in terms of the data the WSOs registered in 

it can transmit, defined as follows. 
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TABLE 2 
ALGORITHM: DUAL PROBLEM BASED ON LAGRANGIAN RELAXATION 

Step 0: a) Choose initial values of 0λ . 

b) Set parameters, for example, 
min2.0, 0.001,    0iter  , max 5iter  , k = 0, 

max 10k  , 0bestF  , besth  , 0upperh  ,  0k W J
 X . 

Step 1: a) Increment as 1, 1iter iterk k        

b) Given kλ , solve the relaxed problem using any linear 

programming technique and obtain kX .  

Step 2: Validate  kX  as: set , ,: 0 if 0c c
w j w jx z  . 

Step 3: Perform frequency reuse as in Table 3 and get kX . 

Step 4: Use kX  to compute the value of the function in (16a), called as F, 

and fairness index value H in (20). 

If bestF F : bestF F ,  upper besth F  and k
X X . 

Step 5: a) Use kX  to compute: 

- Subgradient vector as,   
,

,k

k

w j

h
h w



 
   

  

λ , 

- Dual objective in (18),  

- Step size as, 
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h h
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λ

λ

. 

b) Update the dual variable as,   1 max , 0k k k
kt h   λ λ λ  

Step 6: If  best kh h λ  then  best kh h λ  

else if 
max iter

iter   then  min

2
max ,   and 0iter  . 

Step 7: If max0.001 or >  kt k k stop; otherwise, go to Step 1. 

 



Note that channels are considered as additive white Gaussian 

noise (AWGN). The data the CM desires to transmit is defined 

as,  

, , ,c c c

w j w j

j w

d O r c
 

    .           

The normalized throughput vector  1, , CT T  is then adopted 

to measure fairness in allocation using Jain’s fairness index 

[42]  as,   
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Function H in (21) outputs a value in the range of [0, 1]; when 

the value is closer to 1, the allocation is deemed fairer.  

If the current iteration value of the objective function, F, is 

optimal, then bestF  is updated with F and X with kX . As the 

iteration progresses, the feasible primal bestF  and lower bound 
besth  approach gradually to the integer optimal by adjusting kλ  

using the subgradient method as defined in Step 5. In Step 5, the 

sub-gradient vector of the objective function and the Lagrangian 

multiplier vector kλ  for the kth iteration are calculated. The step 

size kt  is used to calculate the multiplier vector for the next 

iteration. The Lagrange multipliers are thus adjusted iteratively. 

The convergence property of the subgradient algorithm is 

discussed under Appendix B. The algorithm terminates as one of 

the termination conditions satisfied: 

 Dual step size becomes less than a set threshold or,  

 the number of iterations exceeds the maximum number of 

iterations. 

After the overall iteration ends, we regard the final value of 
bestF as the approximated optimal solution and the 

corresponding allocation matrix X is the algorithm output.  

The interference matrix, Y, that is used to implement the FR 

step in Table 3 is defined in the following section.  

D. Interference Matrix 

The WSOs registered in the neighboring CMs and interfering 

on the available TV channels is represented using an interfering 

matrix called as Y-matrix in this paper. Note that the Y-matrix 

does not model the interference among coexisting WSOs. 

Rather, it represents the set of WSOs which cannot transmit 

simultaneously on the available TVWS due to interfering 

transmission regions. In fact, in IEEE 802.19.1 [10], a 

coexistence discovery algorithm is presented that the CDIS and 

CM run to perform the statistical analysis of the expected 

interference among coexisting WSOs. Briefly, the algorithm in 

[10] takes the WSOs’ geographic location, transmitter and 

receiver characteristics, antenna height and directivity, height 

above average terrain and other related parameters to execute 

interference discovery process. In this process, a cumulative 

distribution function of the potential interference from mth 

WSO to wth WSO is estimated. Both of these, mth and wth 

WSOs, could register to the same CM or different CMs in the 

system. The minimum interference level, experienced by 90% 

devices of the wth WSO, is then taken as the potential 

interference value from an mth WSO to wth WSO. The measured 

interference value is then compared to a threshold. If the value 

is greater than the threshold, the mth WSO is considered 

potential interferer to the wth WSO and is included in its CS. A 

similar rule is applied for interference discovery of the wth 

WSO into the mth WSO. Thus, the outcome of the interference 

analysis process is a CS of each WSO registered in the CMs in 

the system. The system in (1) then makes use of the CS of each 

WSO to generate a Y-matrix as follows. 

Let a set   , , ,w j w mI j m   , be an encoded CS of wth 

WSO on a jth channel such that an indicator variable  , 1w mI j   

if mth WSO interferes wth WSO transmission on the jth channel, as 

defined in Table 1; otherwise  , 0w mI j  . The encoded CS of all 

the WSOs coexisting on jth channel are then used to define a jth 

channel interference matrix  jy  as follows, 
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where   in diagonal vector in  jy  represents don’t care 

condition. This condition translate a self-interference indicator 

variable,  ,w wI j , having no meaning. The wth row in  jy  

matrix represents encoded CS of wth WSO. The interference 

matrices for all channels in the system are then used to define 

an interference matrix Y as follows, 

 

     1 2 J   Y y y y               (23) 

 

The TVWS sharing algorithm, in Table 2 makes use of the 

interference matrix Y to implement FR in sharing TVWS among 

heterogeneous WSOs, as discussed in the following subsection. 

E. Frequency Reuse 

The frequency reuse (FR) subroutine in Table 3 performs 

spatial reuse of the TV spectrum to enhance its effective 

utilization. The FR process is implemented to the WSOs do not 

getting channel in the initial allocation phase in Step 1, Table 2. 

This requires to identify a set of unallocated WSOs eligible for 

the FR. In this process, an encoded CS , ,w j m   and an 

interference matrix Y are used to define the set of unallocated 

WSOs,  . To generate encoded CS and Y-matrix, we make 

use of the CS of each WSO available at MCM. Note that the 

802.19.1 defines different message clauses that enable CMs to 

exchange their WSO related information [10]. Let us assume the 

CS of WSOs are available to CDM at MCM. Given such 

information available, an encoded CS of WSOs, , ,w j m   

and an interference matrix Y, are generated, as defined in Section 

V-D. Initially the Y-matrix is filled with all ones. Let 
kX  be an 

initial allocation matrix available from Step 2, Table 2. The 

Y-matrix is then updated based on the 
kX  and , ,w j m   in 



Step 1, Table 3, as follows. For each jth channel in the system, 

update interference matrix  j y Y  as,   

1) If jth channel is allocated to wth WSO, set all wth row 

elements in ,  y y Y equal to zero, or  

2)  If  jth channel is allocated to mth WSO and wth WSO is in the 

CS of mth WSO, set all wth row elements in the matrix y 

equal to zero.  

The above two steps identify the eligibility of the WSOs for 

implementing the FR process. For example, if the wth WSO is 

already allocated a channel, we aim to restrict it in taking part the 

FR process. Therefore, the wth row entries in the entire Y-matrix 

are flipped zero in the first step above. Similarly, if a jth channel 

is already allocated to mth WSO and if wth WSO transmission in 

the jth channel shall create harmful interference to the mth WSO 

transmission, the jth channel cannot be spatially reused at 

unallocated wth WSO. Therefore, Y-matrix entries corresponding 

to wth row are also flipped zero. The updated Y-matrix thus 

defines a set of unallocated WSOs. These are the WSOs for 

which at least one nonzero entry exists in the corresponding row 

in the Y-matrix, as defined, in Step 2, Table 3.  

The subroutine in Step 3, Table 3 then repeatedly allocates the 

available TV channels to the WSOs in the set   as follows. 

The relaxed problem in (17) is solved using any LP solver for the 

WSOs in  the set  and an allocation matrix 
kX  is obtained. 

The 
kX  is then used to update 

k
X ,  , and Y-matrix, as 

defined in Step 3-b)2), 3-b)3), and 3-b)4), respectively. This 

repetitive update and allocation process continues until all WSOs 

in the set  get the channel or no more FR is possible.  

Let us apply the FR implementation in the coexisting 

scenario shown in Fig 3. In this figure, four WSOs operating in 

three network technologies, an IEEE 802.22 regional area 

network, IEEE 802.11 local area networks and IEEE 802.15.4 

personal area network are deployed in some geographic region. 

The shaded area around each transmitter denotes its 

transmission radius. The circular links between a transmitter 

and receivers show wireless connectivity between them. The 

receiver nodes in some networks receive interfering signals 

from other collocated transmitters as shown in the figure. Let 

WRAN, HS1, HS2, and PAN are labelled as, WSO 1, 2, 3 and 

4, respectively. Let us assume each of the WSO is registered in 

a dedicated CM, i.e., four neighboring CMs are available in the 

CDM system. Let us suppose that a single TV channel is 

available in the region for secondary use. Then, based on 

coexisting scenario shown in the figure, the encoded CS of each 

WSO can be defined as follows. 

       1,1 2,1 3,1 4,10,1,0,0 , 1,0,1,1 , 0,1,0,0 , 0,1,0,0 .     

The Y-matrix is then populated from the bitwise OR operation 

on the CS of the WSOs. The generated Y-matrix is 

 1 1 1 1Y . Let for some given input parameters, as listed in 

Table 1, the algorithm in Table 2 finds an initial allocation vector, 

 1 0 1 0X . The allocation vector shows WSO 1 and WSO 3 

are allocated the channel. The FR process is then invoked. The 

Y-matrix is updated to identify WSOs eligible for spatially 

reusing the channel, as follows. The XOR operation is performed 

as,   Y X Y . This operation turns the entries in Y-matrix 

equal to zero where the corresponding entries in X-matrix are 

ones. The Y-matrix at this stage looks like,   0 1 0 1Y . It is 

then updated using the CS of allotted WSOs as previously 

defined in the second rule of Y-matrix update. The second entry 

in Y-matrix is thus flipped zero as WSO 2 is in the CS of allotted 

WSO 1. The updated Y-matrix then looks like,  0 0 0 1Y . 

The algorithm then solves the dual problem again and allocates 

the channel to WSO 4. The final allocation matrix then looks like 

 1 0 1 1X . The final allocation shows that the available TV 

channel is reused at WSO 4 without causing harmful interference 

to allotted WSO 1 and WSO 3. 

F. Scheduling Map 

Once the allocation process in Table 2 and frequency reuse in 

Table 3 terminates, the CDM system generates a scheduling 

map to send it to the CMs in the system. The scheduling map 

(SM) is a map showing the WSOs’ scheduling periods arranged 

in window time in the allocated channels. In this paper the 

 
Fig. 3. IEEE 802.22 wireless regional area network (WRAN), IEEE 802.11 

hotspots (HS1, HS2), and IEEE 802.15.4 personal area network (PAN) 

coexisting in some geographic region. 

  

TABLE 3 

SUBROUTINE: FREQUENCY REUSE 

Input: kλ , k k X X , , CS. 

Output: kX  

Step 0: Given CS generate encoded CS, i.e., , , ,w j w j     and 

interference matrix Y , as defined in Section V-D. 

Step 1: Given kX , update   ,j j  y Y as: For each wth WSO do: 

if , 1w jx  :  , 0,w mI j m   , j   or                             if 

 , ,1 andm j m jx w  :  , 0,w mI j m   . 

Step 2: Define unallocated WSO set in the system as, 

 ,: | 0w m
m

w j I j



  
      



 

 .  

Step 3: 
While  , 0,w m

w m

I j j

 

     and {}  do 

 a) Given 
kλ , and  ; solve the relaxed problem using any 

linear programming solver and obtain kX . 

 b) Perform following updates: 

1) Update kX  as, , ,: 0 if 0c c
w j w jx z  .  

2) Update kX  as, k k k  X X X . 

3) Update  as,  ,| 1\ : c
w jw j x        . 

4) Update Y  as in Step 1. 

 



scheduling period of a wth WSO refers to its channel timeslot, 

i.e., COT. For example, SM of three WSOs scheduled in an 

allocated TV channel is shown in terms of their COT defined in 

the window time in Fig. 2. Thus, given the COT of WSOs and 

the allocation matrix X, from the algorithm in Table 2, the SM 

is a simple procedure of defining two timing parameters; 

transmission start time and transmission end time. The CDM 

system defines the timing parameters for WSOs registered in 

the CMs in the system as follows.  

Let a pair of transmission variables,  , ,,start stop
w j w jt t , precisely 

define the time instance the wth WSO, registered in cth CM, may 

start and stop its transmission on an allotted jth channel, 

respectively. The ,
start
w jt  and ,

stop
w jt  are calculated as follows. Let 

a variable , ( )w m wC  be defined as the cost of sharing a channel 

between two WSOs, ,w m , where  m w  represents a 

WSO m sharing a channel with WSO w. Let w  represents the 

control overhead associated with MAC technology of the wth 

WSO. The control overhead is defined as the amount of time 

required to perform control signaling while operating in the 

TVWS. This value is fixed and predetermined based upon the 

underlying network technology of the WSO. For example, if an 

802.22 WSO employs OFDMA, one OFDM symbol is used for 

both the frame preamble and the frame header; except for the 

first frame in the superframe which consumes two additional 

symbols (1/4 cyclic prefix mode). If we consider two OFDM 

symbols per frame as a control region then using a symbol 

duration, TSym=0.3733 ms [44], the control overhead per frame 

is computed as, 0.7466 ms. Other settings may generate 

different overhead. Similarly, if a WSO m operates in a 

different network technology than that of the WSO w, its 

control overhead will be different from that of WSO w. The 

total overhead in a channel varies as the channel is shared 

among heterogeneous WSOs. The value of the parameter 

, ( )w m wC  is then defined simply by adding the control overhead 

of all WSOs sharing a channel as follows: 
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where c c   refers to the set of WSOs with NID listed 

before NID of wth WSO in 
c

. The timing parameters are 

computed as,  

  , , ,
c

start c c
w m j m j m m w

m

t O x C


   and ,
stop start c
w w w jt t O  .  (25) 

Thus, the ,
start
w jt  refers to the time instance in the scheduling 

window that all the WSOs m have utilized the channel for the 

duration of their respective COT. Note that in defining the 

scheduling map we make a simplifying assumption that the 

timers of WSOs in the system are pre-synchronized and WSOs 

sharing a jth channel have agreed on the reference time (the time 

instance the window time starts) as defined in [10]. Timer 

synchronization may be done by having agreements between 

service providers managing the WSOs which is outside the 

scope of this paper. 

The CDM defines SM and send it to the SCMs. The SCMs 

send the SM to the registered WSOs. Such implementation 

shall reduce the control signaling between the WSOs and the 

pertinent CM. The control signaling is otherwise inevitable 

while performing context switching among WSOs scheduled in 

the TV channel. Once the spectrum has been allocated, the SM 

remains unchanged unless i) an incumbent appears in one of the 

assigned channels ii) a change in a WSO's channel occupancy 

demand or some other coexisting WSO's demand requires 

readjusting the WSO's allocation. 

VI. SIMULATIONS AND ANALYSIS 

The performance of the proposed channel sharing algorithm is 

compared with two other channel allocation algorithms, 

proposed in [18] and [17].  

A. Comparative Channel Allocation Schemes 

In this section, we summarize the allocation mechanism of the 

comparative TVWS allocation schemes. In [17], two TVWS 

sharing problems are defined; one for maximizing the number of 

channels allocated to the networks and the second for 

maximizing the total throughput under the minimum fairness 

constraint of allocating at least a single channel to each network. 

In this simulation setup, we implement the second problem as it 

closely matches with the channel sharing scheme proposed in 

this paper. The TVWS sharing algorithm proposed in [17] then 

selects a node (WSO) having a minimum of the assigned 

channels and the minimum number of the available channels to 

it. The algorithm assigns a TV channel to the selected WSO and 

calculates the total throughput. It keeps assigning the channel to 

other WSOs as long as the total throughput is increasing. This 

procedure is repeated for every channel. The algorithm 

terminates as no more increase in the throughput is observed. 

The TVWS sharing problem in [18] is modeled as a 

lexicographic ordering of throughputs of access points of 

coexisting networks. The proposed problem is then transformed 

into a graph coloring problem. An algorithm called as, Share, is 

then proposed to solve the graph coloring problem. The Share 

algorithm operates in three phases. In the first phase of 

allocation, it orthogonalizes the WSOs in the available TV 

channels (frequency slots). In the second phase, a mutual channel 

sharing is performed among allotted WSOs of the first phase 

under the condition that their first phase throughputs do not 

decrease. The fairness is improved in the third phase by sharing 

the channel with unallocated WSOs such that lexicographically 

ordered throughputs do not decrease. 

We select the algorithms in [18] and [17] due to the close 

resemblance of their TVWS sharing problems to the proposed 

channel sharing mechanism. For example, both considers 

optimizing throughput under minimum fairness in allocation. 

However, there exist some fundamental differences as well. For 

example, both the allocation schemes orthogonalize the WSOs in 

frequency domain by allocating a dedicated channel to each 

allocated WSO while the proposed scheme orthogonalize WSOs 

in a joint time-frequency domain by slicing the available TVWS 

in the frequency bands and further slicing each channel 

(frequency band) into a number of COTs in the channel window 

time, as discussed in section IV. Moreover, the algorithm in [17] 

is intended for TVWS channel allocation to cellular networks 



while the proposed scheme is intended for TVWS sharing in an 

ad hoc coexisting environment, as discussed in Section I. 

Similarly, the TVWS sharing algorithm in [18] does not 

implement the FR concept. Therefore, we implement the 

proposed algorithm without FR process as well to have a fair 

comparison with the scheme in [18]. This is achieved by omitting 

Step 3 in Table 2 during the implementation of the proposed 

algorithm.  

Finally, the performance of the proposed allocation scheme 

with and without FR implementation is judged in comparison 

with the Scheme in [17] and the Scheme in [18], respectively.  

B. Simulation Setup 

Simulation setup consists of 32 WSOs deployed in some 

geographic region and connected to an 802.19.1 coexistence 

system. The system has 32 CMs, each serving a single WSO. 

We select a dedicated CM for each WSO as the schemes in [18] 

and [17] performs TVWS sharing at network (WSO) level. The 

number of available TV channels in the region varies from 2 to 

16. The WSO types and transmission powers are modeled using 

FCC regulations [2]. For this purpose, the specifications for 

fixed, mode 1 and mode 2 WSO types are used. The fixed, 

mode 1 and mode 2 type WSOs are allowed to have maximum 

antenna gain of 4 watts (W) effective isotropic radiated power 

(EIRP), 100 mW EIRP, and 100 mWatt EIRP respectively. The 

WSO access technologies are IEEE 802.22 and IEEE 802.11af. 

In this simulation setup, we implement the compulsory channel 

requirement of each WSO where the standard definition of the 

above technologies mandates a single TV channel of regulatory 

defined bandwidth as a requirement of a device to operate in the 

TVWS. Note that the bandwidth of a TV channel is set equal to 

6 MHz. 

Two parameters; WSO channel occupancy demand, ,
c
w jO and 

WSO density in the region, ,
c
w jK  are varied to observe their 

effect on allocation behavior of the three allocation schemes as 

follows. Let jT  represents the window time on the jth channel. 

Note that the 802.19.1 [10] does not define MAC layer frame 

structure for operations in TVWS. Therefore, the channel 

window time is not defined in an absolute time domain in 

802.19.1. In this simulation setup, we define the channel window 

time as a unit length, without loss of generality, i.e., 

1,jT j   . Then, three allocation subdomains are defined 

on the jT  as follows; low subdomain consists of up to 33 

percent of the channel window time, defined as, 

 : 0, 0.33L
jO T , A medium subdomain consisting of 34 to 67 

percent of the channel window time, defined as, 

 : 0.34,0.67M
jO T  and a high subdomain consists of 67 to 100 

percent of the channel window time, defined as, 

 : 0.67,1H
jO T . The channel occupancy demand of each WSO 

is then randomly defined on these subdomains.  

The WSO density in the region is reflected using the number 

of WSOs in the CS of each WSO as follows. Let W be the 

number of WSOs registered in all CMs in the system then, we 

define three WSO density subdomains as; low 

 : 0,0.33LK W , medium  : 0.34,0.67MK W , and high 

 : 0.67,1HK W .  The CS of each WSO is randomly defined on 

these subdomains. Let ,
c
w jK  represents the number of WSOs in 

the CS of wth WSO on the jth channel, registered in cth CM. 

Then, the effect of the variability in the translated channel 

occupancy demand and WSO density is measured using a pair 

of parameters  , ,,c c
w j w jO K . Note that varying each of these 

parameters on three respective subdomains results in 32 27  

possible allocation combinations. Out of 27, we select three 

cases to study the performance metrics defined in Section VI-C, 

as follows. 

 Low: low COT, low WSO density, i.e., ,
c L
w jO O  and 

,
c L
w jK K , 

 Medium: medium COT, medium WSO density, i.e., 

,
c M
w jO O and ,

c M
w jK K , and  

 High: high COT, high WSO density, i.e., ,
c H
w jO O and 

,
c H
w jK K . 

Next, we apply the intlinprog routine of MATLAB® to 

solve the proposed TVWS sharing problem. The routine applies 

the mixed-integer linear programming technique. Since we 

need binary valued vector X , therefore, we set all the decision 

variables, , ,c c c
w jx   X X X , to be integer variables in the 

intlinprog routine. The binary decision may lead to the 

situation where the COT of allocated WSOs may not fit the 

channel window time. For example, let us assume the WSO 1, 2, 

3 and 4 in Fig. 3 coexist in a TV channel. Let their COT demand 

is defined as, 0.25, 0.33, 0.37 and 0.15, respectively. Let us 

assume the intlinprog routine outcome as  1 0 1 1X , 

i.e., the WSO 1, 3 and 4 gets the channel. This results in total 

COT of allocated WSOs equal to 0.77 which is less than the 

channel window time; 1. The second WSO cannot be 

accommodated in the channel considering the constraint (16b). 

In this simulation, the solution X  is engineered such that the 

second WSO is partially allocated the desired COT so as to 

maximize the channel utilization while maintaining constraint 

(16b). The purpose of such engineering the solution is to reduce 

the channel waste. In order to have a fair comparison, the same 

engineering principle is applied to the allocation matrix 

generated by the comparative allocation schemes. The 

comparative analysis of the three allocation schemes is then 

performed as discussed in the following section. 

C. Comparative Analysis 

The relative performance of the three allocation schemes is 

evaluated using the following metrics: system throughput, 

fairness in allocation among CMs and WSO satisfaction from 

the allocation. These performance metrics are selected to 

analyze how well the three allocation schemes achieve the 

TVWS sharing objectives, as defined in Section III-B. The 

simulation results of the performance metrics are presented in 

Fig. 4 to Fig. 6, respectively. Subplots (a), (b), and (c) in these 

figures show the effect of varying the  , ,,c c
w j w jO K  pair in low, 

medium and high subdomains, respectively. The study results 



are discussed as follows.  

1) System Throughput 

 Fig. 4 shows the system throughput (ST) achieved by the 

three allocation schemes. Given the allocation matrix X , and the 

SINR values, the ST is defined using Shannon capacity formula 

[45] as, 

 

 , , 2 ,log 1
c

c c c

w j w j j w j

j wc

ST x O b SINR
 

   .      (26) 

 

It is shown in Fig. 4 that, for most of the channels in the 

system, the proposed scheme achieves higher ST gain than the 

comparative TVWS sharing schemes. However, the proposed 

scheme with FR implementation achieves slightly lower ST than 

the Scheme in [17] for the case when the number of channels in 

the system is two. This is because the Scheme in [17] focuses on 

maximizing the throughput in the TVWS allocation process 

while the proposed scheme focuses on making a balance among 

the contradicting QoS metrics; ST and fairness in allocation. 

Consequently, the WSOs with lower channel quality (here lower 

SINR value) also get a proportion of the available TVWS which 

reduces the total ST gain in the proposed scheme. However, as 

the number of channels in the system reaches to four and above, 

the proposed scheme achieves higher ST gain and remains so 

until both the schemes converge to the maximum achievable ST. 

The reason for such improvement is that the proposed scheme 

applies a joint time-frequency FR concept which accommodates 

a higher number of WSOs in the available TV channels while the 

Scheme in [17] applies FR concept in frequency domain only.  

Note that the ST gain in this study is defined as maximum if all of 

the WSOs in all the CMs get their desired channel demands.  

The effect of variability in the  , ,,c c
w j w jO K  pair values on the 

ST gain of the three allocation schemes is shown in Fig. 4(a), 

4(b) and 4(c), respectively. The three allocation schemes 

converge to the maximum ST, as the number of channels in the 

system reaches 8 and 16, as shown in Fig. 4(a) and 4(b), 

respectively. However, in high subdomain case (Fig. 4(c)), none 

of the allocation scheme achieves the maximum ST. The reason 

is that the high channel occupancy demand of WSOs results in a 

few WSOs to saturate the available TVWS while leaving no 

channel share for rest of the WSOs. 

Another notable property of the ST study is that, as the 

 , ,,c c
w j w jO K  pair values increases from low to high subdomains, 

the ST gain of the proposed scheme improves over ST gains in 

the comparative scheme, as shown in Fig 4(a) through Fig. 4(c), 

respectively. This improvement is attributed to the combined 

effect of the use of the proportional fairness in the allocation and 

implementing FR in a joint time-frequency domain in the 

proposed scheme, as defined in the Section IV and V 

respectively. 

2) Fairness 

The fairness in allocation among CMs in the system is 

measured using equation (21) where the variability in CMs’ 

normalized throughput vector,  1 2, , , CT T T


T  is used as a 

fairness metric to compute the fairness index (FI) value. The FI 

result, as shown in Fig. 5, confirms that the proposed scheme 

achieves the highest FI value due to the combined use of the 

proportional fairness method and the FR implementation in the 

joint time-frequency domain. On the other hand, though both, the 

Scheme in [17] and the Scheme in [18], optimize the fairness in 

allocation. However, both the schemes make an orthogonal TV 

channel allocation thus, resulting in lesser number of WSOs to 

get the channel which reduces FI value. Moreover, the constraint 

of maintaining the lexicographically ordered throughputs of the 

WSOs in the Scheme in [18] further reduces the degree of the 

fairness in allocation. 

The effect of varying the values of the  , ,,c c
w j w jO K pair in 

low, medium and high subdomains is shown in Fig. 5(a), 5(b) 

and 5(c), respectively. It is shown in Fig. 5(a) and Fig. 5(b) that 

the FI values of all the comparative allocation schemes 

converge to the maximum FI value, i.e., 1, as the number of 

channels in the system reaches 8 and 16, respectively. 

However, in the high subdomain case (Fig. 5(c)), none of the 

comparative allocation schemes converge to the maximum FI 

value except for the proposed scheme with the FR 

implementation. It is because, in all other schemes, their 

orthogonal channel allocation policy result in a few WSOs to 

saturate the available TVWS while in the proposed scheme, the 

spatial reuse of the TVWS in a joint time-frequency domain 
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Fig. 4. System throughput for 32 WSOs registered in all CMs for a varying 

number of TV channels in the system. 

  



accommodates as many as WSOs, registered in the CMs which 

improves fairness in allocation.  

3) WSO Satisfaction 

In this study, we analyze the performance of the three 

allocation schemes the third objective of the TVWS sharing 

problem defined in Section III-B. in this study, a WSO is 

considered satisfied from allocation if it gets its desired channel 

demand for the duration of desired channel occupancy. The 

system-wide WSO satisfaction percentage (S) is then 

calculated using percentage of the mean satisfaction as, 

,

100
c

c
w j

j

ww
c

c

x

n
S










 
 






           (27) 

Fig. 6 shows the simulation result of the satisfaction study of 

the three allocation schemes. This figure shows that the proposed 

scheme and the Scheme in [18] achieves similar satisfaction 

result as their lines overlap each other. However, the proposed 

scheme with FR implementation achieves better satisfaction 

result than that of the Scheme in [17]. It is because, the TVWS 

allocation in a joint time-frequency domain enables the proposed 

scheme to accommodate as many as WSOs in the available 

TVWS while the third objective in the TVWS sharing problem, 

in Section III-B, requires the proposed scheme to satisfy the 

channel demand of each allotted WSO. Such an allocation 

strategy improves the satisfaction result of the proposed scheme.  

From the results in Fig. 4 to Fig. 6, it is clear that none of the 

comparative schemes results in better performance than the 

proposed scheme in any of the performance metric. The 

proposed scheme, however, gives fairer channel allocation 

among all comparative allocation schemes. The proposed 

scheme with the FR implementation, however, outperforms the 

comparative schemes, in most of the TV channels in the 

system, in all the three performance metrics as shown in Fig. 4 

to Fig. 6.  

D. Increasing WSO Density 

In this section, the effect of increasing the number of coexisting 

WSOs in the performance of the proposed allocation scheme is 

evaluated. The performance is measured using the metric like 

system throughput and WSO satisfaction, for the three 

subdomain cases, i.e., low, medium and high. The number of 

WSOs registered in each CM in the system varies in a set, 
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Fig. 5. Fairness index value calculated using normalized throughput vector of 

CMs for a varying number of TV channels in the system.  
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Fig. 6. Percentage of total 32 WSOs satisfied from the allocation. 



 8,16,24, ,64W  . The number of available TV channels 

remains constant at 4, and the other simulation parameters are 

same as defined in Section VI-B.  The results of the performance 

study are shown in Fig. 7 and Fig. 8.  
Fig. 7 shows that the highest throughput gain is achieved in the 

high subdomain case, i.e., when  , ,,c M c M
w j w jO O K K  . The 

reason is that the proportional fairness method in the proposed 

scheme selects the WSOs with high throughput gain to share 

the available TVWS. While spatially reusing the frequency 

further helps the proposed scheme to accommodate as many as 

WSOs in the available TVWS. Consequently, the ST increases 

in high subdomain case. On the other hand, the achieved 

throughput is the least in low subdomain case, i.e., when 

 , ,,c L c L
w j w jO O K K  . It is because; the low channel occupancy 

demand of the WSOs could not saturate the available 

whitespace.  

Fig. 8 shows the percentage of the number of WSOs satisfied 

from the allocation, calculated using (27). This figure shows that 

the satisfaction is the highest in the low subdomain, followed by 

the medium subdomain, especially in the case when W=8, for 

each CM. The reason is that a relatively greater number of 

WSOs can be satisfied per TVWS when W = 8. The WSP value 

then sharply declines as the number of WSOs in the system 

increases, especially for the medium and high subdomain cases.  

The results in Fig. 7 and Fig. 8 shall facilitate the modeling of a 

channel sharing system such that given the statistics of channel 

quality, the WSOs channel demands and the WSO density in the 

system, one can estimate an optimal number of WSOs that can be 

accommodated on the available TVWS such that the resource 

utilization is maximized. 

E. Algorithm Scalability Test 

The scalability of the proposed algorithm in terms of time 

taken to complete the allocation process is evaluated. In this 

experiment, the total number of coexisting WSOs registered in 

all the CMs in the system varies geometrically as, 2W where 

 3,4,5,6,7W  . The number of TV channels in the system 

increases at a constant interval of 4 as,  4,8,12, ,48J  . The 

remaining simulation parameters are same as defined in Section 

VI-B. The specifications of the computer system used for the 

scalability test is listed in Table 4. Using the above parameters, 

the intlinprog routine solves the proposed TVWS sharing 

problem. The routine uses the branch and bound method to find 

an optimal solution point X . The branch and bound split the 

problem into sub-problems, and each sub-problem is expanded 

until a solution is found as long as its cost does not exceed the 

set upper bound. The exact computational complexity of any 

branching algorithm is hard to find as time complexity of such a 

branching algorithm is usually analyzed by the method of 

branching vector. However, it has been mentioned in [46] that 

when the best-first search branch and bound technique is used, 

the upper bound to generate an expected solution is 

   
2

0 0

1 1
n n

i i

T i n i n
 

       where n is the number of nodes 

visited. Thus, the complexity of such an algorithm is  2n .  

In this experiment, we measure the simulation time taken using 

the MATLAB® tic-toc stopwatch timer. The time recorded for 

the high domain channel assignment is shown in Fig. 9. The 

result in this figure is generated using the average time required 

to complete allocation for the high subdomain case, i.e., 

,
c H
w jO O  and ,

c H
w jK K . In this study, we perform the 

population engineering step, as defined in Section VI-B, using 

the intlinprog routine of the MATLAB. The figure 

indicates that for defined simulation parameters, the channel 

sharing process took a few hundreds of milliseconds to complete 

the allocation process which is quite acceptable for real-time 

implementation of the algorithm. The Fig. 9 shows that the 

algorithm execution time does not grow geometrically as the 

number of WSOs in the system increases. Rather, the algorithm 

has linear time allocation behavior as shown in Fig. 9.  

VII. CONCLUSION 

In this study, we investigated the channel sharing problem in a 

TVWS sharing domain with the objective of maximizing the 

resource utilization. The defined TVWS sharing problem 

optimizes the system throughput under a minimum fairness in 

allocation while constrained to satisfy the WSO channel 

occupancy demand on each allocated channel. To solve the 

defined problem, we proposed a channel allocation algorithm 

that shares the available TVWS among coexisting WSOs 

operating on incompatible network technologies. In order to 
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Fig. 7. System throughput achieved by the proposed scheme for 4 TV channels 

and a varying number of WSOs. 
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Fig. 8. WSOs satisfied from allocation with varying WSO density in the 

region. The number of TV channels in the system is 4. 

  



improve the TVWS utilization and to accommodate as many as 

WSOs in the available TVWS, the proposed algorithm spatially 

reuse the available TV spectrum. The simulation results show 

that the frequency reuse property of the proposed algorithm 

results in comparatively higher WSO satisfaction from the 

allocation, better fairness in allocation and higher system 

throughput gain. Moreover, the fast allocation process of the 

proposed algorithm makes it a promising candidate for 

implementation in 802.19.1 based coexistence system. The 

proposed algorithm can be implemented by a centralized 

decision-making entity, i.e., the master CM in the IEEE 

802.19.1 system without requiring any major change in the 

baseline architecture of 802.19.1 TVWS sharing system. 

Appendix A 

In this section, we apply tangent plane approximation to 

linearize the objective function in (14a).  

Let for some given points on the graph,  1 1, 2 2,,c c

j jq x q x  , 

and  F log 1q  , where 

1, 2,

1 1, 2 2,

1, 2,0 0c c
j j

c c

j j

c c

j jO O

q r q r
q

O O 
 

 
. If 

 ,log 1c j   is differentiable at  1 2,q q , then the surface has 

tangent plane at  1 2, ,Fq q . The equation of the tangent plane 

at  1 2, ,Fq q  is given by, 

       1 2 1, 1 1 2 2, 2

1, 2,

, , F 0c c

j jc c

j j

y y
q q x q q q x q F

x x

 
     

 

where y denotes multivariate objective function  ,log 1c j   

and  ,log 1c jF   .  

The tangent plane equation is rearranged as,  

     1 2 1, 1 1 2 2, 2

1, 2,

F , ,c c

j jc c

j j

y y
F q q x q q q x q

x x

 
    

 
 

where 

  
1,

1,

1,
, 1, 0

1 c
j

c

j

c
c

j
c j j O

ry

x O 




  
 denotes partial 

derivative of log function at 
1,

c

jx . Thus, if  F is differentiable 

at  1 2,q q , then the tangent plane to the surface at  1 2,q q  

provides a good approximation to F near  1 2,q q ,  

     1 2 1, 1 1 2 2, 2

1, 2,

F , ,c c

j jc c

j j

y y
F q q x q q q x q

x x

 
    

 
 

which is called as linear approximation of y near  1 2,q q . 

For a general case with c n , and near to some given point, 

1 1, ,, ,c c

j n n jq x q x  q , we define linear approximation of y 

as,  

     1, 1 ,

1, ,

F c c

j n j nc c

j n j

y y
F x q x q

x x

 
     

 
q q . 

Appendix B 

In this section, we aim to discuss the convergence property 

of the algorithm in Table 2. Note that our discussion here 

closely follows the discussion on the convergence of 

sub-gradient algorithm defined in [47]. Interested readers are 

referred to [47] for seeking knowledge beyond what is 

presented in this short discussion.  

Given 0 EWλ  and the sequence  kt  of positive scalars, 

called step sizes, in Table 2, define the sequence  kλ  as 

defined in Step 5-b) in Table 2,  

  1 max , 0k k k
kt h   λ λ λ . 

For any λ , the maximum of (17) is assumed for at least one 

value of the index k. Since (17) is piecewise linear, there then 

exists at least one point *λ  such that 

   * * *max ,h h P λ X λ . Then,  kh λ will converge to its 

optimum *h  under the conditions,  

0

lim 0,k

k
k

k

t t





  . 

For the proof of the convergence of subgradient algorithm, the 

interested readers are encouraged to consult [47]. 
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TABLE 4: COMPUTER SYSTEM CONFIGURATION 

Symbol Description Quantity 

Processor Intel quad core 

i5-2500k  

CPU = 3.30 GHz 

Onboard memory  - 8555 MB 

Memory used by 
MATLAB® 

-  1289 MB 
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Fig. 9. Algorithm execution time for varying number of WSOs and varying 

number of TV channels in the system. 
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Abstract—In this paper, a coexistence decision making (CDM) 

system for efficient TV whitespace (TVWS) sharing among 

whitespace objects (WSOs), registered in coexistence managers in 

IEEE 802.19.1 system, is introduced. The proposed system is 

considered versatile in functionality as it jointly takes care of 

three distinct channel allocation features; a) optimizing system 

quality of service (QoS) performance metrics, b) improving 

TVWS utility and c) satisfying WSO channel demands. Regarding 

system QoS performance metrics, the TVWS sharing problem is 

defined as an optimization problem with an aim to maximize the 

system throughput and minimizing unfairness in allocation. 

Supporting the WSOs channel demands in a TVWS sharing 

problem is a multifold task which requires elaborate 

consideration in different aspects of the system performance. To 

this end, the variations of the SNR of wireless frequency channels 

which result in variable throughput gain of the WSOs are also 

taken care of the proposed CDM system. A fast channel allocation 

algorithm is then designed that implements the TVWS sharing 

mechanism in a reasonable amount of time. Additionally, the 

proposed algorithm improves the TVWS utility by promoting a 

novel frequency reuse method by exploiting the inter-WSO 

interference information. Simulation results show the superiority 

of the proposed algorithm over existing TVWS sharing 

algorithms.  
 

Index Terms— Frequency Reuse, Lagrangian Relaxation, 

Linear Approximation, Proportional Fairness, TV Whitespace  

 

I. INTRODUCTION 

N unprecedented increase in the deployment of content 

delivery networks (CDNs) has resulted in the rapid growth 

of IP traffic. It is reported that by the end of 2016, global IP 

traffic exceeded 1 zettabytes ( 2110 bytes) per year, of which 

62% is attributed to CDNs [1]. It is also anticipated that by 2019, 
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nearly two-thirds of global IP traffic will originate from non-PC 

devices, mainly portable and mobile devices [1]. On the other 

hand, currently available wireless spectrum is considered 

insufficient for accommodating such large volumes of data. 

Fortunately, the digitization of TV transmission has partially 

relinquished VHF and UHF spectrum [2]. Owing to its low loss 

and excellent propagation characteristics, the TV spectrum is 

considered a promising candidate for supporting the growing 

traffic over wireless channels. Considering the growing demand 

of the wireless spectrum, the regulatory bodies worldwide [3], 

[4], [5], have permitted unlicensed use of the TV spectrum under 

certain limits to protect the incumbents. However, the problem of 

coexistence of secondary devices operating in the same TV band 

was not dealt by the regulatory bodies.  

The coexistence among secondary devices operating in TV 

spectrum is considered a challenging task due to signal 

propagation characteristics of TV channels, spatiotemporal 

variation of TV spectrum and disparity in network technologies 

of devices operating in the TV spectrum [6]. These diversities 

may cause coexistence issues, such as an unresolvable 

interference, spectrum congestion, diversity in network size, etc., 

as explained in [6], [7], [8], [9]. To address coexistence issues 

and regulate access to TV spectrum, IEEE has proposed an 

802.19.1 standard [10]. The standard provides a set of procedures 

to enable coexistence among secondary networks operating in 

heterogeneous network technologies in TVWS, namely WSOs.  

A set of procedures that ensures peaceful coexistence among 

a set of WSOs operating in the same spectrum is referred to as 

CDM [11]. In this paper, we define an 802.19.1 compliant CDM 

system that performs TVWS sharing among a set of WSOs, 

operating in dissimilar MAC/PHY layer technologies and 

registered in the coexistence manager (CM); an entity in 

802.19.1 coexistence system as shall be defined in section III-A. 

Note that the TVWS refers to the TV spectrum not in use by 

licensed operators in a spatio-temporal region [10]. The TVWS 

sharing problem is modeled as an optimization problem with an 

aim to maximize the system performance metrics like system 

throughput and fairness in TVWS allocation. The optimization 

problem is constrained that the channel demands of the WSOs 

registered in the neighboring CMs are satisfied. In this 

perspective, variations of the SNR of wireless frequency 

channels which result in variable throughput gain of the WSOs 

are taken care of. Note that the neighboring CMs refer to the set 

of CMs whose WSOs create interference to each other and such 

WSOs are neighboring WSOs. Thus, the proposed CDM 
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system differs from the notion of traditional node-based, 

link-based or base-station based channel allocation as reported 

in the TVWS sharing literature. Moreover, the proposed system 

also improves the TVWS utility by implementing a frequency 

reuse (FR) method to spatially reuse the available TV spectrum 

in a joint time-frequency domain in an ad hoc coexisting 

environment. In this paper, the ad hoc coexisting environment 

refers to the coexistence of both, infrastructure based WSOs 

like WLAN, and ad hoc WSOs like personal area network. An 

ad hoc WSO accounts for a local area network that is built 

spontaneously, as devices connect with each other. The CDM 

system proposed in this paper is unique, to the best of our 

knowledge, in the sense that it jointly focuses three distinct 

TVWS sharing objectives; a) optimizing system performance 

metrics during TVWS sharing among WSOs registered in 

neighboring CMs in 802.19.1 system b) improving the TVWS 

utility by implementing the FR in a joint time-frequency 

domain, c) taking care of the channel demands of the 

heterogeneous-WSOs. Such a joint focus to implement 

multiple distinct channel allocation features makes the 

proposed system a versatile CDM system. 

The remainder of the paper is organized as follows. Section 

II reviews some related studies. Section III summarizes 

technical background required to establish the baseline for the 

techniques used in the paper. The system description and 

problem formulation are defined in Section IV. Section V 

discusses the solution method and the proposed algorithm. 

Section VI presents the simulation results and compares the 

proposed algorithm with existing algorithms. Finally, Section 

VII concludes the paper. 

II. PREVIOUS WORK 

In this section, we summarize some standards and algorithms 

developed for achieving coexistence among secondary users.  

IEEE 802.15.2 [12] and 802.15.4 [13] have partially addressed 

the coexistence issue among devices operating on wireless local 

area networks and low power wireless personal area networks, 

respectively. However, these networks operate on industrial, 

scientific, and medical bands. On the other hand, IEEE 802.22 

has recently defined PHY and MAC layer extensions for TVWS. 

Similarly, IEEE 802.11af [14] has adopted new cognitive radio 

features to protect incumbents and achieve efficient spectrum 

utilization among unlicensed devices. IEEE 802.22.1 has also 

defined methods for peaceful coexistence when a low-power 

licensed device such as a microphone broadcaster and an 

unlicensed device both coexist and share the same channel [15]. 

The European Computer Manufacturers Association (ECMA) 

has also defined a specification (ECMA 392) for 

personal/portable cognitive wireless networks operating in 

TVWS [16]. However, all these standards define 

self-coexistence in TVWS operations. Non-availability of 

cross-platform coexistence mechanisms shall cause issues such 

as an inability to diagnose interference among networks with 

dissimilar network technologies and may lead to inefficient 

utilization of the scarce wireless spectrum [11]. Perceiving the 

need for cross-platform coexistence mechanisms, IEEE has 

defined an 802.19.1 standard. This standard provides coexistence 

protocols and policies for efficient utilization of TVWS across 

platforms [10].  

On algorithmic perspective, a CDM algorithm that results in 

fair TVWS sharing among neighboring CMs is presented in [10]. 

The algorithm applies max-min fairness technique to establish 

fair share distribution during the TVWS sharing process. The 

issue with the algorithm in [10] is that it focuses fairness in 

allocation while no consideration to effective utilization of the 

available TVWS is taken care. Considering the scarcity of the 

TV spectrum, especially in highly congested spectrum 

environments, the effective utilization of the available TV 

spectrum is also an important factor to be considered. Hessar and 

Roy [17] have discussed the TVWS sharing formulations in 

secondary cellular networks. The authors adopt heuristic based 

approaches to defining greedy algorithms to tackle the identified 

TVWS sharing problems. However, the proposed greedy 

algorithm for throughput maximization sub-problem searches 

the entire network to find an optimal solution. For such an 

algorithm, search over the space of a possibly very large number 

of network and channel collocation combinations leads to a high 

runtime complexity to find an optimal solution. An algorithm for 

opportunistic whitespace sharing among secondary networks has 

been presented as a graph coloring problem in [18]. The channel 

sharing algorithm in [18] solves the sharing problem by 

classifying the sharing process as network wide channel sharing 

and its localized version. This scheme, however, has 

performance issue when interference among neighboring access 

points is relatively high. This situation is quite common in highly 

congested areas where many collocated WSOs are deployed. 

Bahrak and Park [10] proposed an algorithm for CDM among 

heterogeneous networks. The sharing problem in [10] is modeled 

as a weighted-sum multi-objective optimization problem 

(MOOP) that is solved using a modified Boltzmann machine. 

However, an issue in the weighted-sum approach is that it does 

not find Pareto optimal points in non-convex regions of the 

solution space boundary [19]. Thus, some of the potential Pareto 

optimal points are possibly missed by the weighted-sum method.  

Khalil et al., have also performed TVWS sharing among 

heterogeneous networks by defining an interference graph of the 

networks [20]. A two-stage algorithm is then designed to achieve 

spectrum sharing among graph nodes. The algorithm maximizes 

fairness by maximizing the frequency reuse.  However, the 

channel sharing algorithm in [20] has polynomial runtime 

complexity 3( )N , for the number of networks (N). This 

complexity shows that in areas with a high number of deployed 

networks, the algorithm shall require substantial channel 

allocation time. Zhang et al., [21] adapt ecology based species 

competition model to develop a coexistence mechanism called 

ecological Species Competition based HEterogeneous networks 

coexistence MEchanism (SCHEME). The SCHEME enables 

each coexisting network to adjust achieved bandwidth per its 

QoS requirements dynamically. However, the SCHEME 

requires the number of channels to be larger than the number of 

coexisting networks. Such condition cannot be fulfilled in highly 

congested urban areas where a limited number of TV channels is 

available for unlicensed use. We have addressed this issue in the 



channel allocation mechanism defined in this paper. 

On the other hand, some of the existing TVWS sharing 

algorithms have implemented the concept of FR. For example, in 

[22], Bian et al., have implemented the concept of FR in sharing 

a single TV channel among Cognitive Radios (CR). The CR 

networks operating in orthogonal frequency division multiple 

access apply the uplink soft FR concept [23]. Again, the 

proposed method is defined for CR systems deployed in cellular 

infrastructure. Similarly, Hessar and Roy [17] have presented an 

FR method in cellular networks operating in TVWS. Moreover, 

the algorithm proposed in [17] orthogonalizes WSOs in 

frequency domain only. None of the existing TVWS sharing 

algorithms reuses TVWS in a joint, time-frequency domain for 

WSOs operating in an ad hoc coexisting environment. Spectrum 

reuse in both time and frequency domains shall result in even a 

better utilization of the available TVWS, as discussed in Section 

VI-C.  

Some genetic algorithms (GA), defined for implementing the 

channel sharing problem, also exist in the literature. For 

example, the authors in [24] use a GA-based reliability model 

to assign channels to mobile hosts based on the reliability of the 

base station and the channels to enhance the overall reliability 

of the mobile network system. The results show that this 

method requires higher number of iterations and generally 

higher number of available channels than the number of mobile 

hosts in order to achieve higher reliability. Similarly, Shrestha 

et. al., proposes a GA-based joint out-of-band spectrum sensing 

and channel allocation scheme for cognitive radio networks 

[25]. The joint sensing and resource allocation optimization 

problem has been formulated using fitness functions of sensing 

utility and the data transmission utility. Jao and Joe consider a 

new cognitive radio network model with heterogeneous 

primary users operating simultaneously via multi-radio access 

technology [26]. It focuses on energy efficient resource 

allocation and use a GA-based scheme to obtain an optimal 

solution in terms of power and bandwidth. The authors in [27] 

proposed solutions for the problem of efficient resource 

allocation (radio spectrum and power) in the OFDMA-based 

multicast wireless system that balances the tradeoff between 

maximizing the total throughput and ensuring a flexible and 

controllable spectrum sharing among multicast groups. It 

proposes two separate optimization methods for subcarriers and 

power and a GA-based joint optimization scheme is used. 

Results show that the proposed schemes can attain a high total 

sum-rate and more flexible and fair distribution of the available 

bandwidth among multicast groups.  

The GA in these and such literature work [28], [29] are well 

suited for multi-objective optimization problems that require 

searching over a large space under several constraints. 

However, GA-based methods are computationally expensive 

and therefore not suitable for the optimization problem with 

single objective function and a small search space, like the one 

defined in this paper. Therefore, GA suffers from the 

drawbacks of slow convergence speed, and low stability. The 

channel allocation in highly dynamic spectrum environments 

requires an algorithm that can do allocation process in a quick 

runtime. Therefore, rather than applying the GA method, the 

nonlinear, binary constrained optimization problem, defined in 

this paper is transformed into linear optimization problem. 

Such formulation helps us to apply linear programming solvers 

to solve the optimization problem and complete the allocation 

process in a quick, linear runtime.  

III. TECHNICAL TERMS AND RESEARCH FOCUS 

A. Technical Terms 

In this section, we define technical terms that form baseline of 

the proposed TVWS sharing system, defined in the next section. 

The proposed system is based on the coexistence system 

architecture as described in [10] and shown in Fig. 1. The 

coexistence system in [10] has three logical components: 

coexistence manager (CM), coexistence enabler (CE), and a 

coexistence discovery and information server (CDIS).  

 The CE registers a WSO to the CM and acts as a 

communication bridge by translating messages between 

the WSO and the CM serving the WSO. 

 The CM makes coexistence decisions for WSOs registered 

in it. Moreover, it is required to interact with other CMs, 

called as neighboring CMs in [10] to resolve coexistence 

issues among WSOs served by neighboring CMs. In 

general, it sends configuration commands and control 

information to the CE. 

 The CDIS provides coexistence discovery services like 

coexistence set information to CMs for registered WSOs. 

 The TVWS database (TVDB), as shown in Fig. 1, is not part 

of the coexistence system architecture. It contains 

information about channels available in the geographic 

region of each WSO registered with the 802.19.1 system. 

The TVWS database provides information about the set 

of TV channels free for whitespace activity to the CMs. 

A WSO may register with the IEEE 802.19.1 system before 

operating in the TV spectrum. In the registration process, a 

general principle for a WSO to acquire a TV channel is defined 

in IEEE 802.19.1, summarized as follows. A WSO may 

perform spectrum sensing to identify and select an available 

free TV channel or alternatively, it may send a channel 

 

 
Fig. 1. IEEE 802.19.1 TVWS system architecture. The TVWS database and 

WSOs interact with the 802.19.1 architecture externally. 

  



allocation request to its serving CM. If no free channel is 

available in the geographic region of the WSO, the CM may 

perform channel sharing among the requesting WSO and the 

WSOs pre-allocated a TV channel. If such WSOs are registered 

with other CMs, the CM serving the channel requesting WSO 

interacts with the other CMs to perform channel sharing. These 

CMs are called as neighboring CMs to the requesting CM. In 

this channel sharing procedure, two types of topologies are 

defined in the 802.19.1 [10]. A distributed CDM topology 

where neighboring CMs mutually interact to perform channel 

sharing among WSOs registered within them. A centralized 

CDM topology where multiple CMs agree to select one of them 

a master CM (MCM) and rest of the CMs become slave CM 

(SCM) [10], as shown in Fig. 1. Each SCM provides essential 

information about operating parameters, including the channel 

characteristics of each WSO registered within it and its channel 

demands to the MCM. The MCM performs coexistence 

services like radio resource allocation to WSOs registered in 

the SCMs. Some other terms used in the paper are defined as 

follows.  

 A WSO is an entity in 802.19.1 system that represents a 

TVWS device or network of devices. 

 The channel occupancy is the duty cycle in a percentage 

that a network (WSO) occupies a channel [10]. 

 The window time is a slot duration of a scheduling 

repetition period that satisfies the essential system QoS 

performance [10]. 

 The Coexistence Set (CS) of a wth WSO is a set of WSOs 

that are registered in the neighboring CMs that may affect 

the performance of the wth WSO. In other words, it is a set 

of WSOs which create interference to the wth WSO. 

B. Research Focus 

The TVWS sharing problem is defined as, 

Given a set of available TV channels, a set of CMs with each CM 

having at least one WSO registered in it and WSOs channel 

demands, share the TV channels among WSOs such that the 

following objectives are achieved. 

1) Maximize the system throughput, 

2) Minimize unfairness in allocation among WSOs 

registered in neighboring CMs, and 

3) Fulfill desired channel demands of the allocated WSOs. 

These objectives contradict each other. For example, 

maximizing the system throughput shall decrease fairness in 

allocation. Note that from a spectrum allocation perspective, 

fairness is regarded as equity in access to the resource, the TV 

spectrum. In other words, being free to use, each network 

should have an equal opportunity to an access to the given TV 

spectrum. 

 Similarly, fulfilling the second and third objectives in 

conjunction, under the scarcity of the available TVWS, restricts 

the system accommodating as many as WSOs in the TVWS. 

Thus, maximizing the fairness while satisfying the channel 

demands of each allocated WSO is quite complicated in highly 

congested spectrum environments [30]. Therefore, the fairness 

in allocation is measured at CM level. The fairness among CMs 

is deemed at minimum if at least a single WSO in each CM gets 

the channel.  

Considering the above conditions, we design a CDM 

system, as will be defined in Section IV-A. The system is 

designed to implement at the MCM in the centralized topology 

in 802.19.1, as shown in Fig. 1. The system makes use of the 

information from information messages defined in the 802.19.1 

[10] to apply various procedures for defining the proposed 

TVWS sharing problem as an optimization problem. For 

example, the WSO registration clause in [10] defines different 

information acquiring messages that permit a CM to collect 

desired channel demands, channel statistics, coexistence set 

elements, available TV channels and related information from 

WSOs registered within it or with neighboring CMs. Moreover, 

the inter-CM information sharing messages are also defined in 

[10]. We assume that using such message templates, the 

neighboring CMs exchange respective WSOs information with 

MCM. In order to solve the TVWS sharing problem, the CDM 

system in MCM then implements a channel allocation process, 

as will be defined in section V-C. The algorithm makes use of 

such information available at MCM to implement the 

subgradient method to solve the TVWS sharing dual problem, 

Section V-B, to identify a set of WSOs to allocate the TV 

channels.  

The channel allocation process also implements a novel 

spectrum reuse in Table 3 to have an efficient use of the available 

TVWS. The spectrum reuse step is also made in compliant with 

the 802.19.1 by repeated channel allocation using an interference 

matrix. The CDM defines the interference matrix using the 

WSOs’ CS information available at MCM, as shall be discussed 

in Section V-D. Note that the CS information is provided by the 

coexistence discovery algorithm as defined in [10]. The channel 

allocation process is then executed repeatedly to spatially reuse 

the TV spectrum to the unallocated WSOs that should not cause 

interference to pre-allocated WSOs. The proposed channel 

allocation solution is thus made smoothly integrable to the 

802.19.1 system. 

IV. SYSTEM DESCRIPTION AND PROBLEM FORMULATION 

In the following section, a centralized CDM system is 

designed that implements a channel allocation process, as shall 

be discussed in Section V, to implement the TVWS sharing 

problem defined in Section III-B.  

A. System Model 

The CDM system is defined as follows, 

 

( , , , , )TVWSX .                 (1) 

 

The system parameters are defined as follows. Let c be an index 

to a set of C neighboring CMs in the system, denoted as  in 

Table 1. Let ,c c   be a set of network IDs of WSOs 

registered in the cth CM, as shown in Table 1. Let the network 

ID, c

wNID   represents an identifier of the network the wth 

WSO, registered in cth CM, represents. For example, in the case 

of IEEE 802.11 type WSO, the NID contains the basic service 

set identifier used by the WSO.  

Let j be an index to the set of all permissible TV whitespace 

channels,  1,2, , J , where each set element 

corresponds to a TV channel number, defined on the basis of 



the regulatory authority rulings. For example,  in USA where 

FCC defines each TV channel to be 6 MHz bandwidth in 

V/UHF band, therefore,  2,3, ,36,38, ,51  in the 

USA. Since, the availability of a TV channel to a wth WSO is a 

function of geographic location of the WSO and the primary 

user activity in the region. Therefore, the availability of a TV 

channel for the secondary use varies spatiotemporally and 

needs to be determined. We assume that a channel sensing 

mechanism, as defined in [10] is implemented such that the 

TVDB contains the set of TV whitespace channels available in 

the geographic region of each WSO registered in the CMs in the 

system. Let j be an index to the set , then, jth channel 

availability status to the wth WSO, registered in cth CM, is 

represented by an indicator function defined as,  

 

     ,

1, if channel in is available to  WSO
:

0, otherwise

th th
c

w j

j w
z





   (2) 

 

The availability of J channels to the wth WSO, registered in cth 

CM, are thus represented by a vector of indicator functions 

defined as,  

 ,1 ,, ,c c c

w w w Jz zz . 

The set of channels available to W WSOs registered in cth CM is 

defined as,  

 
T

1 2, , , ,c c c c

W c  Z z z z . 

The system parameter  is then defined as follows, 

 

               1 2, , , .C Z Z Z               (3) 

 

The parameter  in the system in (1) represents the set of 

window times for the channels in the set . In 802.19.1, an 

algorithm is provided that enables CMs to define the slot 

duration of the window time. We assume the CMs implement 

such an algorithm to define the window time, ,jT j  , 

which is then used to define system parameter as, 

 

 1, , JT T .           (4) 

  

The system parameter  in (1) encodes channel demands of 

CMs, defined as follows. In 802.19.1 [10], a Discovery 

Information abstraction is provided that allows WSOs to send 

channel statistics and channel demands like SINR, desired 

channel occupancy, desired bandwidth etc., to their serving CM 

[10]. Such information of heterogeneous-WSOs is used to 

define a set of channel demands of wth WSO as follows.   

Let ,
c
w jSINR  represents the quality of jth channels to wth 

WSOs registered in cth CM. The channel quality is measured in 

terms of signal to interference and noise ratio (SINR) which 

depends on interference from primary-to-secondary users and 

noise floor due to environmental factors. We assume that an 

interference discovery mechanism is in place that enables each 

WSO to measure SINR value on each of the channels in , as 

will be further discuss in Section V-D. The quality of all J 

channels to wth WSO is then defined as, 

 ,1 ,2 ,, , , ,c c c c c
w w w w JSINR SINR SINR w   s . 

Let ,

c

w jp  be the allowed transmission power to wth WSO in 

the jth channel. The allowed transmission power to wth WSO on J 

channels is then defined as,  

 ,1 ,, , ,c c c c

w w w Jp p w   p . 

Let c

wB  be the bandwidth demand of wth WSO. The number 

of channels required by wth WSO is then calculated as, 

, ,
c
w

j

Bc
w b

cn w c      

where jb  represents the channel bandwidth. Let ,

c

w jO  

translates to a timeslot, here called as channel occupancy time 

(COT) in a window time, such that the wth WSO registered in cth 

CM can achieve its desired channel occupancy in the allocated 

jth channel. The relation of COT to a channel window time is 

shown in Fig. 2 where three WSOs are scheduled in the window 

time in a single TV channel. The COTs of wth WSO in J TV 

channels are then represented as, 

TABLE 1 

DEFINED PARAMETERS  

Input Variables 

Symbol Description Value 

 A set of C CMs in the system.  ,21 , ,C  

c  A set of NID of W WSOs 
registered in the cth CM. 

 1 2, , ,c
WNID NID NID  

 A set of permissible TV channels 

in the system. 

{1,2, }J  

 Channel demands of WSOs, as 

defined in the system in (1). 

- 

,

c

w jO  COT that translates desired 

occupancy demand of wth WSO on 

a jth channel. 

, , 0,1
,

j

c c c
w w j w j TJ

O O
   

  
 

O  

 ,w mI j

 

Indicator variable encoding mth 

WSO interference to wth WSO on  

a jth channel. 

 ,

1 if interfers
:

0 otherwise
w m

m w
I j


 


 

,w j  Set of WSOs  m   such that 

mth WSO transmission interferes 

wth WSO transmission on jth 
channel 

 ,w j m   

,w jy  A variable indicating whether mth  

WSO interferes  wth  WSO on the 
jth channel? 

,

,

1 :
:

0

w j

w j

w m
y

else

  
 


 

,
c
w jz  An element of the matrix 

Z defining accessibility of  jth 

channel to  wth WSO. 

1 if accessible to WSO

0 else

thj w

  

Output Variables 

,
c
w jx  Element of matrix X  defining 

allocation status of wth  WSO on jth  

channel  

,

1 if channelallocated
:

0 otherwise

c
w jx
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Fig. 2. Scheduling transmission periods for three WSOs on a TV channel. 

  



 ,1 ,, ,c c c

w w w JO O o . 

The channel demand set of wth WSO is then defined as follows,  

 

    , , , , ,c c c c c
w w w wn c w      s p o         (5) 

 

The channel demand set of cth CM is then defined using channel 

demands of its registered WSOs as follows, 

 

      , , , ,c c c c cN c   s p o ,          (6) 

where  1 , ,c c c
W

 s s s ,  1 , ,c c c
W

 p p p ,  1 , ,c c c
WN n n  and 

 1 , ,c c c
W

 o o o . Let  1 2, ,
T

CS s s s ,  1 2, ,
T

CP p p p ,  

 1 2, ,
T

CN N NN ,  1 2, ,
T

CO o o o , the system parameter 

 is then defined using the channel demands of all 

neighboring CMs as follows, 

 

   , , , S P N O .                         (7) 

 
The system in (1) then executes the channel allocation 

algorithm, as will be discussed in Section V, to allocate TV 

channels to the WSOs registered in the neighboring CMs such 

that the allocation satisfies the required system QoS 

performance. The system QoS performance is preserved if the 

following allocation condition is satisfied,  

 

   , ,
cc

c

w j j

w

O T j


                     (8) 

 

where Tj refers to the window time in a jth channel. The 

algorithm proposed in Section V solves the TVWS sharing 

optimization problem, as will be defined in (14) and outputs a 

channel allocation matrix X , defined as follows. Let 

 , 0,1c

w jx  , be a binary decision variable such that if 
, 1c

w jx  , 

the jth channel is allocated to the wth WSO registered in cth CM; 

otherwise , 0c

w jx  . The allocation status of WSOs registered in 

the neighboring CMs is then represented by a matrix X as,  

1 1 1

1 1 1

1,1 1,2 1,

1 1 1

,1 ,2 ,

2 2 2

1,1 1,2 1,

,1 ,2 ,

:

C C C

J

W W W J

J

C C C

W W W J

x x x

x x x

x x x

x x x

 
 
 
 
 
 
 
 
 
 
  

X ,          (9) 

 

where ,ccW c   , i.e., the number of WSOs registered 

in the cth CM. The wth row in the X  represents the channels 

allocation status, in the set , to the wth WSO registered in cth 

CM. The jth column in the X  represents the channels allocation 

status of all the WSOs, from all the CMs in the set . The 

allocation matrix X  thus orthogonalizes WSOs, registered in the 

neighboring CMs, in a joint frequency-time domain. The WSOs 

scheduled on different channels can transmit at the same time 

using their respective allotted channel (frequency slot) while 

WSOs scheduled on the same channel can transmit in their 

respective time slot (here COT).  

The system in (1) thus, implements the TVWS sharing 

problem, defined in Section III-B, as an optimization problem, as 

discussed in the following section. 

B. Problem Formulation 

In this section, the proposed TVWS sharing problem is 

formulated as an optimization problem using well-established 

proportional fairness method. It is because the proportional 

fairness is considered one of the most suitable methods to 

achieve a trade-off between two competing interests [31], [32], 

[33]. Originally, Kelly defined the proportional fairness as an 

adjustment process which adjusts the rates of users according to 

the charges they pay. The proportional fairness method thus was 

defined for elastic traffic in computer network services [34]. 

Similarly, in the channel sharing literature, a proportionally fair 

allocation mostly has been achieved by adjusting the rates of the 

users based upon some performance criteria like maximizing the 

resource utilization, etc. [35], [36]. However, applying the 

proportional fairness in its original to model the TVWS sharing 

problem proposed in this paper is not suitable. It is because, the 

third objective in the problem defined in Section III-B makes the 

resource allocation as binary decision allocation, i.e., a channel is 

either allocated to a WSO, , 1c

w jx   or not , 0c

w jx  . Therefore, 

WSO allocation (here COT) adjustment is not possible. 

Consequently, we rewrite the proportional fairness in a binary 

decision allocation perspective as follows.  

Let the maximum data rate the wth WSO can achieve on jth 

channel be defined by using Shannon channel capacity formula,  

 

 , ,log 1c c

w j j w jr b SINR  .             (10) 

The maximum rate , , cc

w jr w   is then used to defined a utility 

function as a normalized rate achieved by cth CM in jth channel as 

follows, 
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         (11) 

 

where 
, 0c

w jO
  defines Kronecker delta function as: 

,

,

0

1, if 0,
:

0, otherwise.
c
w j

c

w j

O

O


 
 


 

 

This function prevents denominator term in (11) from 

becoming zero. The utility function in (11) measures the worth 

of the resource (channel) to cth CM, i.e., given a channel is 

allocated to the WSOs in the cth CM for the duration of 

,
c

c
w j

w

O


 , how does it translate for the CM in terms of the 

achieved throughput. In other words, maximizing the function in 



(11) shall prefer a CM with WSOs achieving high data rate and 

lower channel occupancy demand over a CM with WSOs 

achieving low data rate and high channel occupancy demand. 

Such preference based allocation shall lead to an efficient use of 

the resources (TVWS). The distribution ,c j C J
   U  is then said 

to be proportionally fair if it is feasible and for all other feasible 

solutions ,c j C J
v


   V , the following holds [34], 

 

    
, ,

,

0
c j c j

c j c j

v

 


 .         (12)    

It has been shown in [34], [37] that the rates achieved by users 

become proportionally fair if the sum of logarithmic rates 

obtained is optimized. Moreover, it is shown in [38] that if all 

rates are proportionally fair, they maximize the throughput over 

all other feasible throughputs. Therefore, if the logarithmic sum 

of the utility function in (11) is maximized, the normalized rate 

achieved by neighboring CMs shall become proportionally fair. 

Let a jth channel is said to be allocated to the cth CM if at least one 

of its registered WSO is scheduled on the channel. The 

allocation status of the channels in the , to the cth CM, is then 

defined as follows, 

 

1,1 1,2 1,

,1 ,2 ,

:

c c c

c c c

J

c

c c c

W W W J

x x x

x x x
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Let  
1

1,1, ,1
J

1 . Let  j O O  be the jth column vector in 

COT demand matrix in the system parameter , defined as, 

 1

1 1 1 2
1, 2, 1,, ,

, , , , , , C

T
C

j j j jW j W j
O O O O OO  where 

,ccW c   . Let j X X  represents the jth column 

vector of the allocation matrix X . The TVWS sharing problem 

is then defined as follows,  
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T

T
T

max. log 1 (14 )

subject to , , (14 )

, , , (14 )

, , (14 )

0,1 , . (14 )
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c j

c c

j j j

c c

c

a
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N c d

c e
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X O

x 1
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The constraint in (14b) ensures that a channel can be allocated 

to the WSOs registered in cth CM only if the channel is available 

in their respective region, i.e.,  , ,1 iff 1c c c c
w j w j wx z   x z . 

The constraint in (14c) ensures that the WSOs scheduled in a jth 

channel preserve the system QoS performance, as defined in (8), 

i.e., the total allocated channel occupancy time of coexisting 

WSOs must preserve the channel window time. The constraint in 

(14d) ensures that the number of channels allocated to the cth CM 

is restricted by the number of channels desired by its WSOs. 

Finally, (14e) forces the decision variable to be binary valued. 

The constraints in (14e) and (14c) helps the system in (1) to 

satisfy the third objective of TVWS sharing problem in Section 

III-B. The optimization problem in (14) seeks to optimize a 

concave objective function over a convex set. The problem in 

(14) has a unique solution, as from the optimization theory [39], 

maximizing a concave function over a convex set has a unique 

solution. A solution approach to the problem in (14) is presented 

in the following section. 

V. SOLUTION METHOD 

The nonlinear objective function (14a) and binary-valued 

constraint (14b) makes the problem in (14) a nonlinear 

combinatorial optimization problem. Determining the optimal 

solution of such a problem is a challenging task as the problem 

becomes intractable as the number of discrete variables increases 

[40]. Therefore, to ease the solution approach, the problem in 

(14) is transformed into a linear programming problem with 

relaxed binary constraint. 

A. Linearization 

The objective function (14a) is linearized using a piecewise 

linear approximation. In this process, tangent line approximation 

is used to approximate the objective function in (14a), denoted 

as, F. The detailed description of linear approximation is 

provided in Appendix A. Using this function, the problem in (14) 

is linearized as, 
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, (15 )
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X O

x 1

x

  

 

To tackle the binary-valued constraint (15b), we apply 

Lagrangian relaxation as explained followings. 

B. Lagrangian Relaxation 

Lagrangian relaxation [41] relaxes a subset of constraints by 

adding them to the objective function with a penalty term called 

the Lagrangian multiplier. Let ,: w j W J



   λ be the Lagrangian 

multipliers matrix. Then, the relaxed problem can be defined as, 
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c
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For a given λ , the Lagrangian relaxation can be defined as, 

 

         max , : constraints(16 ), (16 ), (16 )h P b c d
X

λ X λ  (17) 

Then the generalized dual problem of the relaxed problem is 

defined as followings, 



       * min : 0L h 
λ

λ λ .        (18) 

The solution to (17) is the upper bound of the solution to the 

original problem (16). Note that (17) is a concave function. For 

a concave function, a gradient-based approach is generally used 

to compute a value as close as desired to the optimal value. Thus, 

if h would have been differentiable, we can use a gradient 

descent method to have a convergence toward the optimal 

value. The proposed problem, however, cannot be solved using a 

gradient descent method. It is because the objective function is 

piecewise linear which is non-differentiable at the intersection 

point of adjacent linear pieces, but sub-differentiable at this 

point. The subdifferential of  h λ  at such a point is the set of all 

subgradients at that point. Thus, we need to compute a sequence 

of  k

k
λ such that either  kh λ  converges to the optimal 

solution using the subgradient method, which is given in the 

following dual algorithm. The convergence property of the 

subgradient algorithm is presented in Appendix B. 

C. Subgradient Algorithm for Lagrangian Relaxation based 

TVWS Sharing Problem 

The algorithm defined in Table 2, can be described as 

follows. In Step 0, the input parameters to the algorithm are 

defined as follows. The initial values of 0λ  are defined 

randomly. The parameter   is used in defining step size kt , 

defined in the range min 2    [41].  The iter  with upper 

limit of max iter  counts the number of iterations after which the 

parameter  is updated. The maxk  is defined as stopping criteria 

for the algorithm. 

 The algorithm uses variables initialized in Step 0 to apply a 

linear programming (LP) solver to solve the dual problem and 

obtain the kth iteration allocation matrix kX . LP solvers are 

available on both the commercial and freeware basis. The 

entries in kX  are then adjusted based upon the corresponding 

entries in cZ  such that , ,c c c
w j k k kx   x x X  are set equal to 

zero if the corresponding element, , ,c c c c
w j w wz   z z Z  is zero. 

This validation ensures the constraint in (14b). 

The algorithm then applies the FR process in Step 3 in Table 

2. In this process, the algorithm makes use of the current 

allocation vector, kX  and interference matrix, as shall be 

discussed in Section IV-D, to identify a set of WSOs which do 

not get the channel. The algorithm then repeatedly applies LP 

solver to performs channel allocation to the unallocated WSOs 

such that they do not cause interference to the allocated WSOs 

of neighboring CMs. The FR process is detailed in Section V-E. 

The outcome of FR process is an updated allocation matrix kX  

which is then used to compute the function values in (16a) and 

the fairness in allocation among neighboring CMs.  

Several fairness measures or metrics are used in the 

literature to determine whether networks are receiving a fair 

share of spectrum or not. For example, max-min fairness, Jain’s 

fairness index, fairly shared spectrum efficiency, worst-case 

fairness. In this paper, we adopt Jain’s fairness index [42] to 

measure fairness in allocation among neighboring CMs. The 

reason is that it satisfies the desired properties of fairness 

measure like population size independence, continuity etc., as 

listed in [43]. These properties are important to be considered in 

measuring the fairness in allocation. For example, the 

continuity property shows any slight change in the allocation of 

individual WSO. Thus, an inefficient use of the TVWS is 

identified by the fairness index as a WSO with bad channel 

characteristics gets a high proportion of the spectrum. It is 

ensured through the use of the continuous allocation metric like 

fraction of throughput demand, as defined in (19). Such an 

allocation metric is suitable to measure the fairness in 

allocation for the case where WSOs demand unequal channel 

bandwidth [43]. Therefore, based on the fraction of throughput 

demand of CMs, an allocation metric is defined as follows,  

 ,
c

c

c

d

d
T c


  ,                (19) 

 

where cd and cd represents the maximum data the cth CM 

desire to transmit and it can transmit using its allocated 

channels, respectively. These terms are defined as follows. Let 

the maximum data the cth CM can transmit using its allocated 

channels is defined in terms of the data the WSOs registered in 

it can transmit, defined as follows. 

 

, , , ,
c

c c c c

w j w j w j

j w

d x O r c
 

    .        (20) 

TABLE 2 
ALGORITHM: DUAL PROBLEM BASED ON LAGRANGIAN RELAXATION 

Step 0: a) Choose initial values of 0λ . 

b) Set parameters, for example, 
min2.0, 0.001,    0iter  , max 5iter  , k = 0, 

max 10k  , 0bestF  , besth  , 0upperh  ,  0k W J
 X . 

Step 1: a) Increment as 1, 1iter iterk k        

b) Given kλ , solve the relaxed problem using any linear 

programming technique and obtain kX .  

Step 2: Validate  kX  as: set , ,: 0 if 0c c
w j w jx z  . 

Step 3: Perform frequency reuse as in Table 3 and get kX . 

Step 4: Use kX  to compute the value of the function in (16a), called as F, 

and fairness index value H in (20). 

If bestF F : bestF F ,  upper besth F  and k
X X . 

Step 5: a) Use kX  to compute: 

- Subgradient vector as,   
,

,k

k

w j

h
h w



 
   

  

λ , 

- Dual objective in (18),  

- Step size as, 
  

 
2

upper k

k
k

h h

h

t
 





λ

λ

. 

b) Update the dual variable as,   1 max , 0k k k
kt h   λ λ λ  

Step 6: If  best kh h λ  then  best kh h λ  

else if 
max iter

iter   then  min

2
max ,   and 0iter  . 

Step 7: If max0.001 or >  kt k k stop; otherwise, go to Step 1. 

 



Note that channels are considered as additive white Gaussian 

noise (AWGN). The data the CM desires to transmit is defined 

as,  

, , ,c c c

w j w j

j w

d O r c
 

    .           

The normalized throughput vector  1, , CT T  is then adopted 

to measure fairness in allocation using Jain’s fairness index 

[42]  as,   
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Function H in (21) outputs a value in the range of [0, 1]; when 

the value is closer to 1, the allocation is deemed fairer.  

If the current iteration value of the objective function, F, is 

optimal, then bestF  is updated with F and X with kX . As the 

iteration progresses, the feasible primal bestF  and lower bound 
besth  approach gradually to the integer optimal by adjusting kλ  

using the subgradient method as defined in Step 5. In Step 5, the 

sub-gradient vector of the objective function and the Lagrangian 

multiplier vector kλ  for the kth iteration are calculated. The step 

size kt  is used to calculate the multiplier vector for the next 

iteration. The Lagrange multipliers are thus adjusted iteratively. 

The convergence property of the subgradient algorithm is 

discussed under Appendix B. The algorithm terminates as one of 

the termination conditions satisfied: 

 Dual step size becomes less than a set threshold or,  

 the number of iterations exceeds the maximum number of 

iterations. 

After the overall iteration ends, we regard the final value of 
bestF as the approximated optimal solution and the 

corresponding allocation matrix X is the algorithm output.  

The interference matrix, Y, that is used to implement the FR 

step in Table 3 is defined in the following section.  

D. Interference Matrix 

The WSOs registered in the neighboring CMs and interfering 

on the available TV channels is represented using an interfering 

matrix called as Y-matrix in this paper. Note that the Y-matrix 

does not model the interference among coexisting WSOs. 

Rather, it represents the set of WSOs which cannot transmit 

simultaneously on the available TVWS due to interfering 

transmission regions. In fact, in IEEE 802.19.1 [10], a 

coexistence discovery algorithm is presented that the CDIS and 

CM run to perform the statistical analysis of the expected 

interference among coexisting WSOs. Briefly, the algorithm in 

[10] takes the WSOs’ geographic location, transmitter and 

receiver characteristics, antenna height and directivity, height 

above average terrain and other related parameters to execute 

interference discovery process. In this process, a cumulative 

distribution function of the potential interference from mth 

WSO to wth WSO is estimated. Both of these, mth and wth 

WSOs, could register to the same CM or different CMs in the 

system. The minimum interference level, experienced by 90% 

devices of the wth WSO, is then taken as the potential 

interference value from an mth WSO to wth WSO. The measured 

interference value is then compared to a threshold. If the value 

is greater than the threshold, the mth WSO is considered 

potential interferer to the wth WSO and is included in its CS. A 

similar rule is applied for interference discovery of the wth 

WSO into the mth WSO. Thus, the outcome of the interference 

analysis process is a CS of each WSO registered in the CMs in 

the system. The system in (1) then makes use of the CS of each 

WSO to generate a Y-matrix as follows. 

Let a set   , , ,w j w mI j m   , be an encoded CS of wth 

WSO on a jth channel such that an indicator variable  , 1w mI j   

if mth WSO interferes wth WSO transmission on the jth channel, as 

defined in Table 1; otherwise  , 0w mI j  . The encoded CS of all 

the WSOs coexisting on jth channel are then used to define a jth 

channel interference matrix  jy  as follows, 
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where   in diagonal vector in  jy  represents don’t care 

condition. This condition translate a self-interference indicator 

variable,  ,w wI j , having no meaning. The wth row in  jy  

matrix represents encoded CS of wth WSO. The interference 

matrices for all channels in the system are then used to define 

an interference matrix Y as follows, 

 

     1 2 J   Y y y y               (23) 

 

The TVWS sharing algorithm, in Table 2 makes use of the 

interference matrix Y to implement FR in sharing TVWS among 

heterogeneous WSOs, as discussed in the following subsection. 

E. Frequency Reuse 

The frequency reuse (FR) subroutine in Table 3 performs 

spatial reuse of the TV spectrum to enhance its effective 

utilization. The FR process is implemented to the WSOs do not 

getting channel in the initial allocation phase in Step 1, Table 2. 

This requires to identify a set of unallocated WSOs eligible for 

the FR. In this process, an encoded CS , ,w j m   and an 

interference matrix Y are used to define the set of unallocated 

WSOs,  . To generate encoded CS and Y-matrix, we make 

use of the CS of each WSO available at MCM. Note that the 

802.19.1 defines different message clauses that enable CMs to 

exchange their WSO related information [10]. Let us assume the 

CS of WSOs are available to CDM at MCM. Given such 

information available, an encoded CS of WSOs, , ,w j m   

and an interference matrix Y, are generated, as defined in Section 

V-D. Initially the Y-matrix is filled with all ones. Let 
kX  be an 

initial allocation matrix available from Step 2, Table 2. The 

Y-matrix is then updated based on the 
kX  and , ,w j m   in 



Step 1, Table 3, as follows. For each jth channel in the system, 

update interference matrix  j y Y  as,   

1) If jth channel is allocated to wth WSO, set all wth row 

elements in ,  y y Y equal to zero, or  

2)  If  jth channel is allocated to mth WSO and wth WSO is in the 

CS of mth WSO, set all wth row elements in the matrix y 

equal to zero.  

The above two steps identify the eligibility of the WSOs for 

implementing the FR process. For example, if the wth WSO is 

already allocated a channel, we aim to restrict it in taking part the 

FR process. Therefore, the wth row entries in the entire Y-matrix 

are flipped zero in the first step above. Similarly, if a jth channel 

is already allocated to mth WSO and if wth WSO transmission in 

the jth channel shall create harmful interference to the mth WSO 

transmission, the jth channel cannot be spatially reused at 

unallocated wth WSO. Therefore, Y-matrix entries corresponding 

to wth row are also flipped zero. The updated Y-matrix thus 

defines a set of unallocated WSOs. These are the WSOs for 

which at least one nonzero entry exists in the corresponding row 

in the Y-matrix, as defined, in Step 2, Table 3.  

The subroutine in Step 3, Table 3 then repeatedly allocates the 

available TV channels to the WSOs in the set   as follows. 

The relaxed problem in (17) is solved using any LP solver for the 

WSOs in  the set  and an allocation matrix 
kX  is obtained. 

The 
kX  is then used to update 

k
X ,  , and Y-matrix, as 

defined in Step 3-b)2), 3-b)3), and 3-b)4), respectively. This 

repetitive update and allocation process continues until all WSOs 

in the set  get the channel or no more FR is possible.  

Let us apply the FR implementation in the coexisting 

scenario shown in Fig 3. In this figure, four WSOs operating in 

three network technologies, an IEEE 802.22 regional area 

network, IEEE 802.11 local area networks and IEEE 802.15.4 

personal area network are deployed in some geographic region. 

The shaded area around each transmitter denotes its 

transmission radius. The circular links between a transmitter 

and receivers show wireless connectivity between them. The 

receiver nodes in some networks receive interfering signals 

from other collocated transmitters as shown in the figure. Let 

WRAN, HS1, HS2, and PAN are labelled as, WSO 1, 2, 3 and 

4, respectively. Let us assume each of the WSO is registered in 

a dedicated CM, i.e., four neighboring CMs are available in the 

CDM system. Let us suppose that a single TV channel is 

available in the region for secondary use. Then, based on 

coexisting scenario shown in the figure, the encoded CS of each 

WSO can be defined as follows. 

       1,1 2,1 3,1 4,10,1,0,0 , 1,0,1,1 , 0,1,0,0 , 0,1,0,0 .     

The Y-matrix is then populated from the bitwise OR operation 

on the CS of the WSOs. The generated Y-matrix is 

 1 1 1 1Y . Let for some given input parameters, as listed in 

Table 1, the algorithm in Table 2 finds an initial allocation vector, 

 1 0 1 0X . The allocation vector shows WSO 1 and WSO 3 

are allocated the channel. The FR process is then invoked. The 

Y-matrix is updated to identify WSOs eligible for spatially 

reusing the channel, as follows. The XOR operation is performed 

as,   Y X Y . This operation turns the entries in Y-matrix 

equal to zero where the corresponding entries in X-matrix are 

ones. The Y-matrix at this stage looks like,   0 1 0 1Y . It is 

then updated using the CS of allotted WSOs as previously 

defined in the second rule of Y-matrix update. The second entry 

in Y-matrix is thus flipped zero as WSO 2 is in the CS of allotted 

WSO 1. The updated Y-matrix then looks like,  0 0 0 1Y . 

The algorithm then solves the dual problem again and allocates 

the channel to WSO 4. The final allocation matrix then looks like 

 1 0 1 1X . The final allocation shows that the available TV 

channel is reused at WSO 4 without causing harmful interference 

to allotted WSO 1 and WSO 3. 

F. Scheduling Map 

Once the allocation process in Table 2 and frequency reuse in 

Table 3 terminates, the CDM system generates a scheduling 

map to send it to the CMs in the system. The scheduling map 

(SM) is a map showing the WSOs’ scheduling periods arranged 

in window time in the allocated channels. In this paper the 

 
Fig. 3. IEEE 802.22 wireless regional area network (WRAN), IEEE 802.11 

hotspots (HS1, HS2), and IEEE 802.15.4 personal area network (PAN) 

coexisting in some geographic region. 

  

TABLE 3 

SUBROUTINE: FREQUENCY REUSE 

Input: kλ , k k X X , , CS. 

Output: kX  

Step 0: Given CS generate encoded CS, i.e., , , ,w j w j     and 

interference matrix Y , as defined in Section V-D. 

Step 1: Given kX , update   ,j j  y Y as: For each wth WSO do: 

if , 1w jx  :  , 0,w mI j m   , j   or                             if 

 , ,1 andm j m jx w  :  , 0,w mI j m   . 

Step 2: Define unallocated WSO set in the system as, 

 ,: | 0w m
m

w j I j



  
      



 

 .  

Step 3: 
While  , 0,w m

w m

I j j

 

     and {}  do 

 a) Given 
kλ , and  ; solve the relaxed problem using any 

linear programming solver and obtain kX . 

 b) Perform following updates: 

1) Update kX  as, , ,: 0 if 0c c
w j w jx z  .  

2) Update kX  as, k k k  X X X . 

3) Update  as,  ,| 1\ : c
w jw j x        . 

4) Update Y  as in Step 1. 

 



scheduling period of a wth WSO refers to its channel timeslot, 

i.e., COT. For example, SM of three WSOs scheduled in an 

allocated TV channel is shown in terms of their COT defined in 

the window time in Fig. 2. Thus, given the COT of WSOs and 

the allocation matrix X, from the algorithm in Table 2, the SM 

is a simple procedure of defining two timing parameters; 

transmission start time and transmission end time. The CDM 

system defines the timing parameters for WSOs registered in 

the CMs in the system as follows.  

Let a pair of transmission variables,  , ,,start stop
w j w jt t , precisely 

define the time instance the wth WSO, registered in cth CM, may 

start and stop its transmission on an allotted jth channel, 

respectively. The ,
start
w jt  and ,

stop
w jt  are calculated as follows. Let 

a variable , ( )w m wC  be defined as the cost of sharing a channel 

between two WSOs, ,w m , where  m w  represents a 

WSO m sharing a channel with WSO w. Let w  represents the 

control overhead associated with MAC technology of the wth 

WSO. The control overhead is defined as the amount of time 

required to perform control signaling while operating in the 

TVWS. This value is fixed and predetermined based upon the 

underlying network technology of the WSO. For example, if an 

802.22 WSO employs OFDMA, one OFDM symbol is used for 

both the frame preamble and the frame header; except for the 

first frame in the superframe which consumes two additional 

symbols (1/4 cyclic prefix mode). If we consider two OFDM 

symbols per frame as a control region then using a symbol 

duration, TSym=0.3733 ms [44], the control overhead per frame 

is computed as, 0.7466 ms. Other settings may generate 

different overhead. Similarly, if a WSO m operates in a 

different network technology than that of the WSO w, its 

control overhead will be different from that of WSO w. The 

total overhead in a channel varies as the channel is shared 

among heterogeneous WSOs. The value of the parameter 

, ( )w m wC  is then defined simply by adding the control overhead 

of all WSOs sharing a channel as follows: 

 
 

, ( )

if , ,
:

0 otherwise

c

w m w m
w m w

MAC MAC w m
C

      
 


, (24) 

where c c   refers to the set of WSOs with NID listed 

before NID of wth WSO in 
c

. The timing parameters are 

computed as,  

  , , ,
c

start c c
w m j m j m m w

m

t O x C


   and ,
stop start c
w w w jt t O  .  (25) 

Thus, the ,
start
w jt  refers to the time instance in the scheduling 

window that all the WSOs m have utilized the channel for the 

duration of their respective COT. Note that in defining the 

scheduling map we make a simplifying assumption that the 

timers of WSOs in the system are pre-synchronized and WSOs 

sharing a jth channel have agreed on the reference time (the time 

instance the window time starts) as defined in [10]. Timer 

synchronization may be done by having agreements between 

service providers managing the WSOs which is outside the 

scope of this paper. 

The CDM defines SM and send it to the SCMs. The SCMs 

send the SM to the registered WSOs. Such implementation 

shall reduce the control signaling between the WSOs and the 

pertinent CM. The control signaling is otherwise inevitable 

while performing context switching among WSOs scheduled in 

the TV channel. Once the spectrum has been allocated, the SM 

remains unchanged unless i) an incumbent appears in one of the 

assigned channels ii) a change in a WSO's channel occupancy 

demand or some other coexisting WSO's demand requires 

readjusting the WSO's allocation. 

VI. SIMULATIONS AND ANALYSIS 

The performance of the proposed channel sharing algorithm is 

compared with two other channel allocation algorithms, 

proposed in [18] and [17].  

A. Comparative Channel Allocation Schemes 

In this section, we summarize the allocation mechanism of the 

comparative TVWS allocation schemes. In [17], two TVWS 

sharing problems are defined; one for maximizing the number of 

channels allocated to the networks and the second for 

maximizing the total throughput under the minimum fairness 

constraint of allocating at least a single channel to each network. 

In this simulation setup, we implement the second problem as it 

closely matches with the channel sharing scheme proposed in 

this paper. The TVWS sharing algorithm proposed in [17] then 

selects a node (WSO) having a minimum of the assigned 

channels and the minimum number of the available channels to 

it. The algorithm assigns a TV channel to the selected WSO and 

calculates the total throughput. It keeps assigning the channel to 

other WSOs as long as the total throughput is increasing. This 

procedure is repeated for every channel. The algorithm 

terminates as no more increase in the throughput is observed. 

The TVWS sharing problem in [18] is modeled as a 

lexicographic ordering of throughputs of access points of 

coexisting networks. The proposed problem is then transformed 

into a graph coloring problem. An algorithm called as, Share, is 

then proposed to solve the graph coloring problem. The Share 

algorithm operates in three phases. In the first phase of 

allocation, it orthogonalizes the WSOs in the available TV 

channels (frequency slots). In the second phase, a mutual channel 

sharing is performed among allotted WSOs of the first phase 

under the condition that their first phase throughputs do not 

decrease. The fairness is improved in the third phase by sharing 

the channel with unallocated WSOs such that lexicographically 

ordered throughputs do not decrease. 

We select the algorithms in [18] and [17] due to the close 

resemblance of their TVWS sharing problems to the proposed 

channel sharing mechanism. For example, both considers 

optimizing throughput under minimum fairness in allocation. 

However, there exist some fundamental differences as well. For 

example, both the allocation schemes orthogonalize the WSOs in 

frequency domain by allocating a dedicated channel to each 

allocated WSO while the proposed scheme orthogonalize WSOs 

in a joint time-frequency domain by slicing the available TVWS 

in the frequency bands and further slicing each channel 

(frequency band) into a number of COTs in the channel window 

time, as discussed in section IV. Moreover, the algorithm in [17] 

is intended for TVWS channel allocation to cellular networks 



while the proposed scheme is intended for TVWS sharing in an 

ad hoc coexisting environment, as discussed in Section I. 

Similarly, the TVWS sharing algorithm in [18] does not 

implement the FR concept. Therefore, we implement the 

proposed algorithm without FR process as well to have a fair 

comparison with the scheme in [18]. This is achieved by omitting 

Step 3 in Table 2 during the implementation of the proposed 

algorithm.  

Finally, the performance of the proposed allocation scheme 

with and without FR implementation is judged in comparison 

with the Scheme in [17] and the Scheme in [18], respectively.  

B. Simulation Setup 

Simulation setup consists of 32 WSOs deployed in some 

geographic region and connected to an 802.19.1 coexistence 

system. The system has 32 CMs, each serving a single WSO. 

We select a dedicated CM for each WSO as the schemes in [18] 

and [17] performs TVWS sharing at network (WSO) level. The 

number of available TV channels in the region varies from 2 to 

16. The WSO types and transmission powers are modeled using 

FCC regulations [2]. For this purpose, the specifications for 

fixed, mode 1 and mode 2 WSO types are used. The fixed, 

mode 1 and mode 2 type WSOs are allowed to have maximum 

antenna gain of 4 watts (W) effective isotropic radiated power 

(EIRP), 100 mW EIRP, and 100 mWatt EIRP respectively. The 

WSO access technologies are IEEE 802.22 and IEEE 802.11af. 

In this simulation setup, we implement the compulsory channel 

requirement of each WSO where the standard definition of the 

above technologies mandates a single TV channel of regulatory 

defined bandwidth as a requirement of a device to operate in the 

TVWS. Note that the bandwidth of a TV channel is set equal to 

6 MHz. 

Two parameters; WSO channel occupancy demand, ,
c
w jO and 

WSO density in the region, ,
c
w jK  are varied to observe their 

effect on allocation behavior of the three allocation schemes as 

follows. Let jT  represents the window time on the jth channel. 

Note that the 802.19.1 [10] does not define MAC layer frame 

structure for operations in TVWS. Therefore, the channel 

window time is not defined in an absolute time domain in 

802.19.1. In this simulation setup, we define the channel window 

time as a unit length, without loss of generality, i.e., 

1,jT j   . Then, three allocation subdomains are defined 

on the jT  as follows; low subdomain consists of up to 33 

percent of the channel window time, defined as, 

 : 0, 0.33L
jO T , A medium subdomain consisting of 34 to 67 

percent of the channel window time, defined as, 

 : 0.34,0.67M
jO T  and a high subdomain consists of 67 to 100 

percent of the channel window time, defined as, 

 : 0.67,1H
jO T . The channel occupancy demand of each WSO 

is then randomly defined on these subdomains.  

The WSO density in the region is reflected using the number 

of WSOs in the CS of each WSO as follows. Let W be the 

number of WSOs registered in all CMs in the system then, we 

define three WSO density subdomains as; low 

 : 0,0.33LK W , medium  : 0.34,0.67MK W , and high 

 : 0.67,1HK W .  The CS of each WSO is randomly defined on 

these subdomains. Let ,
c
w jK  represents the number of WSOs in 

the CS of wth WSO on the jth channel, registered in cth CM. 

Then, the effect of the variability in the translated channel 

occupancy demand and WSO density is measured using a pair 

of parameters  , ,,c c
w j w jO K . Note that varying each of these 

parameters on three respective subdomains results in 32 27  

possible allocation combinations. Out of 27, we select three 

cases to study the performance metrics defined in Section VI-C, 

as follows. 

 Low: low COT, low WSO density, i.e., ,
c L
w jO O  and 

,
c L
w jK K , 

 Medium: medium COT, medium WSO density, i.e., 

,
c M
w jO O and ,

c M
w jK K , and  

 High: high COT, high WSO density, i.e., ,
c H
w jO O and 

,
c H
w jK K . 

Next, we apply the intlinprog routine of MATLAB® to 

solve the proposed TVWS sharing problem. The routine applies 

the mixed-integer linear programming technique. Since we 

need binary valued vector X , therefore, we set all the decision 

variables, , ,c c c
w jx   X X X , to be integer variables in the 

intlinprog routine. The binary decision may lead to the 

situation where the COT of allocated WSOs may not fit the 

channel window time. For example, let us assume the WSO 1, 2, 

3 and 4 in Fig. 3 coexist in a TV channel. Let their COT demand 

is defined as, 0.25, 0.33, 0.37 and 0.15, respectively. Let us 

assume the intlinprog routine outcome as  1 0 1 1X , 

i.e., the WSO 1, 3 and 4 gets the channel. This results in total 

COT of allocated WSOs equal to 0.77 which is less than the 

channel window time; 1. The second WSO cannot be 

accommodated in the channel considering the constraint (16b). 

In this simulation, the solution X  is engineered such that the 

second WSO is partially allocated the desired COT so as to 

maximize the channel utilization while maintaining constraint 

(16b). The purpose of such engineering the solution is to reduce 

the channel waste. In order to have a fair comparison, the same 

engineering principle is applied to the allocation matrix 

generated by the comparative allocation schemes. The 

comparative analysis of the three allocation schemes is then 

performed as discussed in the following section. 

C. Comparative Analysis 

The relative performance of the three allocation schemes is 

evaluated using the following metrics: system throughput, 

fairness in allocation among CMs and WSO satisfaction from 

the allocation. These performance metrics are selected to 

analyze how well the three allocation schemes achieve the 

TVWS sharing objectives, as defined in Section III-B. The 

simulation results of the performance metrics are presented in 

Fig. 4 to Fig. 6, respectively. Subplots (a), (b), and (c) in these 

figures show the effect of varying the  , ,,c c
w j w jO K  pair in low, 

medium and high subdomains, respectively. The study results 



are discussed as follows.  

1) System Throughput 

 Fig. 4 shows the system throughput (ST) achieved by the 

three allocation schemes. Given the allocation matrix X , and the 

SINR values, the ST is defined using Shannon capacity formula 

[45] as, 

 

 , , 2 ,log 1
c

c c c

w j w j j w j

j wc

ST x O b SINR
 

   .      (26) 

 

It is shown in Fig. 4 that, for most of the channels in the 

system, the proposed scheme achieves higher ST gain than the 

comparative TVWS sharing schemes. However, the proposed 

scheme with FR implementation achieves slightly lower ST than 

the Scheme in [17] for the case when the number of channels in 

the system is two. This is because the Scheme in [17] focuses on 

maximizing the throughput in the TVWS allocation process 

while the proposed scheme focuses on making a balance among 

the contradicting QoS metrics; ST and fairness in allocation. 

Consequently, the WSOs with lower channel quality (here lower 

SINR value) also get a proportion of the available TVWS which 

reduces the total ST gain in the proposed scheme. However, as 

the number of channels in the system reaches to four and above, 

the proposed scheme achieves higher ST gain and remains so 

until both the schemes converge to the maximum achievable ST. 

The reason for such improvement is that the proposed scheme 

applies a joint time-frequency FR concept which accommodates 

a higher number of WSOs in the available TV channels while the 

Scheme in [17] applies FR concept in frequency domain only.  

Note that the ST gain in this study is defined as maximum if all of 

the WSOs in all the CMs get their desired channel demands.  

The effect of variability in the  , ,,c c
w j w jO K  pair values on the 

ST gain of the three allocation schemes is shown in Fig. 4(a), 

4(b) and 4(c), respectively. The three allocation schemes 

converge to the maximum ST, as the number of channels in the 

system reaches 8 and 16, as shown in Fig. 4(a) and 4(b), 

respectively. However, in high subdomain case (Fig. 4(c)), none 

of the allocation scheme achieves the maximum ST. The reason 

is that the high channel occupancy demand of WSOs results in a 

few WSOs to saturate the available TVWS while leaving no 

channel share for rest of the WSOs. 

Another notable property of the ST study is that, as the 

 , ,,c c
w j w jO K  pair values increases from low to high subdomains, 

the ST gain of the proposed scheme improves over ST gains in 

the comparative scheme, as shown in Fig 4(a) through Fig. 4(c), 

respectively. This improvement is attributed to the combined 

effect of the use of the proportional fairness in the allocation and 

implementing FR in a joint time-frequency domain in the 

proposed scheme, as defined in the Section IV and V 

respectively. 

2) Fairness 

The fairness in allocation among CMs in the system is 

measured using equation (21) where the variability in CMs’ 

normalized throughput vector,  1 2, , , CT T T


T  is used as a 

fairness metric to compute the fairness index (FI) value. The FI 

result, as shown in Fig. 5, confirms that the proposed scheme 

achieves the highest FI value due to the combined use of the 

proportional fairness method and the FR implementation in the 

joint time-frequency domain. On the other hand, though both, the 

Scheme in [17] and the Scheme in [18], optimize the fairness in 

allocation. However, both the schemes make an orthogonal TV 

channel allocation thus, resulting in lesser number of WSOs to 

get the channel which reduces FI value. Moreover, the constraint 

of maintaining the lexicographically ordered throughputs of the 

WSOs in the Scheme in [18] further reduces the degree of the 

fairness in allocation. 

The effect of varying the values of the  , ,,c c
w j w jO K pair in 

low, medium and high subdomains is shown in Fig. 5(a), 5(b) 

and 5(c), respectively. It is shown in Fig. 5(a) and Fig. 5(b) that 

the FI values of all the comparative allocation schemes 

converge to the maximum FI value, i.e., 1, as the number of 

channels in the system reaches 8 and 16, respectively. 

However, in the high subdomain case (Fig. 5(c)), none of the 

comparative allocation schemes converge to the maximum FI 

value except for the proposed scheme with the FR 

implementation. It is because, in all other schemes, their 

orthogonal channel allocation policy result in a few WSOs to 

saturate the available TVWS while in the proposed scheme, the 

spatial reuse of the TVWS in a joint time-frequency domain 
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Fig. 4. System throughput for 32 WSOs registered in all CMs for a varying 

number of TV channels in the system. 

  



accommodates as many as WSOs, registered in the CMs which 

improves fairness in allocation.  

3) WSO Satisfaction 

In this study, we analyze the performance of the three 

allocation schemes the third objective of the TVWS sharing 

problem defined in Section III-B. in this study, a WSO is 

considered satisfied from allocation if it gets its desired channel 

demand for the duration of desired channel occupancy. The 

system-wide WSO satisfaction percentage (S) is then 

calculated using percentage of the mean satisfaction as, 

,

100
c

c
w j

j

ww
c

c

x

n
S










 
 






           (27) 

Fig. 6 shows the simulation result of the satisfaction study of 

the three allocation schemes. This figure shows that the proposed 

scheme and the Scheme in [18] achieves similar satisfaction 

result as their lines overlap each other. However, the proposed 

scheme with FR implementation achieves better satisfaction 

result than that of the Scheme in [17]. It is because, the TVWS 

allocation in a joint time-frequency domain enables the proposed 

scheme to accommodate as many as WSOs in the available 

TVWS while the third objective in the TVWS sharing problem, 

in Section III-B, requires the proposed scheme to satisfy the 

channel demand of each allotted WSO. Such an allocation 

strategy improves the satisfaction result of the proposed scheme.  

From the results in Fig. 4 to Fig. 6, it is clear that none of the 

comparative schemes results in better performance than the 

proposed scheme in any of the performance metric. The 

proposed scheme, however, gives fairer channel allocation 

among all comparative allocation schemes. The proposed 

scheme with the FR implementation, however, outperforms the 

comparative schemes, in most of the TV channels in the 

system, in all the three performance metrics as shown in Fig. 4 

to Fig. 6.  

D. Increasing WSO Density 

In this section, the effect of increasing the number of coexisting 

WSOs in the performance of the proposed allocation scheme is 

evaluated. The performance is measured using the metric like 

system throughput and WSO satisfaction, for the three 

subdomain cases, i.e., low, medium and high. The number of 

WSOs registered in each CM in the system varies in a set, 
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Fig. 5. Fairness index value calculated using normalized throughput vector of 

CMs for a varying number of TV channels in the system.  
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Fig. 6. Percentage of total 32 WSOs satisfied from the allocation. 



 8,16,24, ,64W  . The number of available TV channels 

remains constant at 4, and the other simulation parameters are 

same as defined in Section VI-B.  The results of the performance 

study are shown in Fig. 7 and Fig. 8.  
Fig. 7 shows that the highest throughput gain is achieved in the 

high subdomain case, i.e., when  , ,,c M c M
w j w jO O K K  . The 

reason is that the proportional fairness method in the proposed 

scheme selects the WSOs with high throughput gain to share 

the available TVWS. While spatially reusing the frequency 

further helps the proposed scheme to accommodate as many as 

WSOs in the available TVWS. Consequently, the ST increases 

in high subdomain case. On the other hand, the achieved 

throughput is the least in low subdomain case, i.e., when 

 , ,,c L c L
w j w jO O K K  . It is because; the low channel occupancy 

demand of the WSOs could not saturate the available 

whitespace.  

Fig. 8 shows the percentage of the number of WSOs satisfied 

from the allocation, calculated using (27). This figure shows that 

the satisfaction is the highest in the low subdomain, followed by 

the medium subdomain, especially in the case when W=8, for 

each CM. The reason is that a relatively greater number of 

WSOs can be satisfied per TVWS when W = 8. The WSP value 

then sharply declines as the number of WSOs in the system 

increases, especially for the medium and high subdomain cases.  

The results in Fig. 7 and Fig. 8 shall facilitate the modeling of a 

channel sharing system such that given the statistics of channel 

quality, the WSOs channel demands and the WSO density in the 

system, one can estimate an optimal number of WSOs that can be 

accommodated on the available TVWS such that the resource 

utilization is maximized. 

E. Algorithm Scalability Test 

The scalability of the proposed algorithm in terms of time 

taken to complete the allocation process is evaluated. In this 

experiment, the total number of coexisting WSOs registered in 

all the CMs in the system varies geometrically as, 2W where 

 3,4,5,6,7W  . The number of TV channels in the system 

increases at a constant interval of 4 as,  4,8,12, ,48J  . The 

remaining simulation parameters are same as defined in Section 

VI-B. The specifications of the computer system used for the 

scalability test is listed in Table 4. Using the above parameters, 

the intlinprog routine solves the proposed TVWS sharing 

problem. The routine uses the branch and bound method to find 

an optimal solution point X . The branch and bound split the 

problem into sub-problems, and each sub-problem is expanded 

until a solution is found as long as its cost does not exceed the 

set upper bound. The exact computational complexity of any 

branching algorithm is hard to find as time complexity of such a 

branching algorithm is usually analyzed by the method of 

branching vector. However, it has been mentioned in [46] that 

when the best-first search branch and bound technique is used, 

the upper bound to generate an expected solution is 

   
2

0 0

1 1
n n

i i

T i n i n
 

       where n is the number of nodes 

visited. Thus, the complexity of such an algorithm is  2n .  

In this experiment, we measure the simulation time taken using 

the MATLAB® tic-toc stopwatch timer. The time recorded for 

the high domain channel assignment is shown in Fig. 9. The 

result in this figure is generated using the average time required 

to complete allocation for the high subdomain case, i.e., 

,
c H
w jO O  and ,

c H
w jK K . In this study, we perform the 

population engineering step, as defined in Section VI-B, using 

the intlinprog routine of the MATLAB. The figure 

indicates that for defined simulation parameters, the channel 

sharing process took a few hundreds of milliseconds to complete 

the allocation process which is quite acceptable for real-time 

implementation of the algorithm. The Fig. 9 shows that the 

algorithm execution time does not grow geometrically as the 

number of WSOs in the system increases. Rather, the algorithm 

has linear time allocation behavior as shown in Fig. 9.  

VII. CONCLUSION 

In this study, we investigated the channel sharing problem in a 

TVWS sharing domain with the objective of maximizing the 

resource utilization. The defined TVWS sharing problem 

optimizes the system throughput under a minimum fairness in 

allocation while constrained to satisfy the WSO channel 

occupancy demand on each allocated channel. To solve the 

defined problem, we proposed a channel allocation algorithm 

that shares the available TVWS among coexisting WSOs 

operating on incompatible network technologies. In order to 
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Fig. 7. System throughput achieved by the proposed scheme for 4 TV channels 

and a varying number of WSOs. 
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Fig. 8. WSOs satisfied from allocation with varying WSO density in the 

region. The number of TV channels in the system is 4. 

  



improve the TVWS utilization and to accommodate as many as 

WSOs in the available TVWS, the proposed algorithm spatially 

reuse the available TV spectrum. The simulation results show 

that the frequency reuse property of the proposed algorithm 

results in comparatively higher WSO satisfaction from the 

allocation, better fairness in allocation and higher system 

throughput gain. Moreover, the fast allocation process of the 

proposed algorithm makes it a promising candidate for 

implementation in 802.19.1 based coexistence system. The 

proposed algorithm can be implemented by a centralized 

decision-making entity, i.e., the master CM in the IEEE 

802.19.1 system without requiring any major change in the 

baseline architecture of 802.19.1 TVWS sharing system. 

Appendix A 

In this section, we apply tangent plane approximation to 

linearize the objective function in (14a).  

Let for some given points on the graph,  1 1, 2 2,,c c

j jq x q x  , 

and  F log 1q  , where 

1, 2,

1 1, 2 2,

1, 2,0 0c c
j j

c c

j j

c c

j jO O

q r q r
q

O O 
 

 
. If 

 ,log 1c j   is differentiable at  1 2,q q , then the surface has 

tangent plane at  1 2, ,Fq q . The equation of the tangent plane 

at  1 2, ,Fq q  is given by, 

       1 2 1, 1 1 2 2, 2

1, 2,

, , F 0c c

j jc c

j j

y y
q q x q q q x q F

x x

 
     

 

where y denotes multivariate objective function  ,log 1c j   

and  ,log 1c jF   .  

The tangent plane equation is rearranged as,  

     1 2 1, 1 1 2 2, 2

1, 2,

F , ,c c

j jc c

j j

y y
F q q x q q q x q

x x

 
    

 
 

where 

  
1,

1,

1,
, 1, 0

1 c
j

c

j

c
c

j
c j j O

ry

x O 




  
 denotes partial 

derivative of log function at 
1,

c

jx . Thus, if  F is differentiable 

at  1 2,q q , then the tangent plane to the surface at  1 2,q q  

provides a good approximation to F near  1 2,q q ,  

     1 2 1, 1 1 2 2, 2

1, 2,

F , ,c c

j jc c

j j

y y
F q q x q q q x q

x x

 
    

 
 

which is called as linear approximation of y near  1 2,q q . 

For a general case with c n , and near to some given point, 

1 1, ,, ,c c

j n n jq x q x  q , we define linear approximation of y 

as,  

     1, 1 ,

1, ,

F c c

j n j nc c

j n j

y y
F x q x q

x x

 
     

 
q q . 

Appendix B 

In this section, we aim to discuss the convergence property 

of the algorithm in Table 2. Note that our discussion here 

closely follows the discussion on the convergence of 

sub-gradient algorithm defined in [47]. Interested readers are 

referred to [47] for seeking knowledge beyond what is 

presented in this short discussion.  

Given 0 EWλ  and the sequence  kt  of positive scalars, 

called step sizes, in Table 2, define the sequence  kλ  as 

defined in Step 5-b) in Table 2,  

  1 max , 0k k k
kt h   λ λ λ . 

For any λ , the maximum of (17) is assumed for at least one 

value of the index k. Since (17) is piecewise linear, there then 

exists at least one point *λ  such that 

   * * *max ,h h P λ X λ . Then,  kh λ will converge to its 

optimum *h  under the conditions,  

0

lim 0,k

k
k

k

t t





  . 

For the proof of the convergence of subgradient algorithm, the 

interested readers are encouraged to consult [47]. 
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TABLE 4: COMPUTER SYSTEM CONFIGURATION 

Symbol Description Quantity 

Processor Intel quad core 

i5-2500k  

CPU = 3.30 GHz 

Onboard memory  - 8555 MB 

Memory used by 
MATLAB® 

-  1289 MB 
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Fig. 9. Algorithm execution time for varying number of WSOs and varying 

number of TV channels in the system. 
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Abstract 

In this article an in-depth overview is presented on Computer aided diagnostic (CAD) system’s usage for liver cancer. 

Besides, in a broader sense highlighting the technical aspects developed for medical ultrasound images is also discussed. 

CAD system is a process that provides adequate information that helps to analyze the Ultrasound images and helps to 

accurately detecting different types of liver cancer. However, the system performance is still not significantly improved. 

In this paper, firstly, we categorize the CAD system according to the four primary stages including data preprocessing, 

lesion segmentation, feature extraction, selection, and Classifier. In each stage, we review specific methods that are 

commonly used in most of the algorithms proposed for computerized tissue characterization and discuss their advantages 

and drawbacks. Then, recent proposed algorithms are presented in summarize form that have shown clinical value or 

specific possibility to the computerized analysis of setback for ultrasound liver images. These techniques or their 

combinations are the ones that are mostly used in the past few decades by the majority of work published in the Computer 

aided diagnosis domain. 
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1. Introduction 

In therapeutic imaging and analytical radiology as a key subject matter of research Computer aided 

diagnostic (CAD) has emerged. CAD has applicability in numerous medical imaging modalities. Some of 

which are computerized tomography (CT), magnetic resonance imaging (MRI), ultrasound (US) imaging, and 

nuclear medicine [1], [2], [3], [4].  For US liver image diagnosis CAD strongly depend by the quality of data. 
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The comparatively substandard of clinical US images reduces the success of early liver ailment finding and 

analysis. There are distinctive objectives [5] which make the system assignment complex, such as speckle, 

attenuation, signal dropout and shadows. It is due to the orientation dependence of acquisition that can 

outcome in losing boundaries. Additional complexities appear due to the highly variable shape of the liver, 

reduced contrast and intensity inhomogeneity within liver, weak boundaries to its nearest organs say heart and 

stomach, and intensity homogeneity to nearer organs. So, liver diagnosing from US device seems an exigent 

task that has called the attention of many researchers in recent times.  

The data generated by the automated computer processes while diagnosis is helpful to the radiologist to 

realize the US liver images. So, the precision of image diagnosis is better, and the time required by regular 

methods in peruse an image is reduced [6]. Henceforth, utilizing CAD the analysis of diseases has become a 

vibrant area of research [7]. There is greater requirement of precisely analyzing the therapeutic images and 

lessening the time requisite for proper analysis of liver cancer. 

The key objective of this review is emphasizing on the potentiality of intelligent computer systems to be 

utilized in clinical application to support pathologists to analyze and classify US liver cancerous tissue images. 

On the basis of methodical analysis of various liver conditions, CAD methods and organized summary of 

algorithm, we categorize the computerized system according to the four primary stages of analyzing liver US 

image. Here the using of general procedures including data preprocessing, lesion segmentation, feature 

extraction and selection, and depicting of cancer by means of a classifier [8] better summarizing the 

performance of each category leads to find the ideal solution for automatic computerized system performance 

and the four stages are given in Figure 1. 

 

 

Fig. 1. Flow diagram of CAD for liver cancer. 

1. Data preprocessing: The preprocessing task is to restrain the noise and to increase the image without 

eliminating the important features of Liver US images. 

2. Image segmentation: Here image is divided into a number of small portions, and it forms the background 

the lesions detached. The edges of the lesions are outlined for feature withdrawal.  

3. Feature extraction and selection: The stage identifies a feature set of liver cancer lesions that can precisely 

differentiate normal tissue or abnormal cancer tissue. The feature space could be vast and intricate, so 

withdrawal and choosing the finest features is decisive.  
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4. Classification: After the selected features, the apprehensive regions will be characterized into distinctive 

classifications, say normal tissue or cancerous tissue. 

      

In following manner, this paper is arranged. Classification of liver cancer is presented in section 2. The 

literature review about the four stages of the CAD system in US liver diagnosis is discussed in section 3. 

Relevant research works are detailed in section 4. In section 5 concluding part is presented. 

 

2. Classification of liver cancer  

      Globally liver cancer is much popular malignant disease, mainly in Southeast Asia and sub Saharan 

Africa. Worldwide, liver cancer has sixth position as the most familiar cancer with a half a million people 

affected each year. The number of people who develop liver cancer is increasing around the globe [9]. 

      In human body liver is one of the indispensable organs. It's extremely hard to live without a sound liver 

because of its impacts on every other body parts. Mainly focal liver diseases and diffused liver diseases 

influence the liver. Diffused liver diseases, for example cirrhotic and fatty, harm the total surface of liver. 

Focal liver diseases which affect the small area of the liver surface, such as hepatocellular carcinoma (HCC), 

hemangioma (Hem), and cyst. Figure 2 presents three focal liver diseases in the US images. The 

hepatocellular carcinoma (HCC) and echo type in the liver based on US image representation, five types of 

primary carcinoma of liver tumour are there, they are correlative to low echo type, equal echo type, high echo 

type, mixed echo type and diffuse type correspondingly.  

     Complexity of the liver tumour in patients having chronic viral illnesses, can be classified from 

asymptomatic strong carriers to patients with liver cirrhosis [10], [11], [12]. In general, the US appearance of 

Cyst, Hem, and HCC visible similar. Brightness mode (B-mode) ultrasound [13] diagnosis is the foremost 

choice in well-liked analyses because of its effectiveness, non-invasiveness, and economy. All types of liver 

cancers are not correctly diagnosable in the US images, in case there is benign appearance of deadly tumours 

and observer’s diagnostic level is not good, careless mistakes and visual fatigue. Hence, utilizing traditional 

method it is extremely difficult in decision making between them. A fully efficient automatic computer 

system is required to be developed for disease detection and diagnose with high performance. 

 

 

Fig. 2. Normal liver and focal liver US images. 
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3. Overview of the CAD system schemes 

The most recent success in automatic diagnosing of liver US images is reviewed in this section. The four 

main steps in the CAD including data preprocessing, lesion segmentation, feature extraction and selection, 

and classifier of lesions are discussed in detail. 

3.1. Data Preprocessing 

Data preprocessing is aimed at filtering speckle noise, which  impinge on the diagnostic value of the US 

image [14]. It makes image detail unclear and hazy drastically, demeans the image feature. Likewise, it 

decreased the pace and correctness of US image processing tasks say- division and classification. Hence, in 

US image processing tasks, speckle noise reduction is always an important prior requirement. Figure 3 depicts 

an example for speckle noise image and enhanced image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. (Left) Speckle noise image and (Right) Despeckled US image. 

 

In this paper, we categorized the speckle reduction techniques into two major classifications, namely a) 

spatial filtering methods and b) multiscale methods. Those methods are effective in eliminating the speckle 

noise and conserving the analytical information in US images. 

a. Spatial filtering process 

The basis of spatial filter is proportion of local statistics. It is helpful to improve smoothing in uniform 

regions of the US images where speckle is completely visible. This method lessens smoothing substantially in 

surrounding areas of the image to conserve the helpful particulars of the image [15]. Lee and Kuan Spatial 

filters use local statistics to perform straight on the intensity of the image [16], [17], [18]. 

Various sorts of filters are utilized as a part of uses of speckle lessening in US imaging. The most usually 

utilized sorts of filters are: 

• Mean filter [19] is easy to apply, also its a plain filter . However, speckles are not eliminated by it, but in 

the data averaged by it. It is an attractive technique for speckle noise diminishing as it can make loss of 

resolution and accuracy Image can be obscured by it. It has amazing quality for added substance Gaussian 

noise, though the speckled image comply a multiplicative form with non-Gaussian noise since the mean 

filter is not an ideal selection. 

• Median filter [20] is very efficient against impulsive type noise and edge conserving characteristics. It 

generates least obscure images in comparison to mean filter. It requires listing of all near values into 
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numerical order to figure out the median and here it is the drawback. Moreover, it takes additional 

calculation time to list the intensity value of all set. 

• Wiener filter [21], [22] replace images in the existence of noise and blur. Decreasing the quantity of noise 

presence in a signal by comparing with an assessment of the preferred noiseless signal is the aim of 

algorithm here. The approach of filter towards image smoothing is on the basis of calculation of local 

image variation. The smoothing becomes less when the local variation of the image is immense. The filter 

does more smoothing when the difference is small. This calculation over linear filtering over linear 

filtering. It conserves edges and other high recurrence information of the images, however takes more time 

for calculation than linear filtering. 

• Enhanced Frost and Lee filter [23] is utilized to vary the capability in light of the limit value. The filter 

works out like a stern all pass filter when the local coefficient of variation is over a greater limit. On the 

other part as the local coefficient of variation goes under a poor limit then pure averaging is actuated. The 

stability amongst averaging and identity operation is processed when the coefficient of variation stands at 

middle of lower and higher thresholds.  

• Gamma Map filter [24] is like preceding filter aside from that the local coefficient of variation takes place 

amid the two limits; the filtered pixel value depends on the Gamma estimation of the contrast proportions 

inside the proper filter window. It is utilized to reduce the loss of texture information. The filter needs 

suppositions about the dispersion of the genuine procedure and the degradation model. 

• Frost filter [25] is an adaptive and exponentially weighted average making filter in light of the proportion 

of the local standard deviation to the local mean of the debase image.  Within the n n  moving core it 

interchanges the region of interest with a weighted sum of the values. The weighting aspects lessen with 

difference from the region of interest. The weighting aspects increment in the mid region as difference 

inside the core grows. 

• Lee filter [16], [17] relies upon the multiplicative speckle model. It can utilize local statistics to conserve 

borders and attributes adequately. It also uses the process like when the variance over an area is poor, then 

the smoothing will be done. When the difference is much similar to near borders, no smoothing will be 

done. 

• Kaun filter [26] Irelies upon an image’s  Equivalent Number of Looks (ENL) to decide an unlike weighting 

function to do the noise reduction. The filter model is a local linear least square inaccurate filter relies on 

multiplicative model regarded as to be finer to Lee filter. It makes no estimation of the noise variance 

inside the filter window. 

• Diffusion filter is for smoothing images on a nonstop area, nonlinear partial differential equation was 

implemented by Perona and Malik [27],  which has since been extended and enhanced [28], [29]. Through 

many years, other denoising processes with extremely fascinating ability are developed for example: 

Bilateral filter along with derivatives [30]. In Speckle reducing anisotropic diffusion (SRAD) [31] 

dispersion of speckled images is edge-sensitive. Its preference is a rapid and a decent speckle lessening 

impact. In SRAD, the instantaneous coefficient of variation goes about as the border identifier. Here 

algorithm displays maximum gains at the borders and creates least gains in consistent areas. This way, it 

guarantees the mean-preserving conduct in the uniform areas, and conserves and improve the borders. 

     The noted diffusion methods can save or even improve important edges when taking out speckles. Even 

so, the techniques have one basic constraint in holding unobtrusive features of minute cyst and lesion in 

US images. 

b. Multiscale process 

     For US imaging numerous speckle reduction algorithms are proposed in light of contourlet, curvelet and 

wavelet. 



6 Mohamed Yaseen and Heung-No Lee/ International Journal for Light and Electron Optics 00 (2016) 000–000 

• Wavelet Transform: The key target of speckle diminishment is eliminating the speckle noise by not 

missing much data included in an image. To be successful this target Wavelet transform have set up since 

it gives an ideal representation for 1D (single dimensional) piecewise smooth signals, for example, an 

image’s scan lines [32].The complex wavelet transform (CWT) just requires O(N) computational to 

enhance directional selectivity. Yet, in the past intricate wavelet change not broadly utilized, as it is hard to 

devise intricate wavelets with impeccable recreation properties and good filter attributes [33], [34].  

Kingsbury proposed the technique known as dual-tree CWT in articles [35], [36], which can add faultless 

reform to the other appealing properties of difficult wavelets, incorporating limited redundancy, estimated 

shift invariance, six directional selectivity’s, and proficient O(N) calculation. To build 2D complicated 

wavelets here Tensor-product 1D wavelets are utilized. The directional discerning dispensed by 

complicated wavelets (six directions) is vastly improved from what is acquired by the discrete wavelet 

transform (three directions), however is by now fewer. Such undesirable practices demonstrate that further 

potent representations are asked in upper dimensions. 

• Contourlet Transform: a contourlet transform utilizing 2D transform process for image delineation and 

study executed by Do and Vetterli [37]. It was implemented in the detached space. likewise, the 

researchers justify its union in the uninterrupted space. It was implemented in a detached space multiple 

direction and a multiple resolution extension utilizing non-distinguishable filter banks. This brought about 

an adaptable multi-resolution, directional and local image extension using contour segmented region, and 

hence it is known as contourlet transform. As specified before by utilizing a filter bank that decouples the 

multiscale decomposition contourlet was completed and finished by Laplacian pyramid and then 

directional decompositions, which are completed utilizing a directional filter bank. 

• The advantages of contourlet alter are as follows. 1) The rectangular grids are utilized to portray contourlet 

expansions, and thus offer an impeccable interpretation to the distinct world, where based on a rectangular 

grid the image pixel’s sample is taken. The main disparity between the contourlet [37] and the curvelet 

framework [38] are to attain the rectangular grid attribute, the contourlet kernel roles have to be diverse 

courses and by just turning a lone function cannot be acquired. 2) As a consequence of rectangular grids, 

contourlet have 2D division on centric squares, besides centric circles for curvelets and polar coordinates 

to depict other systems. 3) Since usage of iterated filter banks for wavelets, contourlet transform utilizes 

quick bank calculations and adaptable tree structures. 4) This calculation gives a space multi-resolution 

action plan which gives lithe improvements of the spatial and angular resolution. The contourlet change 

characterizes a multiple scale and multiple directional delineation of an image. Likewise it is simply 

adaptable for identifying superior attributes in any placement at a variety of scale levels [39] ensuing in 

fine probable for efficient image examination. 

• Curvelet Transform: A new algorithm  is presented by Candes and Donoho in article [38] on the 

continuous 2D (two-dimensional) space 
2

R  utilizing curvelets. This calculation showed a fundamentally 

ideal estimation manner for 2D per piece plane functions that are curves. First generation curvelet 

transforms are deliniated in the uninterrupted domain [38] through multiscale filtering and after that on 

each bandpass image applied a block ridgelet transform [40]. The second generation curvelet transform 

[41] was produced utilizing no ridgelet transform but using frequency partitioning. However, for 

implementing both curvelet generation want a turning maneuver and ought to match with a 2D frequency 

division on the basis of on the polar coordinate. It gives the curvelet creation easily in the uninterrupted 

sphere, yet makes it critical sampling appears to be troublesome in discretized structures. The curvelet 

change is extremely proficient in representing curve-like edges. In any case, this transforms have two key 

disadvantages: 1) the discrete curvelet transform is superfluous. 2) They are not ideal beyond 
2

c singularities for sparse approximation of curve features. 
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On US images most standard speckle filters perform fine, yet a few limits exist with them, which lead to 

image resolution degradation. In this way, while developing an efficient and strong denoising algorithm for 

data preprocessing stage in CAD one needs to consider various factors. In the design of despeckling 

methods, choices of despeckling filter and speckle model have important part. In above most usually 

favored models and filters were reviewed with its pros and cons. 

3.2. Segmentation 

Segmentation process is a mandatory step in CAD systems that frequently refers to the delineation of 

specific structures [42]. Segmentation’s key objective is to convert the image to provide more significant data 

that can be effortlessly examined. It is used to distinguish the various boundaries and objects in images. Due 

to poor contrasts, different types of noise and missing the boundaries in medical images make segmentation 

Harder. Depending on anyone between the two vital traits of intensity values that are similarity and 

discontinuity Medical image Segmentation approaches are mostly based [43]. In subsection, the different 

segmentation procedures of the medical images are reviewed and it is composed into four basic classifications 

as appeared in figure 4. 

• Region based method: On the basis of pixel alikeness in a region, these process is developed. It is used to 

approximate the region straight [44], [45]. This method classify the pixels with comparable attributes (like 

intensity) into regions. Classification of Region based methods have two methodologies such as- a) region 

expanding approach and b) region combining/dividing approach.  In this approach, the procedure initiated 

by choosing a seed region (pixel). Adams and Bischof [46] proposed the first seeded region growing. The 

region develops by including the neighbor pixels having comparative established in advance standard with 

the seed, for example- texture, potency, difference, texture or gray level, etc. When no pixel is present for 

inclusion then the procedure stops. The issues with this approach are- the user has to choose the seed point 

and it will miss the efficacy when the region is inhomogeneous. Within the region, combining/splitting 

mode, the technique starts with the entire image as a seed. At that point, the seed is partitioned into various 

sub regions, most often into four sub regions. Thus, continuity of the process goes on till there are no 

regions of the partition by using each sub region as a seed. Lastly, based on same properties, for example 

intensity, variance or gray-level combine any adjacent regions. 

 

Fig. 4. Image segmentation methods. 
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• Edge based methods: Edge based methodology [44], [47] utilized for distinguishing the discontinuities in 

an intensity value for image segmentation. It is the sudden changes in potency level at the region borders of 

US images. The image border can be described as the perimeter isolated by different areas that vary in the 

level of potency [48]. Utilization of the borders are to identify the items’ measurement and differentiate 

items from the background.  Usage of edge detectors are needed to trace the distinctive points in the image 

where the potency actually changes. Border detection is a vital tool for the success of segmentation and 

interpreting the US image content, mainly when dealing with feature extraction and feature detection. 

There are two main techniques in order to detect an edge in US images such as searching and zero crossing 

techniques. Figuring the gradient magnitude by making use of first order derivative expressions takes place 

at first place in search-based technique. Subsequently, with the utilization of gradient direction local 

directional maxima of the gradient enormity is searched. In zero crossing technique, looking for a zero 

crossings in the second imitative of the image takes place. Finding zeros in the second imitative of image 

orders are detected, at this time the value of first imitative is high and zero is the value of second imitative. 

It is named Laplacian approach on the basis of edge detection. 

The edge based division method’s disadvantage is, when there is presence of lots of edges in the image it 

does not work well. 

• Threshold based methods: For image segmentation, Thresholding [49] is one of the imperative techniques 

used. It is helpful in a separate frontal region from the background region of the image. The gray level 

image can be changed to binary image by choosing a sufficient limit value T, All necessary data regarding 

the shape and position of the objects of interest (foreground) and the image’s (background) other areas 

ought to be contained in the binary image. To acquire data easily gray image conversation to binary image 

is done, that result in the generalization of the categorization phase. Pixels having unique concentration 

less than the threshold rate is named “black pixels” (0) and belongs to the background. On the other hand, 

pixels over the threshold rate is called “white pixels” (1) and becomes object’s part. There are two sorts of 

thresholding systems: a) global thresholding and b) local thresholding. There is fixed value of threshold T 

in global thresholding. Such threshold’s difficulty is, if the background of the image holds unlike 

enlightenment, failure of segmentation procedure may occur. In local limiting, the threshold value T is not 

fixed, as such the problem of particular enlightenment can be sorted out by using numerous thresholds. 

Automatic threshold scheme utilizing different routines for example Mean, Edge maximization technique 

(EMT), Histogram dependent technique (HDT) is a system where  [44] threshold value T for every image 

is automatically selected by the system exclusive of human intrusion.                                    

 
 

Fig. 5. Examples of two types of thresholding system from left to right: Original cyst US image, local and global threshold segmented 
image. 
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The histogram-based techniques are dependent on achieving the estimated threshold value T. This 

threshold value T divides the two uniform backgrounds and area of the item in the image. The image 

having a uniform area of the item and background and separated by heterogeneous region between them, 

the HDT is appropriate for it.  

In mean based framework, the threshold value T utilizes pixel’s mean value and work fine in stringent 

cases of the images that have generally partly of the pixels connected with the objects and the rest half 

associated with the background. 

The EMT segmentation system relies on finding the most border limit in the image to begin segmenting 

with the guide of border recognition process works. It is applied when the image holds excess of one 

uniform area or where there is an alteration in lighting between its background and item. As it occurs, the 

object sections may be united with the backdrop or a portion of the backdrop may be united with the item.  

The inconvenience of thresholding method is barely two categories are created, and it cannot be tried on 

multichannel pictures. Thresholding does not judge the spatial distinctiveness of an image so it is irritable 

to noise. This distorts the histogram of the image, making the separation more troublesome. In general, 

thresholding procedures are reasonable for images that hold more and clear separation between the 

homogenous regions. It has resulted to enhance the effectiveness of the threshold technique. 

• Clustering based method: It is an unattended learning undertaking, where it perceives a limited set of 

classes known as clusters to categorize pixels [50]. Clustering performs by either grouping pixels or 

partitioning pixels. In the grouping type, it starts with every component as a distinct bunch and combines 

all the distinct clusters in forming bigger clusters. While, in partitioning type, it begins to split into 

successively smaller clusters from the entire image. 

The clustering techniques are divided to attended clustering and unattended clustering. In attended 

clustering to decide the clustering properties, Human interactions required. Whereas in unsupervised 

clustering technique, by own help the clustering properties are defined. There are two popular algorithms 

for unsupervised clustering that are, K-mean clustering and fuzzy clustering.  

1) K-mean clustering: It is an unattended clustering calculation. It categorizes the input data points into 

numerous categories based on natural space from one another. Here data vectors are organized into 

predefined number of clusters. At first, the centroids of the predefined clusters are initialized arbitrarily. 

The centroid and data vector dimensions are same. Every pixel is consigned to the cluster on the basis of 

nearness, estimated by the Euclidian distance measure. Following every one of the pixels are clustered, the 

average of every cluster is recalculated. Repetition of this procedure goes on until no noteworthy vary 

outcome for some fixed number of iterations or for each cluster mean [51]. 
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Fig. 6. K-mean clustering algorithm 

 

2) Fuzzy clustering/Fuzzy c-means (FCM): it is an unsupervised clustering algorithm. Here a dataset is 

grouped into n clusters with all data point in the dataset staying with all bunches to an exact degree [52]. 

The Fuzzy clustering technique can be thought to be better than those of their harder counterparts, since 

they can represent the affiliation between the input pattern data and clusters more actually. Fuzzy c-means 

is a most prominent soft clustering technique; its viability to a great extent is limited spherical clusters. It 

has extra advantage as it is extra lithe than the corresponding stiff clustering algorithm. 

3.3. Feature drawing out and choice 

In the detection and classification of liver cancer feature drawing out and choice [53] are significant course 

of action. However, in computer-aided system only texture features are used as inputs. Texture feature 

extraction is the basic and traditional techniques. Different examination techniques are used to extract helpful 

attributes for US liver cancer image classifications. A few general utilization systems are: 

• Laws Texture Energy Measure (TEM): In order to find various texture types of TEM [54] using 

convolution masks of 5x5. It works to produce 25 2D masks by convolving based on 5 basic 1D masks. 

Afterwards texture picture is filtered with produced masks by extracting helpful attributes. 
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• Gray Level Difference Statistics (GLDS): It is the Probability Density Function of pair pixels lying at a 

particular difference and holding a discrete potency value variation. Least variation of coarse texture and 

large variation of fine texture in Inter pixel gray level values. 

• Spatial Gray level Dependence Matrices (SGLDM) [55]: It counts how often pixels with a potency i and j 

happen at a particular offset to calculate matrix. It makes use of spatial relationships amid gray levels of a 

picture furnishes to total texture properties of the picture 

• Gray level Run length Statistics (GLRLM) [56]: Its  rough texture consists of comparatively long runs than 

short runs. It utilizes fact that containing similar gray level along a particular course of the successive 

points in the image. 

• Gray Level Histogram: Texture parameters are obtained by using the intensity distribution of the image. 

• Fourier Power Spectrum (FPS): FPS used for normal wave like forms with a fixed interval. Fourier 

conversion gives the frequency of form and direction.  

• Edge Frequency on the basis of Texture Features: It is opposite to the autocorrelation role and depending 

on difference concerned gradient little and big distance operator is detected using Micro-edges and macro-

edges. 

• Wavelet Features: It is derived from Region of Interest (ROI) or wavelet transform of the image. Foremost 

types are quincunx, Gabor and dyadic. 

• First Order Parameters (FOP): It defines only diffuse variation and echogenicity characteristics and these 

are sovereign of spatial concern amid pixels. 

     Successive texture analysis methods depend on selecting appropriate features. Some important textural 

features include- contrast (CO), Short Run Emphasis (SRE), Local Homogeneity (LH), Energy (E), Gray 

Level Distribution (GLD), Variance (VAR), Homogeneity (H), Uniformity (U), Sum Entropy (SENT), 

Dissimilarity (D), Angular Second Moment (ASM), Run Length Distribution (RLD), Mean (M), Inverse 

Difference Moment (IDM) and Standard Deviation (SD). 

3.4. Classification 

After extraction of feature and selection process, we have to classify the images into lesion/non-lesion or 

normal/abnormal classes. Classifiers are divided into two types - statistical and neural network, which can be 

classified using unattended as well as attended procedure. An example for numerical unattained classifiers 

such as K means clustering [57] and for statistical attained classifier e.g. Support Vector Machine (SVM) 

[58], [59]. In the meantime for unattended neural grid like Self Organizing Map (SOM) [60] and for attended 

neural grid such as Multi-Layer Perceptron (MLP) [61], [62] are utilized to classify liver images. We 

summarize the different US liver detection and classification techniques are listed below 

• Fuzzy neural network (FNN):  Diverse stochastic associations are find out by it, which represent the 

attributes of a picture. The diverse sorts of stochastic are grouped (set of attributes) in which the elements 

of this set of attributes are blurry. It gives the scope to define various classes of stochastic attributes in the 

comparable type [63]. Accomplishment and correctness depend on the limit choice and unclear integral. 

The drawback of fuzzy neural network is exclusive of previous information output is not fine and accurate 

result depends on the route of decision. 

• Support vector machine (SVM): SVM targets to reduce the superior bound of generalization fault by 

increasing the periphery amid the parting hyperplane and the data [64]. Fine division is gained by the hyper 

plane that has the biggest difference to the closest training data point of any class (operating margin), 

usually bigger the margin lowers the generalization mistake of the categorizer. SVM utilized 

Nonparametric with binary classifier approach. It can manage additional input data extremely proficiently. 

Accomplishment and accurateness depend on the hyperplane choice and core limit. 
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SVM reduces the calculating difficulty, easy to administer decision rule intricacy and fault occurrence. The 

drawbacks of SVM are low result transparency, training is time consuming and finding out of finest limits 

is not trouble-free in presence of nonlinearly separable training data. 

• Artificial neural network (ANN): It is the combination of arithmetic techniques inspired by the 

characteristics of biological nervous system and the tasks of versatile biological learning models. Its plain 

formations are neurons that can be interrelated in distinctive arrangements. It utilizes a nonparametric 

method. Accomplishment and accuracy depends on the grid formation and the quantity of inputs. There are 

many types of ANN classifier, but only few algorithm proven efficiency in neural network learning like 

multi-layer back propagation [65], [66]. The advantages of ANN is a data driven self-adaptive process, 

competently controls noisy inputs, calculation rate is good and its major problem is taking more time for 

training data and complexity in selecting the type grid architecture. 

• Probabilistic neural network (PNN): There are input, output and hidden (summation) layer in Feed 

Forward Neural Network. Pattern layer formed by the input data set with the product of the weights 

tracked by the summing up layer that gets results related to the given class. The output layer contains the 

classification results. The main advantage of PNN classifier is its maximum training speed [67]. The scale 

factor of the exponential activation functions used to control the smoothing parameter (σ) of this classifier. 

• Decision tree: In medical image study it is used as a attended categorizer. This process is comprised of 3 

parts- Dividing the nodes, locate the terminal nodes and sharing of class labels to terminal nodes. A node 

in a tree represents a test for a exact attribute, and each part of that node represents the likely result of the 

test [68]. A pathway in the tree, from the root of the tree to an end leaf, details the categorization, with the 

ending leaf representing an object class. The Decision tree is based on the hierarchical statute based 

method and utilizes the nonparametric process. It is simple and computational efficiency is good, but 

becomes a difficult computation when diverse values are undecided or when variety of results are 

correlated. 

• K-nearest neighbor (K-NN): It is a process to analyze image feature on basis of closest training 

illustrations in the feature space. It utilizes a separate calculate to make guess the class of the new test 

sample. This technique is one of the least complex of all machine learning calculation: a feature is arranged 

by a maximum vote of its neighbors, with the item being allocated to the class most ordinary amongst its k 

adjacent neighbors when k is small and the item  is merely assigned to the class of its adjacent neighbor 

when K=1 [69]. 

• Bayesian neural network (BNN): It used in many areas of medicine. In US features prophetic of 

malignancy have been widely analyzed and the reactivity and specificity of these attributes for malignancy 

are easily obtainable [70]. The scheme of BNN is to cast the work of training a grid as a difficult of 

inference, which is sorted out utilizing Bayes theory [71]. A Bayesian neural network is extra optimized 

and strong in comparison to traditional neural grids, particularly when the training data set is not big. 

3.5. Performance estimation 

Quantitative measurement of system correctness is measured in term of true positive (TP), true negative 

(TN), false positive (FP), false negative (FN) with relation to positive predictive value (PPV), negative 

predictive value (NPV), sensitivity, specificity and accurateness [72]. It is given by: 
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• TP represents number of diseased lesions that is rightly classify as diseased. 

• TN represents number of non-diseased lesions that is properly classify as non-diseased. 

• FP represents number of non-diseased lesions that is incorrectly categorized as diseased. 

• FN represents number of diseased lesions that is incorrectly categorized as non-diseased. 

• The accuracy used to diagnose diseased and benign cases, the sensitivity calculated for the classification 

model to categorize diseased cases and the specificity used to evaluate benign cases. 

• PPV represents percentage of predictive positives that is always positive. 

• NPV represents percentage of predictive negatives that is always negative.  

     Some authors have evaluated their proposed system just by manual inspection performed by radiologist 

Specialists while others have exploited area under receiver operating characteristic (ROC) curve analysis. 

ROC applied to demonstrate the competence of the trade-off between the TP and the FP [73]. 

4. Related work 

     In recent years, the liver cancer analysis using CAD system has turned into a dynamic area of research. 

There are different approaches that are proposed for liver ailment analysis on the basis of medical picture 

analysis. In this section, we elaborate various techniques. 

     In article [62], a CAD system is proposed by Mittal et al. by which doctors can be guided in diagnosis of 

focal liver ailment from 2D mode US images. The suggested technique has been utilized for detecting and 

analysis of four types of focal liver ailment and compared them with normal liver. At the first image noise are 

reduced, then they divided the areas of interest to 800 segmented areas. Next, on the basis of the texture 208 

features are extracted from each segmented region. Finally, they proposed use of Artificial Neural Networks 

(ANN) in reducing the training errors with two phases to diagnose the ailment. The general precision 

achieved by the CAD system was86.4%. 

     Authors on paper [63] proposed an algorithm using Fuzzy Neural Network (FNN) to automatically 

characterize diffused liver diseases. For classification utilizing RUNL, GLDS, FOP, SGLDM and FDTA 12 

texture features were taken out. Then again, the features were reduced to six utilizing multiple feature 

combinations. After that to produce blurry sets and create class edges in a statistical way voronoi diagram of 

training patterns was built which was utilized by FNN. The Authors showed 82.67% classification accuracy 

for verification using 150 liver images. 

     Design made from M-mode motion curve of liver and B-mode US liver picture on the basis of feature 

extraction by Guohui et.al. [74]. They took out 25 features utilizing M-mode movement curve through GLDS, 

FOP, RUNL, and a couple of additional extraordinary attributes. After taking out attribute, they used Fisher 

linear decision rule for choosing 20 helpful features depending on the minimum classification error. 

Experiment’s outcome divulged that features gained utilizing movement curve were further reasonable for 

discerning ordinary or cirrhosis, liver in expressions of reactivity and specificity. 

     For US liver images categorization, Cao et al. suggested different process [75]. For taking out feature 

SGLDM and FDTA on 64x64 pixels sub-image were utilized by them. In this way the joint feature vector was 

gained, which was utilized to differentiate 273 sound and 99 fibrosis liver pictures. Fisher linear classifier and 
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SVM (leave-one-out calculation) were utilized. It was found effective in expression of categorization rate. Yet 

it is proved that the joint feature vector is a bit better. 

     The author’s of paper [76], used an algorithm to recognize diffused liver ailment utilizing Gabor wavelet 

and categorized ultrasonic liver picture into usual, hepatitis and cirrhosis categories. Familiar three advantages 

of Gabor wavelets were used by them, which is invariance to swing of picture contents, maximum joint space 

frequency resolution, and littler feature vector. Attributes were extricated and pictures were categorized into 

various classes utilizing Gabor wavelet change, dyadic wavelet change, statistical moments and attributes. 

    Researchers under lead of Balasubramanian suggested a method [77] for automatically categorized benign, 

malignant, cyst and regular liver pictures utilizing texture attributes via TEM, SGLDM, RUNL, and Gabor 

wavelets. By manual selection and on the basis of Principle Component Analysis (PCA) on the basis of idea 

attributes, eight attributes were selected. K-means clustering calculation used by PCA based features whereas 

physically chosen attributes were categorized by BPN. Finally, it is proved that categorization outcome of 

BPN were improved than K-means. Poonguzhali et.al., [78] authors classified same liver diseases. The 

attribute taking out from the ROI of US pictures through Autocorrelation, TEM, Edge Frequency method and 

SGLDM. Optimal attribute sets selected from extracted features using PCA. For K-means categorization 

afterwards optimal features were utilized. 

     Jeon et al. presented a technique to classify focal liver lesion based on multiple ROI, to obtain more 

reliable and better classification performance [79]. This technique can be utilized to classify focal liver 

ailment, for example Hem, Cyst, and Malignancies. From the complete US image the ROI features are 

extricated at first. Lastly, the categorization of cysts and hemangiomas, categorization of cysts and 

malignancies, and categorization of hemangiomas and malignancies are classified using the SVM classifier. 

The preprocessing stage is complicated since it affects the subsequent stages and improves the quality of the 

images. Their method has shown the overall accuracy of 80%. 

     Ribeiro et.al., [80] implemented an algorithm using three dissimilar classifiers to classify the different 

chronic liver ailment. The classifiers utilized are SVM, KNN, and decision tree. The outcome showed that the 

SVM gained superior performance than the KNN and decision tree classifier. The classification’s precision 

was 73.20%utilizing SVM with a radial basis kernel. Yet, the general accurateness of this process is not high. 

In another paper [81], the authors given a partly automatic method to categorizing unceasing liver ailment 

from US liver pictures. For this approach the data, which is collected from laboratories and clinic, are 

generated by utilized SVM classifier with a polynomial core of the fourth degree. The data achieved 91.67% 

of sensitivity better than previous approaches. In the coming works, they will extend their method of merging 

more textural features. 

A few more compact summaries of different author’s algorithms and accuracy of their proposed technique 

up to recent years presented in table 1. 

 

Table 1. Summary of various researches on CAD for liver diagnosis 

Authors/Year Number of 

samples 

Features Classifier Performan

ce 

Fayazul et al ., /2012 [82] 88 Wavelet packet transform SVM ~95% 

Acharya et al., /2012 [83] 100 Wavelet and Higher order spectra feature DT 93.3% 

Jitender et al., /2012 [84] 56 Wavelet packet transform SVM 88.8% 

Jitender et al., /2013 [85] 31 Wavelet packet transform and Gabor 

Wavelet transform 

SVM 98.3% 

Jitender et al., /2013 [86] 108 FOS, GLCM, GLRLM, FPS, GWT, TEM BPNN 87.7% 
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Jitender et al., /2013 [87] 108 FOS, GLCM, GLRLM, FPS, TEM, Gabor SVM 87.2% 

Nivedita et al., /2014 [88] 42 GLCM SOM and MLP 81.5% 

Jitender et al., /2014 [89] 108 FOS, GLCM, GLRLM, FPS, TEM, Gabor Neural network ensemble 88.7-95% 

Rivas et al., /2015 [90] 7 GLCM Binary logistic regression 95.45% 

Wu et al., /2015 [91] 288 Mean, SD, Kurtosis, Skew SVM and Random forest 72.81% 

Hwang et al., /2015 [92] 115 FOS, GLCM, TEM, Ecogenecity Baysian regularity learning 96% 

Acharya et al., /2016 [93] 100 GIST descriptor PNN 98% 

 

5. Conclusion 

     This study proposed in a new way of categorizing and summarizing the different stages of the 

computerized system scheme applied to ultrasound (US) with focus on liver cancer diagnosis. The up to date 

review of existing approaches in the literature has been reviewed. To the best of our knowledge, there has 

been no unique consensus on computer aided diagnosis (CAD) system. Many different algorithms mentioned 

in the state of art used to find and design optimal solution for automatic liver cancer diagnosis scheme. In our 

opinion, there should be a trade-off, strengths and weaknesses associated with the choice of the algorithm 

used for image analysis. In the future, researchers must pay attention to data pre-processing stage meanwhile 

minimizing motion artifacts, image noise and tolerable classification time using optimized neural network. It 

might be possible that integrating multiple effective techniques, potentially improve the general correctness, 

exactness and techniques concerned to speed of segmentation, also lessening the quantity of manual 

interactions of user. Moreover, greater part of the work in the literature concentrated on detection and 

classification of B-Mode US imaging.  Our research in the future will be directed by introducing a novel CAD 

algorithm for 3D high resolution ultrasound imaging device that accurately characterize and detect liver 

lesions by including more features and classification techniques such as duct extension, Microlobulation and 

compressive sensing (CS) framework. In the upcoming years, CAD system will be a useful device for 

discovery sooner and treatment of liver lesions by radiologist and diagnostic examinations in everyday 

clinical work. 
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Abstract—Industrial wireless sensor networks (IWSNs) are 
getting popular for indoor monitoring of heavy machinery and 
large factories to make a reliable decision on the state of machines 
in a certain area of interest. However, the indoor wireless 
communication channel is not always reliable, and observations of 
some sensors cannot be reported successfully to the base station. 
In order to deal with this problem, we propose a cooperative 
WSN scheme by introducing a novel cooperation mechanism and 
a medium access control (MAC) protocol. The proposed scheme 
effectively increases the probability of correct decision about the 
state of the machine, reduces the probability of false alarms at a 
given signal level, and reduces the overall energy consumption as 
compared to non-cooperative schemes. We also present a closed-
form expression for the symbol-error rate analysis of the 
proposed scheme, which shows that our proposed scheme achieves 
full diversity order offered by the cooperation scheme.  

Index Terms—machine condition monitoring, industrial 
wireless sensor networks, cooperative communication, medium 
access control, indoor industrial monitoring.  

I. INTRODUCTION 
IRELESS sensors are widely used for machine 
condition monitoring (MCM) and maintenance, 

especially the machines which are located in inaccessible areas 
or are hard to be monitored by human, such as nuclear plants, 
unmanned underwater vehicles (UUVs), or in large factories. 
In addition, wireless sensors are also used for environmental 
monitoring, surveillance, healthcare, and security services  [1]. 
But these sensors are prone to failure and the wireless 
communication channel may also fail sometimes due to severe 
conditions. Therefore, it is a good idea to use cooperation 
among the sensor nodes that communicate with a central base 
station to ensure the accuracy and timeliness of information 
gathered from the nodes  [2]. 

The wireless communication channel in indoor industrial 
environment suffers from severe conditions such as 
propagation loss, time variation, and multipath fading etc. The 
quality of a wireless communication link is very important for 
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transmitting the information collected by the sensors to a 
central signal processing unit without significant amount of 
error. There has been a lot of research on multipath fading in 
wireless networks and channel characterization for industrial 
environments, such as  [3], and a work that deals with the 
underground link quality characteristics  [4]. However, a recent 
work and the references therein, provides a suitable channel 
model for indoor industrial environments  [5].  

A bad communication link results in higher energy 
consumption because of repeated transmissions or use of 
higher transmit power by the nodes, and reduces the overall 
throughput of the network. Similarly, the amount of data 
transmitted by the network nodes and the amount of processing 
at the receiver also contributes towards the energy 
consumption per bit of the network. Various techniques have 
been proposed to deal with these issues in wireless networks, 
such as user cooperation in communication  [6]- [8] for 
improved spatial diversity, time-slot reassignment  [9], and 
sleep scheduling  [10] strategies used to improve the energy 
efficiency of the WSN. In the case of cooperation among 
sensor nodes, data aggregation at the intermediate nodes is an 
important factor of multi-hop communication. Since the size of 
data packets is usually small and are addressed to a single 
destination, therefore, reducing the number of transmissions 
and the size of control packet overhead, improves the energy 
efficiency and throughput of the system  [11].  

In this paper, we propose a cooperation scheme for IWSNs, 
in which the network consists of small cooperation groups of 
sensors. Each node in the cooperation group shares its 
information with all others in the first phase. In the second 
phase each node forms a cooperative data packet and sends it 
to the base station (BS). In this way, the nodes help relay 
information for its neighbor nodes with a significant reduction 
in energy consumption at the cost of an acceptable reduced 
throughput. 

A. Related Works and Contributions of this Paper 
Recently, network coding has become one of the most 

widely used techniques for cooperation among nodes in a 
wireless communication network. Some works that deal with 
improving the energy efficiency and packet delivery ratio 
include, a Reliable Reactive Routing Enhancement (R3E) 
algorithm for IWSN, which finds a guide path towards the sink 
and provides a reliable and energy-efficient packet delivery 
against the unreliable wireless links  [2]. A physical-layer 
cooperative transceiver, which can use either amplify-and-
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forward (AF) or decode-and-forward (DF) relaying to improve 
the packet error rate, was proposed in  [6]. The work in  [7] 
presents an adaptive-gain M-relay AF cooperative system with 
conventional relay (CR) and best relay (BR) selection schemes 
and shows that the BR scheme provides higher asymptotic 
error limits than that of the CR scheme. A generalized 
dynamic-network code (GDNC) for a network of M users 
sending independent information to a common base station 
using independent block fading channels was proposed in  [8]. 
The proposed scheme offers a much better tradeoff between 
rate and diversity as compared to the DNC. Similarly,  [12] 
presents a selective cooperative relaying protocol with 
periodic, adaptive, and reactive relay selection mechanism. 
The scheme improves packet delivery ratio and reduces the 
number of retransmissions for successful delivery.  

An adaptive and energy-efficient TDMA-based MAC 
protocol called receiver-driven MAC (RMAC), which uses a 
timeslot stealing and timeslot reassignment mechanism, was 
proposed in  [9]. RMAC performs better in terms of average 
packet delay and average power consumption per packet as 
compared to S-MAC. An energy-aware sleep scheduling 
mechanism for wireless sensor networks was presented in  [10], 
which significantly reduces the variation in energy level 
among sensors and extends the lifetime of the network by 
around 18%. A practical wireless model-based predictive 
networked control system (W-MBPNCS) was proposed in 
 [13], in order to achieve a decent control under severe 
impairments, such as unbounded delay, burst of packet loss, 
and ambient wireless traffic.  

Another solution, used for MCM in large factories, 
distributes the signal processing operations among the central 
unit and the sensor nodes to reduce the energy consumption in 
data transmission and improve the network throughput, was 
proposed in  [14]. Similarly,  [15] presents an IWSN-based 
MCM system which overcomes false alarms caused by loss of 
data, interference, or invalid data. An improvement in the SNR 
and false alarm detection rate, after Dempster-Shafer Theory 
(DST)-based fusion method, was observed. 

Most of the above-mentioned works use cooperative and 
selective relaying to improve packet delivery and energy 
consumption of the network. However, relay selection comes 
with an extra overhead of reduced network throughput and the 
problem becomes more evident in the case of multi-hop and 
multiple cluster sensor networks. We propose a method in 
which the cooperation groups are fixed in the organization 
stage of the network. A source node acts as a relay node in the 
cooperative phase of transmission. A relay node uses data 
aggregation and AF relaying to send the cooperative packet to 
the BS. The contributions of this paper are as follows, 
• We propose a novel two-phase cooperation scheme that 

works in a dual-hop manner. 
• Our proposed scheme does not involve the extra overhead of 

relay selection and retransmission to ensure successful 
packet delivery, unlike  [2],  [7], and  [12]. 

• The relay does not need to check whether the data was 

 Cooperation Group 

Base Station 

 
Fig. 1. Cooperative wireless sensor network 

correctly received. It forwards the detected binary symbols 
without regard to the error induced in it in the first hop. 

• We also propose a TDMA-based MAC protocol for the 
organization and operation of the sensor network. 

• A closed-form expression has been derived for the symbol 
error rate analysis and it is shown that the proposed method 
achieves full diversity order. 

• We have carried out the throughput and energy consumption 
analysis to show the effectiveness of the proposed scheme. 
The rest of the paper is organized as follows. Section II 

describes the network design. Section III explains the MAC 
and cross-layer design. Section IV explains the fusion 
mechanism. Section V presents performance analysis. Section 
VI presents the simulation results, and Section VII concludes 
the paper.  

II. NETWORK DESIGN 
Fig. 1 shows a cooperative WSN where the sensor nodes 

share their information with each other in the first phase and 
send the cooperative information to the base station in the 
second phase.  Inter-sensor channels are shown by dotted lines 
while the channels from sensor to base station are shown by 
solid lines. We assume that some of the communication links 
between the sensors and from a sensor to the base station 
might be broken at a particular time instance, shown by long-
dashed lines. 

A. Sensor Deployment 
Sensor deployment deals with the problem of coverage and 

connectivity of the sensor network while minimizing the power 
consumption for prolonged network lifetime and to transmit 
the sensed data timely and efficiently to the BS. In our case of 
indoor industrial area monitoring, the sensors could be 
deployed according to a pre-planned location map around 
huge machines in the factories. Considering these scenarios, 
our coverage problem becomes a static coverage problem, 
where the nodes do not change their positions. Assume that the 
sensing range of a sensor is r, the minimum number of sensors 
required to cover the area of interest  [16], is given as, 
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(a) (b)  
Fig. 2. Sensor nodes deployed in a rectangular area. (a) Triangular-grid, 
ensuring the coverage of the whole area with minimal overlap. (b) Indoor 
communication scenario showing a floor layout. 

where N is the minimal number of nodes needed to cover the 
area of interest, PAREA. This kind of optimal regular 
deployment is shown in Fig. 2(a). Every three nodes, whose 
sensing ranges intersect, form an equilateral triangle with each 
side 3d r= . 

In order to ensure connectivity, we use the argument in  [17] 
for minimum number of neighbor nodes, which says that for a 
network to be connected, ( )log NΘ  (0.074logN to 
5.1774logN) neighbors are necessary and sufficient. Therefore, 
we choose the minimum number of neighbors for a sensor to 
be equal to 6, with which it can communicate in a single-hop 
manner. This is used to enable cooperative transmission to the 
base station for a combined decision on the sensed data. 

B. Sensor Localization 
Sensor localization is used to locate the sensor positions and 

time of the observed information in the network. We consider 
a medium-sized fixed sensor network. Each sensor contains its 
local coordinate information, which is sent to the base station 
along with its observation. The local coordinate system (LCS) 
field in the transmitted packet contains geographic coordinates 
and floor number in case of multi-story buildings. The 
received signal strength (RSS) and angle-of-arrival (AOA) 
information could be used to find the sensors’ distance and 
angular position, respectively, but the LCS field in the 
transmitted packet already contains the position information.  
Therefore, the only information that needs to be determined is 
the time of the event. Thus, along with the LCS, we use the 
time-of-arrival (TOA) information in order to locate the time 
of the event. This will help us localize the received 
information in both time and geographical location of the 
observation.  

The transmitted packet structure and alarm information by 
each sensor is shown in Fig. 3. This information will be 
decoded at the base station by the fusion center to find out the 
nature of the observations at a particular location in the 
network and activate response mechanisms on time. 

 Sensor i 

 

N 

 

 

Base Station 

Multipath Fading 

O.K. 
Caution 
Warning 
Danger 

Transmitted alarm 
information  

Fig. 3. Information transmission to the base station. 

C. Time Synchronization 
In our problem of a medium-sized network, most of the 

computations are done by the base station and the sensors are 
supposed to be in harsh environmental conditions which make 
it difficult for fine-grained synchronization algorithms to be 
used. Therefore, we adapt the Wisden system  [18] of coarse-
grained synchronization. In our synchronization technique, 
each sensor records the delay from the time of 
generation/reception of a sample to the time it is transmitted to 
the next hop or BS. Also, the cooperating node will record its 
own time delay for the packet that it processes before sending 
it to the base station. The TOA field in the transmitted packet 
contains this time delay information of all the nodes that the 
packet has traversed before reaching the base station. 

Assume that the time spent by each packet k at the sensor 
node i is k

iλ . Let the number of hops the packet traverses be n, 
and the time of arrival of the packet k, at the base station D, be 

k
DT . Then, the start time of the packet at the origin node s, can 

be calculated as, 

 
1

n
k k k

s D i
i

T T λ
=

= − ∑ . (2) 

  
The second term in (2) represents the time spent by the 

packet in the network. Thus, we can get the time of origination 
of the observation at the base station by subtracting the total 
time spent in the network from the current time at the BS. The 
BS is assumed to have an accurate reference clock periodically 
synchronized with the GPS time reference while each sensor 
node has its own local clock. This method of achieving time 
synchronization is simple, cost-effective, and robust to many 
sources of latency that contribute to error but is vulnerable to 
varying clock drifts in the intermediate nodes. But we assume 
a well-maintained medium-sized network of nodes and a 
moderate accuracy requirement; therefore, clock drift is not a 
very critical issue and can be traded off with the simplicity of 
the approach. 

D. Wireless Link Characteristics 
We consider a medium-sized indoor industrial WSN with 

mixed line-of-sight (LOS) and non-line-of-sight (NLOS) 
configurations, therefore we will use the statistical one-slope 
radio propagation model for path-loss  [5], given as 
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where, Pr,dB and Pt,dB are the received and transmitted powers 
in dB, PLdB is the Friis free-space path-loss in dB with distance 
d from the transmitter, η is the path-loss exponent indicating 
the rate of decay of the mean signal with respect to distance, d0 
is a reference distance, and Xσ,dB is a zero-mean Gaussian 
random variable with standard deviation σ. The model in (3) 
provides a very good approximation for the indoor industrial 
wireless channel by considering the multipath and shadowing 
effects present in the environment. However, the values of η 
and σ need to be carefully chosen according to the 
environment, as described in  [5] and the references therein. 

Fig. 2(b) shows a floor map of a building with sensors 
scattered all over the floor that communicate to a common BS. 
Each link in the network is modeled by using (3) and 
incorporating η and σ with respect to indoor communication 
scenario. The inter-node channels, βi, and the node-destination 
channels, αi, are modeled as lognormal distributed Rayleigh 
fading channels. 

The wireless nodes are clustered into different cooperation 
groups by their geographic locations. The cooperative 
transmission is done within each cooperation 
group, { } 1i iV == NV , where N is the maximum number of nodes 

in a cooperation group. The wireless nodes 'iV s  in a 
cooperation group are physically close to each other and the 
destination node is relatively far away from the group. Further 
assumptions are that the channels from each node Vi to the 
destination D is modeled as a lognormal fading channel with 
fading coefficient iα , which is assumed to be fixed for a 
sufficiently longer period of time. As the group of wireless 
nodes is collocated and the destination is relatively far away, 
the fading coefficients iα ’s are assumed to have the same 
average magnitude determined by the path loss from Vi to D. 
Also, the fading channels from Vi to D, are independent, thus, 
the fading coefficients iα ’s, from Vi to D, are i.i.d. lognormal 
random variables. The channel from a transmitting node Vi to a 
node Vj within a group are also modeled as lognormal fading 
channels with fading coefficients ,i jβ . To further simplify the 

analysis, it is assumed that the relative distance among these 
nodes is almost the same. Under this assumption, ,i jβ ’s are 

also i.i.d. lognormal random variables with the same average 
magnitude determined by the path loss among them. 

III. MAC AND CROSS-LAYER DESIGN 
Some of the major sources of energy wastage in WSNs are 

packet collisions, overhearing, packet overhead, and idle 
listening  [19]. In order to reduce the energy loss to collisions 
and overhearing, we will use a TDMA-based MAC scheme in 
a two-phase communication model. Scheduling reduces packet 
collisions over the air, while the overheard information by 

 10-bit 10-bit 2-bit 
LCS Observation TOA (a) 

×10-bit ×10-bit ×2-bit 
LCS (1… ) Observation (1… ) TOA (1… ) 

10-bit 
Td (c) 

 

 
  

 

10-bit 10-bit 5-bit 
SourceAddr Bitmap DestAddr 

2-bit 
Timeout (b) Width 

32-bit 

 
Fig. 4. (a) Data packet structure of each node in Phase 1. (b) Schedule 
packet structure used for organization of the network. (c) Data packet 
structure of each node in Phase 2 for cooperative data transmission. (d) 
Cooperation group of 12 nodes in the sensor network. 

each sensor is used to reduce the error rate and improve data 
transfer to the base station, which helps reduce the energy 
wastage in the network. For a medium-sized network of fixed 
sensors, we propose this protocol to meet our needs of 
scheduling, to reduce the header length and computation time. 

A. Design of the Data Packet 
As mentioned earlier, the data packet contains LCS, TOA, 

and Observation fields. The LCS contains the location 
information of the sensor which is embedded in it during the 
network deployment stage. It contains the following 
information fields: 
• Floor Number: Although this parameter may vary according 

to the design under consideration, we choose this value to be 
3 bit in order to cover up to 8-story buildings with our 
design. 

• Sensor ID: Each sensor on a floor is assigned a unique 
identification number. We assign 7 bits to this field to allow 
up to 128 sensors on each floor of the building. 

• TOA: This field is of 10 bits and contains the time duration 
between the time-of-arrival/observation of information on 
the current sensor and the time it was transmitted. 

• Observation: The 2-bit observation field contains the alarm 
information, i.e., OK, Caution, Warning, and Danger. 
The resulting data packet is a 22-bit packet as shown in Fig. 

4(a). If ∆ is the total time taken by the network to transmit one 
sensing event to the base station in a TDMA manner, then in 
the worst-case scenario, each sensor may have to wait for ∆ 
seconds before it can send its data to the base station.  

B. Design of the Schedule Packet 
In our proposed scheme, each sensor transmits a schedule 

packet to select the winner of a given time slot, which is called 
Schedule, as shown in Fig. 4(b). 

The source and destination node addresses of the current 
schedule packet are called SourceAddr and DestAddr, 
respectively. These fields contain the LCS information of the 
corresponding nodes and are therefore 10 bits each. 

Timeout is used to resend the scheduling information to the 
next node in case it did not respond at the first time. The 
number of retries is limited to 4, after which the node is 
considered dead, its bitmap is set to 1, and the DestAddr is 
changed to next node in the schedule. 

Width defines the number of nodes in a cooperation group 
and in turn the size of the data packet each node has to send to 
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the BS. This value is set to 5 bit in our design for a maximum 
of 32 nodes in the cooperation group. 

Bitmap contains a bitmap of all the sensors in the network. 
A ‘0’ in the bitmap means the node is not organized and a ‘1’ 
means the node is organized in the network. A node ID 
corresponding to the bitmap is saved at each node in the 
network, so that it knows which bit represents which node in 
the network. 

C. Network Organization 
Our proposed network consists of fixed nodes and therefore 

mobility issues are not considered. Further, the network is 
assumed to have local groups of nodes that communicate 
cooperatively with the destination in a dual-hop manner. There 
are no cluster-heads formed because all the nodes in a group 
will schedule their communication links independently and in 
collaboration with other nodes in their vicinity. As mentioned 
earlier, a node is able to communicate with a minimum number 
of neighboring nodes in the network. Each node keeps a list of 
6 to 20 neighboring nodes by saving the source address of 
these nodes which will be broadcasted using a low-frequency 
control channel. A node will decode the received information 
only from the nodes within its neighbor list. The rest of the 
received information will be discarded. The cooperation group 
will be updated periodically depending upon the application 
and conditions of the sensor nodes. 

Based on the above described scheme, we propose a 
TDMA-based MAC protocol for the operation of the WSN. It 
consists of two main steps, organization of the nodes and 
operation of the network, and therefore referred to as Organize 
and Operate Protocol (OOP). The OOP is described as 
follows, 
1. Organize 

(i)  BS sends Organize message to all the nodes in the 
network, using the Schedule packet described earlier. 

• The Bitmap is set to all 0’s, i.e., none of the nodes is 
organized as yet.  

• It also contains the address of the first node to start 
the Organize process from. This address will be 
generated randomly on each Organize message. 

(ii) Upon receiving the Organize message, each node turns 
to Organize mode, i.e.,  

• Stop all the current transmit/receive operations. 
• Update its current list of neighbor nodes. 
• Listen to the received Schedule packet from neighbor 

node. 
• After receiving a Schedule packet, each node updates 

its information in the Schedule packet, sets its 
corresponding bit in the Bitmap field to ‘1’ and passes 
the Schedule packet to the next node. 

(iii) When the bitmap becomes all 1’s, 
• The current node transmits this information to the BS, 

by setting the DestAddr to that of the BS. 
• The BS, upon receiving this packet, sends a global 

message to all the nodes indicating to start normal 
sense and transmit operations mode, called Operate. 

2. Operate 
Upon receiving the Operate message from BS, each sensor 
then, 
(i)    Senses the surrounding environment and wait for its 

turn to transmit. 
(ii) Shares the data with the nodes in its neighbor list. 

• Each node in the neighbor list receives this data and 
stores it in its local memory. 

(iii) Upon receiving the data from all the nodes in its 
neighbor list, 

• IF this was the first node in Organize stage*, 
    Transmit the cooperative data packet to the BS,  
    ELSE 
    Wait for its turn to transmit. 

(iv) Go to (i) 
 
*Each node stores the bitmap and next node DestAddr 
information during the Organize stage, which is also used in 
the operation scheduling. 

D. Cooperative Communication 
Assume that the network is organized in sub groups of 

nodes that cooperate with each other, called cooperation 
group. We use the AF relaying protocol at the relays. The 
communication is done in two phases, as follows, 

1) Phase 1 
After sensing the information from its surrounding area, 

each sensor in the cooperation group shares this information 
with the nodes in its neighbor list in a TDMA manner. Every 
node in the neighbor list that receives this data, stores it in its 
local memory. The received signal ri,j at the relay node Vi, 
from the source node Vj, in phase 1 is, 

 
 , 1 , ,i j s j i j i jr E v nβ= +  (4) 
  

where Es1 is the transmitted symbol power in phase 1, vj is the 
BSPK-modulated symbol sent from node Vj, and ni,j is the 
additive white Gaussian noise at node i from node j, with 
variance, N0. The data packet sent by each node in this phase is 
shown in Fig. 4(a).  

2) Phase 2 
The size of the data packets sent by a sensor is usually small 

and sending each packet separately to the BS requires a large 
number of transmissions, which increases the energy 
consumption. Therefore, aggregation of data is used at the 
intermediate nodes to reduce the control packet overhead and 
the number of transmissions required to send the same amount 
of data to the BS. The aggregated data is forwarded to the BS 
by using the AF protocol, in which, the relay equalizes the 
channel fades between the source and the relay by amplifying 
the received signal by a factor that is inversely proportional to 
the received power. 

Each node Vi, combines the received information from the 
nodes within its cooperation group, V , to form a cooperative 
data packet. The cooperative data packet represented by ix  at 
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a node i, consists of a concatenation of the received and 
amplified packets from all the nodes in the cooperation group 
( , ,ˆi j i juζ , 1,2,...,j = N  and j i≠ ) and its own information iv . 

,ˆi ju  is the detected signal and ,i jζ  is the amplification factor at 
the relay node Vi with a corresponding source node Vj. The 
cooperative data packet is formed as, 

 , ,ˆi j i j
i

i

u j i
x

v j i
ζ ≠

=  =
, (5) 

where 

 , 2

1 , 0, ,

1
i j

s i j i jE N
ζ

β
=

+
, (6) 

and N0,i,j  is the input noise variance at the relay i from node j. 
The cooperative data packet sent by each node in this phase is 
shown in Fig. 4(c). In the cooperative packet, all the LCS and 
TOA information of the cooperation group including self-
information is concatenated in sequential order. Td contains 
the time spent at the relay node and Observation contains the 
observed alarm information by each node in the cooperation 
group, V . 

Upon its turn, every node transmits the cooperative data 
packet to the BS. The received signal at the BS, yi,D, can be 
written as, 

 , 2 , ,i D s i i D i Dy E x nα= +  (7) 
 

where ,i Dα  is the lognormal fading channel coefficient from 
node Vi to the destination D and Es2 is the transmitted symbol 
power in phase 2. ni,D is the additive white Gaussian noise at 
destination D from node i, with power spectral density, N0. 
More specifically, the received signal at the destination D can 
be written as, 

 1 2
, , , ,2

1 , 0

s s
i D i D i j i i D

s i j

E E
y v n

E N
α β

β
′= +

+
, (8) 

where 

 2
, , , ,2

1 , 0

s
i D i D i j i D

s i j

E
n n n

E N
α

β
′ = +

+
. (9) 

Since the noise terms ni,j and ni,D can be assumed independent, 
then the equivalent noise ,i Dn′  is a zero-mean complex 
Gaussian random variable with variance given as 

 
2

2 ,
0 02

1 , 0

1s i D

s i j

E
N N

E N

α

β

 
 ′ = +
 + 

. (10) 

IV. FUSION AT THE BASE STATION 
The information from each cooperation group is received at 

the base station, decoded, and combined at the fusion center. 
Each packet contains its sensor ID and cooperation group ID 
as well as the observed information. Each node sends its own 
as well as the observation from all other sensors in its 
cooperation group to the BS in a combined packet. A majority 

TABLE I. DATA FUSION AT THE BASE STATION 
  si  
j s1 s2 s3 s4 s5 s6 s7 R(j) 

1 D O O O C C W O 
2 C C W W W W D W 
3 O O C C C C C C 
4 W W D D D D D D 
5 D D W C W C C C 
6 O C W W W W W W 
7 W C C O O O O O 

 
rule decision is made on the observations after collecting the 
received information from each sensor in the cooperation 
group. This helps increase the probability of correct decision 
at the BS even in bad channel conditions. This is illustrated in 
Table I, where j is the index of the cooperating node whose 
information is received from the sensor si. Here, O, C, W, and 
D represent OK, Caution, Warning, and Danger, respectively. 
A final result R(j) is obtained based on majority rule as shown 
in Table I. A majority vote decision, which consists of votes 
from sensors in the cooperation group V , can be 
mathematically represented as follows, 
 

 ( ) ( )( )
1

arg max i iX i
R j w I s j X

=

= =∑
N

 (11) 

 
where ( )is j  is the jth cooperative symbol received from a 
sensor si with the information X. I(.) is an indicator function 

given as, ( )
1  is true
0  is false

x
I x

x


= 


. For example, in the case of 

alarm information, { }O,C,W,DX = . Therefore, I(x) will be 

true if the received information ( )is j  is equal to one of O, C, 
W, or D, otherwise it will be false. wi is the weight associated 
with each sensor’s information. In this work, the channels are 
assumed to have equivalent average magnitude, therefore the 
weights are set to 1 N . Note that, if the weights wi are set to 
1 N , (11) results in the mode of 1 2 3, , ,...,s s s sN . 

V. PERFORMANCE ANALYSIS 
Fig. 5 shows the proposed dual-hop multiple-branch 

communication system where each relay has multiple branch 
inputs and a single branch output, each working in an 
orthogonal manner based on TDMA. AF scheme is used at the 
relays in order to repeat the symbols for the neighbor nodes. 
The resulting symbol-error rate (SER) can be approximated as 
stated in the following theorem. 
 

Theorem 1: If all of the channel links of the proposed multi-
hop multi-branch cooperative system are known, the SER of a 
sensor node i at the destination D in the proposed system, can 
be tightly approximated as, 
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,
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,

1
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s eq i D
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q σ σ
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=
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  = +
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∏

∏

N
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where ( )( ) ( )
( )1

0

1 1M MF x d
x

π
q q

π q
−

= ∫ , M is the modulation 

symbol size, ( )2sin MPSKg π= , , ,eq i Dg represents the 

instantaneous SNR per relay node at the destination, and 2
,i jσ , 

2
,i Dσ  are the variances of the Rayleigh fading channel 

coefficients βi,j and αi,D, respectively. 
Proof: See Appendix A. 
Since, we use the majority voting rule in the fusion process, 

to decide a final outcome. Therefore, the probability of error, 
in the result after fusion, can be computed by using the 
Binomial theorem. Let, sP , be the probability that the 

information sent by a sensor has error, and 1
2l +=   

N  be the 
minimum number of votes needed for majority, then the 
probability of error in the consensus is given as, 

 

 ( )( ) 1 mm
e s s

m l
P P P

m
−

=

 
= − 

 
∑

N
NN

N . (13) 

 
With (13), we expect to obtain a diversity order of l in the final 
SER of the proposed system. 

A. Throughput and Energy Consumption of the Network 
In this subsection, we aim to compare the non-cooperative 

and cooperative schemes in terms of throughput and energy 
consumption of the network. For the sake of a fair comparison, 
we assume a traditional dual-hop communication scheme for 
the non-cooperative mechanism, in which each node’s data is 
forwarded by a relay node in the second hop towards the BS 
without any cooperative mechanism. Let B represent the 
number of bits per symbol, and the symbol duration is given 
by 1

s
s

T f= , where fs is the symbol rate. Then, the throughput 

in case of non-cooperative (Tnc) and cooperative (Tc) dual-hop 
communication is given as, 

 

 
 bps

 bps

nc
s s

c
s s

BT
T T

BT
T T

=
+

=
+

N
N N

N
N NN

, (14) 

 
where the addition in denominator represents the time taken by 
two hops to transmit the symbol to BS. The additional N  in 
the denominator for Tc comes from the fact that each node 
relays the data of N  nodes in the second phase. The time 
taken by N  nodes to transmit N  packets to the BS in the 
case of non-cooperative ( nc ) and cooperative ( c ) scheme is 
then computed as, 

 

D 

s1 

s2 

s3 

 

s1 

s2 

s3 

 

Phase 1 Phase 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. The proposed two-phase communication system. In Phase 1, sensor s1 
in the cooperation group sends its information to all other sensors during its 
time slot. Similarly, all the other sensors send their information to s1 during 
their allocated time slots. In Phase 2, the sensors then make a cooperative 
packet and send it to the destination, D. 

 

size of data packet (bits)
 (bps)

size of data packet (bits)
 (bps)

nc
nc

c
c

T

T

×
=

×
=





N

N
. (15) 

Using Ts = 15 μs, the time delay given by (15) is plotted in Fig. 
6(a).  

In order to compute the energy consumption, let Et, Ei, Er, 
and Ef represent the energy consumed by the transmit 
operation by a sensor, idle listening, reception at a sensor 
node/BS, and fusion operation, respectively. In the case of 
non-cooperative dual-hop communication, each node transmits 
with energy Et in phase 1 and the other 1−N  nodes receive 
this information with energy Er. This process is repeated N  
times. In phase 2, each node transmits with energy Et to the BS 
while the other 1−N  nodes remain idle, and the BS receives 
each node’s data with energy Er. Thus the total energy 
consumed (Enc) is given as, 

 
( )( )
( )( )

1

1
nc t r

t i r

E E E

E E E

= + −

+ + − +

N N

N N
. (16) 

In the case of the proposed cooperative dual-hop 
communication, the total energy consumed (Ec) is given as, 

 
( )( )
( )( ) 2

1

1
c t r

t i r f

E E E

E E E E

= + −

+ + − + +

N N

N N N
, (17) 

where Ef is the additional energy spent in fusion at the BS and 
2N  represent the number of multiply-and-accumulate 

operations performed to compute the fusion result for N  
cooperative packets each containing N  number of 
observations given in (11). Using Et = 31.6 mW, Ei = 2.8 μW, 
Er = 17.4 mW  [20], and Ef = 13.3 mW  [21], the results of (16) 
and (17) are plotted in Fig. 6(b). 

Fig. 6(a) shows that the time required transmitting a certain 
amount of data to the BS increases in the case of our proposed 
cooperation scheme. But the given delay is still acceptable as 
it is 336 ms for 18=N  and can go up to 957 ms for 30=N . 
This amount of delay is not very critical and can be accepted 
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Fig. 6. Results of (15), (16), and (17). (a) Time delay for packet delivery. (b) 
Energy consumption of the network. 

in return for improved robustness and reliability. Fig. 6(b) 
shows that the cooperation mechanism increases the amount of 
energy consumption by about 2 dB for 12=N  and remains 
below 3 dB for 30=N . This increase in the energy 
consumption is easily offset by the gain in SNR which is 
achieved by our proposed scheme, given in Section VI. 

B. Comparative Analysis 
The false alarm rate (FAR) and packet delivery rate (PDR) 

metrics are used to compare our results with some of the 
previous works mentioned in Section 1-A. The FAR and PDR 
for our work was calculated and averaged over a range of SNR 
(0 to 30 dB) and a total of 12,000 packets. In order to make a 
fair comparison, we use the PDR reported by  [2] for IWSN 
and the PDR reported by  [12], when no relay selection 
mechanism is used. As shown in Table II, our work shows a 
significant improvement in the FAR as compared to  [14] and 
 [15]. The PDR of our scheme is higher than that of  [13] and is 
significantly higher than  [2] and  [12]. For improving the PDR, 
these works involve a significant overhead of retransmission, 
guide-path discovery, and relay selection mechanism, 
respectively. In contrast, our work does not involve guide-path 
discovery, relay selection, and retransmission overhead but 
still gives a higher PDR and very low FAR. 
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Fig. 7. Simulation results for 12-node cooperation group. (a) Simulation 
field of information. (b) Prob. of error for the received information at the BS. 

0 5 10 15 20 25 30
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR(dB)

SE
R

 

 

SER Fusion Simulation
SER Fusion Approximated

 
Fig. 8. Comparison of simulation result after fusion at the BS and the 
approximated SER given in (13). 

TABLE II. COMPARISON WITH RELATED WORKS 

VI. SIMULATION RESULTS 
Assume an indoor communication environment of 100×100 

m2 with hard-partitioned rooms. Some machines are scattered 
inside this area that generate some kind of radiation 
information i.e., temperature. Suppose that a higher 
temperature at a certain location represents a fault in the 
operation or state of the machine at that location. We model 
this information over the entire area as a Gaussian random 
field. The field varies from high temperature to low, which 
generates four different kinds of alarms i.e., Danger, Warning, 
Caution, and OK, respectively. The inter-sensor channels and 
the channels from sensor to BS are modeled as Rayleigh faded 
with lognormal shadowing for indoor environments with σ = 7 
and η = 3. Each sensor has a sensing range of 18 m and 2.4 
GHz ISM band carrier frequency is used. We assume the 
destination location at the edge of the area under 
consideration, and the nodes deployed according to the scheme 
discussed in Section II-A. The results are averaged over 
20,000 sensing operations and compare our proposed scheme 
with that of a non-cooperative dual-hop communication. 

Performance 
Metrics [2] [12] [13] [14] [15] Our 

Work 
FAR – – – 3.8% 10.5% 1.8% 
PDR ~70% ~73% ~84% – – ~86% 
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Fig. 7 shows the probability of error for the alarms 
generated at the BS, floor number, sensor ID, and TOA for 12-
node cooperation. We can see a clear advantage by using the 
proposed cooperation schemes, which achieves, on average, 
10-3 probability of error at almost 20 dB lower SNR compared 
with the non-cooperative scheme. By taking into account the 2 
dB increase in the cooperative transmission to the BS for 

12=N , we can still get ~18 dB savings in the SNR as 
compared to the traditional dual-hop transmission without 
cooperation. 

Fig. 8 shows the numerical result obtained in (13) for the 
SER of a cooperation group of 3 nodes, using majority vote 
fusion scheme at the BS compared with the simulated result. 
We can see that the approximated result matches that of 
simulation, especially at high SNR. The result also verifies that 
our proposed cooperation and fusion scheme is able to achieve 
the full diversity order of l=2 here.  

VII. CONCLUSION 
In this paper, we have proposed a relay based dual-hop 

cooperative WSN to monitor the state of an indoor industrial 
environment. By applying the proposed cooperation scheme, 
we obtain a much better performance in terms of SER and 
achieve a highly accurate decision at the base station. The 
packet overhead and energy consumption is reduced by 
combining a limited number of sensors’ data into one packet 
for transmission. The energy saving provided by the proposed 
scheme is almost 18 dB, which is very significant for the harsh 
indoor industrial environment. The proposed cooperation 
protocol is robust to communication link failures and adapts to 
changing link conditions in the wireless channel. We also 
derived a closed-form solution for the SER of the proposed 
scheme, which verifies the diversity benefit of the scheme. 

As a future work, this scheme can be extended to multi-hop 
and mobile sensor networks. Furthermore, the MAC design 
proposed in this paper can be further developed in future. 

APPENDIX A 
PROOF OF THEOREM 1 

In order to find the SNR at the destination D, we need to 
calculate the signal power and noise power components at the 
destination. The signal power for a single link is 
( ) ( )2 2 2

1, 1, 1,j j Dβ ζ α . Since, each node sends independent 

information, we take average to approximate the received 
signal power for each node at the destination. The signal 
power received from ith relay node is given as, 

 

( ) ( ) ( )
( ) ( ),1 ,1 ,2 ,2 ,3 ,3

,

, 1 , 1

, , ,

2 2 2 2 2 2
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i

j

β ζ β ζ β ζ
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− −

−

=
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 × 

= ∏
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N

. (18) 

Similarly, the noise power for a single link is 

( ) ( )1, 1,

2 2
0,1, 0,1,j Dj DN Nζ α + . The total noise power at the 

destination can be calculated as follows, 
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2 2
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= + ∏
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N

. (19) 

The equivalent SNR at the destination, , ,eq i Dg  with respect to 
the relay node i can then be calculated by dividing the signal 
power with noise power as follows, 

 
, , ,

, ,

1
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1
, , 1

2 2
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i D i j

j
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i D i j
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Dividing the numerator and the denominator by 

,

1
2

0, , 0, ,
1

i ji D i j
j

N N ζ
−

=
∏
N

, (20) is simplified as follows, 
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, (21) 
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Putting , 2

1 , 0, ,

1
i j

s i j i jE N
ζ

β
=

+
 in (22), we get the following, 

 

 
1

, ,
1
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j

g g
−

=

+ +∏
N

. (23) 

 
Therefore, the equivalent SNR at the destination D with 
respect to a sensor node i, is given as, 

 

1

, ,
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, ,
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i D i j
j

eq i D

i j i D
j

g g
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=
−
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The SER formulation for the proposed system with M-PSK 
modulation, and conditioned upon known channel coefficients 
is given as, 
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Since, each hop in the multi-hop multi-branch communication 
experiences independent fading and, 
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where h is the corresponding fading channel coefficient. 
Therefore, we can write ( ), ,s eq i DP g  as 
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Abstract—We propose a low complexity complex valued Sphere 

Decoding (CV-SD) algorithm, referred to as Circular Sphere 
Decoding (CSD) which is applicable to multiple-input 
multiple-output (MIMO) systems with arbitrary two dimensional 
(2D) constellations. CSD provides a new constraint test. This 
constraint test is carefully designed so that the element-wise 
dependency is removed in the metric computation for the test. As a 
result, the constraint test becomes simple to perform without 
restriction on its constellation structure. By additionally 
employing this simple test as a prescreening test, CSD reduces the 
complexity of the CV-SD search. We show that the complexity 
reduction is significant while its maximum-likelihood (ML) 
performance is not compromised. We also provide a powerful tool 
to estimate the pruning capacity of any particular search tree. 
Using this tool, we propose the Predict-And-Change strategy 
which leads to a further complexity reduction in CSD. Extension 
of the proposed methods to soft output SD is also presented. 
 

Index Terms—multiple input multiple output (MIMO), circular 
sphere decoding (CSD), predict and change (PAC), sphere 
decoding (SD), complex-valued, arbitrary constellation 
 

I. INTRODUCTION 
PHERE decoding (SD) is a promising multiple-input 
multiple-output (MIMO) detection strategy because it can 

achieve the error rate of maximum-likelihood (ML) detection 
with significantly less complexity compared to the 
straight-forward ML detector [1], [2]. The standard and most 
widely used SDs are real valued SDs (RV-SDs) which are only 
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directly applicable to real valued systems. For the usages of 
RV-SDs, a complex valued system is decomposed into its real 
and imaginary parts, and it becomes a real valued equivalent 
system with twice the dimension of its complex valued 
counterpart. It is worthwhile to note that these standard SDs 
assume that each data substream is modulated independently. 
This independency is maintained in the equivalent real valued 
system when each substream is modulated by a rectangular 
quadrature amplitude modulation (QAM). Pham et al. [3] and 
Mozos and Garcia [4] state that the application of RV-SD is 
permissible only for rectangular QAMs because otherwise 
invalid candidates may arise during the search; it is because the 
independency between the substream is broken. 

It is desirable for an SD to be applicable directly to complex 
valued systems in the senses of i) its flexibility on the choice of 
signal constellations and ii) its efficiency in very large scale 
integration (VLSI) implementations. i): Complex valued SDs 
(CV-SDs), which are applicable directly to complex valued 
systems, do not require the decomposition of the systems, and 
therefore eliminate the limitation of its applicability to 
independent real and imaginary modulations like a rectangular 
QAM. Each data substream can be modulated using any two 
dimensional (2D) constellations. There are many constellations 
which are desirable to be employed in terms of many aspects of 
communications performance over rectangular QAMs. The 
benefits include the reduction in peak-to-average power ratio 
(PAPR) at each transmit antenna, signal-to-noise ratio (SNR) 
efficiency, and the increased range of choice in data rate. To list 
a couple of examples, star QAM reduces the PAPR [5], and 
near-Gaussian constellations yield a superior shaping gain [6], 
[7]. Rectangular QAMs depart significantly from these 
constellations. ii): The throughput of VLSI implementation of 
SD is inversely proportional to the product of the number of 
visited nodes and the time complexity for each node visit; we 
assume that one node is visited in each cycle. Burg et al. found 
that the expected number of nodes visited in the SD search is 
nearly doubled when a complex valued system is decomposed 
into its equivalent real valued system [8]. For the compensation 
to this increase, it requires the time complexity for each visit in 
RV-SD to decrease to half of its CV-SD equivalent. However, 
the time complexity of RV-SD is almost identical to that of 
CV-SD [8]. They conclude that CV-SD is the appropriate 
choice for high throughput VLSI implementations [8].  
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In CV-SDs, however, the main operation of SD, the pruning 
test is hard. The test relies on partial Euclidean distance (PED) 
computations. Here, PED computations are hard, actually the 
most expensive operations in SD, and thus, the CV-SD has high 
complexity. In previous CV-SDs, it is considered to restrict the 
applicable constellation to i) those whose elements are aligned 
in concentric rings of different radii [3], [4], [8], [9] and ii) those 
whose elements are aligned with several vertical or horizontal 
lines [10] for complexity reduction. Nevertheless, the general 
CV-SD without such restriction on its constellation is still 
remained to be computationally expensive.  

It is our goal in this paper, therefore, to develop a low 
complexity CV-SD for general 2D constellations. We aim to do 
this while guaranteeing the ML performance. To this end, we 
take a new approach which takes advantage of a simple 
necessary condition, rather than an equivalent one, of the 
original pruning constraint, the sphere constraint (SC). 

The main contributions of this paper are summarized as 
follows: 

• We derive a necessary condition with which the metric for 
the constraint test becomes the magnitude of a scalar, not 
the Euclidean distance of a vector, thus the constraint test 
becomes very simple.  

• We use the simpler metric and devise a novel complexity 
reduced CV-SD algorithm. The proposed constraint and 
the proposed CV-SD algorithm employing the constraint is 
referred to as the circular constraint (CC) and circular 
sphere decoding (CSD), respectively. CSD employs a 
two-step constraint test. In the prescreening step, those 
constellation points which are not promising are eliminated 
by the simple CC tests. The pruning by SC tests, in the 
second step, requiring expensive PED calculations is 
performed only for those candidates which have survived 
the CC tests. Thus, many expensive PED computations are 
avoided. Significant savings in the complexity of the 
CV-SD can be made with CSD without sacrificing the ML 
performance. 

• We also propose a novel Predict-And-Change (PAC) 
strategy which further utilizes CC and reorganizes the tree 
so that tree pruning close to the root is increased. This 
leads to a substantial complexity reduction in CSD. 

• We provide an extension of CSD for soft output SD for 
coded MIMO systems. 

The rest of this paper is organized as follows. In Section II, 
the system model is presented. In Section III, the underlying 
principle in SD, and the difference between RV-SD and CV-SD 
are studied. In Section IV and V, the proposed CSD algorithm 
and the proposed PAC strategy are developed. In Section VI, an 
extension of CSD to list SD is provided. In Section VII, the 
complexity analysis for the proposed CSD is given. In Section 
VIII, we discuss the system simulation results. Section IX 
concludes the paper. 

II. SYSTEM MODEL AND NOTATION 
We consider a complex valued baseband MIMO channel 

model with m receive and n transmit antennas ( m n≥ ). 
Consider the system model, 

= +r Hs v , (1) 

where m∈r   denotes the received signal, m n×∈H   denotes 
the m n×  block Rayleigh fading channel matrix whose entries 
are independent and identically distributed (i.i.d.) 
circularly-symmetric complex Gaussian (CSCG) random 
variables (0,1) , n n∈ ⊂s   is the transmitted symbol 
vector where 1 2: { , , , }Lo o o=   can be any discrete 2D 
constellation set with size L; io ∈  for 1 i L≤ ≤ . The 
components of s  are i.i.d. and take the values uniformly from 

, ks ∈, and they are scaled to have 2 1ksΕ =  for 

1 k n∀ ≤ ≤ . The 1m×  vector m∈v   is the additive noise 
whose entries are i.i.d. CSCG random variables 2(0, )σ . 
The channel H is assumed to be known at the receiver. 

Variables that denote vectors and matrices are set, 
respectively, lowercase and uppercase boldface. ,_kH  and 

_, jH  denotes the k th row and the j th column of matrix H , 

respectively. *H  and †H  denote the conjugate transpose and 
the pseudo-inverse of H , respectively. An individual 
component of a matrix or a vector is identified by the subscript. 
For example, ,i jH  and ks  are the (i,j) component of H and, the 

k th component of s, respectively. :k Ns  is the vector taking the 

last 1n k− +  components of s.   denotes the cardinality of 

the set  . a denotes the magnitude of a ∈ . s  denotes the 
2nd norm of vector s .   and   denote the real and the 
complex domains respectively. ( )ksℜ  and ( )ksℑ  denote the 

real and the imaginary parts of ks  respectively. (a)+ is a if a>0, 
and 0 otherwise. 

III. COMPARISON BETWEEN RV-SD AND CV-SD 
In this section, we describe the SD principle and the 

complexity problem in CV-SD. 

A. SD principle 
The standard procedure of SD is i) to identify all the 

candidates s that satisfy the sphere constraint (SC), and ii) to 
choose the candidate with the minimum distance to the received 
signal r as the solution. The SC is expressed by 

2( ) : ,d C= − ≤s r Hs  (2) 

where n∈s  . But, this is not efficient for implementation. For 
a better implementation, the SC can be expressed as 

2
: , : :

2
1 1: 1 1: ,

( ) :

( ) ( ) ,

n

k k n i i i n i n
i k

k k n k k n k k k

d y

d b R s C
=

+ + + +

= −

= + − ≤

∑s R s

s s
 (3) 

for 1 k n≤ ≤  where R is the upper triangular matrix from the 
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QR decomposition of H, H=QR, *:=y Q r , 1 0nd + = , and 

1 1: , 1: 1:( ) :k k n k k k n k nb y+ + + += −s R s . Here, :( )k k nd s  is referred to as 
partial Euclidean distance (PED) and it depends on the partial 
vector :k ns , the last 1n k− +  components of s, which is 
associated with the nodes at the kth level of the tree. As PED 
monotonically increases as k decreases, PEDs for the remaining 
levels of k do not need to be computed once PED of a level is 
found to violate the SC in (3). This gives computational savings 
to SD. As a result, SDs provide complexity reductions for ML 
solution search. 

Definition 1: (element-wise independent metric) We call a 
metric is element-wise independent if the metric at a level of tree, 
say the kth level, depends only on the corresponding element sk 
in s but not on any other si where {1,2, , }i n∈   and i k≠ . That 
is, among all the elements of s, sk is the only argument of the 
metric. 

Here, we should note that the SC tests in (3) are still hard as 
the PEDs are element-wise dependent. Assume that the value of 
si for any 1 i n≤ ≤  changes, the PED of the kth level of the tree 
for level k i≤  need to be calculated again. This incurs the 
number of required PED computations and the cost for each 
PED computation increased exponentially as k decreases. In the 
past, a simplified SC where explicit PED computations are not 
required was employed for a lower complexity algorithm. 
Further simplification on SC was obtained, as noted in the 
introduction, by employing rectangular QAMs and exploiting 
the characteristics that exists in the constellations, e. g., the 
independence between the real and the imaginary components. 

B. The difference between RV-SD and CV-SD 
In real valued systems where the components of 

,  ,  ,  ,r H s s and v are real valued, the SC in (3) can be simplified 
by the so called admissible interval (AI) which is expressed by 
the lower limit l

ks  and the upper limit u
ks  as follows 

,l u
k k ks s s ∈   , (4) 

where 1 1:1 1:

, ,

( )( ) k k nk k n

k k k k

C dbl
k R Rs + ++ + −= − ss  and 1 1:1 1:

, ,

( )( ) k k nk k n

k k k k

C dbu
k R Rs + ++ + −= + ss . 

The AI is still element-wise dependent since 1 1:( )k k nb + +s  and 

1 1:( )k k nd + +s , for the AI at the kth level of the tree, are functions of 

1:k n+s , other than sk. But it can be identified by calculating only 

the two values, l
ks  and u

ks . The SC of (4) is used in RV-SD 
instead of the SC of (3) since it is simpler. The constellation 
points sk which satisfy the SC can be identified without explicit 
PED computations :( )k k nd s  of candidates :k ns  for the current 
level k of the tree. PED computations are needed only for the 
nodes in the AI in RV-SD. They are not for pruning itself but for 
setting the AI, 1

l
ks −  and 1

u
ks − , for the next level of the tree. 

However, note that, the AI simplification of the SC applies only 
to rectangular QAMs. References [1], [2] should be consulted 
for a more conceptual description of RV-SD. 

In this work, the aim is for a CV-SD for general 2D 

constellations. This makes it difficult to replace the expensive 
operations for the SC in (4) with ones that are much cheaper. 
Hence, every single pruning in the CV-SD is done by the 
explicit expensive PED computations for the SC test in (3) [8]. 
This results in high complexity in the CV-SD.  

Let us see the difference on the number of PED computations 
of the CV-SD and the RV-SD, and the numbers of the floating 
point operations (FLOPs) of them. Consider a tree which is used 
for the SD search. The tree expands with the factor L as the level 
of the tree, k, goes down, starting from k = n to k = 1. The 
number of nodes at the kth level of the tree is 1n kL − +  and each 
node represents a candidate for the partial vector :k ns . Let 1

sc
kN +  

be the number of nodes that satisfy the SC at (k+1)th level of the 
tree. In the CV-SD, PEDs are calculated for all the children 
nodes of the surviving nodes. That is 1

sc
kL N +⋅  PED 

computations for the kth level of the tree. Thus, the number of 
PED computations is expanded by L in CV-SD. We name this 
L-expansion property of the CV-SD. This property is trivial but 
it will be easier for us to recall this property later on. In the 
RV-SD, only the sc

kN  nodes which are inside the AI are 
required for PED computations at the kth level of the tree no 
matter how large 1

sc
kN +  is. Surely, 1

sc sc
k kL N N+⋅ ≥ . The 

respective FLOPs of the PED computations for CV-SD and 
RV-SD are ( ) 16( ) 8 sc

kn k L N +− +  and ( )2( ) 4 sc
kn k N− + . 1 

Actually, the direct comparisons of the numbers of the PED 
computations and those of the FLOPs are not fair for the system 
models for RV-SD and for CV-SD are different. But, at least, 
we can see the inefficiency of the CV-SD for it includes 1

sc
kL N +⋅  

factor rather than sc
kN .   

For low complexity CV-SDs, Hochwald and Brink [9], Burg 
et al. [8], Pham et al. [3], and Mozos and Garcia [4] consider 
restricting the applicable signal constellations only to those 
whose elements are aligned in several concentric rings with 
different sizes, rather than general 2D constellations, so that 
they can exploit the constellation structure. An AI is obtained 
for these complex valued constellations. There, the interval is 
not for the value of ks  itself but for its phase ks∠ . Obviously 
the applicability of the method is limited to only those 
constellations with the specific shape. In addition, it requires 
costly trigonometric function and other computations. In this 
paper, we do not consider this approach. 

C. Schnorr-Euchner enumeration in RV-SD and CV-SD 
In Schnorr-Euchner (SE) enumeration, the children nodes of 

 
1 Computation of 1 1:( )k k nb + +s  requires (n-k) complex multiplications and 

(n-k) complex additions, totaling 6(n-k) FLOPs (one complex multiplication 
and one complex addition are equivalent to four FLOPs and two FLOPs, 
respectively). The remaining computation for the PED computation in (3) 
requires 8 FLOPs. The computation of 1 1:( )k k nb + +s  is required only once for it is 
common for the candidates as it does not depends on sk. For RV-SD, 
computation of 1 1:( )k k nb + +s  requires 2(n-k) FLOPs and the remaining 
computation requires 4 FLOPs. Note that one more FLOP is required in case of 
a SC test for a comparison with C; consider this in Sec. IV-A. 
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a parent node are visited in the ascending order of their PEDs 
during the search. Therefore, once a preceding child node is 
found to violate the SC, it is definite that the remaining siblings 
also violate the SC and they do not need to be searched. This 
provides a considerable complexity reduction to SD. 

In RV-SD, the sorting can be performed without explicit PED 
computations of the siblings. The first sibling sk is determined 
by slicing 1 1:

,

( )k k n

k k

b
R

+ +s  to the closest constellation point. The 

sequence of the remaining siblings is then determined by the 
zigzag ordering of the neighboring constellation points of the 
first sibling [1]. Thus, the SE enumeration in RV-SD can be 
done very efficiently. 

To the best knowledge of the authors, there is no efficient SE 
enumeration scheme for the CV-SD which is applicable to 
arbitrary 2D constellations and achieves the exact ML 
performance; we consider this in this paper. Thus, the SE 
enumeration for the CV-SDs requires explicit PED 
computations for all the siblings. Note that there are several 
efficient SE or SE-like enumeration schemes [3], [4], [8], [10], 
[11]. But, they are for the CV-SDs which i) limit their 
constellations to certain kinds and exploit the special structures 
of them, and/or ii) compromise the exact ML performance. i): 
Pham et al. [3], Mozos and Garcia [4], and Burg et al. [8] apply 
SE enumerations on the constellations whose elements are 
aligned in several concentric rings with different sizes. The SE 
enumeration by Hess et al. [10] partitions the constellation into 
subsets consisting of rows or columns and reduces the 
enumeration overhead. But, this is efficient only for the 
constellations most of whose elements are aligned with several 
vertical or horizontal lines. ii): The SE-like method by Wenk et 
al. [11] uses approximations, such as the l-1 norm or the so 
called l-infinity norm, of the PED for efficient enumeration. In 
this method, the remaining siblings are pruned once a preceded 
sibling node is found to violate the SC as they are in other SE 
enumerations. This may prune the node from which the ML 
solution originates; the method uses an approximation, not the 
PED itself. 

IV. PROPOSED CIRCULAR SPHERE DECODING 
The applicability to general 2D constellations is an important 

benefit of the general CV-SD. But, this generality gives an 
inherent problem in the CV-SD that no structure of a specific 
constellation can be exploited for a simplification of the SC. 
This makes it difficult to have a simpler but equivalent 
constraint to the SC in (3).  

In this section, we simplify the SC of (3) by resorting to one 
of its necessary conditions, rather than to any specific structure 
in constellations. We refer to this necessary condition as the 
circular constraint (CC). The CC may not prune as many nodes 
as the SC does since the CC is a necessary condition. In order 
not to lose any pruning efficiency, we propose that SC tests are 
executed for those nodes which are not eliminated by the 
preceded CC tests. We call this CV-SD that employs CC tests 
circular sphere decoding (CSD). CSD prunes the nodes the 
same amount as the baseline CV-SD does but with a smaller 

number of hard SC tests. 

A. Circular constraint (CC) 
SC tests in (3) are hard due to the element-wise dependence 

of the PEDs. Now, we aim to find a new constraint where the 
element-wise dependence of the metric is removed. We start 
from the SC in (3). The element-wise dependency is removed by 
eliminating the matrix R inside the norm operator. The 
derivation is given by 

:
2

: , : : :

2†
2,_

: , : : :2†
,_

2†
, : : , : : :

2(a ) †
,_

2

2(b) †
,_

( )

  ( )

  ( )

( )
  

  ,

k k n

k n k n k n k n

k
k n k n k n k n

k

k k n k n k n k n k n

k

k k

k

C d

x s

≥

= −

= −

−
≥

−
=

s

R x s

H
R x s

H

R R x s

H

H

              (5) 

where †:=x H r  with † :=H * 1( )−H H *H , (a) is from 
†

,_kH †
, :k k n= R  and the Cauchy-Schwarz inequality, and (b) 

is from the fact that † ( )− = −R R x s x s  with the assumption that 
m n×∈H   has the full rank with m n≥ . For a H with rank 

deficiency, there are contributions in the metric derived in (5) 
from the elements of −x s  other than the kth element of it. But, 
they are insignificant unless H has serious rank deficiency. 

Now, we have a new constraint, CC,  
2( )k k ks C δ∆ ≤ ⋅ , 1, 2, ,k n=  , (6) 

where 2( ) :k k k ks x s∆ = −  and 2
kδ

2†
,_: k= H . We name the 

metric ( )k ks∆  as circular metric (C-metric). Here, the value of 
2
kδ  can be computed before the SD search begins, and remains 

unchanged as long as  H does not change., thus it can be used 
while H stays the same. Note that CC is a necessary condition 
for a candidate s to satisfy the SC. It is because the metric 
derived in (5) is smaller than or equal to the PED for SC in (3). 

The C-metric ( )k ks∆  is element-wise independent since it 
depends only on sk (Def. 1). This element-wise independence 
gives CC two beneficial features in terms of complexity. First, 
the required number of CC tests is fixed only to L for each level 
of the tree. It is because the C-metric does not depend on the 
elements of the parent node, and hence the C-metrics for the 
children nodes originated from one parent node are the same 
with those from any other parent nodes. Note that the number of 
required SC tests at the kth level of the tree is 1

sc
kL N +⋅  (Sec. 

III-B); this ranges from L to Ln-k+1. Second, each CC test is 
simple. A CC test requires only six FLOPs while a SC test 
requires 6( ) 9n k− +  FLOPs for the first sibling at the kth level 
of the tree and 9 FLOPs for the remaining siblings. 1 Thanks to 



 5 

these two features, the CC tests at the kth level of the tree require 
only 6L  FLOPs while the SC tests require ( ) 16( ) 9 sc

kn k L N +− +  
FLOPs. 

Note that there are some lower bounds used in other SDs [12], 
[13]. Stojnic et al. provide several lower bounds on the 
remaining path metric using ideas from H∞ estimation theory 
and some of its special cases [12]. Barik and Vikalo obtain a 
lower bound on the metric by relaxing the metric minimization 
problem [13]. But, it is difficult to utilize them for prescreening 
on the SC tests because i) they are not lower bounds on the 
current PED but on the remaining path metric and ii) they are 
computationally expensive due to their element-wise dependent 
metric computations; they require 1 1:( )k k nb + +s . 

B. Circular sphere decoding 
In CSD, we utilize the simple CC for prescreening on the SC 

tests, thus reduce the computational complexity of the search. 
The strategy in CSD is i) to eliminate as many nodes as possible 
for a given level of the tree using the CC, and then ii) to perform 
SC tests only for the surviving nodes. 

Consider Fig. 1 where we illustrate the CSD operations by 
providing a geometrical presentation of CC and SC. The CC is 
represented in the s space by n separate circles, one for each 
element of s. The SC is represented by the sphere in Hs space. In 
the prescreening step of CSD, the constellation points which are 
not inside each separate circle are excluded from the search. In 
the pruning step, SC tests are performed only for the 
prescreened candidates and vector points which are inside the 
sphere are identified. In CSD, many non-promising candidates 
are eliminated in the prescreening test even before their SC tests 
are performed. As it is shown in Fig. 1, only a portion of the 
points are pruned by the SC tests in CSD (Fig. 1 (b)), while 
whole pruning operations in the CV-SD are solely through the 
SC tests. Thus, the employment of the CC test in CSD reduces 
the complexity of the CV-SD. As a result, CSD outperforms the 

CV-SD in terms of complexity (Section VIII). Note that the ML 
performance in CSD is not compromised since the CC test does 
not eliminate the ML solution; the CC is necessary for a 
candidate for the satisfaction of the SC. 

The proposed CSD is a quite general MIMO detection 
framework that can be used together with other advantageous 
complexity reduction techniques or can be employed in other 
kinds of MIMO detection problems for further benefits. CSD 
can be employed with statistical pruning techniques such as that 
in [14] for additional complexity reduction. This can be done 
just by replacing C by one in [14]. Note also that CSD can be 
used to benefit those MIMO schemes employing space-time 
block codes in [15] and references therein. They have additional 
zero elements in the triangular matrix R of their equivalent 
system models. The zero elements reduce the element-wise 
dependency in their PED computations. However, the PEDs are 
still not fully element-wise independent. CSD, with 
element-wise independent metric, can thus be applied to those 
additionally structured MIMO systems and provide further 
complexity reduction for ML detection. 

The entire algorithm of the proposed CSD is given in Table I. 

C. Circular enumeration 
SE enumeration has a distinct benefit in reducing the 

complexity of the search. But, the SE enumeration for general 
CV-SDs is not suitable for CSD due to its heavy overhead. 
Fortunately, there are C-metrics available in CSD. C-metric of a 
node is a kind of a lower bound on the PED of the node (Eq. (5)). 
Thus, it can be used as a surrogate PED for the purpose of 
efficient enumeration. 

We sort the constellation points in non-decreasing order with 
respect to their C-metrics as follows, 

1 2 1 2,  ,  ,   s. t. ( ) ( ) ( ).L L
k k k k k k k k ks s s s s s∆ ≤ ∆ ≤ ≤ ∆       (7) 

r
C
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(a)  SD                                                                  (b)   CSD 

Fig. 1. Geometry of SD and the proposed CSD with 16 QAM constellation (gray-colored points represent those points 
which are inside the sphere). (a) SD. (b) CSD. 
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TABLE I 
The CSD Algorithm 

Definitions: 1 2{ , ,..., }Lo o o=  (the constellation set), 

2 2 2 2
1 2, ,...,

T

nδ δ δ =  δ , k  (the current level) , C  (squared radius), 

[ ]1 2, ,..., T
ns s s=s  (the currently visited node), kd  (the PED for the 

current level), ŝ  (ML solution). 

Inputs:  , 2δ , 0C , r, x, and R.  

Outputs: ŝ . 
Step 0: (C-metric) Compute C-metrics ( )k ks∆  for ks∀ ∈  and k∀ . 
Step 1: (Initialization) 

set 0 ,  ,  0C C k n found← ← ← . 
Step 2: (Initialization of the node for a visit) 

for 1:k n=  
set 1kI =  and 1ks o= . 

        end 
Go to step 4 

Step 3: (Next node) 
if kI L≠ ,  set 1k kI I= +  and 

kk Is o= , and go to step 4 

else go to step 8 
Step 4: (CC test *) 

if 2( )k k ks C δ∆ ≤ ⋅ , go to step 5 
else go to step 3 

Step 5: (PED) Compute PED :( )k k nd s . 
Step 6: (SC test) 

if :( )k k nd C<s go to step 7 
else go to step 3 

Step 7: (Forward) 
if 1k = , kC d←  (radius updates), ˆ ,  1,found← ←s s  go to step 
3. 
else 1k k← − , go to step 4  

Step 8: (Backward) 
if k n=  (root node) 

if 0found = , 0 0 0C C C← + ∆ (radius increase), go to step 2 
else exit 

else 
for ' 1:k k=  

set ' 1kI =  and ' 1ks o= . 
            end 

1k k← + , go to step 3 
 

* 2
kC δ⋅  is not computed for every CC test. It is computed only when the radius 

C is updated in Step 7. 
This provides the benefit of making more nodes be pruned by 
the efficient CC tests. The CC becomes stricter whenever the 
search proceeds and reaches a leaf in the tree, where the radius 
is reduced to the metric for the leaf. Now that the siblings are 
sorted by the C-metric, stricter CC tests are performed for those 
siblings with larger C-metrics which have higher chances of 
being pruned by the CC. This results more candidates to be 
eliminated before the SC tests. It will be later shown in Sec. VIII 
that CSD with the circular enumeration (C-CSD) provides 
considerable complexity reduction to CSD; it also outperforms 
the SE-SD. 

V. PROPOSED PREDICT-AND-CHANGE STRATEGY 

Pruning of a single node at a level of a tree amounts to 
pruning of its whole underlying sub-tree whose size in the 
number of nodes is exponential to the number of levels left to 
reach to the leaf level. It is thus efficient in all SDs, including 
CSD, to prune nodes at higher levels of the tree. Aiming to 
increase pruning at higher levels of the tree, we take the 
approach which i) predicts the pruning potential of each symbol 
si of s for 1 i n≤ ≤ , and ii) reorganizes the tree so that the 
symbols with larger pruning potentials to be placed at higher 
levels of the tree; the CSD search is performed on this tree. In 
the following subsection, we develop the idea of pruning 
potential for each symbol and provide a method to calculate it. 

A. Symbol pruning potential 
The pruning potential we propose to use here is an upper 

bound on the number of constellation points that can be pruned 
by the CC test. The largest number of constellation points that 
can be pruned by the CC test is calculated by using the strictest 
CC test which prunes as many constellation points as possible 
but without pruning the ML solution. Of course, this requires the 
identification of the ML solution or d(sML) which are not 
available until the CSD search is completed. That is why we 
instead obtain an upper bound. This can be calculated by using 
the concept of the minimum circles. Note that so far there is no 
computationally feasible way to predict a non-trivial upper 
bound on the number of nodes that can be pruned by the SC test 
prior to a SD search. 

Definition 2: (the minimum circles) The minimum circles 
(MCs) are the n smallest circles i) which are centered at 

1 2, , , nx x x , respectively, ii) the proportion of whose radii is 

1 2: : : nδ δ δ , and iii) each of which contains at least a single 
constellation point inside it. The MCs are the geometric view of 
the strictest CC test which is satisfied by at least one of n∈s  . 

Let us denote the set of constellation points inside the ith 
circle of the MCs by MC

i . MC
i  can be identified by using the 

following proposition. 
Proposition 3: A constellation point is ∈  belongs to MC

i  
if and only if 

2
min( )i i is C δ∆ ≤ ⋅ ,                             (8) 

where { }2
min : max min ( )

i
i i isi

C sδ −

∈
= ∆


. 

Proof: The minimum radius for each circle of the MCs is 
2 min ( )

i
i i is

sδ −

∈
∆


 for 1 i n≤ ≤ . The maximum radius is selected to 

guarantee that all the circles in MCs contain at least one 
constellation point.  □ 

The CC test corresponding to the MCs is stricter than or equal 
to the strictest CC test which the ML solution satisfies. Note that 
the ML solution is not guaranteed to be included in the vector 
points s which are constituted by the constellation points inside 
the MCs. Thus, we can obtain the pruning potential Pi, an upper 
bound on the number of constellation points that can be pruned 
by the CC test, for each symbol at 1 i n≤ ≤ , as follows 
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{ }

MC

2
min

:

   ( ) ,  .

i i

i i i i i

P L

s s C sδ

= −

= ∆ > ∈




                (9) 

B. Predict-And-Change (PAC) strategy 
The pruning potential Pi for each symbol si for 1, 2,  ...,  i n=  

in s can be obtained using (9) once the C-metrics are computed 
for a received signal r. Using the pruning potentials, the 
symbols in s and the columns of H are reordered. We propose 
that the n symbols in s are placed from the root ( k n= ) to the 
leaf ( 1k = ) of the tree in non-increasing order with respect to 
their pruning potentials. The corresponding n columns in H are 
also reordered accordingly. The reordered ′s  and ′H  are 
constituted as follows, 

1 2 1 2

1 2

T
_, _, _,[ , , , ]  and [ , , , ]

s. t. .
n n

n

i i i i i i

i i i

s s s

P P P

′ ′= =

≤ ≤ ≤

s H H H H 



     (10) 

Then, the reorganized search tree is created by doing the QR 
decomposition on ′H . The CSD search is performed on the 
reorganized tree; the reorganization is done right before Step 1 
in TABLE I. 

Different from the SD ordering schemes which consider only 
H [1], [2], PAC exploits the information of the received signal r. 
Note that this becomes possible in PAC because it is based on 
the pruning potentials which are available prior to the formation 
of a tree. It is shown in Fig. 2 that the complexity reduction in 
CSD which employs the PAC strategy (PAC-CCSD) is 
substantial compared to that with the conventional ordering 
(PINV-CCSD); this conventional ordering places the symbol 

with a smaller inverse channel norm 
2†

,_iH  at a higher level of 

the tree. 

C. A modified PAC 
QR decomposition in SD needs to be performed whenever 

the channel H changes. For PAC strategy, it requires n factorial 
QR decompositions per channel change since there exist n 
factorial different reordered channel matrices ′H . This may not 
be any problem in terms of computational overhead when the 
channel changes slowly (quasi-static channel), but otherwise, it 
may become problematic. 

We here provide a variation of PAC and reduce the 
computational overhead of QR decompositions. This reduces 
the overhead per channel change significantly while the benefit 
of PAC per channel use is still kept large. For the variation, we 
consider a subset of ′H , only n different reordered channel 
matrices ′H  out of the total n factorial of them. The 
reorganization is modified as follows, 

1 2 1 2

1 2 1

T
_, _, _,

2 2 2

[ , , , ]  and [ , , , ]

s. t. arg max { } and .
n n

k k n

i i i i i i

n i i i i i

s s s

i P δ δ δ
−

′ ′= =

= ≥ ≥ ≥

s H H H H 



      (11) 

The root of the tree, k n= , is placed by the symbol with the 
largest pruning potential. The other levels of the tree from 

1k n= −  to 1k =  are placed by the remaining symbols in 
non-decreasing order with respect to their 2

iδ . 

 
Although the pruning potentials are utilized only for the 

symbol to be placed at the root and 2
iδ  is utilized instead for the 

other levels of the tree, the benefit of PAC is reduced only 
slightly (Sec. VIII). The intuition for this is that i) we use the 
pruning potential at the level with the best pruning efficiency 
and ii) for other levels, we still consider pruning potentials but 
in the average sense since a smaller 2

iδ  indicates a larger Pi in 
the case where the information on ( )i is∆  and Cmin is not 
available (refer to (9)). 

It is now possible with these n QR decompositions to give a 
comparable complexity reduction to that of the n factorial QR 
decompositions. In addition, we provide in the following 
subsection an efficient way of performing the n QR 
decompositions and the computational overhead is reduced to 
be less than that of two QR decompositions. With the 
modification and the efficient QR decompositions, we can say 
that the problem of PAC with the computational overhead is 
resolved.  

For a clear description on the benefit of the modified PAC, 
we provide a comparison of complexities for the conventional 
PINV ordering based SE-SD (PINV-SESD), the PAC based 
C-CSD (PAC-CCSD), and the modified PAC based C-CSD 
(PAC*-CCSD) in TABLE II. They are for n=m=10 with 
(8,24,32) star 64 QAM. We split the complexities into those for 
channel rate processing and those for symbol rate processing. 
This is because the overhead is incurred in the channel rate 
preprocessing stage and the benefit is obtained in the symbol 
rate detection stage. This separately shows the gains and the 
losses of the PAC-CCSD and the PAC*-CCSD compared to 
PINV-SESD. We also provide the number of channel uses, NCH, 
for PAC-CCSD and PAC*-CCSD to be net beneficial. It is  

TABLE II 
Ordering  Channel-rate preprocessing  Per-Symbol detection  NCH 

PINV CQR ~ 5.33×103 CPINV-SESD ~ 4.33×105  

PAC n! CQR ~ 1.94×1010 CPAC-CCSD ~ 2.14×105 106619 

 PAC* 2 CQR ~ 1.07×104 CPAC*-CCSD ~ 2.51×105 1 
CQR refers to the FLOPs for the QR decomposition of a complex-valued matrix 
[16]. Symbol rate processing computational complexities are from the 
numerical simulation for n=m=10 with (8,24,32) star 64 QAM at the SNR of 
24 dB (Fig. 4). 

 
Fig. 2. Ordering benefits: complexity of PAC-CCSD, PINV-CCSD, and 
PINV-SESD for 10×10 MIMO systems with 64 QAM. 
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found that PAC-CCSD is the most advantageous in symbol rate 
detection. However, the net benefit to PINV-SESD is obtained 
in a very restricted condition where NCH  > 106619. It is seen that 
PAC*-CCSD provides a comparable symbol rate detection 
complexity while its overhead is significantly reduced. As a 
result, it is found that the proposed PAC*-CCSD always has a 
net gain to PINV-SESD. 

D. Computational overhead for the modified PAC 
We assume that Givens rotation, a well-known unitary 

transform based method, is used for QR decompositions. We do 
not consider the Gram Schmidt method here for it requires 
costly operations, such as square root operations and divisions, 
and it is not numerically stable; see [17] and references therein. 

There are mainly two kinds of operations in Givens rotation, 
rotation and cancellation. Rotation makes a complex valued 
element turned into a real valued one. Cancellation makes a real 
valued element annihilated. For each columns of ′H , rotations 
and cancellations are performed. For the kth column, _,k′H , the 

elements ,i kH ′  for k i n≤ ≤  are rotated and become real valued. 
The complexity for rotations for the column is 

( )rot( 1) 1n k C n k− + ⋅ − +  where ( )rot 1C n k− +  is the 
computational complexity for a rotation for the kth column. Note 
that the single rotation for ,i kH ′  amounts to the rotations for the 

1n k− +  elements, ,i jH ′  for k j n≤ ≤ , since the operations 

corresponding to the rotation for ,i kH ′  are performed to those 

elements ,i jH ′  where 1k j n+ ≤ ≤ . 

Once the rotations are done, the elements ,i kH ′  for 

1k i n+ ≤ ≤  which now have turned into real valued ones are 
annihilated and zero valued. The complexity for cancellations 
for the column is ( )can( ) 1n k C n k− ⋅ − +  where ( )can 1C n k− +  
is the computational complexity for a cancellation for the kth 
column. Note also that the single cancellation for ,i kH ′  amounts 

to the cancellation for the 1n k− +  elements for the same 
reason with the rotations. Now, the diagonal element ,k kH ′  
becomes real valued and the lower diagonal elements becomes 
zero. By performing the rotations and the cancellations from the 
1st to the nth column of ′H , a QR decomposition is done. The 
cost of this operation is 

( ) ( )QR rot can1
( 1) 1 ( ) 1n

k
C n k C n k n k C n k

=
= − + ⋅ − + + − ⋅ − +∑ . 

There are n QR decompositions required for the proposed 
variation of PAC. This may be done by performing n separate 
QR decompositions with a cost of QRnC . Fortunately, this can 

be done very efficiently (with less than QR2C ) by i) performing 

a QR decomposition on ′H  whose columns are ordered by 2
iδ  

and ii) deriving remaining n-1 QR decompositions from the one 
in step ‘i)’. For the explanation of the method, we assume that 

2 2 2
1 2 nδ δ δ≥ ≥ ≥ . We use 

ni
′H  to denote the reorganized H by 

(11). For step ‘i)’, in this case, ni n= , a separate QR  

 
decomposition is performed. And for the remaining QR 
decompositions, the upper triangular matrix n′R  obtained in 
step ‘i)’ is used instead of ′H . For the case of ni i= , the ith 
column of n′R  is placed at the right-most position, and the 
columns from the i+1th to the nth positions are shifted to the left 
by one. Then, the QR decomposition for ni i=  can be done 

with only ( ) ( )1
rot can1 1n n

i k i k i
C C n k C n k−

= =
= − + + − +∑ ∑ . This 

is done for 1,  2,  ,  1ni n= − . Then, the net computational 
overhead for the n QR decompositions becomes netC =  

( ) ( )QR rot can1
1 ( 1) 2n

k
C k C n k k C n k

=
+ ⋅ − + + − ⋅ − +∑ QR2C< . 2  

An example for the QR decompositions is given in Fig. 3. 

VI. EXTENSION TO LIST SPHERE DETECTION 
In the iterative detection and decoding (IDD) system, the 

detector and the decoder exchange soft information repeatedly 
and improve the quality of their outputs. If messages are 
encoded with a channel code, and interleaved before they are 
mapped to modulation symbols s, it is possible to achieve near 
channel capacity by employing IDD in the MIMO receiver [9], 
[18], [19].  

In this section, we focus on the detection in IDD and consider 
an application of CSD for it. The channel code and the 
corresponding decoding operations can be any of those for well 
performing channel codes, such as low-density parity-check 
(LDPC) and turbo codes; we do not specify them in this paper. 
In the detection, a posteriori log-likelihood ratio (AP-LLR) on 
the all the coded bits that constitute s are computed for soft 
information exchange [9]. Note that the coded bits here mean 
the coded and interleaved bits. The AP-LLR of the kth coded bit, 
ck, is given by 

1

0

( | ) ( )( 1 | )
( | ) ln ln

( 0 | ) ( | ) ( )
k

k

k
k

k

P PP c
L c

P c P P
∈

∈

=
= =

=
∑
∑

s

s

r s sr
r

r r s s




 

 
2 The computation overhead for Q matrix generation is not discussed here. 

However, it is still net QR2C C<  for the computational overhead for Q matrix 
generation is proportional to the number of rotations and cancellations. 

R C C C

R C C

R C

R

R C C C

R C C

C R

R C

R C C C

C C R

R C

R

C

C

C C C R

R C C

R C

R

C

C

C

QRC can
2

rot1

(1)

( )
k

C

C k
=

+∑

2
can1

3
rot1

( )

( )
k

k

C k

C k
=

=
+

∑
∑

3
can1

4
rot1

( )

( )
k

k

C k

C k
=

=
+

∑
∑  

(a) 4′R                 (b) 3′R                  (c) 2′R                     (d) 1′R  
Fig. 3. Efficient QR decompositions for n=4. Symbols R and C in the matrix are 
meant to imply that the element in the pertinent position is either real or complex 
valued respectively. The circles and crosses represent the rotations and the 
cancellations, respectively. Gray colored rectangles are the columns taken from 
the upper triangular matrix in (a). 
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 (12) 

where 1 { | ( ) 1}k kc= =s s , 0 { | ( ) 0}k kc= =s s , ( )ic s  is the ith 

coded bit of symbol s, ( 1)
( 0)( ) ln k

k

P c
k P cL c =

== , and 

( ) ( )2
2

log1
1,2

( ) exp ( ) exp ln ( ( ))n L
i ii i k

d P c c
σ

ϕ −
= ≠

= =∑s s s .   (13) 

The direct AP-LLR in (12) without approximations requires the 
exhaustive Euclidean distance calculations of ( )d s  for all the 
candidates s, which are the most complex operations in the 
calculations. The computation is infeasible for the systems with 
large n and/or L. 

SD algorithms which are called the list SD (LSD) [9], [18], 
[19] address this problem by searching a small set of candidate 
symbols over which the AP-LLRs are estimated. The 
approximate AP-LLR is given by 

( )1 0( | ) ( ) ln ( ) ( ) ,
k k

k kL c L c ϕ ϕ
∈ ∩ ∈ ∩

≈ + ∑ ∑s s
r s s

   
 (14) 

where   is the chosen small set of the promising candidates. 
Hochwald and Brink proposed the N-best LSD which chooses 
candidates s with N smallest d(s) and stores them into   [9]. A 
probabilistic tree pruning method for an approximation of the 
N-best LSD is proposed in [18]. Hochwald and Brink also 
presented a max-log approximation of AP-LLR for further size 
reduction on   [9]. In [19], a modified max-log approximation 
which considers only the symbols sML and all its binary 
complements are presented. Note that, in LSDs, small numbers 
of candidates s with small ( )d s  are sought for  . The ground 
for this is that the significant contribution to the value of ( )ϕ s  
comes from s with small d(s), and the AP-LLR estimation over 
the list approximates the direct one. In this sense, given that 

N= , the N-best LSD is the optimal for AP-LLR 
approximations. 

We here show that the use of CSD techniques are beneficial 
not only to ML search but also to the AP-LLR computation. The 
AP-LLR computation in (14) is largely made of evaluation of 

( )ϕ s  for ∈s  . The main operations for ( )ϕ s  in IDD detector 
is to calculate the d(s) for ∈s  ; note that the values for L(ck) in 
(12) and lnP(ci = ci(s)) in (13) are given by the decoder. The d(s) 
for ∈s   is obtained in the process of LSD, thus, the detection 
complexity in IDD is mostly from the LSD operations. 
Therefore, the computational complexity of LSD almost 
determines the complexity of the IDD detection. 

We extend the CSD scheme to LSD and reduce the 
complexity of N-best LSD. We employ the CC for prescreening 
candidates in LSD. We modify the CSD procedure so that the 
radius update is performed only when the CSD finds at least N 
candidates inside the sphere. We found that the proposed list 
CSD (LCSD) reduces the complexity of the LSD for MIMO 
systems with general 2D signal constellations without  

TABLE III 
The N-Best List CSD Algorithm: Step 7’ 

Step 7’: (Forward) 
if 1k = , Insert( , )s . 

if N= , maxC d←   (radius updates), ˆ ,  1found← ←  . 
go to step 3. 

else 1k k← − , go to step 4  
* Insert( , )s : insert s into the set  , 

maxd  : the current maximum ( )d s  among those of ∈s  . 

compromising the N-best optimality.  It will be shown in Section 
VIII that the considerable complexity reduction is obtained in 
N-best list search using proposed LCSDs. The modification to 
CSD algorithm for N-best list search is provided in TABLE III. 

VII. COMPLEXITY ANALYSIS 
In this section, we aim to analyze the complexity of the 

proposed CSD in Sec. IV-B. We use FLOPs as a measure of 
complexity. A lower bound on the expected FLOPs as function 
of n and SNR is analyzed. On the one hand, a lower bound 
analysis could be undesirable if the bound is not tight. But, on 
the other hand, the final expression of the lower bound could be 
simple enough to give a clear insight. To rip the benefit of the 
latter, we take the lower bound approach in this paper. We 
found that the lower bound can still give useful information on 
the additional complexity reduction behavior of CSD with 
respect to CV-SD. There are other lower bound analyses in the 
literature, those by Jaldén and Ottersten [20] and Shim and 
Kang [14]. Hassibi and Vikalo provide the exact expected 
complexity [21]. But, their final results are not easy to interpret 
for their complex expressions as they include integrations. 

A. Overview of CSD complexity  
Let the number of nodes which satisfy the SC at the kth level 

of the tree be called sc
kN , i.e.,  

{ }1
: :: ( )sc n k

k k n k k nN d C− += ∈ ≤s s , (15) 

where 
2

: , : : :( ) ( )
n

k k n i i n i n i n i
i k

d v
=

= − +∑s R s s   denotes the PED of 

:k ns  and *:=v Q v  is a random vector whose entries are i.i.d. 
CSCG random variables, and the number of nodes which satisfy 
the CC at the kth level of the tree be called cc

kN ,  

{ }: ( )cc
k k k kN s s C= ∈ ∆ ≤ , (16) 

where 22( ) :k k k k ks x sδ −∆ = −

2
kδ −=

2†
,_k k ks s− + R v  denotes 

the C-metric of sk divided by 2
kδ . 

In CV-SD, the complexity is given by 

( )SD- 1
1

6( ) 9 ,
n

sc
k

k
n k L N +

=

= − +∑


  (17) 

where 1 1sc
nN + = . Recall the L-expansion property (Sec. III-B). 

That is, for the identification of sc
kN  nodes at the kth level of the 
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tree, 1
sc
kL N +⋅  PED computations are required; this results in 

high complexity in the CV-SD; note the L in 9L.  
In CSD, the high complexity problem of the CV-SD is 

alleviated. Among all the possible children nodes of each 
surviving node at the previous level, k+1, note that there are L 
children nodes, only those children nodes, cc

kN L≤  of them, 
that satisfy CC are passed for PED computations. The 
complexity for CSD is given by 

( )CSD- 1
1
6 6( ) 9 .

n
cc sc
k k

k
L n k N N +

=

= + − +∑


    (18) 

Here, 6L is the FLOPs for the CC tests at each level.  
We analyze the complexity of CSD in the following 

subsection.  

B. CSD complexity  
The expected complexity of CSD over H, s , and v is 

CSD- 1 1
1

[ ] 6 6( ) 9 .
n

sc cc sc
k k k

k
L n k N N N+ +

=

   Ε = + − ⋅Ε + ⋅Ε   ∑


  (19) 

For simplicity of the derivation, we assume m=n in the sequel. 
But, it can be easily seen that the result for the general case m>n 
remains the same. We also use the SNR 2

m
σ

ρ =  and the radius 
2C nα σ=  where α  is determined so that a solution is found 

with a high probability, 1 0.99ε− = , in the sphere [21]. Since 
the complexity is averaged over s , we consider k∆  and kd as 
functions of not only s but also s .  

Lemma 4: 1[ ]cc sc
k kN N +Ε  is lower bounded by 

( ) ( )
: :

1

1 1: 1:1

[ ]
1 Pr ( , ) Pr ( , ) .

k n k n

cc sc
k k

k k k k k n k nn k

N N

s s C d C
L

+

+ + +− +

Ε ≥

∆ ≤ ≤∑∑
s s

s s

 (20) 

Proof: See Appendix A.  □ 
We compute ( )Pr ( , )k k ks s C∆ ≤  first, and then 

( )1 1: 1:Pr ( , )k k n k nd C+ + + ≤s s . 

Lemma 5: The probability ( )Pr ( , )k k ks s C∆ ≤  is lower 

bounded by 

( ) ( )21Pr ( , ) 1 1 .k k k k ks s C s s
n

ρ
α +

 ∆ ≤ ≥ − − + 
 

  (21) 

Proof: See Appendix B.  □ 
Now, we compute a lower bound on 
( )1 1: 1:Pr ( , )k k n k nd C+ + + ≤s s . 

Lemma 6: The probability ( )1 1: 1:Pr ( , )k k n k nd C+ + + ≤s s  is 

lower bounded by 

( ) 2

1 1: 1: 1: 1:Pr ( , ) 1 1 .k k n k n k n k n
n kd C

n n
ρ

α+ + + + +
+

 −  ≤ ≥ − − +  
  

s s s s

 (22) 
Proof: See Appendix C.  □ 
Finally, we obtain a lower bound on the expected complexity 

of CSD. 
Theorem 7: The expected complexity CSD-[ ]Ε



  is lower 
bounded by 

( ) ( ) ( )1
CSD-

1
[ ] 6 6( ) 1 9 1 1 ,

n
n k

s s c
k

L n k Lβ β β− +
+ + +

=

Ε ≥ + − − + − −∑




   (23) 
where  

( )21: 1c k ks s
n

β ρ
α

 = Ε − +   (24) 

and 2: 1s k k
n k n ks s

n n
β ρ

α
− −  = Ε − +   

 are the complexity 

reduction factors which are determined by the system 

parameters. Here, 2
i is s Ε −  , the average intra-constellation 

squared distance, is determined when the constellation is 
decided; for example, it is 2 for QAMs and PSKs, and 1.8163 
for (8,24,32) 64 star QAM. 

Proof: See Appendix D.  □ 
A lower bound on the expected complexity of the CV-SD can 

be easily obtained by using a similar procedure, but with (17) 
and Lemma 6. 

Theorem 8: The expected complexity SD-[ ]Ε


  is lower 
bounded by 

( ) ( )1
SD-

1
[ ] 6( ) 1 9 1 .

n
n k

s s
k

n k Lβ β− +
+ +

=

Ε ≥ − − + −∑


  (25) 

Here, we see that the additional constraint CC in CSD results 
in an additional multiplicative factor ( )1 cβ

+
− , in the last term 

of the CSD complexity in (23), compared to the CV-SD 
complexity in (25). Among the last term in (25), cβ  portion of 
them are excluded in (23); ( )+  and 6L are ignored for easy 
evaluation. We expect that this gives CSD a complexity 
reduction relative to the CV-SD.  

We note from (24) that the additional complexity reduction 
factor cβ  increases as i) SNR increases and/or ii) n decreases. 
That is, it is expected that the additional complexity reduction in 
CSD to the CV-SD become more as SNR increases and/or n 
decreases. This finding exactly matches to the complexity 
reduction behavior of CSD which is observed in the simulations. 
Here, the complexity reduction behavior with respect to n may 
not be attractive. But, this problem disappears when PAC is 
utilized; it performs better as n increases (Sec. VIII). 

VIII. SIMULATION RESULTS 

A. Setup 
In this section, we show the complexity reduction capability 

of the proposed CSDs through system simulations. We compare 
the proposed CSDs (CSD in Sec. IV-B, C-CSD in Sec. IV-C, 
and PAC-CCSD in Sec. V) with the conventional CV-SDs (SD, 
SE-SD, and PINV-SESD) which are also directly applicable to 
general complex valued constellations. We also compare the  
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complexities of the proposed LCSDs in Sec. VI to those of the 
conventional LSDs for N-best list search. We considered star 
QAM, rectangular QAM, and PSK in simulations. However, we 
present the result for star QAM only. The patterns of the 
complexity reduction of the proposed CSDs in rectangular 
QAM and PSK are almost the same to those in star QAM. Note 
that the usage of CSD is not limited to these three constellations, 
and is applicable to any arbitrary complex valued constellation. 
We use 8 × 8 and 10 × 10 MIMO systems with (4, 24, 32) star 64 
QAM for the ring ratios of (2, 3) [5].3 The initial radius is set to 

2
0C nα σ= . We employ the average FLOPs as a metric for 

complexity; they are averaged over 104 runs of channels in each 
SNR value. The SNR range is determined by considering the 
dynamic range of the FLOPs so that the FLOPs at the minimum 
considered SNR and those at the maximum SNR are reasonably 
far from each other. If they are too apart, the FLOPs at the 
maximum SNR all look overlapped and not distinguishable. 

B. Results 
Fig. 4 plots the average numbers of FLOPs for the CV-SDs 

and the proposed CSDs in MIMO systems with (8,24,32) star 64 
QAM. The proposed CSDs reduce the complexities of the 
CV-SDs considerably. We observe that CSD, C-CSD, and 
PAC-CCSD outperform SD, SE-SD, and PINV-SESD by 35%, 
37%, 41%, 42%, 43%, by 33%, 30%, 27%, 17%, 3%, and by  

 
3 The ring ratios indicate the ratios of the minimum ring amplitude to the 

other ring amplitude. 

37%, 26%, 6%, -18%, -37%,4 respectively, at SNR (dB) of 24, 
25, 26, 27, 28 in 8×8 MIMO systems. For 10×10 MIMO 
systems, CSD, C-CSD, and PAC-CCSD reduce the 
complexities of SD, SE-SD, and PINV-SESD by 28%, 31%, 
33%, 36%, 40%, by 30%, 31%, 29%, 27%, 21%, and by 50%, 
43%, 30%, 13%, -14%, respectively. 

As discussed in Section VII-B, the complexity reduction 
factor of CSD increases as SNR increases and/or n decreases. 
Interestingly, the complexity reduction factor of PAC-CCSD 
behaves in an opposite way to that of the CSD; it increases as 
SNR decreases and n increases. There are significant 
complexity reductions in the proposed CSDs in almost all the 
SNR regions (up to 43% by CSD at 28 dB and up to 37% by 
PAC-CCSD at 24 dB in 8×8 MIMO systems and up to 40% by 

CSD at 28 dB and up to 50% by PAC-CCSD at 24 dB in 10×10 
MIMO systems). Note that these complexity reductions in 
CSDs are obtained without compromising its ML performance; 
of course, they all achieved the ML performance in simulations. 
It was found that PAC-CCSD has a higher complexity than 
PINV-SESD does at SNRs of 27 dB and 28 dB in a 8×8 MIMO 

system and at SNR of 28 dB in a 10×10 MIMO system. Still, it 
is not a big issue since both exhibit low complexities in this SNR  

 
4 The minus sign means that the complexity of the proposed method is more 

than that of the conventional method. The corresponding numbers are the 
increased amounts of complexity compared to those of the conventional 
method. 
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Fig. 5. Complexity variances of CV-SDs and the proposed CSDs for 8×8 and 

10×10 MIMO systems with (8,24,32) star 64 QAM. 
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Fig. 4. Complexities of CV-SDs and the proposed CSDs for 8×8 and 10×10 
MIMO systems with (8,24,32) star 64 QAM.  
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region. 

The proposed CSDs also reduce the complexity variances of 
the CV-SDs (Fig. 5). Note that in Fig. 5 variance reductions in 
the proposed CSDs are significant throughout the entire SNR 
range considered. For example, the PAC-CCSD scheme 
provides reductions up to 71% in a 8×8 MIMO system and up to 

87% in a 10×10 MIMO system. 
We also consider N-best list detection. The patterns of the 

complexity reduction of the proposed LCSDs are similar to 
those of CSDs but with more margins. It is observed that the 
proposed LCSDs perform better than LSDs by large margins. 
For 64 QAM, LCSD, C-LCSD, and PAC-LCCSD outperform 
LSD, SE-LSD, and PINV-LSESD in terms of average number 
of FLOPs by 34%, 34%, 34%, 36%, 37%, by 43%, 43%, 43%, 
45%, 47%, and by 41%, 40%, 37%, 39%, 37%, respectively, in 
a 8×8 system with N=20, by 26%, 27%, 27%, 29%, 29%, by 
35%, 35%, 37%, 39%, 39%, and by 39%, 37%, 35%, 36%, 32%, 
respectively, in 10×10 system with N=30 at SNR (dB) of 24, 25, 
26, 27, 28 (Fig. 6). In terms of complexity variance, it is shown 
in Fig. 7 that the variance reductions by LCSDs are significant 
(up to 57% in a 8×8 MIMO system and up to 51% in a 10×10 
MIMO system) as they are in CSDs. 

IX. CONCLUSION 
In this paper, we have proposed CSD, a low complexity 

CV-SD, for general 2D constellations. CSD uses the simple  

 
circular constraint (CC) for prescreening candidates and 
pruning some of them even before executing the SC tests. 
Simulations have shown that CSD yields a large reduction in the 
number of FLOPs. We also propose a further complexity 
reduction strategy, the Predict-And-Change (PAC). PAC also 
provides a further considerable complexity reduction. Thanks to 
the proposed methods, the CSD becomes surely a good 
candidate for a general 2D constellation low complexity MIMO 
detector. It was also shown that the proposed methods are 
beneficial in soft output SD schemes. With the proposed CSD, it 
becomes possible to decode signals with any integer data rate 
(not only for 2iL = , 1, 2,i =  ) and arbitrary shape of 2D 
constellations which may be optimal for target applications with 
low complexity while achieving the optimal error rate 
performance as CSD is compatible to general 2D constellation. 
A large number of 2D constellations can be handled in this 
single CSD algorithm without any additional 
constellation-dependent functionality. 

APPENDIX 

A. Proof of Lemma 4 
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Fig. 6. Complexities of CV-LSDs and the proposed LCSDs for 8×8 and 10×10 
MIMO systems with (8,24,32) star 64 QAM. 
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Fig. 7. Complexity variances of CV-LSDs and the proposed LCSDs for 8×8 and 

10×10 MIMO systems with (8,24,32) star 64 QAM. 
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where {}I ⋅  is the indicator function which is 1 for the condition 
inside the bracket is true, otherwise 0, and (a) is from 

1
:Pr( ) 1/ n k

k n L − +=s . 
Before proceeding further, we introduce a definition and a 

lemma which are useful for further simplification of (26). 
Definition 9: (non-negative correlation) Two random events 

  and   are said to be non-negatively correlated if 
cov( { }, { }) 0I I ≥  . We use the tilde symbol ~ between two 
events, i.e., ~  , to imply that the two are non-negatively 
correlated. 

Lemma 10: ~   if and only if Pr( ) Pr( ) Pr( )≥   . 
Proof: This can be easily seen by Def. 9. □ 
Here we aim to show that 1 1: 1:{ ( , ) }k k n k nI d C+ + + ≤s s  

~ { ( , ) }k kI s s C∆ ≤ . To this end, we first show that 

1 1{ } ~ { }kI d C I d C+ ≤ ≤ , and then 1{ }I d C≤ ~ { }kI C∆ ≤ , and 

thus 1{ }kI d C+ ≤  ~ { }kI C∆ ≤ . Before we move on, note the 

inequalities 1 1kd d+ ≤  and 1k d∆ ≤  from (3) and (5). Now, we 
show that 1 1{ } ~ { }kI d C I d C+ ≤ ≤  by showing the following, 

( ) ( ) ( ) ( )1 1 1 1 1Pr , Pr Pr Prk kd C d C d C d C d C+ +≤ ≤ = ≤ ≥ ≤ ≤ . 
Thus, the first is shown. Now, for the second, we show that 

( ) ( ) ( ) ( )1 1 1Pr , Pr Pr Prk kd C C d C d C C≤ ∆ ≤ = ≤ ≥ ≤ ∆ ≤  , 

thus 1{ } ~ { }kI d C I C≤ ∆ ≤ . Therefore, 

1 1: 1:{ ( , ) }k k n k nI d C+ + + ≤s s ~ { ( , ) }k k kI s s C∆ ≤ ; this is also 
verified through extensive simulations. 

Now, return to the discussion of (26). 
Let : { ( , ) }k k ks s C= ∆ ≤ and 1 1: 1:: { ( , ) }k k n k nd C+ + += ≤s s . 

Using Lemma 10, the joint probability (Pr ( , )k k ks s C∆ ≤  

)1 1: 1:, ( , )k k n k nd C+ + + ≤s s  is lower bounded by 

( ) ( )1 1: 1:Pr ( , ) Pr ( , )k k k k k n k ns s C d C+ + +∆ ≤ ≤s s .  

B. Proof of Lemma 5 
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where (c) is from the independence of v  and 1−R .  
The third term becomes zero as follows 
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where (d) also comes from the independence of  v  and 1−R .  

Therefore, ( )22[ ( , )] 1k k k k ks s s sσ ρΕ ∆ ≤ − + . 

Now, ( )Pr ( , )k k ks s C∆ ≤  is lower bounded by as follows, 
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ρ
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where (a) is from the Markov inequality and (∙)+ is to make sure 
the probability to be nonnegative. 

C. Proof of Lemma 6 

1 1: 1:( , )k k n k nd + + + Ε  s s  is expressed as follows  
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where (a) comes from the independence between v  and R , 
and the fact that any off-diagonal element of R has mean zero 

[21] and (b) comes from 
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Finally, using the Markov inequality, 
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D. Proof of Theorem 7 
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Formation of oxygen vacancies 
and Ti3+ state in TiO2 thin film and 
enhanced optical properties by air 
plasma treatment
Bandna Bharti1, Santosh Kumar2, Heung-No Lee3 & Rajesh Kumar1

This is the first time we report that simply air plasma treatment can also enhances the optical 
absorbance and absorption region of titanium oxide (TiO2) films, while keeping them transparent. TiO2 
thin films having moderate doping of Fe and Co exhibit significant enhancement in the aforementioned 
optical properties upon air plasma treatment. The moderate doping could facilitate the formation 
of charge trap centers or avoid the formation of charge recombination centers. Variation in surface 
species viz. Ti3+, Ti4+, O2−, oxygen vacancies, OH group and optical properties was studied using X-ray 
photon spectroscopy (XPS) and UV-Vis spectroscopy. The air plasma treatment caused enhanced optical 
absorbance and optical absorption region as revealed by the formation of Ti3+ and oxygen vacancies in 
the band gap of TiO2 films. The samples were treated in plasma with varying treatment time from 0 to 
60 seconds. With the increasing treatment time, Ti3+ and oxygen vacancies increased in the Fe and Co 
doped TiO2 films leading to increased absorbance; however, the increase in optical absorption region/
red shift (from 3.22 to 3.00 eV) was observed in Fe doped TiO2 films, on the contrary Co doped TiO2 films 
exhibited blue shift (from 3.36 to 3.62 eV) due to Burstein Moss shift.

Among various metal oxide semiconductors, TiO2 is considered as a prime candidate due to its many peculiar 
properties1,2 for diverse applications. It is the most suitable candidate for photocatalytic applications due to its 
biological and chemical inertness, strong oxidizing power, non-toxicity and long term stabilization against photo 
and chemical corrosion3. The films of TiO2 have valuable applications in LEDs, gas sensors, heat reflectors, trans-
parent electrodes, thin film photo-anode to develop new photovoltaic, photo-electrochemical cells, solar cells 
and water splitting4–10. In anodic applications, it is a preferred material because of its low density/molar mass and 
structural integrity over many charge and discharge cycles11. However, the efficiency of pure TiO2 is substantially 
low because of its wide band gap and fast recombination of photo-generated electrons and holes. The key issue to 
improve the performance of TiO2 relies on efficient light harvesting, including the increase of its photo-efficiency 
and expansion of photo-response region, and to ensure efficient number of photo-generated electrons and holes 
reaching to the surface before their recombination. In order to meet these desired performances the bands struc-
ture modification of TiO2 is preferred.

Generally, three fundamental approaches are implemented for band structure modification viz. doping with 
metallic/non-metallic elements or co-doping of metallic and non-metallic elements1,12–14, modification via intro-
ducing defects such as oxygen vacancies and Ti3+ in the band gap15,16, and surface modification by treatment 
methods11,17–19. In metallic doping, among the range of dopants such as Ni, Mn, Cr, Cu, Fe etc.3,20–23, the Fe is 
found most suitable due to its half filled electronic configuration. Similarly, from non-metallic dopants S, C, F, N 
etc.24–27, the N is preferred. In the case of metallic dopants, there are some contradictory reports that show disad-
vantages of thermal and chemical instability of TiO2. Also, their high doping although enhances the band gap but 
at the same time reduces optical/photocatalytic activity because of increasing carrier recombination centers28–31. 
What is the mechanism of observed photo-response of doped/modified TiO2; it is still a question, however a 
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generally accepted concern states that the photo absorption of a material is explained better by introducing the 
defects in the lattice of TiO2. For example, Ti3+ and oxygen vacancies32 create trap centers, rather than the recom-
bination centers unlike the high doping case, and results in the variation of band gap of pristine TiO2.

On the other hand, surface modification methods including surface hydrogenation33, vacuum activation32 
and plasma treatment34 are also practiced. In the hydrogenation method, the surface of TiO2 is terminated with 
hydrogen leading to an enhanced photocatalytic activity35 in visible region; however, it is still unknown that 
how does the hydrogenation modify a surface to enhance its optical performance (photocatalytic activity)36. The 
drawback of the hydrogenation method is that it requires high temperature and the obtained TiO2 sample/film 
are black35, which makes the films unable for many optoelectronic applications, such as a transparent electrode 
in optoelectronic devices. Both the vacuum activation and plasma treatment methods create highly stable Ti3+ 
and oxygen vacancies32,34. In vacuum activation method, the sample may exhibit higher absorption intensity but 
it appears brown in color35, that makes it unable for transparent electrode applications. Finally, in case of plasma 
treatment methods, generally hydrogen gas is used to create oxygen Ti3+ and vacancies in TiO2, but it is always 
avoidable to use such a hazardous and expensive gas. Except hydrogen there are few reports on the use of argon37, 
oxygen38 and nitrogen plasma39 for surface modification of TiO2. We know that the implementation of gas in the 
treatment chamber may be hazardous and cost effective; therefore, it is always required to avoid the use of hazard-
ous gas, and to implement a simple and low cost approach to meet the requirements. In this regard, treatment by 
air plasma may be an effective approach. However, to the best of our knowledge there is no report on the applica-
tion of air plasma for the surface modification of TiO2 film.

In this report, the band structure modification of thin transparent films of TiO2 was done by implementing 
simply the air plasma and thus creating Ti3+ and oxygen vacancies in TiO2 films. The effect of air plasma treat-
ment was studied in conjunction with metallic doping. First, Fe and Co doped TiO2 thin films were formed on 
glass substrate, which were subsequently treated in air plasma. Considering the drawback of high metallic doping 
(formation of recombination centers), in this study, a moderate amount of dopants were used to enhance the 
optical properties of TiO2 thin film and thereafter the air plasma was applied to enhance them further. The mod-
erate amount of metallic dopant not only favors the separation of electrons and holes but also narrows the band 
gap of TiO2

3. We observed that simultaneous effect of the joint approaches increases photo absorbance as well as 
expends photo response region of the films towards both the visible and UV spectrum. The doped films of TiO2 
were treated in plasma with varying treatment time. The moderate doping of Fe and Co elements reduces band 
gap minutely in both the cases, but when treated with air plasma a significant change in the optical properties was 
observed due to the formation of Ti3+ and oxygen vacancies in the band gap.

Results and Discussion
After fabricating, the thin films of pure TiO2, Fe and Co doped TiO2 were treated in air plasma for 0, 10, 30 
and 60 seconds, which were analyzed for surface morphology and crystal structure variations using SEM (see 
Supplementary Information; Figure S1) and XRD. Here we show XRD pattern of doped thin films for extreme 
treatment time 0 and 60 seconds (for XRD spectra of samples treated at other treatment time, please see 
Supplementary Information; Figure S2). Figure 1(a,b) represents XRD pattern of Fe doped, and Fig. 1(c,d) repre-
sents XRD patters of Co doped TiO2 thin films for 0 (untreated) and 60 seconds of plasma treatment time. Since 
there is no detection of Fe and Co signals, it indicates that all the Fe and Co ions in the respective samples gets 
incorporated into the structure of TiO2 by replacing some of Ti ion, and occupying the interstitial sites40.

Absence of sharp peak in XRD patterns represents amorphous phase of TiO2 thin films41. After plasma treat-
ment 2θ angle and FWHM of the peaks remain almost unchanged, indicating negligible effect on the film struc-
ture. XRD indicates that plasma treatment does not create any change in the crystal structure of Fe and Co doped 
TiO2 thin films. The obtained low signal-to-noise ratio in the above XRD spectra is due to the low crystallinity of 
the films and small crystallite size; such observations have been reported by others42.

The presence of atomic percentage of the dopants in TiO2 thin films was detected by EDX signals (see 
Supplementary Information; Figure S3). The EDX of Fe doped TiO2 film shows the atomic percentage of Fe, 
Ti and O as 1.66%, 12.93% and 85.41%, respectively, which closely matches to the stoichiometry of elements in 
Ti0.95Fe0.05O2. Similarly, in case of Co doped TiO2, the obtained atomic percentage of Co, Ti and O in EDX are 
1.33%, 23.33% and 75.35%, respectively, which confirms the stoichiometry of elements of Ti0.95Co0.05O2 thin film.

Variation in optical properties of TiO2 thin films by doping and subsequent air plasma treatment was ana-
lyzed by UV-Vis spectrophotometer. The change in absorption edge and corresponding band gap is mentioned 
in Table 1. Pure TiO2 film (undoped and untreated) showed absorption edge at 367 nm and band gap 3.37 eV, 
whereas Fe doped TiO2 film showed a shift in the absorption edge to 385 nm, with a decreasing in the band gap 
to 3.22 eV. Similarly, Co doping shifts the absorption edge from 367 nm to 369 nm with a reduction in the band 
gap to 3.36 eV. The observed red shift in absorption edge and narrowing band gap in both dopants cases is similar 
to other reports on metallic doping3. In both the cases, samples were doped with a moderate (5%) concentration 
of Fe and Co forming Ti0.95Fe0.05O2 and Ti0.05Co0.05O2, respectively. We could have tuned the optical properties 
further by increasing the dopant concentration but that would form recombination centers28; therefore, to avoid 
the formation of recombination centers, a further tuning in the optical properties was done by treating these 
moderately doped TiO2 films in air plasma. The films were treated in air plasma for treatment time (0, 10, 30 and 
60 seconds), and investigated for the shift in absorption edge and band gap variation. With increasing treatment 
time, the absorption edge of Fe doped TiO2 films shifts continuously from 385 nm (for 0 seconds treatment time) 
to 413 nm (for 60 seconds treatment time), with a corresponding band gap change from 3.22 eV to 3.00 eV, show-
ing a significant increase in the absorption region. In case of Co doped TiO2 films, the absorption edge shifts from 
369 nm to 342 nm (for 60 seconds treatment time) with a corresponding band gap change from 3.36 to 3.62 eV, 
which shows an increase in the optical band gap/UV absorption region probably due to the Burstein-Moss effect43 
explained latter.
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From the Table, it is observed that the change in optical properties of TiO2 films appears at two levels; first 
by the doping of Fe and Co, and then by plasma treatment. However, here it should be noted that the change in 
the band gap due to the doping is smaller as compared to the subsequent band gap change by plasma treatment. 
While discussing the effect of doping on the change of band gap, we know that the reduction may take place due 
to either by the increasing grain size of highly crystalline sample44 or the formation of electronic energy levels 
within energy band gap45. In our study, since the XRD results showed the samples to be amorphous, thus the first 
reason can be discarded. Therefore, Fe3+ and Co2+ ions substitute Ti4+ ions in TiO2 matrix and cause a change in 
the band gap by forming their mid gap energy levels in the respective samples along with the formation of Ti3+ 
and oxygen vacancies. The electronic transition from valance band to dopant level and then from dopant level to 
conduction band, and/or from valance band to oxygen level and then form oxygen level to Ti3+ level/dopant level 
effectively cause a red shift in the absorption edge, showing reduced band gap46–48. In many cases, the localized 
level of t2g state of the doping element even lies in the middle of band gap (in case of, Cr, Mn or Fe as the doping 
materials), and at the top of the valance band (when Co is used as a dopant)49. Next, the variation in the absorp-
tion edge/band gap with plasma treatment time is due to the increase of Ti3+ and oxygen vacancies, detailed 
discussion is given under XPS studies in the following section.

Figure 2 shows variation in the absorption spectra of Fe doped TiO2 thin film treated for 60 seconds of time 
(Fig. 2(b)) with respect to untreated one (Fig. 2(a)) (to see the increase in the absorption edge and reduction in 

Figure 1. X-ray diffraction spectra of (a) Fe doped/untreated TiO2 film; plasma treatment time 0 second, (b) Fe 
doped/treated TiO2 film, plasma treatment time 60 second, (c) Co doped/untreated TiO2 film, plasma treatment 
time 0 second and (d) Co doped/treated TiO2 film; plasma treatment time 60 second.

Table 1.  Variation in absorption edge and band gap of Fe and Co doped TiO2 thin films with plasma 
treatment time.
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band gap, please refer to Supplementary Information; Figure S4). There is a continuous change in the absorbance, 
absorption edge and band gap of the films with plasma treatment time. The absorbance of the film increased from 
60% (untreated film) to 87% (treated for 60 seconds) along with a red shift in the absorption edge and band gap 
narrowing by 0.22 eV (Tauc plot shown in the inset of Fig. 2(b)). The band gap and absorption edge were esti-
mated using the following equations50:

α ν ν= −h C h E( ) ( ) (1)
1 2

g
/

λ=E hc/ (2)eV

where α is absorption coefficient and Eg is band gap energy.
Similarly, the variation in absorption spectra of Co doped TiO2 thin film treated for 0 and 60 seconds is shown 

in Fig. 3(a,b) (details of other samples is given in Supplementary Information; Figure S5). In this case, doping 
shows a red shift due to the presence of Co levels in the energy gap of TiO2, whereas after plasma treatment the 
film shows continuous blue shift with increasing treatment time. This overall shift (due to treatment in plasma for 
60 seconds) in the band gap is 0.26 eV. The observed blue shift can be explained by Burstein-Moss effect43, resulted 

Figure 2. Optical absorption spectra and Tauc plot ((αhv)1/2 versus hv plot) in the inset for (a) Fe doped/
untreated TiO2 film; plasma treatment time 0 second and (b) Fe doped/treated TiO2 film; plasma treatment time 
60 second.

Figure 3. Optical absorption spectra and Tauc plot ((αhv)1/2 versus hv plot) in the inset for (a) Co doped/
untreated TiO2 film; plasma treatment time 0 second and (b) Co doped/treated TiO2 film; plasma treatment 
time 60 second.
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by the change in the position of Fermi level into the conduction band. General equation representing enhance-
ment in the band gap energy is given by:


∆ =





 +





⁎ ⁎E K

m m2
1 1

(3)
g
BM F

e h

2 2

where ⁎mh  and ⁎me  are the effective mass of hole and electron in the respective bands, and KF is Fermi wave vector. 
In our case, the shift of Fermi level into the conduction band leads to the energy band widening. Absorption edge 
shifts to shorter wavelength region due to the increase in the carrier concentration, which is discussed in XPS 
studies section.

The overall variation in the absorption edge and band gap of TiO2 thin film due to the doping (Fe and Co) and 
air plasma treatment is plotted in Fig. 4. In the plasma treatment region, a remarkable change in the band gap 
values can be observed with treatment time.

XPS study. In order to understand the mechanism resulting the change in the band gap of Fe and Co doped 
TiO2 films with plasma treatment time, the films were investigated by XPS. The XPS being surface sensitive tech-
nique provides information about the change in chemical state of film constituting species. Here, the variation in 
the chemical state of elements ‘O’ and ‘Ti’ with plasma treatment time was analyzed in detail to correlate it with 
the observed variations in the band gap of the films. Figure 5(a,b) show XPS survey spectra of untreated and 
plasma treated Fe and Co doped TiO2 thin films, respectively. In these spectra, C1s is probably an instrumental 
impurity. The intensities of O1s and Ti2p peaks increase with the increasing plasma treatment time, indicating an 
increase in these states with treatment time.

Figure 6(a) shows high resolution XPS spectrum of pure TiO2 film. In this spectrum, the doublet ‘Ti2p3/2 
(binding energy 458.6 eV) and Ti2p1/2 (binding energy 464.4 eV)’ arises from spin orbit-splitting. These peaks 
are consistent with Ti4+ in TiO2 lattice51. Also, the shoulder Ti2p1/2 at binding energy 460.2 eV is corresponding 
to Ti3+ 52 in Ti2O3. This indicates that both TiO2 and Ti2O3 are formed in the film (Without deconvolution, the 
XPS spectra are shown in Supplementary Figure S6). After doping with Fe, the high resolution XPS spectrum 
(Fig. 6(b)) shows a slight shift in the position along with a variation in the area of the original peaks. The peaks 
in the Fe doped samples are now located at binding energies 458.4 (Ti2p3/2), 464.3 eV (Ti2p1/2) and 459.0 eV 
(Ti2p1/2), respectively (see Supplementary Information; Table S1). The shift in the position of these peaks indi-
cates an influence of Fe addition on the electronic state of Ti element; probably some of the Ti ions get substi-
tuted with Fe ions in the lattices. After doping, the area of Ti3+ peak increased by 81% and that of the peak Ti4+ 
decreased by 19%. The increase in the area of Ti3+ peak indicates that either Ti2O3 is formed in large amount or 
some mixed oxide structure with Fe (having oxidation state Ti3+) is formed after doping. Meanwhile, the decreas-
ing area of Ti4+ indicates a reduction of TiO2 in the sample, and probably formation of Ti-O-Fe structure in the 
TiO2 lattice through the substitution of transition metal ions. Observed shift in the peaks also indicates interac-
tion between Ti and Fe atoms and an overlapping of their 3d orbital53. This causes an electronic excitation from 
Fe to Ti in the optical absorption experiment, which shows a reduction in the band gap of Fe doped TiO2 film  
(as observed in the optical analysis).

After doping, the film was treated in air plasma. In the XPS results, only the sample which was treated for 
60 seconds in plasma is demonstrated. The XPS shows a further increase in the peak corresponding to Ti3+ at 
459.0 eV (Fig. 6(c)) and a decrease in the peak area of Ti4+. The change in stoichiometry was estimated by the 
change in the area of relative peaks. The peak area of Ti3+ increases by 20% and that of Ti4+ decreases by 12%. The 
increase in the peak area of Ti3+ indicates that after plasma treatment there is removal of oxygen from the lattice, 
which shows a relative increase in Ti3+ in the XPS spectrum. On the other hand decreasing peak area of Ti4+ is 

Figure 4. Plots for variation of optical band gap of Fe and Co doped TiO2 thin film with plasma treatment 
time. 
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inferred due to the reaction of Ti4+ with electrons coming either from plasma or due to the formation of oxygen 
vacancies in the surface layer generated by the plasma treatment41. Now, as observed in optical analysis, the band 
gap of Fe doped films (3.22 eV) decreased to 3.00 eV (for 60 seconds of treatment time), this is correlated with 
the increasing career/electrons density due to plasma treatment. As we know that in the doped samples, the pos-
sible reasons of red shift/decreasing band gap is the introduction of donor states in the energy gap (here oxygen 
vacancies and Ti3+, Table 1). In the present case, the band gap decreases further with increasing treatment time, 
while the concentration of the dopant was kept constant, which is due to the change in the surface states of the 
constituents i.e. Ti element and oxygen vacancies.

Next, the O1s spectrum of pure TiO2 thin film is shown in Fig. 6(d), which is fitted with three peaks. The peaks 
at binding energies 529.9 eV, 530.3 eV and 531.3 eV are attributed to lattice oxygen, Ti2O3 and non-lattice oxy-
gen54,55. Similarly, for the doped sample, O1s spectrum of Fe doped TiO2 thin film fitted with two peaks is shown 
in Fig. 6(e). In this spectrum, only two peaks at binding energies 529.8 eV, and 531.9 eV are observed which are 
attributed to lattice oxygen and surface adsorbed OH group, whereas the peak 530.3 eV corresponding to Ti2O3, 
disappears. This indicates that in the doping process TiO2 is formed along with some mixed oxide. Again, the 
change in stoichiometry was estimated by the change in area of relative peaks. In case of Fe doped TiO2 film, the 
area of the peak at 529.7 increases by 64% and that of the peak at 531.5 eV increases by 54%.

After plasma treatment, the binding energy of lattice oxygen (O in TiO2) shifts slightly from 529.8 eV to 529.7 eV 
(Fig. 6(f)), whereas its area increases by 35%. Also, the area of the peak at 531.5 eV (non-lattice oxygen/OH)  
increases by 15% (see Supplementary Information; Table S1). The increase in the area of non-lattice oxygen 
indicates the formation of oxygen vacancies in the lattice. This result is analogues to the XPS spectrum of Ti2p 
(Fig. 6(c)).

Fe doping results in a minor shift in the binding energy, indicating that Fe ions are better dispersed in the sub-
stitutional sites of TiO2 lattice and produce more mixed oxide structure, probably Fe-O-Ti. Figure 7(a) shows high 
resolution XPS spectrum (for Fe2p3/2) of Fe doped TiO2 film. After plasma treatment, the high resolution XPS 
spectrum of Fe2p3/2 is shown in Fig. 7(b). These spectra are fitted with Gauss–peak shapes as shown in Fig. 7(c,d). 
The deconvoluted XPS spectrum of Fe2p3/2 (Fig. 7(c,d)) contains main peaks at 710.1 eV and 724.6.1 eV corre-
sponding to Fe2p3/2 and Fe2p1/2, respectively (see Supplementary Information; Table S2). The appearance of these 
peaks supports the presence of Fe in Fe3+ ionic state55. Further, after plasma treatment the shift in the binding 
energy of Fe2p3/2 from 710.1 eV to 711.3 eV also indicates the presence of Fe3+ species, irrespective of the par-
ticular oxide (i.e., Fe2O3, Fe3O4, and FeOOH). Shake up satellite at 716.9 eV also supports that Fe is presented 
in Fe3+ state (oxide)56. These shake-up satellites are associated with Fe3d-O2p hybridization. Thus XPS analysis 
confirmed that Fe ions are doped into TiO2 matrix in the form of Fe-O-Ti. From the XPS analysis, we confirmed 
that by increasing the plasma treatment time the concentration of Ti3+ and oxygen vacancies also increases.

The Co doped samples after treating in plasma show adverse effect on the band gap of the doped TiO2 film. In 
this case, band gap increases with the increasing treatment time as observed in optical studies. To investigate this 

Figure 5. XPS survey spectra in a(i) pure TiO2 film indicating all the peaks of elements present in the sample, 
here the appeared carbon peak is instrumental impurity, a(ii) Fe doped/untreated TiO2 film; plasma treatment 
time 0 seconds, a(iii) Fe doped/treated TiO2; plasma treatment time 60 seconds, b(i) pure TiO2 film which is 
similar to a(i), and b(ii) Co doped/untreated TiO2 film; plasma treatment time 0 seconds, b(iii) Co doped/
treated TiO2 film; plasma treatment time 60 seconds.
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Figure 6. High resolution XPS spectra of Ti2p and O1s in (a) pure/untreated TiO2 film, (b) Fe doped/untreated 
TiO2 film; plasma treatment time 0 second, (c) Fe doped/treated TiO2 film; plasma treatment time 60 seconds, 
(d) O1s for pure/untreated TiO2 film, (e) O1s for Fe doped/untreated TiO2 film; plasma treatment time 
0 second, and (f) O1s for Fe doped/treated TiO2 film; plasma treatment time 60 seconds.

Figure 7. High resolution XPS spectra of Fe2p in (a) Fe doped/untreated TiO2 film; plasma treatment time 
0 second, (b) Fe doped/treated TiO2 film; plasma treatment time 60 seconds, (c,d) are Gaussian fit of (a,b).
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divergent behavior, the samples were analyzed via XPS, Fig. 8 shows high resolution spectra. Figure 8(a) shows 
the XPS spectrum of pure TiO2, and Fig. 8(b) shows XPS for Co doped sample. As discussed above in the case of 
Fe doped sample, the XPS of pure TiO2 is also fitted with three peaks corresponding to titanium dioxide (Ti4+) 
and titanium sub oxide (Ti3+) in Ti2p1/2 and Ti2p3/2, respectively. These peaks are fitted as Ti4+2p1/2 at 464.4 eV, 
Ti4+2p3/2 at 458.6 eV, and Ti3+2p3/2 at 460.2 eV. The line separation between Ti2p1/2 and Ti2p3/2 is 5.8 eV, which 
is consistent with the standard binding energy of TiO2

51. However, in this case the Ti2p spectrum (Fig. 8(b)) is 
fitted with four peaks as 464.4 for Ti4+2p1/2, 458.6 eV for Ti4+2p3/2, 460.4 for Ti3+2p3/2 and 457.9 eV for Ti3+2p1/2

57, 
respectively (see Supplementary Information; Table S1). In comparison to the pure TiO2, the area of Ti3+ peak 
in Co doped TiO2 increases by 26%, while that of the peak Ti4+ decreases by 7%, indicating a reduction in the 
formation of TiO2, which is similar to the case of Fe doped samples.

After the plasma treatment (Fig. 8(c)), binding energies of the mentioned peaks are shifted slightly to the posi-
tions such as 464.3 eV (Ti4+2p1/2), 458.5 eV (Ti4+2p3/2), 460.6 eV (Ti3+2p3/2) and 457.4 eV (Ti3+2p1/2), respectively. 
The change in stoichiometry was estimated by the change in peak area of respective peaks.

After plasma treatment, while investigating for peak area, we observed that the peak area of Ti3+ increases 
by 30%, whereas the peak area of Ti4+ decreases by 12%. Again, this is expected due to the reaction of Ti4+ with 
the electrons coming either from plasma or due to the formation of oxygen vacancies in the surface layer by the 
plasma treatment. Further, the high resolution O1s XPS spectrum obtained for Co doped sample is shown in 
Fig. 8(d–f). The spectrum is fitted with three peaks i.e. 529.9 eV, 530.3 eV and 531.6 eV that correspond to lattice 
oxygen of TiO2, oxygen in Ti2O3 and non-lattice oxygen, respectively.

The change in stoichiometry was estimated by change in the peak area of relative peaks. With the doping of 
Co, the lattice oxygen (corresponding to TiO2) peak at 529.9 shifts to the position 530.3 eV, and the area of the 
peaks at 530.3 eV and 531.6 eV increases by 51% and 24%, respectively. The original peak at 530.3 eV (Fig. 8(d)) 
corresponding to Ti2O3 disappears after doping (Fig. 8(e)), which is due to the formation of mixed oxide struc-
ture. Further, with the increasing treatment time, the areas of the peaks at 530.3 eV and 531.6 eV ((Fig. 8(f)) also 
increases by 24% and 25%, respectively. (To explain in a more quantitative manner we have tabulated all the data in 
a table by comparing all the peaks at different plasma treatments time see Supplementary Information; Table S1).

Next, Fig. 9(a) corresponds to high-resolution XPS spectra of Co2p region of Co doped TiO2 thin films 
and Fig. 9(b) shows high-resolution XPS spectra with plasma treatment. Figure 9(c,d) represent deconvoluted 
XPS spectra of doped TiO2 and plasma treated TiO2 thin films, respectively. The core level binding energies of 
peaks Co2p1/2 and Co2p3/2 are 796.9 eV and 781.0 eV, respectively. The satellite peaks at 787 eV and 802 eV reveal 
high spin Co(II) state with complex transitions58. These results are an indication that Co does not precipitate as 

Figure 8. High resolution XPS spectra of Ti2p and O1s in (a) pure/untreated TiO2 film, (b) Co doped/
untreated TiO2 film; plasma treatment time 0 second, (c) Co doped/treated TiO2 film; plasma treatment time 
60 seconds, (d) O1s for pure/untreated TiO2 film, (e) O1s for Co doped/untreated TiO2 film; plasma treatment 
time 0 second, and (f) O1s for Co doped/treated TiO2 film; plasma treatment time 60 seconds.
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metallic Co on the film surface. After plasma treatment, the satellites peaks shifts slightly to the 785.3 eV and 
802.3 eV. Also, the binding energies of Co2p1/2 and Co2p3/2 are shifted to 796.6 eV and 781.2 eV, respectively 
(see Supplementary Information; Table S1). These spectra are typical of compounds containing high-spin Co2+ 
ions59,60, reveling the presence of CoO(Co2+), CoTiO3 (Co2+), Co2O3 (Co3+) or mixed valence Co3O4 (Co2+ and 
Co3+) in the surface. The presence of strong satellites indicates that Co atoms in the doped TiO2 film are in 2+  
oxidation state, referring the possible formation of CoO or CoTiO3 inside the film.

Now we discuss the probable reason of band gap narrowing in TiO2 film with Fe doping, and widening in 
the case of Co doping after plasma treatment. As reported, the iron dopant acts as an acceptor impurity in TiO2 
lattice61. Thus when the TiO2 film is doped with Fe, the acceptor levels of Fe along with oxygen vacancies are 
created in the band gap of TiO2

62. In our case, as discussed above Ti3+ is also formed which creates energy level 
in the band gap, contributing to the reduction of band gap. Next, when this Fe doped TiO2 film was treated in 
air plasma, the Ti3+ levels and oxygen vacancies increases further with the treatment time, whereas no change in 
the dopant levels occurs as the dopant concentration was kept constant. The increase in Ti3+ levels and oxygen 
vacancies would further reduce the band gap of Fe doped TiO2 film. In case of Co doping, there is a formation 
of Co acceptor levels along with Ti3+ and oxygen vacancies levels in the band gap which reduces the band gap of 
Co doped TiO2 film. But when the film was treated with plasma we observed continuous widening in the band 
gap with treatment time. The observed increase in the band gap can be explained by Burstein-Moss effect. The 
probable reason for Burstein-Moss shift in this case is that with the treatment time the Ti3+ levels and oxygen 
vacancies increases more as compared to Fe doped case. By plasma treatment for 60 seconds the Ti3+ increases by 
20%, oxygen vacancies increases by 15% in case of Fe doped TiO2, whereas Co doped TiO2 Ti3+ increases 30%, 
oxygen vacancies increases 25%. These created levels donate more electrons and thus shift the Fermi level to the 
conduction band, which increases the band gap of Co doped TiO2 film. The exact reason for this divergent behav-
ior is unclear as of now but the most appropriate reason seems to us is, the on-site coulomb interaction/repulsion 
that are occurring only in case of Co doped TiO2 films63. When Co2+ ion substitutes Ti4+ ions, the imbalance 
positive charge inside the lattice is compensated by the formation of oxygen vacancies located near Co ion. The 
formation of oxygen vacancies is equivalent to the addition of two electrons per Co ion64,65. The oxygen vacancies 
produced in case of Co doped TiO2 thin films are higher as compared to Fe doped TiO2 films as observed by 
XPS. Suppose both Fe and Co doped films increase by same values of Ti3+ levels and oxygen vacancies, but due to 
Columbian interactions, which are only in case Co doped TiO2

64,65, the optical transition results in the blue shift 
of the absorption spectra. The proposed mechanism for both the Fe and Co doped TiO2 is illustrated in Fig. 10.

Figure 9. High resolution XPS spectra of Co2p in (a) Co doped/untreated TiO2 film; plasma treatment time 
0 second, (b) Co doped/treated TiO2 film; plasma treatment time 60 seconds, (c,d) are Gaussian fit of (a,b).
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Conclusion
Treatment by air plasma leads to significant change in the optical properties of TiO2 thin films. Unlike other 
treatment methods, in this approach the transparency of TiO2 thin film remains invariant. The charge separation 
centers i.e. oxygen vacancies and Ti3+ is created with the doping of metallic Fe and Co elements; however, they are 
significantly enhanced by the air plasma treatment. In Fe doped TiO2 thin film, the formation of oxygen vacancies 
and Ti3+ causes enhances absorbance and red shift due to the formation of energy levels in the band gap, whereas 
in Co doped TiO2 the Burstein-Moss shift is effective to make blue shift in the absorption spectra. Conclusively, 
we can say that the joint approaches i.e. low level/moderate doping and safe and low cost air plasma treatment 
resulted in enhanced optical properties of transparent TiO2 thin films, making them efficient candidate for trans-
parent electrode applications.

Experimental Methods
Thin films of TiO2, Fe doped TiO2 (Ti0.95Fe0.05O2) and Co doped TiO2 (Ti0.95Co0.05O2) were fabricated on glass 
substrate using dip-coating method. Titanium (IV) isopropoxide (TTIP, Ti[OCH (CH3)2]4, 97%, Aldrich) was 
used as precursor solution. First of all triethanolamine C6H15NO3, a stabilization agent was dissolved in C2H5OH, 
which resulted in a colorless solution. In this solution, the precursor solution Ti[OCH (CH3)2]4 was added drop-
wise to form a pale yellow solution with a continuous stirring. To avoid the precipitation of TiO2, C2H5OH and 
H2O was added in a ratio 9:1. Now during the sol gel synthesis solutions of ferric nitrate (Fe (NO3)3.9H2O), 
and cobalt nitrate (Co (NO3)2.6H2O) were added separately as the dopant in TiO2. These solutions were stirred 
for two hours and allowed for ageing overnight. Then glass substrates cleaned with H2O, detergent, C3H6O and 
C2H5OH were coated with the aged solution. Coated films were dried and annealed at 400 °C to form transpar-
ent thin films. The fabricated films were treated in air plasma, generated in a vacuum coating unit (Hindhivac 
model: 12A4D), for varying treatment time; 0, 10, 30, and 60 seconds, respectively. The air plasma was generated 
at reduced pressure of 10−3 mbar in the vacuum chamber. During the treatment process the applied bias voltage 
was 30 volts with a power of 22.7 watt. After treating in plasma, the samples were analyzed for optical, structural, 
morphological and surface properties.

Materials Characterization. The optical (absorbance, shift in absorption edge and band gap) properties 
of the films were studied by UV-Vis spectrophotometer (Perkin-Elmer Lambda 750). The band gap of Fe and Co 
doped thin films was calculated by using the absorbance spectra by plotting (αhv)1/2 against hv, where hv being 
incident photon energy. Surface morphology was studied using scanning electron microscopy (SEM), and ele-
mental confirmation was done using energy dispersive X-ray (EDX). The structural analysis of the samples was 
done using X-ray diffractometer (XRD) (company name Rigaku, with Cu kα  radiation, λ  =  1.5406 Å), and to 
observe the effect of plasma treatment on surfaces states, X-ray photoelectron spectroscopy (XPS: VG Multilab 
2000, Thermo electron corporation, UK) studies were performed.
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Spatially Concatenated Channel-Network Code for
Underwater Wireless Sensor Networks

Zafar Iqbal and Heung-No Lee, Senior Member, IEEE

Abstract— Underwater environment monitoring is an
important application of wireless sensor networks (WSNs).
However, WSNs face challenges, such as erroneous communi-
cation, ensuring the lifetime and robustness of the network,
and cost constraints. The underwater acoustic channel (UAC)
is highly frequency-selective, and the channel response changes
over time because of variations in the channel conditions.
Therefore, designing a cooperative coded orthogonal frequency
division multiplexing (COFDM) system that is suitable for the
doubly selective UAC and has reduced power consumption
is very challenging. We propose a cooperative spatial-domain
coding scheme combined with the low-density parity-check-coded
OFDM system, called spatially concatenated channel-network
code, for underwater acoustic WSNs. The designed underwater
acoustic WSN exhibits a significant advantage regarding the
required number of sensors, bit error rate (BER), and power
consumption over the non-cooperative COFDM communication
system. We also analyze sensor deployment schemes and find
out the area in which our proposed scheme can be beneficial in
terms of reduced power consumption and enhanced BER.

Index Terms— Underwater acoustic communication, OFDM,
LDPC, multipath fading, network coding, deployment, WSN.

I. INTRODUCTION

UNDERWATER acoustic communication has widespread
applications, such as the monitoring of underwater envi-

ronments, military/oceanic surveillance, underwater naviga-
tion, the observation of radiation leaks, and the exploration
of underwater resources. Most of these applications require
sophisticated underwater wireless sensor networks (WSNs),
for which researchers have attempted to design reliable and
robust underwater communication systems [1], [2].

The underwater acoustic channel (UAC) is time-varying
because of the changes in the temperature, geometry of the
channel, roughness of the sea surface, and spatial position
caused by the sea current. Acoustic waves are considered
as the major carrier in underwater communications because
of their low attenuation characteristics [3], but the limited
bandwidth and time-varying response of the UAC makes it
difficult to obtain accurate channel state information (CSI)
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at the transmitter and/or receiver. Furthermore, the multipath
delay spread due to the reflections at the sea surface and
bottom causes inter-symbol interference (ISI) and frequency-
selective fading. Hence, these factors degrade the system
performance [4], [5].

To overcome such performance falloffs, coded orthogonal
frequency division multiplexing (COFDM) systems have
been proposed that employ low-density parity-check (LDPC)
codes [6]–[8], Reed-Solomon codes [9], and adaptive mod-
ulation and coding (AMC) [10] in OFDM systems for
UACs. LDPC-coded and OFDM-based underwater acoustic
communication has been well investigated in [6]–[8]
and [11]–[13], respectively. However, we observe that a non-
cooperative LDPC-COFDM system exhibits significant perfor-
mance degradation in the presence of random fading. Also,
because point-to-point systems are vulnerable to long-term
deep fading, Doppler spread, and shadow zones [1], [14], [15],
the interest in designing cooperative communication systems
with network coding, has recently increased.

Therefore, we aim to develop a cooperative network com-
munication scheme for underwater WSNs that resolves the
aforementioned challenges of the UAC and reduces the power
consumption in order to enhance the lifetime of the overall
network. The envisioned network is a WSN wherein multi-
ple sensors inside a shallow body of water cooperate while
transmitting to a buoy on the water surface. To resolve the
aforementioned problems, we propose a cooperation scheme
that enables a group of transmitting sensors to form a network
code over the spatial domain and is suitable for time- and
frequency-selective UACs. The proposed cooperation scheme
provides a considerable transmit power saving compared with
the conventional non-cooperative scheme. Our study shows
that the network coding benefit is sufficiently large to offset
the increase in the power consumption due to the cooperation
among the sensors in the network and yields an overall benefit
of ∼11 dB.

A. Related Works and Contribution of This Paper

After the idea of network coding was proposed in [16]
and its application to linear network coding in [17], different
strategies for cooperation, using network coding, have been
proposed. These schemes may be classified based on the
network types assumed, such as the single-source single-relay
network [18]–[23], single-source multiple-relay network [19],
[24]–[29], multiple-source single-relay network [30], [31], and
multiple-source multiple-relay network [19], [32]–[35].

0090-6778 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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For multiple-source multiple-relay networks with a sin-
gle destination where CSI is not readily available for relay
assignment, adaptive network coded cooperation (ANCC) was
proposed in [32]. In this scheme, each relay randomly selects
a small number of correctly decoded messages from all
the source nodes to generate a parity-check message in the
cooperation phase. This leads to the formation of a graph
code at the destination and a belief propagation decoding
algorithm is used for decoding. However, for the decode-and-
forward relaying scheme, detection errors at the relays should
be taken into consideration for performance analysis and code
design. While [32] assumes a set of relays that can successfully
decode the received messages, [35] considers the possibility
of unsuccessful decoding at the relays, making the scheme
more realistic. In addition, [35] also assigns fixed relays to
each source node and therefore, the relays do not have the
overhead of sending an extra bit-map field to the destination
to inform it about the underlying connections in the graph
code.

More recently, [31] proposed a two-user and single-relay
bilayer spatially-coupled LDPC (SC-LDPC) scheme for cor-
related sources. The system uses joint source-channel coding
to transmit to the relay as well as to the destination. Correct
decoding of the received signal is assumed at the relay and
the relay then uses network coding to combine the received
data before forwarding it to the destination. The scheme uses
a factor-graph-based design of joint source-channel-network
decoder at the destination when the sources are correlated.
Also, an OFDM based dynamic coded cooperation (DCC) for
underwater acoustic channels is presented in [23]. The relay
listens until correct decoding of the received signal and then
generates either an identical or a different OFDM block from
the source and superimposes it on the transmission from the
source in the cooperation phase. A delay control mechanism
is used at the relay to achieve block-level synchronization
between the source and the relay. This scheme requires a
powerful relay node with abundant resources, such as a surface
buoy, to assist the communication between the source and the
destination.

Compared to the above-mentioned works, our design is
based on multiple sources with multiple relays that transmit
to a single destination. Because practical networks suffer from
link failures and topology changes due to randomly fading
channels, fixed relay assignment, as proposed in [35], is
subject to failure in certain situations. Therefore, instead of
the fixed relay assignment, we use random relay selection
mechanism. In this scheme, a relay receives data from the
neighboring source nodes. Some of these data are selected
at random, encoded and transmitted in the relay phase. Our
scheme of random relay selection thus, provides more robust-
ness against link/node failures and outages in the underwater
sensor network, without the need for a very powerful relay
node as is the case in [23]. In our proposed cooperation
mechanism, the relay randomly selects a small number of
symbols from the data received from its neighbor nodes,
without decoding it. It then re-encodes the symbols using
an LDGM code, resulting in a concatenated channel-network
code. For this channel-network code a joint iterative decoder

is designed and its performance is evaluated using extrinsic
information transfer (EXIT) charts and BER simulations. The
above-mentioned schemes either use repetition codes, convo-
lutional codes, or some form of block codes in a distributed
way, but in our scheme, each node independently encodes the
data with an LDPC code and then in the cooperation phase,
the nodes concatenate the received LDPC-coded symbols with
an LDGM code in a distributed manner. Thus, our scheme
combines the power of concatenated coding with adaptive
network coding for underwater acoustic communication where
CSI is not readily available. It also uses the random relay
selection mechanism, resulting in a more practical cooperation
scheme.

The contributions of this paper are summarized as follows:
• We consider a doubly-selective channel which was not

considered in [32]. The work in [32] does not consider the
effects of time- and frequency-selectivity, while our work
takes care of time- and frequency-selectivity by using
OFDM modulation and the scheme has been applied to
underwater acoustic communication, for the first time.
In the proposed scheme, the underwater acoustic sensors
should take the role of relays for cooperation, but the
sensors are limited in power, computational resources,
and the challenge of underwater acoustic communication
is great. Therefore, investigating the effectiveness of the
cooperative coding scheme for underwater communica-
tion is very important and has not been addressed in the
works discussed above.

• We have removed some unrealistic assumptions consid-
ered in [32]. The work in [32] considers network coding
part only while assuming that a perfect channel coding
has been performed. Our work removes this assumption
as we have extended the network code by concatenating it
with a channel code and included the effect of propagated
error from the channel code to the network code part. The
proposed scheme is termed as a spatially concatenated
channel-network code (SCCNC) for underwater acoustic
communication.

• Our relaying mechanism is different from [32] and other
previous works. In the previous works, in the event of
unsuccessful decoding, the relay either remains silent or
sends its own data to the destination. In our proposed
scheme, the relays do not need to decode the received
codewords; they only detect the binary symbols. The
relays then re-encode randomly selected symbols received
from a number of sources and send it to the destination
in the second phase. Therefore, the relays do not need to
spend power on decoding the received codewords, thus
saving time, energy, and hardware resources. This is very
critical for underwater acoustic sensor networks, keeping
in mind the limited power and computational resources
of the sensors.

• In underwater acoustic communications, the sensor nodes
require a particularly high power for the transmission and
reception. Thus, the power consumption of the overall
network is expected to increase, as each node must
listen to the neighboring nodes’ transmissions in order
to realize the cooperation. In Section IV, we present an
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Fig. 1. 2D triangular grid deployment of sensors in an l × h area.

analysis indicating that the cooperation among sensor
nodes significantly increases the power consumption of
the network. Energy consumption analysis of both the
cooperative and non-cooperative schemes is performed
to observe the effects on the battery life of the sensor
nodes.

• Random and grid-deployment schemes are considered,
and the performance of these schemes is compared based
on the BER and cost of network deployment and opera-
tion.

The remainder of this paper is organized as follows.
We describe the network deployment issues in Section II. The
proposed cooperative network coding scheme for underwater
WSNs is presented in Section III. The performance analysis of
the scheme is discussed in Section IV, and Section V concludes
the paper. Some related information regarding the underwater
channel is given in Appendixes A and B.

II. DEPLOYMENT OF SENSOR NODES

Sensor deployment is an important issue, especially in
underwater WSNs, because the harsh underwater environments
pose various challenges for the effective operation and robust-
ness of the network. Sensor deployment addresses the problem
of the coverage and connectivity of the network by targeting
the minimized power consumption for a prolonged network
lifetime.

The underwater WSN can be deployed in two types of
communication architectures: two-dimensional (2D), where
the sensors are deployed at the bottom of the sea, and three-
dimensional (3D), where the sensors float at different depths to
cover the entire volume of water [1]. Herein, we consider a sta-
tic and 2D grid deployment for our WSN, which is relatively
easy to deploy and operate. We use the k-coverage parameter
to ensure that the target area is almost fully covered. A region
is said to be k-covered if every point inside it falls within the
sensing range r of at least k sensors. Our deployment target
is to achieve 1-coverage, as the underwater acoustic sensors
are expensive devices, and we wish to minimize the power
consumption and cost of operation.

The optimal deployment strategy to cover a 2D rectangular
area using the minimum number of sensors involves placing
each sensor at a vertex on a grid of equilateral triangles [36],
as shown in Fig. 1. To obtain the full coverage, the coverage

ratio η (covered area/target area) should be 1, which can
be achieved by adjusting the distance d among the sensors,
such that d = √

3r . This makes the uncovered areas shown
in Fig. 1 zero, and the overlapping areas are minimized.
Using [36, eq. (3)], we can compute the minimum number
of sensors U required to cover a target area l × h to satisfy
a given coverage ratio η as U (l, h, d, r ) = ⌈ l−d

d + 1
⌉ ×⌈

2
√

3h−6d+4
√

3r
3d + 1

⌉
. Thus, the minimum number of sensors

necessary to provide 1-coverage in an area of 100 × 100 m2

for r = 20 m is 12.
The next step is to estimate the number of redundant sensors

required to ensure the robustness of the network to node fail-
ures within a pre-determined observation period. We assume
that all the nodes have the same failure rate and that the
node failures occur according to a Poisson distribution and are
independent of each other. Therefore, the number of redundant
sensors required to compensate for the Poisson-distributed

node failures is given in [36, eq. (18)] as
�U∑

u=0

(λT )u e−λT

u! � �,

where λ is the sensor failure rate, T is the observation time
in days, u is the number of sensors that may fail during the
time T , and � is the probability that no more than �U failures
occur in the observation time T . For example, with an average
of one sensor failure every month (λ = 1/(365/12)) and a
success probability of � = 0.95, there are approximately six
sensor failures during a period of three months [36]. Thus, to
ensure network connectivity and provide 1-coverage in an area
of 100 × 100 m2 for r = 20 m and an observation period of
three months we must deploy 18 sensors rather than 12.

Finally, to ensure the connectivity of the network, we use
the argument given in [37]: �(log U) neighbors are necessary
and sufficient for a sensor network to be asymptotically
connected. This number is proven to be between 0.074logU
and 5.1774logU. Therefore, for a network of 12 or 18 nodes,
we select the minimum required number of neighbors as 5.

Although the triangular-grid deployment appears to be a
cost-effective solution regarding the number of sensors needed
to provide the coverage and connectivity in a given area of
interest, it may not be an effective solution for underwater
area monitoring when cooperative communication is used to
enhance the performance of the network. Moreover, compared
with a randomly deployed network, a triangular-grid structure
may be expensive to deploy and maintain for a long period of
time in an underwater environment. Herein, we compare the
effects of random and triangular-grid 2D static deployment
strategies employing cooperation among sensor nodes that
communicate to a buoy on the sea surface.

III. COOPERATIVE NETWORK-CODED COMMUNICATION

The point-to-point LDPC-COFDM communication system
for the UAC has been thoroughly investigated [8],
[11], [12], [38]. The results show that COFDM systems
perform robustly in UACs designed with simplified channel
conditions. Here, we show that a point-to-point COFDM
system may encounter problems under the realistic fading
conditions that exist in UACs. Moreover, the variations in the
positions of the sensors and buoy can significantly change
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Fig. 2. LDPC-COFDM system block diagram.

TABLE I

OFDM SYSTEM PARAMETERS

the impulse response of the UAC, yielding a performance
variation.

A. LDPC-COFDM System

Fig. 2 shows a block diagram of the suggested COFDM
system employing the regular LDPC code [39]. The OFDM
system parameters are summarized in Table I. The block
size N is kept the same as the number of sub-carriers in the
designed OFDM system. It is essential to choose a number
of subcarriers that satisfies the conditions to overcome both
frequency-selective fading (� f � BC) and time-selective fad-
ing (TS � TC). Because the Doppler spread increases geo-
metrically as the carrier frequency increases [40], to overcome
the time-selective fading, a suitable carrier frequency should
be selected for the UAC. Based on our distance assumption of
1000 m, a bandwidth of 10 kHz is chosen, along with a carrier
frequency of 7 kHz [4]. To overcome the ISI problem, the
cyclic prefix (CP) period is set as 25 ms via an analysis of the
impulse response of the modeled channel. Under this setting,
the maximum delay spread and coherent time of the channel
are approximately 25 ms and 210 ms, respectively [41]. The
designed OFDM system can overcome not only frequency-
selective fading, � f < BC , but also ISI, TC P � τmax , as well
as time-selective fading, TS � TC .

An OFDM block of size N is generated by splitting the
incoming information into N subcarriers. Therefore, the input
data sequence m is encoded using a regular LDPC (N = 256,

Fig. 3. Performance comparison between LDPC-CODFM and uncoded
OFDM systems.

j = 4, k = 8) code-generator matrix GLDPC to generate
c = mGLDPC, where c = [c1, c2, c3, . . . , cN ], and the
subscripts represent the kth bit of the codeword mapped to the
kth subcarrier, i.e., k = 1, 2, 3, . . . , N . After the binary phase-
shift keying (BPSK) modulation of c, the resulting sequence,
s = 2c − 1, is converted from serial to parallel form, where
s = [s1, s2, s3, . . . , sN ]T . Then, taking the inverse fast Fourier
transform of s yields x = IFFTN {s}, which is transmitted
through the UAC in the form of x(t) after the CP is added
and a digital-to-analog conversion is performed.

At the receiver, a discrete-time signal y =
[y1, y2, y3, . . . , yN ]T is obtained by sampling the received
signal y(t) after removing the CP. This is then transformed
into r by taking its Fourier transform, i.e., r = FFTN {y}, and
represented as

r = √
EsHs + n, (1)

where n is an i.i.d. Gaussian noise vector; n ∼ N N×1(0, σ 2),
r, s, and n are each an N ×1 vector, Es is the symbol energy,
and H is an N × N diagonal matrix whose diagonal entries
are the transfer-function coefficients (H1, H2, H3, . . . , HN ) of
the UAC multiplied by the lognormal gain g, as discussed
in Appendix A.

Let Eb represent the energy per bit in the transmitted
codeword in joules, and N0 is the noise power spectral density
of the AWGN given in (1). To observe the performance of
the COFDM system in UACs, we simulated the designed
system by setting average random heights of the transmit-
ting sensor (sH) and receiver (DH) from the sea bottom.
The result is shown in Fig. 3, which compares the BER
performance of the LDPC-COFDM system with that of an
uncoded OFDM system. The COFDM system may overcome
the severe frequency-selective performance falloff observed in
the uncoded OFDM system, via the LDPC code. The coded
system not only achieves a benefit of ∼18 dB in Eb/N0 but
also reduces the performance variation due to the channel con-
ditions. We observe a performance variation of ∼3 dB when
the positions of the sensor node and buoy change with respect
to the sea bottom. This indicates the randomly changing nature
of the UAC in shallow waters, which introduces the need for a
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Fig. 4. Effects of lognormal shadowing on uncoded and coded
OFDM systems.

more effective communication strategy that considers the time-
and frequency-selective fading, along with the other factors
described in Appendix A.

B. Cooperative Spatial-Domain Coding

We showed that the LDPC-COFDM system is suitable for
time- and frequency-selective channels such as UACs, exhibit-
ing a reasonably robust performance. However, as UACs
suffer from long-term large-scale fading, we must observe the
performance of the designed system under lognormal fading.
Fig. 4 shows the performance of the LDPC-COFDM system
under the lognormal shadowing channel model. The results
show that although the LDPC code can mitigate the deep
frequency-selective fading effect at certain specific subcarriers,
it cannot effectively resolve the problem of large-scale fading,
exhibiting a degradation of ∼13 dB in Eb/N0 at 10−4 BER.
This effect is so detrimental that the sensors equipped with
the LDPC-COFDM system spend on average ∼13 dB more
transmit power to obtain a BER of 10−4 than the amount
needed with no shadowing.

User cooperation has been particularly beneficial for wire-
less systems that are subject to independent spatial fading.
Thus, we are interested in the possibility of employing a user-
cooperation scheme to resolve the detrimental effects of the
fading in UACs. We propose the SCCNC scheme, as follows.

C. Design of the SCCNC Scheme

The famous two-phase user-cooperation scheme, which is
common in wireless-network coding, [18]–[35], is utilized for
our design of the underwater acoustic WSN. This approach is
unique in that it aims to simultaneously exploit the diversity
benefit from the frequency and spatial domains. The LDPC-
coded and OFDM-modulated symbols transmitted by each
sensor are relayed by the neighboring sensors, which helps to
overcome the frequency-selective fading. Although our pro-
posed system employs the idea of two-phase user cooperation
reported by [32], in our scheme, the relays do not need to
decode the received symbols, rather the symbols are used
in the relay phase without regard to being correct or not.

Fig. 5. (a) Spatial representation of the network-cooperation scenario;
(b) transmission sequence and time slots for each sensor node.

In this scheme, the SCCNC is formed across the spatial and
frequency domain. A joint iterative-decoding algorithm for this
cooperative network code is then developed.

Fig. 5(a) depicts the assumed network-cooperation scenario.
In this model, U nodes communicate wirelessly to a common
destination D via two-phase user cooperation. In each phase,
the U nodes transmit BPSK-modulated COFDM symbols
using time division multiple access (TDMA). The solid lines in
Fig. 5(a) represent the channels between the sensor nodes, and
the dashed lines represent the channels between a sensor and
the destination. Because of the changing channel conditions,
some of the links shown here may be broken at a particular
instant of time. The two-phase user cooperation strategy and
the decoding algorithm are described as follows.

1) Broadcast Phase: Each sensor node transmits to the
destination D an N-bit LDPC-COFDM symbol of duration TS

in its assigned time slot, as shown in Fig. 5(b). Let r1,i,D be
the received signal at the destination D, sent from the node i
during the first phase. The received signal from the i th node
at the destination D is given as follows:

r1,i,D = √
Es1Hi,Dsi,D + ni,D , (2)

where Es1 is the transmitted symbol energy in the first phase,
the index i denotes the transmission from the i th sensor node
to the destination D, with i = 1, 2, 3, . . . ,U . Because we
use a TDMA transmission scheme, with the exception of the
transmitting node, all of the U − 1 other nodes overhear the
transmission, x(t), and the received signal zi, j at the node j
is given as

zi, j = √
Es1Hi, j si, j + ni, j j �= i, (3)
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Fig. 6. Example of the SCCNC scheme: each sensor sends an LDPC codeword in the first phase. The spatial-domain checksums are computed and sent
during the second phase, which are the LDPC coded symbols received during the first phase.

where j is the index of the receiving node, i is that of the
transmitting node, and j = 1, 2, 3, . . . ,U .

Because of the variation in the channel conditions, not all
of the nodes can recover the transmitted codewords. We use
a receive-set �( j) ⊆ {1, 2, . . . ,U}, which stores the indices
of the sensors whose transmissions are received at the node j ,
where U is the total number of cooperating sensor nodes.
The expression i ∈ �( j) indicates that node j has suc-
cessfully received node i ’s broadcasted symbol. Therefore, at
the end of this phase, the destination node D has received{
r1,1, r1,2, . . . , r1,U

}
symbols, and each sensor node j in

the cooperating group has received
{
z1, j , z2, j , . . . , zU−1, j

}

symbols, as given by (2) and (3), respectively. Assuming that
the switching time from one transmitting node to another
is negligible, the time taken by U nodes to complete a
broadcast phase is UT S , where TS is the OFDM symbol
duration given in Table I. This phase is similar to that in
the traditional COFDM communication system, except that
the overhearing nodes in the cooperating group also store the
recovered symbols for use in the relay phase. Note that the
overhearing nodes do not decode the received symbols, but
only store the received binary information.

2) Relay Phase: Each node randomly selects a small group
of nodes from �( j) (5 nodes), computes a checksum over
their respective symbols, and forwards the checksum sym-
bol ⊕�( j), having length N , to the destination by using the
same OFDM parameters in its assigned time slot, as shown
in Fig. 5(b). Because the system operates using TDMA, the
receive-set satisfies �( j) ⊆ {1, 2, . . . ,U}. The spatial-domain
code is formed using a code matrix similar to a randomly
systematic low-density generator matrix (LDGM) code [42].

The codeword is formed using GSCCNC, which is the gener-
ator matrix for random-cooperation network coding, according
to the procedure explained in Section III-A. Because of the
random nature of the network code, a small bit field is included
in the relay packet so that the destination node knows how the
checksum was computed and can perform the message-passing
decoding accordingly. Let r2, j,D be the received SCCNC
signal sent from the node j to the destination D during the
relay phase. Then, the received signal at the destination D in
the relay phase is given as

r2, j,D = √
Es2H j,Ds j,D + n j,D, (4)

where Es2 is the transmitted symbol energy in the relay
phase, s j,D is the SCCNC COFDM signal transmitted through
the UAC from a sensor node j to the destination D, and
j = 1, 2, 3, . . . ,U . The source-symbols received in the first
phase (2) constitute the systematic symbols of the network
code, and the relay symbols received in the second phase (4)
constitute the parity symbols. Hence, a set of U nodes com-
pletes the transmission of one SCCNC network codeword
with length 2NU by the end of the second phase. The
code rate at the destination is the combined code rate of
the LDPC code and the network code, which is given as
RSCCNC = RLDPC × RLDGM.

Assuming that the switching time from one transmitting
node to another is negligible, the time taken by U nodes
to complete a relay phase is UT S . Therefore, the total time
taken by U nodes to complete the transmission of an SCCNC
symbol is 2UT S . The resulting SCCNC graph, as seen by
the destination node, is shown in Fig. 6. The circles in
Fig. 6 represent the bit nodes, and the squares represent
the check nodes in the graph. The figure shows a U -node
cooperation scheme, where each node uses a rate 1/4 SCCNC.
The broadcast phase bit nodes shown in Fig. 6 represent r1,i,D ,
and the relay phase bit nodes represent r2, j,D as defined in
(2) and (4), respectively.

D. SCCNC Decoding Algorithm

We propose a joint message-passing decoding algorithm at
the destination, whereby extrinsic information is exchanged
between the channel code (LDPC) and the spatial-code
(LDGM) decoders in every iteration. In this section, we
consider imperfect inter-sensor channel condition and try to
develop an algorithm incorporating the inter-sensor channel
error. For random selection at the relays, probabilistically, each
of the links has equal channel condition and the average error
probability for a single link is given as

p̄ = 1

2

(

1 −
√

Es1γ

Es1γ + 1

)

, (5)

where γ = E

[
g2

i, j
N0

]
with g2

i, j as the magnitude square of

the lognormal fading coefficients. If each of the relay nodes
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chooses Ldeg of its neighboring nodes’ information to form
a parity checksum, the corresponding probability of error for
each link can be computed as

pe =
Ldeg∑

k=1,k is odd

(
Ldeg

k

)
p̄k (1 − p̄)Ldeg−k

= 1 − (1 − 2 p̄)Ldeg

2
. (6)

The parity-check bits go through two serially concatenated
channels; therefore, a modification is needed in the initializa-
tion part of the message-passing algorithm to incorporate the
inter-sensor channel error in the decoding process. The channel
log-likelihood ratio used to initialize the decoding iterations
for the parity-check bits is given as

LCr j,D = (1 − pe) 4Es2r2, j,D

∣
∣∣Ĥ j,D

∣
∣∣
2
/N0

+ (pe) 4Es2r2, j,D

∣
∣
∣Ĥ j,D

∣
∣
∣
2
/N0. (7)

The symbols received in the first phase go through one channel
and the initialization for the decoding iterations is done as
follows,

LCri,D = 4Es1r1,i,D

∣
∣∣Ĥi,D

∣
∣∣
2
/N0. (8)

Let R = {
r1,i,D, r2, j,D

}
be the received SCCNC signal

matrix of size N × 2U , Es (RSCCNC × Eb) be the received
symbol energy, Ĥ is the received estimated channel transfer
function, and N0 is the normalized noise power. Let Nrs

and Ncs , be the number of rows and number of columns,
respectively, of the parity-check matrix of the spatial code S.
Let Nrl and Ncl , be the number of rows and number of
columns, respectively, of the parity-check matrix of the LDPC
code L. We define the messages from the check nodes to the
bit nodes of the spatial code and LDPC code as LSr and LLr,
respectively. Similarly, the messages from the bit nodes to the
check nodes of the spatial code and LDPC code are defined as
LSq and LLq, respectively. The number of 1s in each row of
the spatial-code parity-check matrix S, called the degree of the
code, is Sdeg, and the number of 1s in each row of the
LDPC-code parity-check matrix L is called Ldeg. Furthermore,
we introduce a symmetric function f (x) :=
− log

(
tanh

( x
2

)) = log
[

ex +1
ex −1

]
satisfying f −1(x) = f (x).

We also define the functions find(.), which selects all the
non-zero indices from a matrix and stores them into another
matrix, and sgn(.), which selects the sign of the argument.

The SCCNC decoding algorithm, which performs joint
iterative decoding over the network code at the destination,
is described in Table II. LCr is the combined channel log-
likelihood ratio for both phases, used to initialize the decoding
iterations. The input data to this decoder is not a vector but
a 2D matrix of size Ncl × Ncs , as each cooperating node
sends an LDPC-coded vector signal. The number of iterations
(max_iter) can be set according to the desired decoding
performance. During an iteration, the decoder calculates the
bit-to-check node messages and then the check-to-bit node
messages for all the nodes, first for the spatial code and then
for the LDPC code as described in Table II.

TABLE II

NETWORK DECODING ALGORITHM

Finally, the output values are calculated at each node, and
a decision of 0 or 1 is made to obtain the SCCNC codeword.
The codeword can then be decoded using the corresponding
parity-check matrices of GSCCNC and then GLDPC to obtain
the message received by each node in the cooperating group.
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Fig. 7. Iterative decoding procedure for the proposed SCCNC scheme.

1) EXIT Chart of the SCCNC Decoder: To determine the
characteristics and verify the performance of the joint iterative
decoder for the SCCNC, an EXIT chart was used. EXIT
charts are used to quantify the extrinsic information exchanged
between the constituent decoders in an iterative decoding
scheme. The EXIT chart plots two curves, showing the mutual
information of the extrinsic log-likelihood ratios with respect
to the mutual information of the a priori log-likelihood ratios,
one for each decoder.

Fig. 7 shows the SCCNC decoding procedure using the
LDGM decoder as the inner decoder and the LDPC decoder as
the outer decoder. The a priori information about the source
bits is not shown in the diagram because it is considered to be
zero for equiprobable source bits. The LCr, given as
LCr = {

LCr j,D,LCri,D
}
, represents the channel log-

likelihood ratios, and LSre and LLre represent the extrin-
sic information output from the inner and outer decoders,
respectively:

LSre = LSr − LCr

LLre = LLr − (LCr + LSre) . (9)

The extrinsic information from the inner decoder LSre is
used as an a priori input to the outer decoder to determine
LLre. The new LLre is then used as an a priori input to the
outer decoder in the next iteration.

The a priori input A to a constituent decoder is modeled
using an independent Gaussian random variable n A with a
mean of zero and a variance of σ 2

A . It is given as follows:

A = μA · m · HA + n A, (10)

where μA = σ 2
A/2 is the mean of the Gaussian-distributed

log-likelihood ratios of A, m is the transmitted systematic bit,
and HA is the corresponding frequency-response coefficient of
the fading channel.

With the equiprobable source symbols input to the encoder
at the transmitter, the bitwise mutual information content of
the a priori information IA = I (M; A) and the extrinsic
information IE = I (M; E) are calculated as follows:

IA = 1

2

1∑

m=0

∫ ∞

−∞
pA (ξ |M = m )

× log2
2 pA (ξ |M = m )

pA (ξ |M = 0 )+ pA (ξ |M = 1 )
dξ, (11)

IE = 1

2

1∑

m=0

∫ ∞

−∞
pE (ξ |M = m )

× log2
2 pE (ξ |M = m )

pE (ξ |M = 0 )+ pE (ξ |M = 1 )
dξ, (12)

Fig. 8. EXIT chart for the SCCNC decoder for a UAC with SNRs ranging
from 1–7 dB.

where M is a random variable representing the bits m of the
input symbol m; and pA and pE are the conditional proba-
bility distributions for the a priori information and extrinsic
information of each decoder, respectively, and are obtained by
simulations using histogram measurements. Details about the
EXIT-chart procedure and analysis are beyond the scope of
this paper; the reader is referred to [43] for more information.
Fig. 8 shows the EXIT chart for our proposed SCCNC decoder
for a network of randomly deployed 12 nodes. The bitwise
mutual information is averaged over the symbols received
from all the sensors. We show the proposed decoder’s EXIT
characteristics for a range of SNRs (1–7 dB) for the UAC.
It is observed that the decoder converges at an SNR of ∼7 dB
for the UAC. The decoding trajectory shows that at least
10 iterations are needed for the decoder to converge. The
convergence point is also verified by the simulation results
in Fig. 11 and Fig. 12, which show a waterfall region starting
near the SNR of 7 dB for a network of randomly deployed
12 nodes. The degradation in the performance of the decoder,
compared with that in [43], arises from the harshness of the
UAC.

IV. PERFORMANCE ANALYSIS

In this section, we aim to analyze the energy consumption
and network coding benefits of the designed network code. The
coding gain obtained in the case of channel coding is obvious
and well-understood, but in the case of the designed network
code, we must consider other factors, such as the energy spent
by sensors for receiving and decoding the overheard trans-
mitted symbols, sending the parity check bits, and decoding
the network-coded received signal at the destination. We aim
to determine whether the network coding gain is sufficiently
large to offset the increase in the power consumption for
cooperative transmission and network (de)coding operations
in the proposed scheme.

A. Energy Consumption of Coop. and Non-Coop. Schemes

With the current technology, an underwater acoustic modem
uses an approximate transmit power of 2 W, a receiving
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Fig. 9. Power-consumption comparison between cooperation and non-
cooperation networks.

power of 0.8 W, and an idle listening power of 0.2 W for
communication over a distance of 1000 m [44], [45]. The
message-passing decoder power dissipation is shown to be on
the order of 500 mW for a throughput of 1 Gbps [46]–[48].
In the proposed cooperation scheme, the power consumption
of the message-passing decoder increases by a factor greater
than 2 as the length of the codeword doubles. Because the data
rate of our proposed scheme is very low, for a throughput of
1 Mbps, we can safely assume the decoding power dissipation
to be ∼0.5 mW in the case of non-cooperation and 1 mW in
case of cooperation.

Let Et , Er , Ei , Ednc, and Edc, denote the energy consumed
by the acoustic modem during the transmit operation by the
sensors, receive operation at the sensor/buoy, idle listening by
the sensors (no transmit/receive operation), decoding opera-
tions at the buoy in the non-cooperative case, and decoding
operations at the buoy in the cooperative case, respectively.
In the case of non-cooperation, the total energy consumed
during one symbol period by the network of U nodes,
Es(non−coop), is the sum of the following: the energy of a
single transmission by U nodes, U − 1 multiplied by the
idle listening energy of each node, the energy required for
the receive operation, and the decoding energy consumption
for U nodes at the destination D. It is given as

Es(non−coop) = U (Et + (U − 1) Ei + Er + Ednc) . (13)

In the case of node cooperation, the total energy consumed
during one symbol period by the network of U nodes, Es(coop),
is the sum of the following: twice the energy of transmission
for U nodes, U −1 multiplied by the energies for the reception
operations of each node, twice the energy of the receive
operation, and the energy of the decoding operations for U
nodes in the cooperative case at the destination D. It is given as

Es(coop) = U (2Et + (U − 1) (Er )+ 2Er + Edc) . (14)

Using the aforementioned values for Et , Er , Ei ,
Ednc, and Edc, the corresponding power consumption for
Eqs. (13) and (14) is plotted in Fig. 9 for a varying number of
sensor nodes in the network. The results indicate increases of

Fig. 10. Underwater WSN scenario (Not to scale).

approximately 1.58, 1.9, and 2.5 dB in the power consumption
for U = 12, 18, and 50, respectively, in the cooperative
network. The increase in the power consumption converges
to ∼3 dB for a cooperative network having up to 1000 nodes
(not shown here). This shows that for cooperation among a
reasonable number of nodes, i.e., U < 50, the increase in the
power consumption is less than 3 dB.

B. Network Coding Gain

To analyze the BER, we assume that the underwater sensor
nodes are distributed at the sea bottom as shown in Fig. 10.
The numbers of sensor nodes considered are 12 and 18,
according to the calculations done in Section II. The nodes
are placed at an average height of 7 m from the sea bottom
within the 100 × 100 m2 range and the buoy is placed 5 m
below the sea surface. In the case of random deployment,
the position of each node is generated randomly uniform for
every OFDM symbol transmission, as well as time-varying
channel responses between the nodes and buoy. Similarly, for
the case of triangular-grid deployment, the position of each
node is generated in the form of a triangular grid. Other factors
affecting the channel are a maximum sea-surface wind speed
of 15 m/s, water depth of 50 m (considering the 44-m average
depth of the Korean Western Sea), and distance of 1000 m
between the node and buoy. Each node has a transmission
range of 1000 m and a data rate of 2.5 kbps. The data-packet
size is set as 32 bytes. Each node sends 1 packet of data in
the broadcast phase and 1 packet of data in the relay phase
towards the buoy.

Fig. 11 shows the performance of the proposed SCCNC
scheme for the UAC with the lognormal shadowing model,
using random deployment. Here, we simulate two different
scenarios, one with a perfect inter-sensor channel (ISC) and
another with a realistic underwater channel including the errors
induced by the inter-sensor communication in the first phase.
The SNR for realistic scenario is chosen to be 10 dB higher
than that at the destination, based on the argument given in
Appendix B. As shown, the proposed SCCNC scheme exhibits
a significant improvement compared with the LDPC-COFDM
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Fig. 11. Performance of the proposed SCCNC scheme compared with the
LDPC-COFDM and uncoded OFDM schemes for the UAC.

Fig. 12. Performance comparison of random and grid deployment by using
the proposed SCCNC scheme for the UAC.

system. For example, at the point where the BER is 10−4, with
18-node cooperation, we obtain a 13-dB benefit compared with
the LDPC-COFDM system. We also observe an improvement
of ∼11 dB at the point where the BER is 10−3 for a network
comprising as few as 12 randomly deployed nodes.

When we compare the performance of the proposed scheme
for a realistic channel with perfect ISC, a degradation of
∼1.5 dB is observed in both the random and grid deployment
(Fig. 12) for 12 and 18 nodes cooperation, which is negligible
compared to the huge network coding gain of 13 dB. The
perfect ISC assumption is equivalent to the scheme proposed
in [32] combined with OFDM transmission, as all the symbols
are assumed to be correctly received at the relays. Conse-
quently, the codewords formed at the relays contain the infor-
mation from correctly received symbols. Therefore, we can
deduce that ideally, [32] will perform similar to the dotted
lines shown in Fig. 11 and Fig. 12 on the underwater acoustic
channel. However, in [32], the relay needs to decode the
received symbol and decide whether it was correctly received
or not, therefore, it spends more power and the hardware
is more complex as compared to our proposed scheme. Our
results show that without using this complex hardware and

spending more power, we can achieve a similar performance
by concatenating the channel and network codes.

The proposed SCCNC scheme for underwater acoustic
communication benefits from the spatial diversity offered
by the network, along with the frequency-diversity benefit,
which is exploited by the LDPC-coded modulation with the
OFDM transmission. Considering the additional 1.9 dB of
power consumed by the cooperative network (Fig. 9), the
designed cooperation scheme saves ∼11 dB of the transmit-
power consumption over the non-cooperative LDPC-COFDM
system for a network comprising as few as 18 cooperating
sensor nodes deployed within a 100 × 100 m2 area. Using the
received SNR curves obtained in Appendix B, the deployment
area where our proposed scheme can be beneficial might
extend up to 500 × 500 m2, intuitively, which can be exactly
determined in a future work.

C. Comparison of Random and Grid Deployment

Fig. 12 shows the BER performance of the random and
fixed triangular-grid deployment of sensor nodes over an
area of 100 × 100 m2. The grid deployments of both
12 and 18 nodes exhibit slightly higher BERs than the random
deployment.

Therefore, we conclude that the random deployment is pre-
ferred over the triangular-grid deployment for an underwater
acoustic WSN, as the random deployment is easier and cheaper
to deploy and maintain over a period of time. Moreover, it
exhibits a slightly better performance than the triangular-grid
deployment with regard to the BER.

D. Delay and Extended Battery Life

In the case of the non-cooperative network, the through-
put of the message-passing decoder at the destination D is
NU
U TS

bps (∼6 kbps), whereas in the case of cooperation, it

is NU
2U TS

bps (∼3 kbps). Thus, the throughput in the case of
cooperation is reduced by half, which is expected because the
destination must receive all the parity-check symbols from the
cooperating sensor nodes before it can start decoding.

We wish to compute the effect on the battery life of the
sensor in our proposed scheme. For a sensor battery life of
h hours, the total power consumed by a network of U nodes is

Pnon−coop = Es(non−coop)

h
= P (d B) , (15)

and that for a cooperative network is

Pcoop = Es(coop)

h∼= (P + 1.9 − 13)
∼= (P − 11) (dB) . (16)

Eq. (16) incorporates the 1.9-dB increase in the power con-
sumption and the 13-dB network coding gain in our proposed
scheme, showing that the scheme consumes ∼13 times less
power than the non-cooperation scheme as given in (15). How-
ever, because the time required to transmit the same amount
of data is now 2h hours, the battery life improves by a factor
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of ∼6.5 overall, increasing to 6.5h hours. Because the battery
life is a very important factor in the operation/maintenance of
underwater WSNs and the delay is not critically important,
our proposed scheme is a very good option for low-energy
and improved-BER underwater communication networks.

V. CONCLUSION

We discussed the design of a network coding scheme for
underwater acoustic communication and networking systems.
We found that the non-cooperative LDPC-COFDM communi-
cation system mitigates deep frequency-selective fading effects
but cannot effectively resolve the problem of shadowing in
the UAC. On the other hand, cooperative communication
enhanced the BER but significantly increased the power
consumption of the network. To solve these problems, we
propose a user-cooperation-based network coding scheme
called the SCCNC. This scheme is applied to both randomly
deployed and triangular-grid networks to facilitate cooperation
among the sensors. It greatly enhanced the BER of the
network, improving the SNR by ∼11 dB overall, consuming
∼13 times less power, and increasing the battery life by a
factor of 6.5 compared with the non-cooperative point-to-point
LDPC-COFDM system. This benefit can be obtained
when the cooperating sensor nodes are deployed within a
100 × 100 m2 area. Our results also show that a random
deployment of the underwater acoustic WSN is superior to
a triangular-grid deployment with regard to the BER and the
deployment cost.

APPENDIX A
CHANNEL MODEL

Here, we explain the channel model used for the simu-
lations. We use the geometrical ray-tracing model [5], [38],
[49]–[51], to investigate the underwater sound propagation and
aim to describe the modeling procedure step-by-step, along
with the channel characteristics.

In a UAC, the acoustic waves are reflected at the sea surface
and bottom and form a multipath, as shown in Fig. 13(a)
[5], [14]. The reflection paths are classified into four types
according to the total number of reflections (odd or even)
and the first reflection point (surface or bottom). The channel
transfer function is a superposition of the transfer functions
of each propagation path from the transmitter to the receiver.
It is given as

H ( f, t) =
∑

p

Hp ( f, t) e− j2π f τp(t), (17)

where Hp ( f, t) and τp (t) represent the transfer function of
the pth path at frequency f and the corresponding delay at
time t , respectively. The transfer function of each reflection
path is represented as a function of the frequency, number
of reflections, and path length. The transfer function of the
pth path is given as

Hp( f, t) = Vp√(
C (Lp (t) , f )

) , (18)

Fig. 13. (a) Geometrical representation of the multipath propagation in the
UAC. (b) Example of calculating the reflection-path distance.

where Vp = v
nsp
s v

nbp
b (θp) is the reflection coefficient, which

is the number of times a ray is reflected from the sea sur-
face (nsp) and bottom (nbp), where vs and vb are the reflection
coefficients at the sea surface and bottom, respectively [15].

Because the single-path loss is a function of the carrier
frequency and path length, it is necessary to calculate the
length of the reflection path. Similarly, the grazing angle θp

is an essential factor for calculating the reflection coefficient.
We illustrate the proposed method using Fig. 13(b). To calcu-
late the length of the reflection path from A to B , (i ) move
B to B ′ against the sea surface; (ii) calculate the length of the
baseline d; (iii) calculate the height of the triangle, which is
given by 2h − a − b, as the distance from the sea surface to
point A′ is h − a and the distance from the sea surface to B ′
is h − b; and (iv) calculate the distance using the Pythagorean
Theorem: L2

p = d2 + (2h − a − b)2. This approach is used to
obtain a general equation for the length of the reflection path,
which is given as follows:

Lp =
√

d2 + (2h · nsp + αa + βb)2, (19)

where α and β are classification values in accordance with
the first reflection point (surface or bottom) and the total
number of reflections (odd or even). Specifically, (α, β) =
(−1,−1), (+1,+1), (−1,+1), and (+1,−1) for the paths
having the first reflection on the surface with an odd number
of reflections (p = 1), the first reflection on the bottom with
an odd number of reflections ( p = 2), the first reflection on
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the surface with an even number of reflections ( p = 3); and
the first reflection on the bottom with an even number of
reflections (p = 4), respectively, as shown in Fig. 13(a). The
grazing angle can then be calculated as θp = cos−1

(
d/Lp

)
.

In (19), the single-path loss with the distance Lp [m]
and carrier frequency f [Hz] is C (Lp (t) , f ) =
C0Lψp (t) χ( f )Lp(t), where C0 is a constant scaling factor, and
ψ is the spreading factor, which ranges between 1 and 2,
according to the type of spreading. We set C0 as 1 and ψ
as 1.5, considering practical spreading. χ ( f ) is the absorption
coefficient, expressed in dB/km, which is defined by Thorp’s
empirical formula at frequencies above a few hundred Hz as

χ( f ) = 0.11 f 2

1+ f 2 + 40 f 2

4100+ f 2 + 2.75 × 10−4 f 2 + 0.003 [15].
The acoustic path loss is then expressed in dB as
10 log C (Lp (t) , f )

/
C0 = ψ · 10 log Lp (t) + Lp (t) ·

10 logχ( f ).
We assume that the length of the pth propagation path is

Lp (t) = L̄p +�Lp (t) , (20)

where L̄p is the nominal length, and �Lp (t) is the variation
in the length Lp (t). The nominal path transfer function for
the reference path ( p = 0) can be written as

Q ( f ) = 1
√

C
(
L̄0, f

) . (21)

Therefore,

Hp( f, t) = Vp√((
Lp (t)

/
L̄0

)ψ
χ ( f )Lp(t)−L̄0

) Q ( f ) . (22)

According to the analysis presented in [52], Eq. (22) is
approximated as Hp ( f, t) ≈ h p (t) · Q ( f ), and the path gain
is expressed as follows:

h p (t) ≈ h̄ pe−ζp�Lp(t)
/

2, (23)

where h̄ p = Vp√
(L̄p

/
L̄0)

ψ
χ

L̄ p−L̄0
0

, χ0 ≈ 1, and ζp = χ0 −
1 + ψ

/
L̄p .

The overall transfer function for the UAC is thus given as

H ( f, t) = Q ( f ) ·
∑

p

h p (t) e− j2π f τp(t), (24)

and taking the inverse Fourier transform of (24), we obtain
the following channel impulse response:

h (τ, t) =
∑

p

h p (t)q
(
τ − τp (t)

)
. (25)

The presence of large rocks, coral reefs, and uneven surfaces
causes signal fading in UACs. The signal-strength fading
or gain g(t) is a random process in UACs that has been
approximated using numerous distribution models, includ-
ing Ricean, Rayleigh, and lognormal distributions [52]–[54].
We use the lognormal distribution [55] to model the fading
effects and thereby make our channel model more realistic, as
this distribution is well-known to yield a good fit for the long-
term, large-scale fading phenomenon in UACs for shallow
water [52]–[54]. The channel gain from a sensor to the buoy

Fig. 14. Received SNR at varying distance from the transmitter.

is modeled as g (t) ∼ ln N (μ, σ 2), with a mean of 1 and
variance of 2, and used to include the fading effect. Here,
g(t) is assumed to be independent from one sensor to another.
For simplicity, it is assumed to be fixed during each OFDM
symbol transmission from a sensor i .

APPENDIX B
AMBIENT NOISE AND RECEIVED SNR

The noise in underwater communication is classified as
ambient noise and site-specific noise. Site-specific noise exists
only in certain areas while ambient noise is always present and
can be modelled as Gaussian. It consists of four major factors
including turbulence, shipping, waves, and thermal noise. The
power spectral density (PSD) of the ambient noise is given as
follows,

10 log Nt ( f ) = 17 − 30 log f

10 log Ns( f ) = 40 + 20(s − 0.5)+ 26 log f

− 60 log( f + 0.03)

10 log Nw( f ) = 50 + 7.5w1/2 + 20 log f

− 40 log( f + 0.4)

10 log Nth( f ) = −15 + 20 log f (26)

where f is the carrier frequency in kHz, s is the shipping
activity factor ranging from 0 to 1 for low and high activity,
respectively, and w is the wind speed in m/s [56]. The overall
PSD of the ambient noise in dB re μ Pa per Hz, as a function
of frequency in kHz is given as,

N( f ) = Nt ( f )+ Ns ( f )+ Nw( f )+ Nth( f ). (27)

The SNR observed over a distance L with a transmitted
signal power P and carrier frequency f can be evaluated by
using the noise PSD N( f ) and the signal attenuation C (L, f ).
The narrow-band SNR is thus given by,

SN R(L, f ) = P/C (L, f )

N( f )� f
(28)

where � f is the receiver noise bandwidth. The frequency-
dependent received SNR is plotted in Fig. 14 for a varying
transmission distance L, a wind speed w = 15 m/s, and
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shipping activity factor s = 0.5, considering moderate ship-
ping activity. From Fig. 14, we can observe that with the
relays located within 100 m distance from the transmitter, the
received SNR is ∼15 dB higher than that of the destination
which is at 1000 m distance from the transmitter at a carrier
frequency of 7 kHz. This observation is used as a basis for
the simulation of our proposed SCCNC scheme. According to
our deployment scheme discussed in Section II, the minimum
distance between two sensor nodes is 35 m and the maximum
distance could be up to 141.5 m in a 100 × 100 m2 area.
Looking at Fig. 14, the received SNR difference between a
relay at ∼200 m and destination at ∼900 m is almost 10 dB.
Therefore, considering the worst case scenario, we will use a
10 dB inter-sensor channel SNR, which in ideal case would
be up to 15 dB.
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Abstract: In nature, the compound eyes of arthropods have evolved 
towards a wide field of view (FOV), infinite depth of field and fast motion 
detection. However, compound eyes have inferior resolution when 
compared with the camera-type eyes of vertebrates, owing to inherent 
structural constraints such as the optical performance and the number of 
ommatidia. For resolution improvements, in this paper, we propose 
COMPUtational compound EYE (COMPU-EYE), a new design that 
increases acceptance angles and uses a modern digital signal processing 
(DSP) technique. We demonstrate that the proposed COMPU-EYE provides 
at least a four-fold improvement in resolution. 
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OCIS codes: (110.1758) Computational imaging; (100.6640) Superresolution; (110.3010) 
Image reconstruction techniques; (120.4570) Optical design of instruments. 

References and links 
1. E. Warrant and D.-E. Nilson, Invertebrate Vision, (Cambridge University, 2006), Chap. 1. 
2. R. Dudley, The Biomechanics of Insect Flight:Form, Function, Evolution, (Princeton University, 2000), Chap. 5. 
3. D. Floreano, J.-C. Zufferey, M. V. Scrinivasan, and C. Ellington, Flying Insects and Robot, (Springer, 2009), 

Chap. 10. 
4. M. F. Land and D.-E. Nilson, Animal Eyes (Oxford University, 2002). 
5. M. F. Land, “The optics of animal eyes,” Contemp. Phys. 29(5), 435–455 (1988). 
6. D.-E. Nilson, “Vision optics and evolution,” Bioscience 39(5), 298–307 (1989). 
7. A. Borst and J. Plett, “Optical devices: Seeing the world through an insect’s eyes,” Nature 497(7447), 47–48

(2013). 
8. Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. 

Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 
497(7447), 95–99 (2013).

9. A. Brückner, J. Duparré, A. Bräuer, and A. Tünnermann, “Artificial compound eye applying hyperacuity,” Opt. 
Express 14(25), 12076–12084 (2006).

10. J. Duparré, F. Wippermann, P. Dannberg, and A. Bräuer, “Artificial compound eye zoom camera,” Bioinspir. 
Biomim. 3(4), 046008 (2008).

11. Y. Kitamura, R. Shogenji, K. Yamada, S. Miyatake, M. Miyamoto, T. Morimoto, Y. Masaki, N. Kondou, D. 
Miyazaki, J. Tanida, and Y. Ichioka, “Reconstruction of a High-Resolution Image on a Compound-Eye Image-
Capturing System,” Appl. Opt. 43(8), 1719–1727 (2004).

12. K. H. Jeong, J. Kim, and L. P. Lee, “Biologically Inspired Artificial Compound Eyes,” Science 312(5773), 557–
561 (2006). 

13. D. P. Pulsifer, A. Lakhtakia, R. J. Martín-Palma, and C. G. Pantano, “Mass fabrication technique for polymeric
replicas of arrays of insect corneas,” Bioinspir. Biomim. 5(3), 036001 (2010).

14. P. Qu, F. Chen, H. Liu, Q. Yang, J. Lu, J. Si, Y. Wang, and X. Hou, “A simple route to fabricate artificial 
compound eye structures,” Opt. Express 20(5), 5775–5782 (2012).

15. L. Li and A. Y. Yi, “Design and fabrication of a freeform microlens array for a compact large-field-of-view 
compound-eye camera,” Appl. Opt. 51(12), 1843–1852 (2012).

16. R. Hornsey, P. Thomas, W. Wong, S. Pepic, K. Yip, and R. Krishnasamy, “Electronic Compound-Eye Image 
Sensor: Construction and Calibration,” Proc. SPIE 5301, 13–24 (2004).

17. H. Zhang, L. Li, D. L. McCray, S. Scheiding, N. J. Naples, A. Gebhardt, S. Risse, R. Eberhardt, A. Tünnermann, 
and A. Y. Yi, “Development of a low cost high precision three-layer 3D artificial compound eye,” Opt. Express
21(19), 22232–22245 (2013).

18. D. Floreano, R. Pericet-Camara, S. Viollet, F. Ruffier, A. Brückner, R. Leitel, W. Buss, M. Menouni, F. Expert, 
R. Juston, M. K. Dobrzynski, G. L’Eplattenier, F. Recktenwald, H. A. Mallot, and N. Franceschini, “Miniature 
curved artificial compound eyes,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9267–9272 (2013).

#252751 Received 28 Oct 2015; revised 1 Jan 2016; accepted 10 Jan 2016; published 26 Jan 2016 
© 2016 OSA 8 Feb 2016 | Vol. 24, No. 3 | DOI:10.1364/OE.24.002013 | OPTICS EXPRESS 2013 

Corrected: 29 January 2016



19. T. Someya, T. Stretchable Electronics (Wiley, 2013). 
20. F. Marefat, A. Partovi, and A. Mousavinia, “A Hemispherical Omni-directional Bio Inspired Optical Sensor,” in 

Proceedings of Iranian Conference on Electrical Engineering (ICEE) (2012), pp. 668–672. 
21. M. F. Land, “Visual Acuity in Insects,” Annu. Rev. Entomol. 42(1), 147–177 (1997). 
22. H. B. Barlow, “The size of ommatidia in apposition eyes,” J. Exp. Biol. 29, 667–674 (1952). 
23. F. Zettler and R. Weiler, Neural Principles in Visions (Springer, 1976), Chap. 2.9. 
24. G. Cristóbal, L. Perrinet, and M. S. Keil, Biologically Inspired Computer Vision: Fundamentals and Applications 

(Wiley-VCH, 2015). 
25. P. T. Gonzalez-Bellido, T. J. Wardill, and M. Juusola, “Compound eyes and retinal information processing in 

miniature dipteran species match their specific ecological demands,” Proc. Natl. Acad. Sci. U.S.A. 108(10), 
4224–4229 (2011). 

26. H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes 3rd, J. Xiao, S. Wang, 
Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon 
optoelectronics,” Nature 454(7205), 748–753 (2008). 

27. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. 
Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. 
Opt. 40(11), 1806–1813 (2001). 

28. C. Shi and F. Xu, “Post-digital image processing based on microlens array,” Proc. SPIE 92701K, 9270 (2014). 
29. E. Watson, R. Muse, and F. Blommel, “Aliasing and blurring in microscaned imagery,” Proc. SPIE 1689, 242–

250 (1992). 
30. J. Oliver, W.-B. Lee, and H.-N. Lee, “Filters with random transmittance for improving resolution in filter-array-

based spectrometers,” Opt. Express 21(4), 3969–3989 (2013). 
31. H. Jang, C. Yoon, E. Chung, W. Choi, and H.-N. Lee, “Holistic random encoding for imaging through 

multimode fibers,” Opt. Express 23(5), 6705–6721 (2015). 
32. J. Fang, J. Li, Y. Shen, H. Li, and S. Li, “Super-Resolution Compressed Sensing: An Iterative Reweighted 

Algotirhm for Joint Parameter Learning and Sparse Signal Recovery,” IEEE Signal Process. Lett. 21(6), 761–765 
(2014). 

33. M. Elad, Sparse and redundant representations: from theory to applications in signal and image processing. 
(Springer, 2010). 

34. E. J. Candès, “Compressive sampling,” Proc. Int. Congr. Mathematicians 3, 1433–1452 (2006). 
35. E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly 

incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006). 
36. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006). 
37. E. J. Candès and T. Tao, “Near-optimal signal recovery from random projections: universal encoding strategies?” 

IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006). 
38. M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: an algorithm for designing overcomplete dictionaries for 

sparse representation,” IEEE T. Signal Process. 54(11), 4311–4322 (2006). 
39. R. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag. 24(4), 118–121 (2007). 
40. D. L. Donoho, M. Elad, and V. Temlyakov, “Stable recovery of sparse overcomplete representations in the 

presence of noise,” IEEE Trans. Inf. Theory 52(1), 6–18 (2006). 
41. E. J. Candès, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” 

Commun. Pure Appl. Math. 59(8), 1207–1223 (2006). 
42. A. Tavakoli and A. Pourmohammad, “Image Denoising Based on Compressed Sensing,” Int. J. Comp. Theory 

Eng. 4, 266–269 (2012). 
43. J. Yang and Y. Zhang, “Alternating direction algorithms for l1-problems in compressive sensing,” SIAM J. Sci. 

Comput. 33(1), 250–278 (2011). 
44. A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM 

J. Imaging Sci. 2(1), 183–202 (2009). 
45. A. Chambolle and T. Pock, “A first-order primal-dual algorithm for convex problems with applications to 

imaging,” J. Math. Imaging Vis. 40(1), 120–145 (2011). 
46. W. Wang, M. J. Wainwright, and K. Ramchandran, “Information-theoretic limits on sparse signal recovery: 

Dense versus sparse measurement matrices,” IEEE Trans. Inf. Theory 56(6), 2969–2979 (2008). 
47. E. J. Candès, Y. C. Eldar, D. Needell, and P. Randall, “Compressed sensing with coherent and redundant 

dictionaries,” Appl. Comput. Harmon. Anal. 31(1), 59–73 (2011). 
48. H. Rauhut, “Compressive sensing and structured random matrices,” Theor. Found. Num. Meth. Sparse Recov. 9, 

1–92 (2010). 
49. R. Chartrand, “Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data,” in 

IEEE International Symposium on Biomedical Imaging (IEEE, 2009), pp. 262–265. 
50. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed Optimization and Statistical Learning via 

the Alternating Direction Method of Multipliers,” Found. Trends Mach. Learn. 3(1), 1–122 (2010). 

1. Introduction 

Compound eyes of arthropods such as ants, flies and bugs have attracted extensive research 
interest due to their unique features such as wide field-of-view (FOV), high sensitivity to 
motion and infinite depth of field [1–3]. An apposition type of compound eye in nature 
consists of integrated optical units called ommatidia, each of which includes a light diffracting 
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facet lens, crystalline cone, wave guiding rhabdom and photoreceptor cell [4–6]. Each 
ommatidium arranged along a spherical surface senses incident light within a small range of 
angular acceptance. Implementations of optical devices inspired by natural compound eyes 
exhibit great potential in various fields such as surveillance cameras on micro aerial vehicles, 
high-speed motion detection, endoscopic medical tools, and image guided surgery [7,8]. 

For years, several attempts to develop artificial compound eyes have been based on 
microlenses and photodetectors to imitate imaging organs of a natural ommatidium. Because 
most optoelectronics technologies developed earlier were intrinsically based on a planar 
substrate, both devices were implemented on a plane [9–11]. Planar compound eyes had low 
design and fabrication complexity, but they incurred a limited FOV. Later, curved microlens 
arrays were developed and interfaced with conventional planar sensors [12–17], but these 
suffered from off-axis aberrations, crosstalk between adjacent ommatidia, or restricted FOV 
[18]. They also required optical relay devices for beam-steering, which are complicated to 
fabricate [15–17]. In recent years, with the advance of flexible optoelectronics [19], 
curvilinear structured compound eyes, which provide larger FOVs, have been developed 
[8,18,20]. A hemispherical omni-directional optical sensor was implemented by a circular 
central board and multiple modular sensor boards [20]. Another cylindrical compound eye 
was introduced by bending the planar ommatidial array along a concave substrate [18]. Song. 
et al. implemented a hemispherical compound eye by reformulating stretchable planar 
ommatidia into hemispherical ommatidia [8]. We note that the hemispherically structured 
compound eye developed in [8], which is most comparable to a natural compound eye is 
mainly considered in this paper. 

It is well known that the vision of insects is far inferior to that of humans because of 
inherent structural constraints [21–23]. Generally, the resolution of any eye depends not only 
on its optical resolution but also on the number of the receptors. First, if the optics are free of 
defects, the resolution of any optical imaging system is determined by its diffraction limit. 
The resolution of a diffraction-limited imaging system is proportional to the size of its lens 
and inversely proportional to the wavelength of the observed light. Second, in apposition-type 
compound eyes, the basic sampling units are ommatidia rather than photoreceptors. In a 
diffraction-limited compound eye, in order to accommodate many separate ommatidia without 
crosstalk, the number of ommatidia is much smaller than that of photoreceptors in the retina 
of a human eye. In nature, the density of the photoreceptors in the human eye is about 25 
times higher than the ommatidial density of the compound eye [24]. For a compound eye to 
achieve a resolution similar to that of a human eye, it requires a radius of about 6 m and 
millions of ommatidia with facet lenses as large as a pupil, which is impractical [21]. 

Artificial compound eyes that mimic the structure of natural compound eyes are also 
limited on their image resolutions. In the design of the compound eyes, the spatial resolution 
that the compound eye can resolve depends on the relation between the acceptance angle (Δφ) 
of the ommatidia and the interommatidial angle (Δφ) between the optical axes of the 
neighboring ommatidia [21,25]. In nature, for most light-adapted diurnal animals, the 
acceptance angles of ommatidia approach the interommatidial angle, i.e., Δφ ≈ Δφ [21], which 
achieves high spatial resolution by minimizing aliasing among neighboring ommatidia. For 
example, Tenodera has angles Δφ = 0.7° and Δφ = 0.6°, and Calliphora has angles Δφ = 1.02° 
and Δφ = 1.5°. Analogous to natural compound eyes, artificially developed compound eyes 
have been designed to have similar acceptance and interommatidial angles [8,18]. The 
acceptance and interommatidial angles have been chosen to be Δφ = 9.7° and Δφ = 11°, and 
Δφ = 4.2° and Δφ = ~4.2° in the literature [8,18]. Compared to the human eye, the artificial 
compound eyes are fundamentally limited on the resolution and thus they are inappropriate 
for object recognition. 

For improving the quality of the observed image, a scanning method was introduced by 
capturing the object image repeatedly with different angle of rotations in [8,26]. As a result, 
an image of 160 × 160 pixels was obtained only with 16 × 16 ommatidia by scanning the 
compound-eye camera and thus the actual resolution of the observed image was improved by 
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100 times [8]. However, the repeated image capturing with fine mechanical angle controls 
makes the scanning method inefficient. In [27], a compact imaging system called TOMBO 
(thin observation module by bound optics) was introduced, which consists of a multi-aperture 
imaging system and a post-signal processing. The TOMBO reconstructs the object image with 
high resolution from multiple low-resolution subimages by exploiting the relation between the 
object and the captured signals. Afterward, many techniques were proposed to improve the 
reconstruction performance of the TOMBO system [27,28]. However, the FOVs are limited 
because they are planar compound eyes. 

In this paper, instead of enhancing the size and number of the ommatidia for improving 
the resolution, we propose a totally different imaging system, called COMPUtational 
compound EYE (COMPU-EYE), using a modern digital signal processing (DSP) technique. 
Conventional compound eyes are designed to have limited ommatidial acceptance angles to 
avoid aliasing. Thus, each ommatidium of the conventional compound eye observes an 
independent section of the object image. In contrast, the ommatidium of COMPU-EYE has 
larger acceptance angles. This increase in acceptance angle allows a single ommatidium to 
observe multiple pieces of information simultaneously. Because the multiple pieces of 
information in each observation interfere with each other, the observed image is distorted. We 
employ a DSP technique in COMPU-EYE to recover the object image from these 
observations. In the DSP, by utilizing the fact that one piece of information is observed by 
multiple ommatidia with different perspectives, COMPU-EYE improves the resolution of the 
object image. 

For a classical resolution improvement technique, a microscan technique requires to 
capture multiple frames of a target with slightly displaced locations [29]. The sequences of 
frames are then integrated to form a high resolution image. In contrast, COMPU-EYE 
provides a high resolution image reconstruction with a single frame of the target with less 
number of samples. The high resolution reconstruction is achieved by solving an 
underdetermined linear system of equations as will be introduced in Eq. (1) in Section 2. As a 
fast emerging area in DSP, compressed sensing (CS) provides a sparse solution to the 
underdetermined system. Recently, there are other papers who studied CS with the intension 
of improving resolution in various areas such as spectroscopy [30], optical imaging [31], and 
direction of arrival estimation [32]. In this paper, we propose to design a compound eye with 
large ommatidial acceptance angles, which is appropriate for the framework of the CS-based 
super-resolution, and reconstruct the object with high resolution using the DSP technique. 

This paper is organized as follows: In Section 2, the system model of the compound eye 
imaging system is described. In Section 3, we propose COMPU-EYE and describe how 
COMPU-EYE improves the resolution by comparison with the conventional compound eye, 
and Section 4 presents the experimental results. Section 5 concludes the paper. 

2. System description 

We consider the biologically inspired compound eyes of a hemispherical structure as seen in 
Fig. 1(a). Details of the optical design of the hemispherical compound eye is referred from [8]. 
Each ommatidium, a basic imaging unit can be implemented by a set of microlens, supporting 
posts connected to a base membrane and a photodetector. An array of microlenses and 
photodiodes are integrated in the planar layout and are transformed into a full hemispherical 
shape. Note that the ommatidium is based on a circular lattice because the microlens is 
hemispherical shape compared to the hexagonal lattice in compound eyes in nature [21]. Each 
ommatidium receives incident light within its acceptance angle defined by Δφ and is 
separated by an interommatidial angle Δφ from each other. We note that the optical transfer 
function of an ommatidium can be modeled as a Gaussian function. For simplicity, we 
assumed that the optical transfer function is simplified by neglecting light whose relative light 
intensities are smaller than a certain value. Thus, each ommatidium is modeled to collect 
averaged optical signal from light incident within its acceptance angle, Δφ, as seen in Fig. 
1(b). With the compound eye of the hemispherical structure, we now consider an imaging 
system with M ommatidia as seen in Fig. 1(c). The imaging system observes an object image 
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on the plane size of U × V mm, which is located L mm away from the compound eye. 
According to the acceptance angle and object image distance, the receptive field (i.e., visible 
area at the object plane) of a single ommatidium is determined. Each observation contributes 
to a single pixel that contains the intensity of the light collected from its corresponding 
receptive field. The final image is reconstructed by a set of these pixels. 

 
Fig. 1. (a) Illustration of the hemispherical compound eye. (b) Structure of conventional 
compound eye with key parameters: the acceptance angle ( ϕ∆ ) and focal length (f) for each 
ommatidium, the interommatidial angle ( φ∆ ), the diameter of a photodiode (d) and the radius 
of curvature of the compound eye (R) and of an individual microlens (r). (c) Compound eye 
imaging system 

Let iy  denote an output sample at the thi  ommatidium for { }1,2, ,i M∈  . We assume 
that the image to be reconstructed consists of NU by NV pixels, each having uniform light 
intensity. The size of each pixel is U/NU × V/NV mm. The object image forms an N × 1 vector 

[ ]1 2, , , T
Nx x x=x  , where N = NUNV. On the basis of ray tracing analysis, the sample iy  can 

be obtained from i iy = xa , where ia  is an 1 N×  vector whose elements represent the 
visibility of the thi  ommatidium at each of the N pixels. For the thi  ommatidium, if the thj  
pixel for { }1,2, ,j N∈   is outside the receptive field, which represents the thj  pixel is 

invisible to the thi  ommatidium, then the thj  component ija  in ia  becomes zero, i.e., 0ija = . 

If the thj  pixel is inside the receptive field, which represents the thj  pixel is fully observed 
by the thi  ommatidium, then 1ija = . Otherwise, if the thj  pixel is on the boundary of the 

receptive field, which represents the thj  pixel is partially observed by the thi  ommatidium, 
then 0 1ija< < , which is proportional to the intersection area of the receptive field and pixel. 
This process can be summarized as follows: 

 

th th

th th

th th

0 , pixel is invisible to ommatidium
1 , pixel is fully observed by ommatidium .

0 1, pixel is partially observed by ommatidium
ij

ij

j i
a j i

a j i


= 
 < <

      
       

         
  

When collecting M samples, the ommatidial observations can be modeled as a system of 
linear equations as follows: 

 .= +y Ax n  (1) 

where [ ]1, , T
My y=y 

 is a set of M output samples and ∈n  M×1 contains unexpected noise. 

Let 
1 2 

TT T T
M = ∈ A a a a 

M×N denote a measurement matrix the thi  row of which is ia . Given 
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the measurement matrix A and the observation y, we aim to solve the system of linear 
equations in Eq. (1) for the object image reconstruction. 

In this paper, since we are considering resolution improvements in the compound eye 
imaging system, the number of estimated pixels is set to be greater than the number of 
ommatidia. i.e., N > M. Thereby, we note that Eq. (1) becomes an underdetermined system of 
linear equations. This underdetermined system can be solved by a convex optimization if the 
object is represented as a sparse signal in the proper domain [33–36]. A sparse signal is often 
represented as a vector which has a small number of non-zero components. We note that any 
natural image can be sparsely represented in a certain domain such as wavelets, the discrete 
cosine transform (DCT), or the discrete Fourier transform [37,38]. 

In an underdetermined system, the solution can be found by solving the l0 minimization 
problem 

 
0 2

ˆ arg min subject to .ε= − ≤
x

x x Ax y   (2) 

where 
0

x  denotes the number of non-zero components in x and ε  is a small positive 
constant. However, the optimization problem in Eq. (2) is combinatorial and computationally 
intractable [39]. Alternatively, the l1 norm minimization provides unique and sparse solutions 
for underdetermined systems by solving 

 

1 2
arg min subject to .ε= − ≤

x
x x Ax y   (3) 

We note that the l1 norm minimization guarantees stability, which means that it can reliably 
reconstruct the signal without amplifying the observation errors in the process of l1 norm 
minimization [40,41]. The l1 norm minimization reconstructs a signal with explicit sparsity 
constraints while removing non-sparse random noise components from a corrupted signal. 
Due to its property of noise suppression, the l1 norm minimization has been used as an image 
denoising tool [42]. Recently, many algorithms [43–45] have been proposed to solve Eq. (3). 
In this study, we use the alternating direction method [43], which is known to be fast and 
efficient for the problem in Eq. (3). If an object image of N pixels is reconstructed, where N > 
M, the resolution of COMPU-EYE is improved by a factor of N/M. 

In the following section, we propose a COMPU-EYE imaging system, which is more 
appropriate to resolve Eq. (3) and thus to reconstruct the object image with high resolution. 

3. COMPU-EYE for image acquisition and reconstruction with high resolution 

In this section, we introduce COMPU-EYE. In COMPU-EYE, we propose to increase the 
acceptance angles of ommatidia larger than the interommatidial angle to recover the object 
image with computations. We first compare COMPU-EYE with the conventional compound 
eye imaging system in terms of resolution limit. We then explain how COMPU-EYE 
improves the resolution by investigating the influence of larger acceptance angles on the 
measurement matrix of the image capturing system. 
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3.1 Overview and comparison of compound eyes 

 
Fig. 2. Imaging systems of a conventional compound eye and the proposed COMPU-EYE (a) 
The conventional compound eye consists of 8 × 8 ommatidia with Δφ = 1.5° and Δφ = 1.5°. 
(b) COMPU-EYE consists of 8 × 8 ommatidia with Δφ = 1.5° and Δφ = 8° as well as a DSP 
algorithm. 

The imaging system of a conventional compound eye is depicted in Fig. 2(a). It has a 
hemispherical structure with a radius (R) of 6.9216 mm, and consists of 8 × 8 ommatidia, 
each of which has a height (f) of 1.35 mm. Because each ommatidium provides a single 
sample, the compound eye has M = 64 samples. An 8 × 8 mm object image is located at a 
distance of 30 mm from the compound eye. The receptive field of a single ommatidium is 
shown as an ellipse, and a set of these receptive fields forms the ommatidial receptive fields 
near the left in Fig. 2(a). 

In the conventional compound eye, the acceptance angles of the ommatidia are typically 
designed to be similar to the interommatidial angle (i.e., Δφ = Δφ = 1.5°) in order to maximize 
the spatial resolution as well as to avoid overlapping ommatidial receptive fields. Accordingly, 
the ommatidial receptive fields are totally isolated, and each ommatidium observes an 
independent part of the object image. Each observation forms a single pixel in the 
reconstructed image. Note that no signal processing technique is needed to reconstruct the 
image. 

To demonstrate the resolution limit of the conventional compound eye, we consider an 
object image comprising two parts as seen in Fig. 2(a): 1) four different patterns with the 
same light intensity, each of which is included in the receptive field of an ommatidium; and 2) 
a cross pattern that lies over several receptive fields. 

Because every pattern in Case 1 is included within a receptive field, every observation 
appears to have a single image pixel with the same intensity of light. As a result, finer details 
within a receptive field cannot be resolved and the four different patterns in Case 1 cannot be 
distinguished by a conventional compound eye. Moreover, because its ommatidial receptive 
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fields are totally isolated, the fields contain undetectable areas, i.e., areas that are invisible to 
the compound eye. The undetectable areas deteriorate the image quality by decreasing the 
intensity of light observations as seen in right side of Fig. 2(a). This example shows that the 
conventional compound eye roughly recognizes object patterns, but has undetectable areas. 
As a result, such compound eyes suffer from limited resolution and poor image quality. 

In contrast, consider the proposed COMPU-EYE imaging system in Fig. 2(b). COMPU-
EYE consists of an 8 × 8 hemispherical array of ommatidia with acceptance angles that are 
larger than the interommatidial angle, i.e., Δφ = 8° > Δφ = 1.5°. It is also equipped with a DSP 
technique. Because of the increased acceptance angles, the receptive field of each 
ommatidium is increased to at least 28 times that of Δφ = 1.5°. Thus, the ommatidial receptive 
fields widely overlap, severely distorting the observations as seen in the third frame from left 
in Fig. 2(b). We then apply DSP to recover a high resolution object image from these highly 
distorted observations. 

In Fig. 2(b), the proposed COMPU-EYE recovers an object image of 256 pixels from 64 
observations. The resolution is improved by a factor of four. In recovered image x̂ , finer 
details that were perceived as a single point in Fig. 2(a) can be resolved, and different patterns 
in Case 1 are distinguished by COMPU-EYE. Moreover, COMPU-EYE compensates for 
undetectable areas and hence prevents the deterioration of the recovered image quality in Case 
2. As a result, COMPU-EYE provides a higher-resolution image of better quality than the 
conventional compound eye. 

3.2 Effects of larger acceptance angles and resolution improvements 

We now focus on how larger acceptance angles along with the DSP technique improve 
resolution with respect to measurement matrix characteristics of the conventional compound 
eye and COMPU-EYE. 

 
Fig. 3. Effects of acceptance angles for the conventional compound eye (top row) and 
COMPU-EYE (bottom row) (a)(d) Ommatidial receptive fields overlapped with the object 
image. (b)(e) Number of observing ommatidia corresponding to pixels in the 8th row. (c)(f) 
Graphical representations of the measurement matrices. 
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Figure 3(a) shows how the object image of a 16 × 16 array of pixels is projected onto the 8 
× 8 ommatidial receptive fields of the conventional compound eye, where Δφ = Δφ = 1.5°. 
The measurement matrix of the conventional compound eye ∈A  M×N in Eq. (1) can be 
obtained from the ommatidial receptive fields and pixels of the object image in Fig. 3(a). This 
measurement matrix is displayed graphically in Fig. 3(c). Every element in the measurement 
matrix indicates the visibility of the corresponding row of an ommatidium in the 
corresponding column of a pixel. Because the receptive fields of the ommatidia are small and 
isolated, the measurement matrix has few nonzero components. In Fig. 3(a), each 
ommatidium separately observes four corresponding pixels, and each pixel is observed by a 
single ommatidium. The values of the four pixels in one receptive field are considered to be of 
a single light intensity. Thus, each observation and its observed pixels are in a one-to-many 
correspondence relation. Because the information of one pixel is contained in one 
ommatidium as seen in Fig. 3(b), there is no additional information regarding that pixel in 
other observations. Therefore, in such relationships, finer details within the receptive field 
cannot be resolved and the resolution of the conventional compound eye is limited by M 
measurements. We note that the coefficients in Fig. 3(c) are smaller than one because the 
pixel cannot be entirely observed by ommatidia owing to the undetectable areas. 

In contrast, COMPU-EYE has a larger acceptance angle of Δφ = 8°. Figure 3(d) shows 
how the object image is superimposed on the ommatidial receptive fields of COMPU-EYE. 
The size of each receptive field is considerably larger; a single ommatidium covers up to 76 
pixels, which is considerably greater than the four pixels of the conventional compound eye. 
Whereas each receptive field in the conventional compound eye is small and separated, each 
receptive field in COMPU-EYE is large and highly overlapped. Hence, undetectable areas do 
not exist in the receptive fields of COMPU-EYE. As a result, the number of nonzero 
components increases correspondingly in the measurement matrix of COMPU-EYE in Fig. 
3(f). 

The measurement matrix of COMPU-EYE is appropriate for image acquisition and 
reconstruction rather than that of the conventional compound eye because the object elements, 
x in Eq. (1) is more likely to be aligned with the nonzero elements of the matrix [46]. As 
shown in Fig. 3(e), each pixel of the object image is observed multiple times with different 
ommatidia. In the context of information acquisition, the total quantity of information for a 
pixel is increased. Each observation is not redundant to the others for it has different receptive 
field. Accordingly, each column in the measurement matrix has multiple nonzero elements 
with different coefficients in Fig. 3(f). The observation of a pixel sufficiently differs from its 
other observations and this provides additional information about the pixel. In the literature, it 
is shown that such additional information is useful for reliable signal recovery, even if the 
number of measurements is smaller than the dimension of the original signal [31,37,46–48]. 
Thus, the large acceptance angle of ommatidia with the use of DSP allows COMPU-EYE to 
resolve finer details of the object beyond the resolution limit of M measurements. 
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Fig. 4. NMSE against acceptance angle where M = 8 × 8 ommatidia with Δφ = 1.5° and N = 16 
× 16 pixels. 

We now investigate the reconstruction performance of the DSP technique in accordance 
with the acceptance angle in the example of Fig. 2. A randomly located sparse signal with 10 
nonzero components is generated with uniform distribution between 0 and 1. As a measure of 
the reconstruction performance evaluation, let us define the normalized mean squared error 
(NMSE) as NMSE = 2 2

2 2
ˆ /−x x x . As seen in Fig. 4, when the acceptance angle is small, the 

object is unable to be reconstructed with low errors. Specifically, when Δφ = 2° which 
corresponds to the conventional compound eye in the example of Fig. 2(a), the 16 × 16 pixels 
cannot be recovered from 8 × 8 ommatidia. Associated with the measurement matrix in Fig. 
3(c), each observation and its corresponding observed pixels are one-to-many correspondence. 
Thus, each ommatidium is unable to resolve fine details of its observation. As the acceptance 
angle increases, each pixel is observed multiple times by different ommatidia. The DSP 
technique reconstructs each pixel with low errors by solving Eq. (3). As a result, the NMSE 
decreases. When Δφ > 8°, it is seen that the NMSE gradually increases because each 
observation becomes redundant with neighboring observations. We note that the analysis on 
the optimal acceptance angle is remained as our future works. 

We note that the acceptance angle can be easily increased in many possible ways in an 
artificial compound eye. The acceptance angle within an ommatidium can be represented as 

( ) ( )2 2/ /o d f Dϕ λ∆ = +  , where D is the lens diameter, λ  is the light wavelength, d is the 
photosensor diameter, and f is the focal length of the ommatidial optics [21]. According to 
Snell’s law, the acceptance angle Δφ outside the ommatidium can be obtained by 

( ) ( )( )1
0 1 02sin / sin / 2n nϕ ϕ−∆ = ∆ , where the refractive indices of the lens material and air 

are defined as 0n  and 1n , respectively. Thus, the acceptance angle Δφ can be increased by 
using a material of higher refractive index for the ommatidia, decreasing the focal length f, or 
increasing the diameter d of the photodetector. Note that increasing the diameter of the 
photodetector may lead to increase the size of the ommatidia and the size of the compound 
eye. On the other hand, decreasing the radius of the curvature of the microlens for reducing 
the focal length can increase the acceptance angle without increasing the size of the 
ommatidia. 

4. Results 

To evaluate the performance of our design, we consider a hemispherical compound eye with a 
radius of R = 6.9216 mm, where each ommatidium has a height of f = 1.35 mm in Fig. 1(b). 
The compound eye consists of a varying number M of ommatidia of uniform spacing with the 
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interommatidial angle Δφ = 180/ °M . The object image to be reconstructed is composed of 
N = 160 × 160 pixels. As a sparsity measure of the image, we use the Sparsity Ratio (SR) 
defined as a ratio of the number of nonzero elements to the total length of the signal. 

 

Fig. 5. For M = 80 × 80 and Δφ = 2.25°, (a) Output image of the conventional compound eye 
with Δφ = 2.25° (b) Image recovered by COMPU-EYE with Δφ = 60°. For M = 120 × 120 and 
Δφ = 1.5°. (c) Output image of the conventional compound eye with Δφ = 1.5° (d) Image 
recovered by COMPU-EYE with Δφ = 60°. 

We demonstrate the performance of COMPU-EYE with an image in the presence of noise. 
The object image is a line-art illustration of a tiger, which consists of 160 × 160 pixels each of 
which contains an 8-bit quantized light intensity. The sparsity ratio of the tiger image is SR = 
0.2335. The conventional compound eye consists of M = 80 × 80 ommatidia with Δφ = Δφ = 
2.25°. On the other hand, COMPU-EYE consists of M = 80 × 80 ommatidia of much larger 
acceptance angles, Δφ = 60° than Δφ = 2.25°. The object image size of 60 × 60 mm is at a 
distance of 10mm from the compound eyes. An additive observation noise in Eq. (1) is 
assumed to be Gaussian with zero mean and covariance matrix 2

Mσ I  where 2 0.1σ = . Figure 
5(a) shows the output image of the conventional compound eye. The output image is 
corrupted by noise. Because of the resolution limit determined by M and undetectable areas in 
the ommatidial receptive fields, the observed image of the conventional compound eye is poor 
quality. Figure 5(b) shows the image recovered by COMPU-EYE equipped with the DSP 
technique. Compared to the Fig. 5(a), COMPU-EYE provides a higher resolution imaging as 
well as denoising effects. Due to the stability of the l1 norm minimization, the unexpected 
noise is efficiently removed in the reconstructed image without any denoising algorithm. 
When the number of ommatidia is increased to M = 120 × 120 with Δφ = 1.5°, the output 
image of the conventional compound eye and the recovered image of COMPU-EYE are 
shown in Figs. 5(c) and 5(d), respectively. As we increase the number of ommatidia, the 
object image is more clearly seen. For a measure of the resolution improvement, we define a 
pixel resolution as the total number of pixels to be reconstructed with NMSE < δ, where δ > 0 
is a user-defined positive number. Since the number of pixels to be recovered is increased 
from 802 to 1602 in Fig. 5(b) and from 1202 to 1602 in Fig. 5(d), the gain in the pixel 
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resolution is 4 and 1.78, respectively. We note that the size of the observed image in a 
conventional compound eye is smaller than that of the recovered image of the proposed eye; 
this is because the ommatidia on the edge of a conventional compound eye are unable to 
detect the object image owing to their small range of acceptance angle. 

 

Fig. 6. For the compound eyes, M = 120 × 120 and Δφ = 1.5°. (a) Object image of 8-bit 
grayscale image with 160 × 160 pixels (b) Output image of the conventional compound eye 
with Δφ = 1.5° and. (c) Image recovered by COMPU-EYE with Δφ = 60°. 

We now investigate the performance of COMPU-EYE with a non-sparse phantom image 
which is used in image processing [49]. The phantom image in Fig. 6(a) consists of 160 × 160 
pixels, each of which contains an 8-bit intensity of light. SR of the phantom image is 0.4928. 
The number of ommatidia is set to be 120 × 120 with Δφ = 1.5° and Δφ = 1.5° for the 
conventional compound eye and Δφ = 60° and Δφ = 1.5° for COMPU-EYE. The object image 
size of 60 × 60 mm is at a distance of 10 mm from the compound eyes. In the reconstruction 
of the image, DCT is used for a sparsifying basis. As seen in Fig. 6(b), the direct observation 
of the conventional compound eye provides poor resolution and the object is distorted. Figure 
6(c) shows the reconstructed image by COMPU-EYE. The resolution is improved by a factor 
of N/M = 1.78. We note that the distortion comes from a discrepancy in receptive fields of 
ommatidia, i.e., as an ommatidium is closely located to the edge of the compound eye, its 
corresponding receptive field becomes larger. In contrast, the reconstructed image of 
COMPU-EYE in Fig. 6(c) is not distorted because COMPU-EYE recovers the designated 
pixel values x in the object. As a result, COMPU-EYE can also reconstruct the non-sparse 
object image with a high resolution. 

 
Fig. 7. Resolution test: (a) Conventional compound eye consisting of 80 × 80 ommatidia with 
Δφ = Δφ = 2.25°. (b) COMPU-EYE consisting of 80 × 80 ommatidia with Δφ = 60° and Δφ = 
2.25°. 

Figure 7 illustrates optical resolution tests of the conventional compound eye and 
COMPU-EYE. The 60 × 60 mm object image at a distance of 10 mm is composed of 160 × 
160 pixels. The object image is a target image similar to the US Air Force (USAF) test, where 
the minimum spacing of gratings is a single pixel, i.e., 0.375 mm. The lines of the row labeled 
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“1” have single pixel spacing, those of the row labeled “2” have two-pixel spacing, and so on. 
Both compound eyes are composed of 80 × 80 ommatidia with Δφ = 2.25° and Δφ = 2.25° for 
the conventional compound eye and with Δφ = 2.25° and Δφ = 60° for COMPU-EYE. 
Because the achievable optical resolution of the conventional 80 × 80 compound eye with Δφ 
= Δφ = 2.25° is 0.7179 × 0.7179 mm, which is obtained from the distance of resolvable 
gratings in the object plane, it cannot distinguish the smallest grating as shown in Fig. 7(a). 
However, COMPU-EYE can sharply resolve the smallest grating because the resolvable 
resolution is the unit of a single pixel. Thus, the achievable minimum optical resolution of 
COMPU-EYE is 0.375 × 0.375 mm, an improvement in resolution of about 3.66 times. We 
note that the observation at the center of the conventional compound eye in Fig. 7(a) suffers 
from lack of incoming light due to the relatively small sized receptive fields and its resulting 
undetectable area. 

 
Fig. 8. Depth test: Image recovered by COMPU-EYE consisting of 100 × 100 ommatidia with 
Δφ = 60° and Δφ = 1.8°, where the dimension of the final object image is (a) 30 × 30 mm at 5 
mm, (b) 60 × 60 mm at 10 mm, (c) 90 × 90 mm at 15 mm. The actual tiger picture is 30 × 30 
mm. 

Figure 8 shows the image recovered by the proposed COMPU-EYE at various object 
image distances. The size of the visible area of the compound eye is proportional to the 
distance of the object image, and the measurement matrices are generated according to the 
distances of the object image. Given the measurement matrices at distances of 5, 10, and 15 
mm, the image can be reconstructed from y. As seen in Fig. 8, the recovered images are still 
clear and focus is maintained as the object image moves away from the compound eye. 

5. Summary 

In this study, we proposed the COMPU-EYE imaging system to improve the resolution of 
compound eyes. COMPU-EYE uses ommatidia with acceptance angles that are larger than the 
interommatidial angle as well as a DSP technique. By increasing the acceptance angles, each 
ommatidium covers wider areas, and each observation is different from the others because of 
its receptive field. Finer details can be resolved by the DSP technique. As a result, the 
proposed COMPU-EYE provides at least a four-fold improvement in resolution. 

Natural compound eyes have the ability to detect high-speed motion owing to the simple 
ON/OFF detection structure of the ommatidium. In contrast, COMPU-EYE views the object 
only through computation and it necessarily requires certain computation time and cost for 
imaging. The computation requires solving a convex optimization problem; this problem can 
be solved in polynomial time by many state-of-the-art algorithms including YALL1 [43], 
FISTA [44], and CP [45]. Thus, the additional computation time required for the compound 
eyes is practically feasible with modern DSP devices. For example, when we measure the 
computation time using MATLAB with a 3.6-GHz Intel i7 processor, it takes 47 ms to 
recover N = 256 pixels from M = 64, as shown in Fig. 2(b). We note that the computation time 
can be reduced by using a multicore processor or graphic processing unit because the 
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algorithms [43–45] conduct matrix multiplications and additions, and these operations can be 
computed in parallel [50]. 

Generally, the acceptance angles are proportional to the light sensitivity of ommatidia. But, 
the large acceptance angles cause overlapping among neighboring ommatidia and necessarily 
result in low spatial resolution. By resolving the aliasing caused by the overlapping using a 
DSP technique, COMPU-EYE is expected to have high sensitivity with high resolution. 
Moreover, the technique for resolution improvements used in COMPU-EYE can be applied to 
other designs of artificial compound eyes. It would be interesting to compare resolution of 
Curvace design in [18] consisting of more ommatidia and the hemispherical compound eye in 
[8] consisting of less ommatidia but equipped with the DSP technique. In this paper, we have 
focused on the apposition compound eye. But, we note that the concept of COMPU-EYE can 
also be applied to other types of compound eyes, i.e., superposition compound eyes. For 
example, in the neural superposition compound eyes which are specialized for light sensitivity, 
each object point is imaged by multiple photoreceptors from different ommatidia and the 
related signals are combined to form an image with high sensitivity and high resolution [21]. 
By applying the design concept of larger acceptance angles and the DSP technique, the neural 
superposition compound eyes can improve the resolution and sensitivity. In the real 
implementation of compound eye devices, COMPU-EYE is more efficient in terms of 
multiple observations. If some ommatidia are disjointed or damaged, the conventional 
compound eye could lose vision in the corresponding area. However, in COMPU-EYE, each 
area is observed by multiple ommatidia. Thus, even though some ommatidia are lost, they do 
not have a significant influence on the overall observation. 
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One of the main problems related to electroencephalogram (EEG) based brain–computer interface (BCI)
systems is the non-stationarity of the underlying EEG signals. This results in the deterioration of the
classification performance during experimental sessions. Therefore, adaptive classification techniques are
required for EEG based BCI applications. In this paper, we propose simple adaptive sparse representation
based classification (SRC) schemes. Supervised and unsupervised dictionary update techniques for new
test data and a dictionary modification method by using the incoherence measure of the training data are
investigated. The proposed methods are very simple and additional computation for the re-training of
the classifier is not needed. The proposed adaptive SRC schemes are evaluated using two BCI experi-
mental datasets. The proposed methods are assessed by comparing classification results with the con-
ventional SRC and other adaptive classification methods. On the basis of the results, we find that the
proposed adaptive schemes show relatively improved classification accuracy as compared to conven-
tional methods without requiring additional computation.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Brain–computer interface (BCI) systems provide a new com-
munication and control channel between human brain and an
external device without any muscle movements [1]. Due to the
convenient usability and high temporal resolution compared to
other brain imaging equipment such as functional magnetic
resonance imaging (fMRI) and magnetoencephalogram (MEG),
research of noninvasive electroencephalogram (EEG) based brain–
computer interface (BCI) systems is continuously progressed [1–3].

In the beginning of BCI research, BCI systems have been
developed mostly to provide alternative communication means to
people who have severe motor disabilities [2,4,5]. Recently, much
research effort focused on development of portable BCI systems
for normal person by using headset shaped scalp electrodes [6,7]
and also dry electrodes which do not need conductive gel for
preparation of EEG recording [8,9]. In addition, with the progress
of portable BCI systems and EEG sensor technologies, many BCI
applications are developed for general public [9,10]. However, for
the BCI systems going beyond laboratory researches, the most
important issue is stable classification performance.
: þ82 62 715 2204.
Normally, EEG based BCI experiment can be categorized as a
training (calibration) stage and a real time testing (feedback) stage.
In the training stage, translation algorithm such as classification is
designed using collected training signals. Then, an application
device such as neural prosthesis is controlled by using the classi-
fication algorithm in real time testing stage. However, EEG signals
have inherent non-stationary characteristics and there exist sig-
nificant day-to-day and even session-to-session variability
[12,27,29]. Thus, features of experimental EEG signals are changed
from the offline training sessions to online testing sessions [11].
Due to this, classification performance is unavoidably deteriorated
in BCI experiment with time. In addition, the training session (15–
35 min) is conventionally carried out every time before using the
BCI systems even for experienced subjects [12]. These are major
obstacles of real-time online BCI applications.

To overcome the performance decrease caused by the non-
stationarity of EEG signals, many adaptive signal processing
methods are proposed. In [27–29], adaptive feature extraction
methods are proposed for the motor imagery based BCI systems.
For the adaptive classification scheme, in [13], mean and covar-
iance matrix of a statistical classifier are iteratively updated using
each class data. The study [11] proposes a bias adaptation scheme
of linear discriminant analysis (LDA) classification using class
labels of several test trials. They have shown that simple bias
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adaptation is effective for online test data. In [14], they propose an
expectation-maximization (EM) algorithm based unsupervised
adaptive classification method. Using EM algorithm, common
spatial pattern (CSP) features are re-extracted and parameters of
Bayes classifier are updated in each iteration step. Similarly, [15]
suggest unsupervised bias adaptation of LDA without using class
label information. Previous studies for adaptive classification
method need classifier re-adjustment (training) such as para-
meters and bias adaptation for new test trials. However, for this
re-training, additional computation is needed in each update
(adjustment) step.

Recently, with much progress of L1 minimization technique in
compressive sensing field [21,22], sparse representation has
received a lot of attention in signal processing and pattern
recognition fields. Especially, sparse representation based classi-
fication (SRC) has shown an increased interest [16,23,24]. SRC
framework is first introduced by Huang et al [16]. A test data from
one class is predominantly represented by the same class training
data from dictionary. The dictionary is composed by all class
training data and usually underdetermined. Sparse representation
of the test data using the dictionary can effectively be solved by
the L1 minimization tool, and the classification is performed by
comparing the representation error for each class.

SRC have been also studied for EEG signal classification
[17,18,25]. In [18] and [25], SRC scheme is applied to vigilance
detection and epileptic seizure detection problem respectively. In
addition, SRC scheme is first introduced for motor imagery based
BCI application in [17]. They have shown that the SRC exhibits
better classification performance than the conventional LDA
method using two experimental datasets. Another study [31] also
revealed that the SRC shows better classification accuracy and
noise robustness than the well-known SVM method. However, no
research has been studied for adaptive SRC scheme for online BCI
applications.

Compared to other fixed decision rule based classification
method such as linear discriminant analysis (LDA) and support
vector machine (SVM), in the SRC, the sparse representation is
adaptively performed for each test data by utilizing all training
data in the dictionary. Along with this inherent adaptive char-
acteristic of the SRC, in this study, we propose simple adaptive SRC
schemes for real-time BCI applications. We suggest a dictionary
update rule and an incoherence based dictionary modification
(IDM) method. For the dictionary update rule, supervised and
unsupervised adaptive schemes and also accumulated and fixed
update rules are considered. Proposed dictionary update methods
are very simple and additional computation for adaptation is not
needed. In the part of IDM method, our aim is to create a maxi-
mally incoherent dictionary via an incoherence measure of train-
ing data. This method is applied to the training data before per-
forming the sparse representation. Using online motor imagery
based BCI experimental datasets, we evaluate classification per-
formance of the proposed adaptive method by comparing with the
conventional SRC and other adaptive classification methods.

This paper is organized as follows. In Section 2, our experiment
and dataset are explained. In Section 3, technical methods such as
feature extraction, sparse representation based classification (SRC)
method and proposed adaptive SRC schemes are introduced. We
explain experimental evaluation strategy and results in Section 4.
In Section 5, we discuss some experimental results. Finally, we
conclude the paper in Section 6.
Fig. 1. One trial experimental paradigm for motor imagery experiment.
2. Experiment

For evaluation of adaptive classification scheme, we performed
online motor imagery based BCI experiment. The experiment was
approved by the Institutional Review Board of Gwangju Institute of
Science and Technology. Ten subjects who signed a written
informed consent letter participated in our online experiment. The
experiment was performed on multiple days (two or three days).
In each day, just one session experiment was executed. The
number of sessions for each subject was determined by classifi-
cation results and condition of each subject. Right hand (R), left
hand (L) and foot (F) motor imagery were performed for each
subject. For this experiment, we used Active Two EEG measure-
ment system made by Biosemi, Inc. The sampling rate of these
datasets was 512 samples per second and the number of EEG
channels was 64. The channel positions were selected from
international 10/20 standard.

The detailed experimental paradigm was illustrated in Fig. 1.
The same paradigm was used for both training (calibration) and
online testing (feedback) phases. In the training phase, one session
consisted of three runs and one run consisted of 20 trials for each
class. Thus, we collected a total of 60 training trials for each class.
All participants were naïve subjects for this motor imagery
experiment. Therefore, it was difficult to achieve satisfactory
classification performance without sufficient training time. In
addition, each subject had a different discrimination potential for a
different pair of motor imagery signals. In this study, to find the
most discriminative motor imagery pair for each subject, we per-
formed the initial classification for all pairs of (R), (L), and (F) by
using the dataset of the first run in the training phase. The best
pair of motor imagery was selected using the CSP feature with the
LDA classifier and used for a further experiment in the training and
testing session. As shown in Fig. 1, in each trial, the target bar was
represented on 0 s at left, right or down side of monitor screen
corresponding to the left, right or foot motor imagery. On 2 s after
cue onset, subject was instructed to perform the motor imagery
task. Then, subject imagined their left, right hand or foot move-
ment such as grasping and releasing hand. In this period, subject
was also instructed to stare a red dot during motor imagery to
avoid eye movement artifacts. In the training session, to design a
classifier that would be used in the testing session, we just col-
lected the training trials for each motor imagery signal. At that
time, the classifier had not been designed. Therefore, the yellow
ball (feedback) was set to move into the target direction
automatically.

In the online testing (feedback) phase, same experimental
paradigm was used. However, the online feedback was provided in
each trial. Thus, the yellow ball was controlled by the classified
result which was analyzed from intention of each subject using the
EEG data collected from 2 to 4 s. We recorded 75 test trials for each
class. One run consisted of 25 trials and we performed total three
runs. Thus, in the one session experiment, total 60 offline and 75
online trials per class were collected for each subject. Both data
were segmented from 2 to 4 s after cue onset for further signal
processing.



Y. Shin et al. / Computers in Biology and Medicine 66 (2015) 29–38 31
3. Methods

3.1. Preprocessing and feature extraction

For preprocessing of experimental EEG dataset, we apply same
procedures to all datasets and classification methods. First, we
perform band pass filtering to eliminate the frequencies which are
not related to motor imagery signals. In this study, we use fourth
order Butterworth filter with 5 and 30 of cut off frequencies.

EEG signals are very noisy and have poor spatial resolution.
Thus, an electrode placed on the scalp measures the EEG signals
generated not only from the motor cortex area but also from other
cortical regions. Therefore, it is important to find maximally dis-
criminative information from the original high-dimensional data.
For this purpose, we perform common spatial pattern (CSP) fil-
tering. The CSP filtering is a well-known feature extraction method
for two-classes motor imagery dataset [12,17,19]. The CSP filtering
algorithm finds the filters W w w w, , ,C C

C1 2∈ = [ ⋯ ]× which
transforms the EEG data X C S∈ × (C and S denote the number of
EEG channels and time samples) into a spatially filtered space:
X W XCSP

T= · . Generally, W is computed by simultaneous diag-
onalization of the covariance matrices, 1Σ and 2Σ , of the two classes
data. This is equivalent to solving the generalized eigenvalue
problem, i.e., w w1 2Σ λΣ= , where λ is eigenvalue. In practice, first
and last k columns of the W corresponding to the k largest and k
smallest eigenvalues are used for CSP filtering. For fair comparison,
we set the k equal to five for all our datasets in this study. The
obtained CSP filters maximize the variance of the spatially filtered
signal for one class data while minimizing it for the other class
data. Detailed information about the CSP filtering algorithm can be
found in [17,19]. After CSP filtering, we compute the band power
(BP) of sensorimotor rhythm (8–15 Hz). BP is the power of the
signal within specific frequency bands. Because of the physiolo-
gical background of the motor imagery signals, ERD based band
power (BP) of the sensorimotor rhythm is a well-known feature
form in many EEG based BCI studies [12,17,20].

3.2. Sparse representation based classification

In this paper, based on the sparse representation classification
(SRC) scheme we propose adaptive SRC methods. Therefore, in this
section, we simply introduce conventional SRC framework. We
also use the SRC method to provide a baseline classification result
for this study to compare results of the proposed adaptive SRC
methods.

In [17], we propose a SRC scheme for motor imagery based BCI
applications. In the SRC framework, if training samples in a dic-
tionary is sufficiently large, a test sample can be sparsely repre-
sented with same class training samples over the dictionary. The
SRC method can be categorized as sparse coding step and identi-
fication step. The sparse coding step is formulated as y Ax= .
Where, y and A indicate a test feature vector and a collection
of training feature vectors. Also, x is an unknown coefficient vec-
tor. A is called a dictionary formed by class-dictionary
A a a a, , , ,i i i i N,1 ,2 , i= [ … ] where i C1, 2, ... ,= represents class
information and Ni denotes the number of training trials for class
i. In this study, C is equal to 2. aij

m 1∈ × is the j-th training feature
vector of dimension m¼2k from the class i. In this study, each
element of a is the band power feature of the CSP filtered data. The
dictionary A is formed by A A A: ; m N

1 2= [ ] ∈ × , where N denotes
the total number of training trials. Thus, in this study, N N2 i= for
two class problems.

In the SRC algorithm, first, the columns of dictionary A are
normalized to have a unit L2 norm. Then, in the sparse coding step,
unknown coefficient vector x can be recovered by solving fol-
lowing optimization problem via L1 norm minimization tool:
x y Axmin subject to , 1x
1‖ ‖ = ( )

Note that equation (1) is an under-determined system. The
literature of compressive sensing (CS) shows that the L1 norm
minimization algorithm can solve this optimization problem
effectively in polynomial time [21,22]. Using the recovered coef-
ficient vector x by L1 minimization, class identification is per-
formed as follows:

ry yclass min , 2i
i( ) = ( ) ( )

where r y y A x:i i i 2( ) = ‖ − ‖ is representation residual corresponding
to the class i. Thus, we identify the class of the test sample y as i
when residual r yi ( ) is minimal.

3.3. Adaptive SRC schemes

To overcome inherent non-stationarity of EEG signals, we
propose simple adaptive classification schemes based on the SRC
method. In this study, we suggest two schemes, dictionary update
method and incoherence based dictionary modification (IDM)
method. Each scheme works with the conventional SRC method
independently. In addition, both schemes can be incorporated as
one combined adaptive SRC method. In the following subsections,
we introduce each adaptive scheme.

3.3.1. Incoherence based dictionary modification method
Previous SRC studies for motor imagery based EEG classifica-

tion [17] have revealed that when a dictionary is incoherent, a test
signal from one particular class can be predominantly represented
by the columns of the same class in the dictionary. The uncertainty
principle (UP) [30] in the sparse representation theory dictates
that a signal cannot be sparsely represented in both classes
simultaneously. This phenomenon intensifies as the degree of
incoherence of the dictionary increases. An incoherent dictionary
can be explained from the definition of mutual coherence of class-
dictionary. The coherence measures the correlation between the
two class-dictionaries defined as following:

C j k NA A a a, max , : , 1, 2, ... , , 3L R L j R k t, ,{ }( ) ≜ = ( )

The vector aL j, and aR k, are the j-th column of AL and the k-th
column of AR respectively. The notation a a,L j R k, ,⟨ ⟩ denotes the
inner product of the two vectors. We call C the measure of mutual
coherence of two class-dictionaries. In the SRC algorithm, we
normalize the columns of dictionary A. Therefore, C measures the
smallest angle between any pair of columns of two classes. When
the value of C obtained from the two class-dictionaries is small,
i.e., the cosine angle between two columns is large, we consider
the dictionary incoherent. Due to the characteristics of the CSP
filtering, i.e., CSP filters maximize the variance of the spatially
filtered signal for one class data while minimizing it for the other
class data, the CSP features can be used for constructing inco-
herent dictionary [17]. After applying CSP filtering, in the proposed
IDM method, we aim to eliminate some training trials that have a
high average cross coherence value with training trials of a dif-
ferent class. Thus, the eliminated training trials have features
similar to those of many training trials of a different class.
Therefore, we expect to further increase the incoherence of the
dictionary by using the IDM method; this might lead to a high
discrimination capability for training trials of two different classes.

In the IDM method, coherence value of the dictionary A can be
simply estimated by each element of G A A: T= . Thus, i jG ,( ) indi-
cates the coherence value between i and j-th column of the dic-
tionary. Therefore, i jG ,( ) is equal to j iG ,( ). For example, if the
number of training trials of each class-dictionary is five, then the



Fig. 2. Example of incoherence based dictionary modification (IDM) method.

Fig. 3. Concept of the proposed dictionary update rule.

Y. Shin et al. / Computers in Biology and Medicine 66 (2015) 29–3832
dimension of G is 10 10× . From the G, we focus on the cross
coherence part between the two classes. Thus, we extract columns
from 1-th to 5-th and rows from 6-th to 10-th of the G which are
corresponding to the class 1 and class 2 respectively. Therefore,
the dimension of cross coherence part is 5 5× in this example. We
represent this cross coherence part as GCC. Using the GCC, we can
easily check which trials of class 1 dictionary have large coherence
values with trials from class 2 dictionary and vice versa.

Fig. 2 shows example values of cross coherence GCC
5 5∈ × and

concept of the IDM method. In this figure, each number means the
coherence value ranged from 1 to 9. Red colored elements repre-
sent high coherence values which are set up to be the values
greater than or equal to 8. The values of last row and column
represent the averaged value of five columns and rows respec-
tively. In this example, we set the number of elimination trials n
equal to one. Thus, we aim to eliminate the highest average value
for each column and row respectively.

From the averaged value of cross coherence, the third row and
third column shows highest averaged value of 6.4 and 5.8. This
means that 8-th row (8-th trial from class 2 dictionary) and third
column (third trial from class 1 dictionary) shows high coherence
value with many trials, i.e., many red colored elements, from the
other class-dictionary. Therefore, we can eliminate the one trial in
the each class-dictionary.

We summarize the incoherence based dictionary modification
(IDM) algorithm as follows:

1. Set n the number of elimination trials.
2. Compute the average value of each column of GCC.
3. Collect the indices of column numbers which have n highest

average coherence values.
4. Eliminate n indices from original class-dictionary.
5. Repeat 2–4 steps for row of GCC.

For each subject dataset, we apply the IDM algorithm to the
dictionary. After then, we perform the SRC steps with the modified
dictionary.

3.3.2. Dictionary update methods
Normally, in motor imagery based BCI systems, a translation

algorithm such as a classifier is designed using the collected
training data. Then, an application device or program is controlled
by using the classification algorithm in each test trial. However,
because of the inherent non-stationarity of EEG, the classification
performance deteriorates from the training to the test session in a
BCI experiment. To overcome this drawback, many adaptive clas-
sification schemes are proposed. The main concept of the adaptive
classification is re-adjustment (re-training) of the classifier for the
new test data. On the other hand, in the SRC scheme, one impor-
tant characteristic is that training (or parameter decision) of a
classifier is not needed unlike in other decision hyper-plane based
classification methods such as LDA and SVM [31]. Thus, in the SRC
scheme, a dictionary is simply formed by collecting the training
feature vectors as columns of the dictionary. Then, using the dic-
tionary sparse coding step is performed for each test data. Due to
this unique classification mechanism, a simple intuitive method
for adaptive SRC is dictionary update.

As we mentioned in Section 3.2, the dictionary A is formed by
class-dictionary A a a a, , ... ,i i i i N,1 ,2 , t= [ ] in the SRC method. Each
column vector aij is a j-th training feature vector of class i.
Therefore, for each test trial in the online testing phase, a feature
vector of a new test trial y can be easily updated as a new column
of the dictionary. Then, characteristics of the test feature can be
applied into the dictionary while the online testing experiment is
performed. And therefore, we can expect the classification per-
formance of the online testing phase is not deteriorated.

In this study, we consider four types of dictionary update rule,
supervised accumulated update (SAU), supervised fixed update
(SFU), unsupervised accumulated update (UAU) and unsupervised
fixed update (UFU) rule. In our online experimental paradigm, as
shown in Fig. 1, a target class label is first provided as the position
of the target bar. Then, subjects perform motor imagery corre-
sponding to the class label information for each trial. In the
supervised update rule, the target class label of test trials is used
for updating the online test trials. Thus, a new test trial which has
same class label of training trials in the class-dictionary is updated
into the corresponding class-dictionary. However, this strategy is
not practical for a general online scenario. Therefore, we also
consider the unsupervised update rule. In the unsupervised
update rule, class label information of the test trial is not used.
Thus, each test trial is updated into the corresponding class-dic-
tionary based on the estimated result of the current classifier,
which is represented by the direction of the yellow ball movement
shown in Fig. 1.

For the case of accumulated update method, as shown in ① of
Fig. 3, all updated test trials are just stacked at the end (last col-
umn) of the class-dictionary based on the class label and classified
result for SAU and UAU respectively. However, for the case of fixed
update rule, SFU and UFU, the oldest training trial, i.e., the first
training trial of the class-dictionary is eliminated as shown in ② of
Fig. 3 when each new test trial is updated. Note that if available
training data in the dictionary is large enough and online testing
phase is long, i.e., the number of test trials is large; the dictionary
will be a fat matrix in the case of accumulated update rule. In this
case, computation time for sparse representation is also increased.
Therefore, in this study, we consider fixed update rule which has a
same size dictionary, i.e., number of columns in the dictionary,
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with the original training dictionary. We compare computation
time between accumulated and fixed update rule in Section 6.2.
4. Results

4.1. Evaluation strategy

Using the online experimental dataset, we aim to evaluate
proposed adaptive SRC schemes, i.e., four dictionary update
methods (supervised accumulated update (SAU), supervised fixed
update (SFU), unsupervised accumulated update (UAU) and
unsupervised fixed update (UFU) rule) and an incoherence based
dictionary modification (IDM) method. From the multi session
datasets of 10 subjects, 12 session datasets are selected for eva-
luation of proposed methods. In this selection, for a reliable
assessment of classification methods, we choose datasets over 60%
classification accuracy in the online experiment (in the binary
classification, theoretical random chance level is 50%). Each ses-
sion dataset consists of 60 training trials and 75 test trials for each
class.

In this study, for the two class classification problems of the
conventional SRC method, the dimension of the dictionary A is
10 120,× i.e., m¼10 CSP features and N¼120 training trials. For
each subject, 150 test trials where each has the same 10 dimension
features are evaluated with dictionary A. For the proposed adap-
tive methods, we perform the incoherence based dictionary
modification (IDM) method using the original dictionary A. After
then, for each new test trial, we perform the each proposed dic-
tionary update method for adaptation of test data.

Due to the inherent non-stationarity of EEG signals, online test
data have different feature characteristics compared to training
data [11,26,27]. And therefore, even though classifier is well
trained for training data, satisfactory classification performance is
not guaranteed for online data. We expect that in the SRC method
the proposed incoherence based dictionary modification (IDM)
method is effective for proper dictionary design by maximizing
incoherence between two classes. In addition, to overcome the
non-stationarity of EEG, new test features will be applied into the
original dictionary using updated new test trials from the pro-
posed dictionary update method. Using online experimental
dataset, we evaluate classification accuracy of the conventional
SRC, each dictionary update method and IDM based adaptive SRC
method. In addition, we also compare the classification results of
Table 1
Classification accuracy of conventional SRC and proposed adaptive SRC schemes (SRC_S
accuracy (%) of each method with and without IDM. The highest classification accuracy

Dataset SRC SRC_SAU SRC_

w/o w/ w/o w/ w/o
IDM IDM IDM IDM IDM

1 66 66.7 67.3 70.7 66.0
2 86 86.7 88.0 88.0 88.0
3 88.7 90.7 90.0 90.0 89.3
4 96.4 96.4 96.4 96.4 97.1
5 83.3 89.3 93.3 96.0 96.0
6 82.7 78.7 86.7 86.7 84.0
7 77.3 75.3 78.0 80.0 78.7
8 73.3 88.0 88.7 88.7 89.3
9 70.0 75.3 74.0 74.7 73.3
10 62.0 64.0 66.0 68.7 67.3
11 84.0 87.3 88.7 89.3 88.7
12 96.7 96.0 97.3 98.0 97.3
Mean 80.5 82.9 84.5 85.6 84.6
Std. 11.13 10.74 10.69 9.94 10.99
the proposed methods with other adaptive classification methods
such as adaptive LDA and SVM method.
4.2. Experimental results

To evaluate classification performance of the proposed adaptive
SRC schemes, we compare classification accuracy (%) of proposed
methods with that of conventional SRC method using the online
experimental dataset of 12 motor imagery sessions. Table 1 shows
the classification accuracy of the SRC and the proposed dictionary
update based SRC methods with and without IDM method. For fair
comparison, we set the same value of n (the number of elimination
trials of IDM) of 10 for all subjects and all IDM based adaptive SRC
methods.

From the results of Table 1, all five methods with IDM show
better mean classification accuracy than the without IDM method.
Thus, the proposed IDM method is effective for the SRC frame-
work. Furthermore, the proposed simple dictionary update
methods with and without IDM show improved mean classifica-
tion accuracy than the conventional SRC method. Supervised
update methods, i.e., SAU and SFU, show more improved results
than the unsupervised methods, UAU and UFU. However, mean
difference between SAU/ SFU with IDM and UAU/ UFU with IDM is
not much.

For further analysis, in Fig. 4, we investigate the comparison of
the classification accuracy of 12 datasets using scatter plots. Each
point indicates the classification accuracy of each dataset which is
used for computing mean classification accuracy in Table 1. Fig. 4
left shows the comparison results between the SRC and the two
supervised dictionary update methods with IDM. Classification
accuracies of the SRC and supervised methods are represented in X
and Y-axis respectively. For the supervised methods (Y-axis), blue
square points indicate the SAU with IDM method and red circle
points indicate the SFU with IDM method. Similarly, Fig. 4 right
shows the comparison results between the SRC and the two
unsupervised dictionary update methods.

From the results of Fig. 4 left, both SAU and SFU with IDM show
higher classification accuracies than the SRC method for eleven
datasets. Thus, the 11 data points positioned over the black linear-
line which indicates the same classification accuracy between SRC
and proposed methods. On the right figure, we also observe that
the both UAU and UFU IDM show higher classification accuracies
than the SRC for 10 datasets. In addition, p-values obtained from
AU, SRC_SFU, and SRC_USU) for 12 session datasets. We present the classification
for each dataset is highlighted in bold.

SFU SRC_UAU SRC_UFU

w/ w/o w/ w/o w/
IDM IDM IDM IDM IDM

64.7 66.0 67.3 66.0 67.3
88.0 87.3 89.3 82.7 90.7
90.7 90.0 90.7 90.7 88.7
97.1 96.4 96.4 96.4 96.4
96.7 93.3 95.3 94.7 97.3
84.0 80.0 84.0 80.7 83.3
79.3 76.7 77.3 79.3 78.0
91.3 78.0 89.3 84.7 90.7
74.0 70.0 72.0 70.0 71.3
71.3 62.0 63.3 68.0 66.7
89.3 86.7 88.0 88.0 88.7
98.0 96.7 98.0 96.7 98.0
85.4 81.9 84.3 83.1 84.8
10.89 11.73 11.64 10.84 11.40



Fig. 4. Comparison of classification accuracy of all 12 datasets. (Left): Scatter plot of classification accuracies between conventional SRC (X-axis) and the both supervised
update methods SAU and SFU with IDM (Y-axis). (Right): Scatter plot of classification accuracies between conventional SRC (X-axis) and the both unsupervised update
methods UAU and UFU with IDM (Y-axis).

Fig. 5. Scatter plot of training and test features for two different classes in two
dimensional feature spaces using an example dataset 5. All training and test
samples are scattered and fitted by Gaussian distribution. (For interpretation of the
references to color in this figure, the reader is referred to the web version of this
article.)
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paired t-test are smaller than 0.05 for all comparisons between the
SRC and proposed methods in Fig. 4.

To evaluate the effect of the proposed methods, we analyze one
dataset in the feature space. Fig. 5 shows scatter plots of training
and test features of dataset 5 used in Table 1. For ease of visuali-
zation, we use two-dimensional feature spaces which are corre-
sponding to the first and the last CSP filters. In Fig. 5, the red and
black x marks indicate the 60 training and 75 test features for one
class, respectively. On the other hand, the blue and green circles
indicate the 60 training and 75 test features for another class,
respectively. Each class training and test data element is fitted by a
Gaussian distribution. Therefore, we can easily check the dis-
tribution change from the training to the test data during the
experimental sessions. When the distribution of the test data is
changed from that of the training data, the previously designed
dictionary based on the training data is not optimal for the clas-
sification of new test data.

Fig. 6 shows one classification instance of a test trial, which is
represented by a filled green point (class 2) in the left figure. In
this test, the test feature is not correctly classified, i.e., classified as
class 1, by the conventional SRC without IDM method. All training
features in the dictionary of classes 1 and 2 shown in Fig. 5 are
utilized for the classification of the test feature without the use of
any adaptation techniques. Fig. 6 right shows the coefficients
recovered by the conventional SRC for the test feature represented
in the left figure. The X-axis represents the training trial number
(column number) of the dictionary, and the red dotted line
denotes the boundary of two different classes. In the right figure,
the numbering ①, ② and ③ represent the coefficients corre-
sponding to the training trials of black x marks ①, ② and ③ in the
left figure. Because the three training points of class 1 are used for
the sparse representation of the test trial and have large coefficient
values, the test feature is classified as class 1 by using the mini-
mum residual rule in Eq. (2).

On the other hand, Fig. 7 shows the classification results of
SRC_UAU IDM for the same test trial used in Fig. 6. In Fig. 7 left, we
can see that some training features which are originally positioned
at the area of different class features including the black x marks
①, ② and ③ in Fig. 6 left are effectively eliminated by the IDM
method. In addition, new test trials represented by the black x
marks and the green and black circles are also updated before the
classification of the current test trial, which is represented by the
filled green circles. From the result of Fig. 7 right, we conclude that
the test trial is correctly classified as class 2 and the three updated
test trials represented by black circles ①, ② and ③ in the left
figure have large coefficients. Therefore, for the classification of
new test trials, IDM and the dictionary update method in SRC are
very effective, and we can see that the proposed methods with
IDM show relatively improved classification accuracy compared to
the conventional SRC from the results of dataset 5, presented in
Table 1.

In Table 2, we compare the classification accuracy of the con-
ventional SRC and the proposed adaptive SRC methods with the
non-adaptive and adaptive LDA and SVM classification methods
using our experimental dataset. The LDA and SVM are widely used
classification methods in many EEG based BCI researches [26]. For
the adaptive LDA and SVM methods, first, linear decision hyper-
plane is chosen from training data. Then in the testing session, the
decision hyper-plane is re-trained for new test sample as shown in
[11]. We only consider supervised adaptation for the LDA and SVM
methods.

From the results presented in Table 2, we can first see that the
conventional SRC exhibits better mean classification accuracy than
the non-adaptive LDA and SVM methods. These results are con-
sistent with those of the previous studies [17,31] mentioned in
Section 1. Second, the proposed adaptive SRC methods show
better mean classification accuracy than the other adaptive LDA
and SVM methods. Note that even though the accuracy difference
between the unsupervised adaptive SRC methods and adaptive
SVM method is not much, in the conventional adaptive methods,



Fig. 6. Classification results of conventional SRC for one test sample of dataset 5. (Left): Scatter plot of training features for two classes and one test feature of class 2. (Right):
Sparse representation results of one test feature shown in left figure from the conventional SRC. X-axis represents the training trial number in dictionary and Red dotted line
means the boundary of two different classes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Classification results of SRC_UAU IDM for the same test sample in Fig. 6. (Left): Scatter plot of training features for two classes and one test feature of class 2. (Right):
Sparse representation results of one test feature shown in left figure from the SRC_UAU IDM.(For interpretation of the references to color in this figure, the reader is referred
to the web version of this article.)
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re-training (re-adjustment) of the decision hyper-plane for new
test data is time consuming process. However, in the proposed
methods, dictionary update for adaptation of each test sample is
very simple process and re-training of classifier is not needed.
5. Discussions

5.1. Results for public dataset

For the evaluation of the proposed methods, we use a public
dataset obtained from Dataset IVc of BCI Competition III [32]. In
this dataset, the test data were separately recorded for more than
3 h after the acquisition of the training data. Therefore, the dis-
tribution of some EEG features could be effected by non-statio-
narities. This dataset was recorded from a healthy subject. He sat
in a comfortable chair with his arms resting on the armrests. The
training dataset consists of the data of the first three (non-feed-
back) sessions. In all, 210 training trials (105 for each class) were
obtained. The visual cues (letter presentation) indicated for 3.5 s
which of the following two motor imageries that the subject had
to perform: (L) left hand and (F) right foot. The target cues were
presented at intervals of random length ranging from 1.75 to
2.25 s, in which the subject could relax. In the test sessions, total
280 test trials (140 for each class) were recorded. The experi-
mental setup was similar to the setup of the training sessions, but
the motor imagery had to be performed for 1 s only, compared to
3.5 s in the training sessions. The recording was made using
BrainAmp amplifiers and a 128-channel Ag/AgCl electrode cap
from ECI. A total of 118 EEG channels were measured at the
positions of the extended international 10/20 system. Signals were
band-pass filtered between 0.05 and 200 Hz, and then digitized at
1000 Hz.

Table 3 shows the classification accuracy of the public dataset
for conventional SRC and the four proposed adaptive SRC schemes
when the number of elimination trials n is varied from 0 (no IDM)
to 30. For this dataset, six CSP filters are used for feature extrac-
tion, and thus, the dimension of dictionary A is 6 210× for the
original SRC. In all, 280 test trials are classified by each classifica-
tion method. From the results presented in Table 3, we find that all
proposed adaptive SRC methods exhibit improved classification
accuracy compared to the conventional SRC method irrespective of
the value n of IDM. Supervised dictionary update methods (SAU
and SFU IDM) show better classification accuracy than the unsu-
pervised methods (UAU and UFU IDM); however, the difference is
very small (within 1%). Further, the difference between the accu-
mulated (SAU and UAU IDM) and the fixed dictionary update
methods (SFU and UFU IDM) is more small and negligible for this
dataset.

5.2. Comparison between proposed adaptive schemes

In this section, first, we compare the accumulated and fixed
dictionary update rule for each supervised and unsupervised dic-
tionary update method. From the results of Table 1, the mean
difference between SRC_SAU and SRC_SFU with IDM is just 0.2%.
For the unsupervised case, SRC_UAU and SRC_UFU with IDM
exhibit a mean difference of 0.5%. To analyze the statistical



Table 2
Comparison of classification accuracy (%) between conventional non-adaptive classification methods (LDA, SVM, and SRC) and adaptive classification methods (including the
proposed adaptive SRC schemes). The highest classification accuracy for each dataset is highlighted in bold.

Dataset LDA Adaptive LDA SVM Adaptive SVM SRC SRC_SAU IDM SRC_SFU IDM SRC_UAU IDM SRC_UFU IDM

1 56.0 62.7 68.7 69.3 66.0 70.7 64.7 67.3 67.3
2 88.0 87.3 88.0 88.0 86.0 88.0 88.0 89.3 90.7
3 87.3 86.7 86.0 86.0 88.7 90.0 90.7 90.7 88.7
4 94.3 94.3 95.7 95.0 96.4 96.4 97.1 96.4 96.4
5 78.0 84.0 80.0 89.3 83.3 96.0 96.7 95.3 97.3
6 79.3 82.0 84.7 90.7 82.7 86.7 84.0 84.0 83.3
7 68.7 74.0 71.3 80.0 77.3 80.0 79.3 77.3 78.0
8 84.7 89.3 70.7 89.3 73.3 88.7 91.3 89.3 90.7
9 70.7 74.0 69.3 73.3 70.0 74.7 74.0 72.0 71.3
10 53.3 63.3 58.0 62.7 62.0 68.7 71.3 63.3 66.7
11 79.3 82.7 70.0 87.3 84.0 89.3 89.3 88.0 88.7
12 87.3 91.3 94.0 95.3 96.7 98.0 98.0 98.0 98.0
Mean 77.2 81 78 83.9 80.5 85.6 85.4 84.3 84.8
Std. 12.84 10.36 11.70 10.36 11.13 9.94 10.89 11.64 11.40

Table 3
Classification accuracy (%) of conventional SRC and the proposed adaptive SRC
methods for the BCI competition dataset.

n of IDM SRC SRC_SAU SRC_SFU SRC_UAU SRC_UFU
IDM IDM IDM IDM

0 92.5 95.36 95.36 93.93 94.64
5 92.86 96.07 95.71 94.64 94.64
10 90 95.36 95.71 93.93 93.93
15 92.86 95.36 95.36 94.64 94.64
20 91.43 95.36 95.71 95.36 94.64
30 91.79 95 95 94.64 94.64
Mean 91.91 95.42 95.48 94.52 94.52
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significance of the mean differences, we perform the paired t-test
for the accuracy of each subject. The obtained p-values of the t-test
are larger than 0.05 for the comparisons of the accumulated and
the fixed update rule, which means that the differences are not
statistically significant. As we mentioned in Section 3.3.2, when
the number of original training trials in the dictionary and that of
the updated new test trials are large, the computation time of the
accumulated dictionary update based SRC method might be
increased to solve the sparse coding step, i.e., Eq. (1), by using L1
minimization as compared to the fixed dictionary update based
SRC method. Thus, in the fixed update rule, the dictionary size is
fixed for all test trials and the computation time for sparse coding
is not increased. However, in the accumulated update rule, the
dictionary size is increased in every test trial, and therefore, the
computation time for the sparse coding step is also increased. We
compare the running time (computation time) of the accumulated
and fixed dictionary update methods. Because of the number of
training trials and that of the test trials of the competition dataset,
which is used in Section 6.1 (210 and 280), are larger than our
dataset (120 and 150), we use the competition dataset to evaluate
the running time. The tic and toc MATLAB commands are used for
measuring the running time of the sparse coding step in the SRC
algorithm. We repeat 100 times and measure the average running
time for each method. For a single test trial, the average running
time of the sparse coding step in SRC_SAU and SFU are 5.47 ms and
4.29 ms respectively. Further, the SRC_UAU and UFU show the
average running time of 5.45 ms and 4.26 ms for the sparse coding
step, respectively. Therefore, for a single test trial, the differences
in the running time between the accumulated and the fixed
update rule are very small and negligible for online BCI
applications.

Second, we investigate supervised and unsupervised dictionary
update methods. From the results presented in Table 1, we find
that the mean difference between SRC_SAU and SRC_UAU with
IDM is 1.3%. For this comparison, we obtained a p-value of 0.04
from the paired t-test. For the unsupervised case, the mean dif-
ference between SRC_SFU and SRC_UFU with IDM is 0.6% and the
obtained p-value is larger than 0.05. Even though the mean dif-
ferences are not much, all supervised methods consistently show
better mean classification accuracy than the unsupervised meth-
ods for our dataset and the public dataset presented in Tables 1
and 3, respectively. In the unsupervised dictionary update method,
the class labels of the test trials are determined by the results of
the current classifier. Unfortunately, the classifier usually does not
provide perfect classification results for all test trials because of
the non-stationarity of EEG. Few incorrectly classified test trials
are also updated in a different class-dictionary with the original
target class. These trials affect the sparse coding step in the SRC
algorithm. Therefore, this might be the reason that the unsu-
pervised methods exhibit lower mean classification accuracy than
the supervised methods. However, from the results for our dataset
and the public dataset, we find that the unsupervised methods still
show improved classification results compared to the original SRC.

5.3. Analysis of IDM method

As shown in the results of Table 3, the classification accuracy of
IDM based SRC methods may vary on the basis of the value n of
IDM. The value n can be heuristically chosen to optimize the
classification accuracy. In this section, we analyze the effect of the
number of elimination trials n of IDM by using our experimental
dataset. In the results presented in Table 1, for a fair comparison,
we set the same value of n of 10 for all 12 datasets. For the same
datasets, in Fig. 8, we compute average classification accuracy over
all datasets when the number of elimination trials of SAU, SFU,
UAU and UFU IDM is varied from 0 to 30. From the results of Fig. 8,
the optimal number n is different for each method. This means
that there is a place to improve classification performance of IDM
based adaptive SRC method by finding optimal n for each method
and also each subject dataset. In Fig. 8, compared to the results of
supervised update methods average accuracy is decreased with
the large value of n in the case of unsupervised update methods.
This might be because if the number of elimination trials n is large,
number of training trials is decreased in the dictionary. Thus, the
role for classification task of updated new test trials is increased.
However, in the case of unsupervised method, class label of new
test trials is not always correctly updated. Therefore, for the
unsupervised update methods with IDM, the value n is needed to
choose more carefully.

Next, we analyze the effect of the incoherence based dictionary
modification (IDM) method. As we mentioned in Section 3.1.1, we



Fig. 8. Average classification accuracy of SAU IDM and UAU IDM when the number
of elimination trials n is varied.
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propose an IDM method to make more incoherent dictionary after
applying the CSP filtering. Incoherence of dictionary can be mea-
sured by coherence value C introduced in Eq. (3). To evaluate the
change in the coherence value, we measure the C value of SRC
without IDM and with IDM method. From the average results over
twelve datasets, The SRC without IDM shows 0.983 value of C. On
the other hand, the SRC with IDM shows 0.934 value of C. This
means that after applying the IDM method, we can make more
incoherent dictionary than the without IDM method.
6. Conclusion

Because of the inherent non-stationarity of EEG signals, per-
formance degradation is an inevitable phenomenon in EEG based
BCI systems. In particular, an already designed classifier by the
training data does not guarantee satisfactory classification accu-
racy for new test data in the online feedback stage. In this paper,
we propose dictionary update methods with incoherence based
dictionary modification (IDM) as adaptive SRC schemes to com-
pensate for the non-stationary effects. We consider supervised/
unsupervised and accumulated/fixed dictionary update rules with
IDM. With the unique classification mechanism of the SRC, i.e., a
fixed decision rule is not required for the classification, in the
proposed dictionary update methods, the test data are easily
updated and utilized for the classification of other new test data
without requiring any additional computation. In addition, in the
IDM algorithm, we try to create a maximally incoherent dictionary
for SRC by using a simple incoherence measure of the training
data. By using two online motor imagery based BCI experimental
datasets, we evaluate the classification performance of the pro-
posed adaptive schemes. From the results, we find that the pro-
posed IDM based adaptive SRC schemes show improved classifi-
cation results compared to the conventional SRC. Further, unsu-
pervised adaptive SRC schemes that are more practically applic-
able in BCI exhibit competitive classification accuracy than other
adaptive LDA and SVM methods. An analysis of a stable dictionary
to overcome the inter-subject variation in BCI systems and a fully
adaptive classification method developed by combining adaptive
CSP filtering with adaptive SRC will be interesting future works.
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The influence of external magnetic field on themorphology ofα-Fe2O3 thin film formed at liquid–vapor interface
has been investigated. Application of magnetic field during the growth of film resulted in the magnetic moment
ordering of constituent nanoparticles. Thus formedα-Fe2O3 thin filmwas transferred to a glass substrate, which
upon annealing converted into one dimensional (1D) nanostructured thin film due to the oriented attachment of
magnetically orderednanoparticles. The effect of dopants viz. Ni2+ and Co2+ on thedirectional growth, andmag-
netic properties of nanostructures has also been investigated. The Ni2+ and Co2+ doped α-Fe2O3 1D nanostruc-
tured thin films show superparamagnetic and ferromagnetic behavior, respectively, whereas undoped α-Fe2O3

film exhibits superparamagnetism. From the room temperature magnetization measurements of films, it is
found that the magnetization depends upon the morphology and magneto-crystalline anisotropy attributes of
the film nanostructures.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Owing to outstanding electrical, magnetic and optical properties the
nano/micro sized structures of iron oxide have attracted great attention
as compared with the bulk counterparts [1–2]. Among iron oxides, he-
matite (α-Fe2O3) is typically nontoxic and environment friendly iron
oxide with band gap Eg= 2.1 eV [3]. In the case of film, themorphology
and size of constituent α-Fe2O3 nanoparticles have great impact on its
physical and chemical properties. The nano/micron sized structures of
α-Fe2O3 have applications in diverse fields including catalysis [4], sen-
sors [5], lithium-ion batteries [6], and environment protection, etc. [7].

Since the nanomaterials exhibit shape and/or size dependent proper-
ties [8], therefore, various efforts have been made to synthesize one-
dimensional iron oxide structures for specific applications [9]. Here, we
quote some of the methods reported for the growth of one-dimensional
(1D) iron oxide structures, such as solution method [10–11], thermal ox-
idation [12–14], forced hydrolysis [15–16], hydrothermal [17–18] chemi-
cal precipitation [19], and solvothermal method [20]. For practical
applications, such as integrated devices, these one-dimensional nano-
structures (nanowires and nanorods) should be grown on substrate to
form vertically aligned arrays. Still now, despite of tremendous efforts, it
is challenging to develop a simple and versatile way to form α-Fe2O3

thin film composing 1D structure. However, for the synthesis of
structured iron oxide film, the magnetic field may be considered as one
of the synthesis parameters alike to the temperature and pressure. The
appliedmagnetic field is not sensitive to the surface charges and solution
pH, therefore, it does not influence the reaction mechanism as the other
parameters do (electric field or current).

There are few reports where the magnetic field has been employed
for the synthesis and assemblies of 1D and two-dimensional (2D) ag-
gregates. During synthesis, the applied magnetic field enhances the
dipole–dipole interaction by decreasing the surface energy, which re-
sults in the directional growth along the easy axis of magnetization.
The effect of magnetic field is more in the case of materials possessing
highermagnetic susceptibility due to their easy formation in the system,
which is due to themagnetic field effect on Gibbs free energy leading to
tremendous impact on structures and properties of materials [21]. The
spin state of ions in the crystal structure can be changed by applying
magnetic field during the synthesis process. Appliedmagnetic field gen-
erates novel magnetic domains in sample. In literature also, the applica-
tion of magnetic field is reported an elegant way to orient and assemble
disordered structures into highly ordered structures [22–30]. Nowa-
days, magnetic fields have been widely employed in the nanomaterials
research area [31–34]. The response ofmagnetic field is different for fer-
romagnetic, paramagnetic and diamagnetic materials. In the case of fer-
romagnetic/ferrimagnetic materials, the growth of nanostructures in
the presence of weak magnetic fields can induce anisotropy leading to
the formation of 1D growth of nanostructures in the easymagnetization
direction. The field strength and orientation can be varied or kept
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constant, for each of thesemagnetic nanomaterials in space and time or
in both.When themagnetic field is applied, the Brownianmotion on the
surface of the solution gets diminished due to magnetic field lines, and
the applied magnetic field forces the nucleated nanoparticle to align
along their easy axes parallel to magnetic field.

Here, we report the formation of nano/micro structures on the
surface of α-Fe2O3 thin films by applying external magnetic field
during the film formation process. Along with undoped α-Fe2O3

thin films, films doped with Ni2+ and Co2+ were also formed in the
presence of external magnetic field. The effect of Ni2+ and Co2+ dop-
ing on the morphology and magnetic properties of the formed iron
oxide structures is studied. The as prepared nanostructured thin
films were studied for structural, morphological and magnetic prop-
erties. The present study gives a newmethod of directional growth of
one dimensional nanostructures, opening up a new way for con-
trolled synthesis of nanostructured thin films with various dimen-
sionalities and morphologies.

2. Experimental

Initially, a precursor solution containing 24 mM FeCl2, 22 mM
FeCl3·6H2O and 64 μM of polyvinyl alcohol (PVA) was formed. The
measured pH value of solution was 2.8. The solution was placed in
Fig. 1. Schematic presentation of the thin film formation process at the surface o
an ice-chamber to reduce the thermal fluctuations [35]. After cooling
the solution, an out of plan magnetic field (~0.8 T) was applied on
the surface of solution by using an electromagnet (with poles diam-
eter 2 in.). A gap of 2.5 mm was kept between the solution surface
and electromagnetic pole. Then to form a thin film on the surface of
solution, NH3 vapor (6 volume %) was introduced into the chamber.
The NH3 vapor interacts with the Fe3+ ions in precursor solution re-
siding on the surface, and forms an iron oxide-poly vinyl alcohol
(PVA) composite thin film (as shown in schematic of Fig. 1). The ob-
tained film was transferred to the glass substrate, and then annealed
at 500 °C in a horizontal tube furnace.

The thin film formation method, described above, was also applied
to obtain doped (Ni2+ and Co2+ doping) iron oxide nanostructured
thin films. The salts of NiCl2 and CoCl2 were taken in 15 molar percent,
and added to the precursor solution, in two separate experiments.
Thus obtained undoped and doped iron oxide thin films were also
formed for horizontal magnetic field (in plane). Finally, these nano-
structured thin films were characterized for structural properties by
using X-ray Diffraction (XRD, PANanalytical X'pert-PRO) employing Cu
Kα (λ = 1.5406 Å, 2θ = 20 to 60°) radiation, and for morphological
study using Scanning Electron Microscopy (SEM, Hitachi, S-4700). The
elemental composition and magnetic properties of the prepared sam-
ples were analyzed by Energy Dispersive X-ray spectroscopy (EDX,
f solution in the presence of magnetic field (B) and ammonia (NH3) vapor.



Fig. 2. SEM images of iron oxide thin films formed (a)withoutmagneticfield, (b)withmagneticfield (out of plane), (c) 15%Ni2+ dopingwithmagnetic field applied, (d) 15% Co2+ doping
with magnetic field applied and (e) XRD, and (f) VSM of the corresponding films (inset shows the magnetic behavior at the low magnetic field). All the films were annealed at 500 °C.
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Oxford instruments, INCA PENTA FETX3) and Vibrating Sample Magne-
tometer (VSM) PAR 155.

3. Results and discussion

To estimate the effect of appliedmagnetic field, iron oxide thin films
were formed both in the absence, and presence of external magnetic
field. Fig. 2(a) and (b) shows the iron oxide thin film formed in the ab-
sence and presence of external magnetic field, respectively. The mag-
netic field was applied out of plane on the liquid–vapor interface. The
films formed in the presence of external magnetic field possessing
nanostructures (Fig. 2(b)) indicate that the external magnetic field has
an effect on the surface morphology of the film. The iron oxide thin
film is composed of nano and micrometer size particles. However, we
observed that before annealing, both of the films that are formed in
the absence and in the presence of magnetic field have similar surface
morphology. But when annealed, the surface of the latter covered
with nanostructured, whereas the former remained the same. Since
the change in surfacemorphology appeared only after annealing, there-
fore, it may be inferred that the applied magnetic field has an effect on
the magnetic moments of nanoparticles during the formation of film,
which upon annealing resulted in nanostructured surface. Themagnetic
moment of iron oxide film can be enhanced by addingNi2+ and Co2+ in
the film [36–37]. In the present study, we also included Ni2+ and Co2+
ions in the precursor solution, and investigated their magnetic
moment's effect on the morphology of iron oxide films.
Fig. 2(c) shows the SEM image of Ni2+ doped iron oxide thin film. In
this case, one dimensional nanostructures can be observed on the top
of the film, whereas the film formedwithout any doping has nanoparti-
cles on its surface. The Ni2+ in this case enhanced magnetic moment of
nanostructures, and leaded to one dimensional form of nanostructures.
Similar results were observed in the case of Co2+ doping. However, in
the case of Co2+ doping, the surface was covered with microstructures
as shown in Fig. 2(d).

Fig. 2(e) is XRD intensity patterns corresponding to undoped, Ni2+

and Co2+ doped iron oxide thin films. From the XRD pattern, it is ob-
served that all the films are well crystalline, and match their diffraction
peakswith those ofα-Fe2O3 (JCPDS no. 89-8104). Also, there is no other
secondary phase due to Ni2+ and Co2+ doping. The crystalline size cal-
culated using Scherrer's formula, Dhkl = 0.9/β cosθ is 6.7 nm,7 nm and
6.3 nm for α-Fe2O3, Ni2+ and Co2+ films, respectively. To study the
magnetic behavior of the fabricated films, the M-H measurements
were performed at room temperature. The M-H curve of undoped and
doped iron oxide thin films is shown in Fig. 2(f). Both the undoped
and Ni2+ doped samples show superparamagnetic behavior. In
the magnetic curves, the undoped sample saturates at 7.95 × 105 A/m
(or 10,000 Oe, as shown in the graph), whereas Ni2+doped sample sat-
urates above than 13.5 × 105 A/m (or 17,000 Oe). Also, the
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magnetization value in the case of Ni2+ doped sample is higher than
undoped sample. In the case of Co2+ doped sample, a ferromagnetic be-
havior with relatively larger coercivity value of 7.95 × 104 A/m (or
1000 Oe), and larger remanence is observed. The observed higher coer-
civity and remanence in Co2+ doped sample are attributed to enhanced
shape of structures and relatedmagneto-crystalline anisotropy [38].We
know that the magnetic iron oxide film doped with Co2+ ions has a
stronger spin-order interaction than Fe2+ ions [39]. The doping of
Co2+ ions decompensates the antiferromagnetic order of the lattice,
which leads to an enhanced effective magnetic field seen by the Fe3+

nucleus [40]. Due to higher value of magneto-crystalline anisotropy of
Co2+ ion, the post synthesis annealing resulted in large directional
growth of nanostructure which prevented them from magnetizing in
the directions other than that along their easy magnetic axes, leading
to a higher directional growth and coercivity. The presence of Ni2+

and Co2+ was confirmed by EDX analysis. Fig. 3 shows the EDX of
Ni2+ and Co2+ doped structures, these nanostructures have Ni2+ and
Co2+ with the atomic percent of 15 and 14, respectively.

In literature, different magnetic behaviors of α-Fe2O3 nanostructure
are reported. There are few studies [41,42], which indicate α-Fe2O3

nanostructures synthesized via sol–gel and hydrothermal methods to
be superparamagnetic. However, the other studies report that α-Fe2O3

nanostructures are ferromagnetic [43,44]. In this study, we have obtain-
ed undoped and Ni2+ doped α-Fe2O3 structures which show
superparamagnetic behavior, and doped with Co shows ferromagnetic
behavior. In our case, the undoped thin film has small size of α-Fe2O3

nanocrystals, which should have uncompensated surface spin at their
boundaries. The uncompensated spins lead the undoped α-Fe2O3 thin
film to be superparamagnetic.

In the case of Co doping, due to smaller ionic radii of cobalt (72 pm),
as comparewith iron (74 pm), itmay occupy the interstitial positions or
sit on the grain boundaries. The XRD data indicates polycrystalline na-
ture of the sample, possessing large number of grain boundaries. Here,
the Co atoms will destroy the crystalline structure, which results into
a decreased crystalline size, and therefore disappearance of the (116)
and (018) peaks from the data. The Co with electronic configuration
[Ar] 3d74s2 has one electron in excess than Fe ([Ar] 3d64s2) which has
less energy of d state. When Co2+ with spin down electron substitutes
Fe3+ ion, the spin down d band gets completely filled with remaining
one d electron in the spin up band, which results in a net magnetization
of 1 μB [45]. The increase in the magnetization value of Co-doped Fe2O3

takes place due to the canting of spin structure. The canting of spin
structure is created by the imbalance resulted from the incorporation
of Co2+ in Fe2O3 lattice [46]. A similar increased magnetization value
behavior has been observed by Wieslaw A. Kaczmarek et al. (1996)
[47]. The canting of spin produces an uncompensated magnetic mo-
ment of Fe3+ cation, resulting in a ferromagnetic behavior of the
sample.

Similarly, in the case of Ni doping, the d bands of Ni (3d84s2) have
lower energy than those of Fe. Here, the five d states in the down spin
channel are occupied, and the remaining two d electrons are on the t2g
states of the Ni2+ site which are 2/3 filled. The local moment on the
Fig. 3. The EDX of (a) Ni2+ doped and (b) Co2+ doped α
Ni2+ is 3 μB, and is polarized in the same direction as that of substituted
Fe3+, which gives a net magnetic moment of 2 μB in the direction oppo-
site to the magnetic moment of the substituted Fe3+ [45]. The increase
in the saturation magnetization of Ni2+ substituting at Fe3+ sites is due
to the higher surface spins of electron. This occurs due to the increase in
surface spin that causes an enhancement of the magnetization of anti-
ferromagnetic nanoparticles. The over occupancy of Ni2+ ions in the tet-
rahedral sites of α-Fe2O3 creates more dense structure of pinning
centers and discourages irreversible domain wall movement, and de-
creases the coercivity of Ni2+ doped α-Fe2O3 [45] resulting in a
superparamagnetic thin film.

To estimate the effective direction of applied magnetic field, which
give rise to the structured surfacemorphology of the film,we also inves-
tigated the effect ofmagnetic fieldwhichwas applied parallel (in plane)
to the liquid–vapor interface. Fig. 4(a) shows the corresponding SEM
images ofα-Fe2O3 thinfilm formed in the presence ofmagneticfield ap-
plied parallel to the liquid–vapor interface; the corresponding film ob-
tained after annealing is shown in Fig. 4(b).

The formation of worm like nanostructures ofα-Fe2O3 on the film
surface took place after annealing the Ni2+ and Co2+ doped samples
(Fig. 4(c) and (d)). The worm like structures are formed due to the
crack formation on the film surface during the synthesis process in
the presence of external (in plane) magnetic field, and size of the
nanostructures changed due to the change in magnetic moment by
doping.

4. Mechanism of the nano/micro structure formation

To ensure the formation of structures on the film surface due to
annealing, we investigated thinfilm samples at different annealing tem-
peratures. For this study, Co2+ doped iron oxide thin film was selected,
and annealed at 100, 300 and 500 °C temperature. Fig. 5 shows SEM im-
ages of films formed after annealing at different temperatures. From the
SEM images, it can be seen that without annealing, no nanostructure
protudes on the film surface (Fig. 5(a)) but for the film annealed at
100 °C, small grains started to agglomerate on the film surface as
shown in Fig. 5(b). For 300 °C of annealing temperature, one dimension-
al structures emerge out of the film surface (Fig. 5(c)), which enhanced
to a length of micrometers at 500 °C as shown in Fig. 5(d). These results
show that the growth of nanostructure takes place during the annealing
process, and the applied magnetic field induces a directional magnetic
moment inside the oxide nanoparticles during the formation of film.

The effect of external magnetic field on themagneticmoment of nu-
cleated nanoparticles can be understood in the followingway.Weknow
that themagnetic force F(z) onmetal ions at a position z is expressed by
[40];

F zð Þ ¼ χnH zð Þ ∂H zð Þ
∂z

: ð1Þ

Where n is number mole of Fe ions, χ is magnetic susceptibility, and
H(z) is applied magnetic field. When magnetic field is employed on
-Fe2O3 structure formed on the surface of thin film.



Fig. 4. The SEM images ofα-Fe2O3 thinfilms (a) un-annealed and (b) annealed at 500 °C (c) 15%Ni2+ dopedα-Fe2O3, and (d) 15% Co2+ dopedα-Fe2O3 formedwith the externalmagnetic
field applied parallel (in plane) to the liquid–vapor interface.

159P. Kumar et al. / Thin Solid Films 592 (2015) 155–161
liquid–vapor interface, it creates a change in the transport of Fe3+ ion
and changes the Gibbs free energy of the reaction.

When a magnetic field is applied in a solution phase, the Fe3+

ions preferentially migrate and start to agglomerate along the mag-
netic line of force due to magnetic attraction, and the reaction occurs
along the magnetic line of force. Thus the grain orientation of mate-
rials with magnetic anisotropy can be enhanced by applying a
Fig. 5. SEM images of Co2+ doped iron oxide thin films (a) un-annealed,
magnetic field as the material in the presence of magnetic field will
produce magnetic energy [40]. The difference in magnetization di-
rections produces different magnetic energy. The energy difference
could be described as [40]:

ΔE ¼ −
1

2μo
ΔχVB2: ð2Þ
and annealed at (b) 100 °C, (c) 300 °C and (d) 500 °C temperature.
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This orientation effect of a magnetic field is applicable to all (ferro-
magnetic/ferrimagnetic material, paramagnetic and diamagnetic)
materials.

If themagnetic anisotropy is greater than the thermal energy, nucle-
ated units will orientate with easy axes parallel to the applied field. For
ferromagnetic and paramagnetic materials (χ N 0), the largest magnetic
susceptibility direction is parallel to themagnetic field direction and op-
posite for diamagnetic (χ b 0) materials. Obviously, the orientation ef-
fect is associated with magnetic anisotropy and magnetic field
intensity which influence the free energy (ΔGM) of a chemical reaction,
as given by [40]:

ΔGM ¼ −
1
2
μo ΔχMð ÞH2: ð3Þ

Here,ΔχM is the change in the susceptibility during reaction. The ap-
pliedmagneticfield determines the direction of any chemical change by
controlling the ΔGM. The generation of magnetic field effect is also due
to the Zeeman interaction of the unpaired electron spins in Fe3+ ions
with an externalmagneticfield. The increases length (L) in the presence
of the applied magnetic field is given by the equation [48]:

L ¼ Lo þ δL 1−e−αHapp
� �

: ð4Þ

This equation shows dependence of L on the Boltzmann distribution
factor ‘e−αHapp’ i.e. the ratio of Zeeman energy over thermal energy
(αHapp). Zeeman energy of Fe3+ ions being in competition with the
thermal activation energy in the presence of magnetic field [40] results
to the nucleation of nanoparticles in the direction of easy axis that can
minimize the energy of magnetization vector ofmaterial. Therefore, ap-
plied magnetic field might induce nucleation of α-Fe2O3 grains along
the easy magnetic axis, which upon annealing results in the formation
of 1D nanostructure due to orientation arrangement. The 1D nanostruc-
ture results due to the oriented growth of materials determined by the
surface energy of the material and experimental conditions.
Fig. 6. Schematic of nanostructures formation mechanism on the surfac
The overall growthmechanism of 1D structure formation can be un-
derstood schematically by Fig. 6. Initially, when nomagnetic field is ap-
plied, the iron oxide grains have magnetic moments oriented in the
random direction, which after annealing do not show a directional
growth (Fig. 6(a)). But when an external magnetic field is applied dur-
ing the film formation, the nucleated grains might be having their mag-
netic moments aligned in the direction of magnetic field as shown in
Fig. 6(b). These films upon annealing give directional growth due to ori-
ented attachment of nanoparticles [49] as shown in Fig. 6(d).The high
temperature annealing, evaporates PVA content from the film, and the
magnetized grains arrange themselves to reduce their magneto-
crystalline anisotropy energy, and results in a directional growth of
the nanostructures.

5. Conclusions

Nano/micro structures are produced on the surface of thin film due
to the application ofmagnetic field. The appliedmagneticfield produces
an effect on themagneticmoment of nucleated iron oxide nanoparticles
inside the film. The induced magnetic moment of nanoparticles align
them along the direction of applied magnetic field, and upon annealing
an oriented attachment nanoparticles form one dimensional structure
on the film surface. Thus formed α-Fe2O3 and Ni2+ doped α-Fe2O3

films are superparamagnetic, whereas Co2+ doped film is ferromagnet-
ic. The magnetic moment of α-Fe2O3 film is successfully enhanced with
the doping of Ni2+ and Co2+ ions. A larger value of magneto-crystalline
anisotropy in Co2+doped samples as comparedwith undoped andNi2+

doped iron oxide films results in enlargement of 1D structures on the
film surface.
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1. Introduction  

Brain-computer interface (BCI) systems provide a new 

communication and control channel between people and external 

devices [1]. In these systems, users can control an external device 

using their intention or imagination without making any real 

muscle movement. Therefore, these systems are very helpful for 

people who are suffering from severe motor diseases. The 

electroencephalogram (EEG) is widely used for measuring brain 

signals in BCI systems because of its low cost, no space 

restriction, and high temporal resolution compared with other 

equipment such as functional magnetic resonance imaging (fMRI) 

and magneto encephalogram (MEG) [2,3]. However, scalp-

recorded EEG signals are very sensitive to noise. In particular, in 

the case of motor imagery based BCI, which uses induced EEG 

signals while the subject imagines limb movements [2,3], the 

instability of imagery task, non-stationarity of signals, and lack 

of concentration are among main obstacles to effectively process 

the EEG signals. In addition, it is difficult to collect a large set of 

training samples because of the subject’s fatigue. The raw EEG 

signals are associated with high dimension owing to the large 

number of EEG channels; hence, it is difficult to collect volume 

of data samples that are large enough for good training. 

Therefore, EEG signal processing is very important and many 

research efforts have been focused on this issue [5–7]. 

The signal processing steps in BCI can be categorized as 

preprocessing, feature extraction, and classification. In the 

preprocessing step, the artifact detection and rejection are 

conducted. The purpose of feature extraction is to make a 

meaningful low-dimensional data, i.e., a feature vector, from the 

original high-dimensional data. This feature vector should be 

distinguishable for different classes. Typically, the feature 

extraction is performed using a dimensionality reduction method. 

The principal component analysis (PCA), independent 

component analysis (ICA), and common spatial pattern (CSP) are  

 

 

popular methods for dimensionality reduction in the motor 

imagery based BCI systems [7,20]. 

Another important signal processing step is classification. In 

the BCI systems, the purpose of classification is to translate the 

extracted feature of a user’s intention into a computer command, 

which can then be used to control external devices. Typically, 

this translation is done using the classification algorithms, which 

are adopted from pattern recognition area. Frequently used 

classification methods in the EEG based BCI systems are linear 

classifiers such as linear discriminant analysis (LDA) and support 

vector machine (SVM) [6]. In many BCI studies, the SVM has 

been recognized as a robust classification method with 

generalization ability and has shown to provide the best 

classification results [6,14,15]. 

Recently, in the field of pattern recognition, the concept of 

sparse representation based classification, namely SRC, has been 

introduced [8]. The basic idea of SRC is to parsimoniously 

represent a test signal y  via the so-called sparsification step, i.e.,

,y Ax  where A is a dictionary whose columns are a collection 

of training signals. This sparsification step leads to the 

representation of the test signal y with the training signals from 

the same class predominantly. The L1 minimization algorithm is 

employed to perform the sparse representation of the test signal 

with a given set of training signals. 

The robust classification performance of the SRC framework 

has been shown in various applications such as face recognition 

[9,12,13,24], digit classification [8], and speech recognition [10]. 

Particularly, in [9], Yang et al. presented that SRC obtains robust 

face recognition performance for occlusion and corruption on 

facial images. In addition, SRC has been successfully applied to 

the EEG based BCI application [11] and EEG based vigilance 

detection [28]. However, in the EEG signal classification, SRC is 

rarely studied. The previous SRC study for the motor imagery 

AB ST R ACT  

In the electroencephalogram (EEG)-based brain-computer interface (BCI) systems, classification is an important signal 

processing step to control external devices using brain activity. However, scalp-recorded EEG signals have inherent non-

stationary characteristics; thus, the classification performance is deteriorated by changing the background activity of the EEG 

during the BCI experiment. Recently, the sparse representation-based classification (SRC) method has shown a robust 

classification performance in many pattern recognition fields including BCI. In this study, we aim to analyze noise robustness of 

the SRC method to evaluate the capability of the SRC for non-stationary EEG signal classification. For this purpose, we 

generate noisy test signals by adding a noise source such as random Gaussian and scalp-recorded background noise into the 

original motor imagery based EEG signals. Using the noisy test signals and real online-experimental dataset, we compare the 

classification performance of the SRC and support vector machine (SVM). Furthermore, we analyze the unique classification 

mechanism of the SRC. We observed that the SRC method provided better classification accuracy and noise robustness 

compared with the SVM method. In addition, the SRC has an inherent adaptive classification mechanism that makes it suitable 

for time-varying EEG signal classification for online BCI systems.   

Keywords: Brain-computer interface (BCI), Electroencephalogram (EEG), Sparse representation based classification (SRC), 

Common spatial pattern (CSP), Non-stationarity.   



based EEG signal classification focused on algorithm 

construction and evaluated the classification performance 

compared with a conventional classifier such as LDA in [11]. To 

the best of our knowledge, there has been no literature to 

systematically evaluate the noise robustness and classification 

characteristics of SRC for the scalp recorded EEG signals.  

It is well known that EEG signals are non-stationary. The non-

stationarity can be observed during the change in alertness and 

wakefulness, eye blinking, and in the event-related potential 

(ERP) and evoked potential (EP) such as motor imagery signals 

[32]. Because of the non-stationarity of the EEG, we can observe 

that the test feature positions vary from the original training 

feature positions in the feature space [6,16]. This is one of the 

major obstacles in EEG signal classification. Thus, a classifier 

that is optimized for a particular training data may not work for 

online BCI with a new test data.  

Recently, extensive research efforts have been devoted to 

overcome the non-stationary issue in the motor imagery based 

EEG classification. In [38–40], robust feature extraction methods 

were proposed for common spatial pattern (CSP), which is the 

most widely used technique for feature extraction in the motor 

imagery BCI. In the classification stage, supervised and un-

supervised adaptive classification schemes were studied for the 

conventional LDA and SVM methods [16,27,41]. 

In this study, our aim is to evaluate the robustness of SRC for 

non-stationary EEG signal classification. First, we compare the 

classification performance, i.e., classification accuracy and 

computation time, of the SRC with SVM, which has been known 

as the state of the art classifier in many studies. Second, we 

evaluate the noise robustness of the SRC and SVM methods. For 

this purpose, we generate noisy test signals which have different 

feature distribution with original test signals. The noisy test 

signals are generated with the addition of random Gaussian noise 

and scalp recorded background EEG signal into the original test 

signal. Then, we assess the noise robustness of both SRC and 

SVM methods. Third, in addition to the simple performance 

comparison, we examine working mechanism of SRC by 

analyzing advantages and disadvantages as the role of classifier 

compared with the conventional SVM. Moreover, we discuss 

why SRC outperforms SVM for the noisy test signal. Finally, we 

evaluate the SRC method using an online experimental dataset 

where non-stationarity occurs from training to testing sessions. 

Our work is intended to provide evaluation and analysis of SRC 

to researchers who want to apply the SRC framework to non-

stationary EEG signal classification.  

This paper is organized as follows: In section 2, the 

experiment and EEG signal processing methods such as feature 

extraction and classification are described. In addition, noise 

robustness analysis method is explained in this section. Section 3 

shows the experimental results. In section 4, discussions and 

analysis are provided. Finally, we conclude this paper in section 

5. 

2. Methods  

2.1. Experiment 

In this study, to evaluate and analyze the SCR method, we 

perform two-class EEG based motor imagery experiment. 

Twenty healthy subjects (11 male and 9 female subjects whose 

average age is 24.05±3.76) participated in this experiment. 

Therefore, we collected 20 motor imagery datasets. Each dataset 

contains EEG signals generated from the left and right hand 

motor imagery experiment. Experiment included five runs. One 

run consisted of 20 trials for each class. Thus, the total number of 

trials was 100 for each instruction (class).  

Fig. 1 shows a single trial experimental paradigm of our motor 

imagery experiment. Cue line indicates the starting point of 

motor imagery. One trial consisted of 4–6 sec of resting time 

period and 3 sec of imagery time period. In the resting period, a 

blank screen appeared on the monitor. The resting time was 

randomly selected in the range of 4 to 6 sec. In the imagery 

period, one of the motor imagery instructions was represented at 

the center of the screen, then subjects imagined their left or right 

hand movements for tasks such as grasping and releasing hand. 

In each trial, instruction was randomly selected from the left and 

right hand class. 

 
Fig. 1. Single trial time procedure of motor imagery experiment. 

In addition, we recorded resting state EEG signals for each 

subject to estimate the subject-specific background noise. In this 

recording, subjects were instructed to open their eyes for 60 sec 

without any experimental task. 

These experimental datasets were recorded by an active 

electrode cap. We used Active Two EEG measurement system 

made by Biosemi, Inc. The sampling rate for these datasets was 

512 samples per second, and the number of EEG channels was 64. 

The channel positions were selected from the international 10/20 

standard. 

2.2. Preprocessing and Feature Extraction 

Preprocessing and feature extraction steps are common to both 

SRC and SVM classification algorithms. Using the motor 

imagery dataset obtained from each subject, we perform the data 

preprocessing. Before preprocessing, raw EEG signals are 

segmented. After an instruction (left or right hand) appears on the 

screen, the time samples from 1 to 2 sec were collected for all 

trial data. We apply the band pass filter to the trial data to 

eliminate the frequencies that are not related to motor imagery 

signals. In this study, sensorimotor rhythm, 8 to 15 Hz, is used 

for band pass filtering [11]. For fair comparison of the 

classification performance, we fixed the time and frequency 

range for all subjects. Then, we reduce the dimension of EEG 

signal using the common spatial pattern (CSP) filtering, which is 

a widely used feature selection method for motor imagery based 

BCI systems [5,11,20]. CSP filters maximize the variance of the 

spatially filtered signal under one class condition while 

minimizing it for the other class condition. The CSP filtering 

algorithm finds the filters,
1 2[ , , , ]C C

C

  W w w w which 

transforms the EEG data 
C SX  (C and S denote the number 

of EEG channels and time samples) into a spatially filtered space:
T

CSP  X W X . Generally, W is computed by simultaneous 

diagonalization of the covariance matrices, 1 and 2 , of the two 

classes of data. This is equivalent to solving the generalized 

eigenvalue problem, i.e., 1 2  w w , where  is the eigenvalue. 

In practice, the first and last n columns of the W correspond to 

the n largest and n smallest eigenvalues that are used for CSP 

filtering. However, the optimal number of CSP filters, 2m n , 

which shows the maximum classification accuracy varies and has 



to be chosen empirically [20]. After CSP filtering, for each CSP 

filtered trial, we compute the frequency power of sensorimotor 

rhythm (8–15 Hz) which is the widely used band power (BP) 

feature in motor imagery based BCI classification [6,11]. Various 

feature types including BP, AR (autoregressive) [6], and 

functional connectivity [42] can be used for motor imagery 

classification. However, in this study, we focus on the evaluation 

of classification methods using a common feature type. 

2.3. Classification Methods 

2 .3 .1 .  Sparse Representation based EEG Signal Classification 

The SRC framework was introduced to the EEG based motor 

imagery BCI application in [11]. There, the SRC method showed 

a better classification accuracy over the conventional LDA 

method.  

In the SRC method, dictionary is first formed using the 

processed training feature. Let 
,1 ,2 ,[ , ,..., ]

ti i i i NA a a a be the 

class-dictionary for classes andi L R where L and R represent 

class information of left hand and right hand motor imagery 

respectively, and 
tN is the total number of training trials, i.e.,

99tN  for each class in this study. Then, the final dictionary A 

is formed by : [ ; ]L RA A A . Each column vector 
1ma where 

m  is the number of applied CSP filters. In this study, we used 64 

EEG channels; thus, m  is varied from 2 to 64. Each entry of a is 

obtained by computing the frequency power of sensorimotor 

rhythm after the CSP filtering. Let y denote a testing feature with 

the same dimension as a .  

 
Fig. 2. Dictionary design and linear sparse representation model for SRC. 

 

Fig. 2 shows the formed dictionary A and model of sparse 

representation for motor imagery based EEG signals. In this 

example, a certain test feature y of the right hand class can be 

sparsely represented with a linear combination of training feature 

of the right hand class. This is represented by the nonzero scalar 

coefficients x in the position of corresponding class. 

The SRC method can be summarized in the following two 

steps. The first step is to sparsely represent y using A via L1 

norm minimization. This step is the sparsification step: 

 
1

min subject to 
x

x y Ax  (1) 

where x is a scalar coefficient vector and 
m nA is the 

dictionary. 

Note that the linear system in Eq. (1) is under-determined. The 

literature of compressive sensing (CS) shows that the L1 

minimization algorithm can solve this optimization problem in 

polynomial time [17,18,21]. 

The second step is to classify the test signal via minimum 

residual. This step is the identification step: 

 class ( ) min ( )i
i

ry y  (2) 

where 
2

( ) :i i ir  y y A x , 
ix is the scalar coefficient vector 

corresponding to the class i. 

2.3.2. Support Vector Machine 

SVM is a well-known classification method in the area of 

pattern recognition and machine learning. In the BCI field, the 

SVM has shown a robust classification performance in many 

experimental studies [6,14,15]. SVM is recognized for its 

excellent generalization performance, i.e., small error rate for test 

data. This property is achieved through the idea of margin 

maximization. As shown in Fig. 3, the margin d is twice the 

distance between the support vector (the black and white circles 

that are on the dashed line) and the decision hyperplane. The 

hyperplane can be described by a weight vector w  and a bias b . 

The SVM finds the decision hyperplane by solving the following 

optimization problem [19]: 
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where ny is the training feature vector,  1, 1nt    is the class 

information and n  indicates the training trial number. To 

consider the training error, a slack variable   and a 

regularization parameter C are included [19]. Using  , we can 

consider the training error which is positioned inside the support 

vectors. C is a user defined regularization parameter to control 

the importance between the maximum margin and the training 

error. 

 
Fig. 3. The main idea of SVM. The SVM algorithm tries to find the 

decision hyperplane, which has the maximum margin d.  

 
In the SVM optimization problem, mapping function ( )  can 

be used to map an inseparable feature vector onto a higher-

dimensional space using a kernel function  K x, y . In BCI 

research, the Radial Basis Function (RBF) kernel (4) is widely 

used and has shown robust classification performance [6,15]: 

  
2

2
exp

2

x y
K



  
 
 
 

x, y  (4) 

Therefore, in this study, we consider a linear SVM and an RBF 

kernel based SVM for comparison of the classification 

performance with the SRC method. For both SVM algorithms, 

we use the MATLAB Bioinformatics Toolbox (SVMtrain) [23].  



In the SVM algorithm, selection of parameters is important to 

obtain the robust performance. We optimize the regularization 

parameter C in (3) for linear SVM and kernel parameter   in (4) 

with combination of C for RBF SVM. We adopt a coarse grid 

search method using cross-validation to find optimal parameters 

that provide the best classification accuracy [25]. In the 

exhaustive coarse grid search, we first find a better region on the 

loose grid, then fine grid search on that region is conducted. For 

two parameters C and  , we set the same grid sequence as 

follows: 3 2 1 0 1 2 3and [10 ,10 ,10 ,10 ,10 ,10 ,10 ]C     . Then, for 

the best region, we optimize the parameters using a fine tuning. 

2.4. Noise Robustness Analysis Method 

In this study, we aim to evaluate the noise robustness of the 

SRC and SVM classification methods when our test data is 

contaminated by an additive random Gaussian noise and scalp 

recorded background noise. The ultimate goal of this evaluation 

is to assess the classification performance of both methods for 

non-stationary EEG signal. As it is known, EEG signals have 

inherent non-stationary characteristics. Therefore, BCI features 

vary from training sessions to test sessions during a BCI 

experiment [6,16,38]. There are many reasons to change EEG 

signals in the motor imagery task such as physical and mental 

drifts, misalignment of sensors, and task–irrelevant background 

activity [33,38]. During the imagery period in the motor imagery 

experiment, when we assume subjects exclusively perform motor 

imagery task, the task-irrelevant background activity can be the 

main reason for a change in EEG signals [16,38]. In [36–37], 

authors also considered the resting state signal as task-irrelevant 

noise in the motor imagery task. In addition, in [16], it was 

showed that EEG signals were changed from training to online 

testing sessions in feature space by changing the background 

activity. Therefore, in this context, we aim to model the modified 

noisy test signals by adding background activity estimated by the 

resting state recording into the original test signal. 

For robustness analysis, we generate the modified test data by 

introducing two different noise sources such as white Gaussian 

and background noise into the original test data. Each noise 

source signal is separately applied to the EEG test data. Thus, we 

evaluate the classification performance of both classifiers for two 

types of noise corrupted test data. In result section, we show the 

position shift in the noisy test feature that is generated by the 

background noise (see Fig 10). 

Fig. 4 shows the generation concept of the polluted noisy test 

data using one noise source. In the online BCI experiment, the 

power of EEG test data varies. Therefore, to evaluate the noise 

robustness of the classifiers systematically, we generate five 

different noisy test data with various SNR levels. Thus, we 

control the noise power of each noise source in five levels.  

 
Fig. 4. Noisy test signal generation using different power of noise signal. 

 
For the Gaussian noise, we control the noise power by varying 

the standard deviation of Gaussian distribution. For the 

background noise, we use a scale factor   to control the noise 

power as follows:  

 polluted test signal test signal (resting noise)   (5) 

For each subject’s dataset, the classification performance of the 

SRC and SVM methods is evaluated using both types of noisy 

test data. 

Random Gaussian noise is artificially generated by m-

dimensional Gaussian distribution, i.e.,  2,mN    where   and 
2 are the mean and variance. We use a MATLAB built-in 

function to generate the zero mean Gaussian distribution with 

different standard deviation  . To make polluted EEG test data 

by Gaussian noise, we generate the same dimension of Gaussian 

noise to the segmented EEG signal, i.e., noise dimension is 64 by 

512. We also apply the band pass filter to the generated Gaussian 

noise with 8–15 Hz cutoff frequency, which is used in the 

preprocessing of EEG signal. 

Subject-specific background noise is measured by the EEG 

recording of the resting state. In this recording, subject is 

instructed to just open their eyes without any task for one minute. 

We apply the band pass filter to the recorded resting state signal. 

To make polluted EEG test data by background noise, we collect 

one-second time samples (512 samples) from the resting state 

signal.  In this study, both classifiers are evaluated using 100 test 

trials. Therefore, we generate 100 noise signals using the moving 

window from the total resting state signal. The size of the moving 

window is 256 samples (0.5 second).  

To evaluate and compare the classification accuracy of the 

SRC and SVM methods, we use the leave-one-out (LOO) cross-

validation, which is useful for increasing the number of 

independent classification tests with a given set of limited data 

trials [22]. Thus, one trial out of 100 training trials is selected as 

the test trial, and the remaining trials are used as the training 

trials. This test is repeated for 100 times with different 

combination of training and test trials. To obtain noisy test trials, 

we apply 100 different noise signals for each noise source into 

the 100 test trials acquired from LOO cross-validation. Therefore, 

we have 100 noisy test trials for each Gaussian and background 

noise. In this study, we calculate the classification accuracy as 

follows: 

 
the number of correct test trials

Accuracy(%) 100
the number of total test trials

   (6) 

3. Results 

3.1. Comparison of Classification Results 

First, we evaluate the classification accuracy of the SRC and 

SVM methods for the original experimental datasets that are not 

contaminated by noise sources. Fig. 5 shows the comparison 

result of the classification accuracy for the SRC, linear SVM, and 

RBF SVM. For each subject, we computed the classification 

accuracy (in %) using the LOO cross-validation. We used 18 

CSP filters for both classification methods, which are determined 

heuristically (see Fig. 6).  

In Fig. 5, we observe that SRC achieves competitive 

classification accuracy over both linear and RBF kernel-based 

SVM. The classification accuracy of SRC was found to be better 

than linear SVM for 15 subjects and RBF SVM for 14 subjects 

over 20 subjects. In addition, the mean difference of the 

classification accuracy between the SRC and both SVM methods 

was statistically significant using the paired t-test (p < 0.01). 

 



 
Fig. 5. Comparison of classification accuracy for the linear SVM, RBF 

kernel SVM, and SRC method using 20 non-noisy experimental datasets. 

 

Moreover, we investigated the impact of varying the feature 

dimension on the non-noisy classification performance in each 

method (see Fig. 6). In this study, we used the CSP filtering as a 

feature selection method. The number of CSP filters (feature 

dimension) was varied from 2 to 64. Usually, the optimal number 

of CSP filters, which showed the maximum classification 

accuracy was chosen empirically. However, the optimal number 

of CSP filters was different depending on the classification 

method and dataset. Therefore, we evaluated the classification 

performance of each classification method when the feature 

dimension was varied. Fig. 6 shows the average classification 

accuracy over all subjects when the number of feature 

dimensions m was varied from 2 to 64. We found that the 

classification accuracy of SRC method consistently outperformed 

the linear and RBF kernel based SVM methods regardless of 

their feature dimension. There was not much difference in the 

classification accuracy between the SVM methods. However, the 

RBF SVM showed a better classification accuracy when the 

number of CSP filters was over 18. 

 
Fig. 6. Average classification accuracy over 20 non-noisy datasets when the 

number of CSP filters (feature dimension) is varied from 2 to 64. 

 

We used the fixed 18 CSP filters for all classification methods 

that are shown in Fig. 5. However, the results in Fig. 6 shows that 

this number was not optimal for certain classification methods. 

When we used more CSP filters, the difference in the 

classification accuracy between the SRC and SVM methods was 

increased. 

3.2. Classification Results for Noise Robustness  

In this section, we evaluate noise robustness of the RBF kernel 

based SVM and SRC methods. For the noise robustness analysis, 

we used polluted test signals that were generated by adding two 

noise sources, i.e., white Gaussian noise and background noise, 

into the original test signal as mentioned in section 2.4. 

 
Fig. 7. Comparison of the average classification accuracy over 20 subjects. 

Average classification accuracy for Gaussian noise is represented as a 

function of SNR. Vertical line indicates the standard deviation of the 
accuracy for each SNR.  

 

Fig. 7 shows the noise robustness results of the SRC and RBF 

kernel based SVM methods for the Gaussian noise. The average 

classification accuracy over all subjects was assessed when the 

noise power was varied. For the Gaussian noise, we controlled 

the noise power by changing the standard deviation, and the SNR 

was computed for different noise powers. In this study, SNR 

computation was defined as follows: 

 
10SNR(dB) = 10log S

N

P

P

 
 
 

 (7) 

where SP and NP indicate the signal and noise power, respectively. 

For the SNR computation, we investigated the average SNR over 

all the channels and subjects. As shown in Fig. 7, we found that 

the classification accuracy of SRC was higher than that of the 

RBF SVM for all SNR cases. The difference in the classification 

accuracy between the SRC and RBF SVM was increased with the 

SNR increase. 

 
Fig. 8. Comparison of the average classification accuracy over 20 subjects. 

Average classification accuracy for background noise is represented as a 
function of SNR. 

 

Similarly, Fig. 8 shows the noise robustness results of the 

SRC and RBF kernel based SVM methods for the background 



noise, which was measured by the recorded resting state. For the 

background noise, the noise power was controlled by scale factor 

 (see Eq. (5)). It was found that the classification accuracy of 

SRC was higher than that of the RBF SVM for all SNR cases. In 

addition, when the noise power increased, the accuracy 

difference between the SRC and SVM increased. For example, in 

the noiseless case, the average accuracy difference between the 

SVM and SRC was 1.9%. However, in the case of 0.5 and -4dB 

SNR, the difference was 5.8% and 8.5%. This means that the 

SRC method was more robust than the SVM for the polluted test 

signal in the background noise case. 

 
Fig. 9. Classification accuracy of RBF based SVM and SRC method for 

polluted test data by background noise (-4dB).     

 

In two-class classification problems, the theoretical chance 

level is 50%. However, in many EEG based BCI studies 

[26,34,35], at least 70% classification accuracy is considered as a 

threshold for an acceptable communication and device control. In 

Fig. 9, we examine the classification performance for the 

polluted test data. Fig. 9 shows the classification accuracy of all 

subjects for the -4dB SNR for background noise cases shown in 

Fig. 8. The threshold of 70% classification accuracy is 

represented by black dotted line. For this threshold, the SVM has 

seven datasets that are over the threshold and the SRC has 

seventeen datasets. This means that for the noisy test data, 10 

more subjects can use a reliable BCI system with the SRC 

compared to the SVM method. 

 
Fig. 10. Scatter plot of training data and noisy test data in two-dimensional 

feature space (2 CSP filters) for one subject dataset. Noisy test data are 
generated using background noise with 4 dB SNR. 

 

Fig. 10 shows an example of training and polluted test features 

for one subject dataset. In this example, the background noise 

with 4 dB SNR (shown in Fig. 8) was used for the polluted test 

data. The positions of noisy test features (red and blue squares in 

Fig. 10) in two-dimensional feature space were relocated from 

the positions of the original training features (red x-marks and 

blue circles) to places with a particular direction. This represents 

a typical situation that occurs in real-time BCI scenario where the 

online test data has different background noise compared to the 

training data [16]. In this study, the positions of the noisy test 

features were varied according to the SNR of the test data.   

4. Discussions  

4.1. Comparison of Classification Mechanism 

In this section, we examine the algorithmic difference between 

the SRC and SVM methods as the role of signal classification. 

Fig. 11 shows the classification algorithms for both methods. 

Feature vectors for the training data were used as an input for 

both classification algorithms. 

 
Fig. 11. Comparison of the SVM and SRC classification algorithm. 

 
In the SVM algorithm, the input feature data and model 

parameters were used and the training was performed to find the 

parameters w and b for decision boundary as shown in Eq. (3). 

Based on the boundary, the test feature was classified. Thus, the 

y class information was determined by the decision boundary. 

In the SRC algorithm, the dictionary was simply formed by 

collecting the input training feature vectors as the columns of the 

dictionary. Then, using the dictionary, sparse representation was 

performed for each test data. Thus, scalar coefficient vector x 

was obtained by solving L1 minimization as shown in Eq. (1). 

Using x, class information was determined by computing the 

residual ( )r y in Eq. (2). 

Our aim was to highlight the important difference of the 

classification mechanism of the SRC and SVM methods as 

follows:  

 In SVM, a fixed decision rule (decision boundary) was 

obtained for the entire set of training signals. Then, for each 

test signal, this fixed decision rule was used for signal 

classification. 

 In SRC, the sparse representation was adaptively performed 

for each test signal by utilizing all training signals in the 

dictionary. 

4.2. Robustness Analysis of SRC 

The experimental results presented in section 3 shows that  



Fig. 12. Comparison of the classification procedure and characteristic of the SVM and SRC for the noisy test data. In the SVM part, black solid line and black 

dotted line indicate the decision boundaries for linear and RBF based SVM.  

 

SRC had a better classification accuracy than the conventional 

SVM for motor imagery based EEG signal. In addition, SRC was 

more robust for polluted test data than SVM. In this section, we 

discuss the relationship between the classification performance 

and the difference in the classification mechanism for SRC and 

SVM methods. 

Fig. 12 shows the concept of the classification strategy for the 

SVM and SRC using a toy example of polluted test data in two- 

dimensional feature space. In the SVM classification, decision 

hyperplane and non-linear decision boundary were presented for 

linear and RBF based SVM. For many conventional classifiers 

including SVM, the classifier was trained using training data; 

thus, the best decision rule was determined. Then, this 

classification rule was applied to each test data. However, as we 

have shown in Fig. 12, when the test data was polluted and 

shifted in feature space, the decision rule could not guarantee a 

satisfactory classification performance. On the other hand, in the 

SRC method, no classification rule was designed in the training 

part of SRC. Instead, a dictionary was formed by collecting 

feature vectors of the training data. Then, the sparse 

representation was performed for each test data using the 

dictionary. In addition, for the noisy test data, an independent 

classification task was performed in each classification by using 

all the training data instead of a fixed decision rule. 

For a detailed analysis, we considered three possible cases of 

polluted test data that are presented by numbers ①, ②, and ③ in 

Fig. 12: 

In the first case, test data was shifted away from the decision 

boundary and positioned at the same class feature space. In this 

case, both SVM and SRC correctly classified the noisy test data. 

In the second case, the test data was positioned at a different 

class feature space of training data. Then, based on the decision 

boundary, the SVM classified the test data incorrectly. In the 

SRC method, the test data was more likely to be represented with 

different class training data. Thus, both classifiers were not 

working correctly. 

Note that in the third case, similar to the second case, the test 

data was placed at a different class feature space. At the same 

time, the test data could be possibly positioned near the decision 

boundary. In this case, based on the decision rule obtained from 

the training data, the SVM resulted in wrong classification. 

When we used non-linear decision boundary, e.g., RBF SVM, as 

shown in black dotted line, this line was optimal for the training 

data. Thus, the classification error could be less than the linear 

decision hyperplane. However, for the polluted test data, the non-

linear decision boundary was fixed. On the other hand, in the 

third case, SRC still had a chance for correct sparse 

representation with the same class training data as shown in Fig. 

12. This was possible because the SRC method did not depend on 

a fixed decision rule that was obtained from the training data. 

Instead, for each classification of test data, the SRC method 

directly used all training data and performed sparse 

representation. 

 
Fig. 13. Scatter plot of training data and noisy test data in two-dimensional 

feature space (2 CSP filters) for one subject data. Noisy test data are 

generated using background noise with 4 dB SNR.  

 

To evaluate the validity of our analysis, we examined the 

same data shown in Fig. 10 in details. Fig. 13 shows an enlarged 

version of the scatter plot using the training and noisy test data. 

The black line indicates the obtained decision boundary from the 

RBF kernel based SVM. The region between the two green 



dotted lines is chosen as the near area of the decision boundary. 

In this area, many miss-classification cases may occur for both 

classifiers. In addition, most of the polluted test data, which 

correspond to case ③ in Fig. 12 are located in this region.  

For all noisy test data (i.e., 100 trials), the RBF SVM and SRC 

showed the classification accuracy of 56% and 62%, respectively. 

Because we used only two CSP filters for visualization, the 

classification accuracy was very low compared with the results 

given in Fig 8.  

For the noisy test data, which are located between the green 

dotted lines, the RBF SVM showed 57% classification accuracy. 

However, the SRC showed an improved classification accuracy 

of 83%. In addition, when we only considered the noisy test data 

for case ③ examples, the RBF SVM had 18 miss-classification 

data. However, the SRC correctly classified 12 test data among 

18 test data. Therefore, we confirmed that the noisy test data of 

case ③ were miss-classified from the fixed rule based SVM. On 

the other hand, for the same data, the SRC correctly classified 

many times with the effort of independent classification task for 

each test data using all training data. 

 
Fig. 14. Scatter plot of training data and noisy test data. The figure inside 

the green box indicates the sparse representation result of the noisy test data.  

 

Fig. 14 shows one instance of the noisy test data that was not 

correctly classified by the SVM; however, was correctly 

classified by the SRC method. The test signal of class 1 is 

represented by a red square, which is located in the region 

between the green dotted lines shown in Fig. 13. The figure 

inside the green box shows the recovered coefficient x from the 

SRC method. Using the trial numbers (x-axis of the figure inside 

the green box) with large coefficient values, we represented the 

corresponding trials by the black x-marks and circles in Fig. 14. 

Four largest coefficient values were selected for class 1. Two 

largest coefficient values were selected for class 2. As it can be 

seen, the noisy test trial of class 1 (red square) is located near the 

training trials of class 2. However, in the SRC method, using the 

coefficient x, the test trial could be correctly classified from the 

minimum residual rule in Eq. (2). In addition, in each test trial, a 

different coefficient x which represented the test data most 

compactly, was recovered by L1 minimization. Therefore, for the 

case of time varying EEG signal classification, the SRC approach 

was much more appropriate to employ than the SVM method, 

which was based on the fixed decision rule. 

An adaptive classification scheme for a conventional classifier 

such as LDA and SVM was studied to overcome the non-

stationary problem of EEG signals [16,27,41]. In the adaptive 

techniques, typically decision boundary was updated (relearned) 

using collected labeled test data for a given duration. However, 

after designing new decision boundary, new test signal was 

dependent to the decision boundary. Thus, the adaptive scheme 

for the conventional classifier was still a decision rule based 

classification. Therefore, it could not be adaptively applied to 

each test signal. We think that some adaptation techniques for 

SRC [30–31], i.e., dictionary learning using collected signals, can 

be more efficient for real-time online BCI systems. Therefore, the 

comparison of the adaptive classification schemes between the 

SRC and conventional classifier is an interesting area for our 

future research. 

4.3.  Computation Time Analysis 

In this section, we evaluate the computation time (running 

time) of the classification algorithms for the experimental 

datasets.  

As it can be seen in Fig. 12, the most time consuming process 

of the SVM occurred while training the SVM. On the other hand, 

the most computation cost in the SRC algorithm occurred in L1 

minimization step for sparse representation. Therefore, our 

evaluation for running time focused on the SVM training and L1 

minimization step for the SRC algorithm. We used the tic and toc 

MATLAB commands to measure the start and end time of the 

SVM and SRC algorithms, respectively. We simulated all 

algorithms in the same environment using MATLAB 7.14 

(R2012a) with 3.30 GHz processor and 8 GB memory.  

For a single test trial, the average computation time for the 

SVM and SRC was 12.1 msec and 16.7 msec respectively. This 

computation time was averaged for 100 test trials of all subjects. 

However, in the case of online BCI classification, typically the 

SVM decision boundary was designed once using the training 

data. Then, all the test data was classified based on the decision 

boundary. On the other hand, independent classification task was 

performed for each test data in the SRC. Therefore, the 

computation time of the SRC method increased by the number of 

test trials. Thus, a robust classification performance of SRC 

included the cost of the computation time at each test trial. 

 
Fig. 15. Computation time of the SRC as a function for the number of 

training trials. 

 



In this study, the size of the dictionary, i.e., the number of 

training trials, was 200.  In this case, the computation time of the 

SRC was very small and negligible (16.7 msec). In addition, in 

Fig. 15, we display the average computation time as a function of 

the number of training trials. When the size of dictionary was 

increased, the difference of the computation time was just a few 

milliseconds. Therefore, this was not an important factor for an 

online classification in BCI systems. In addition, recently 

developed fast L1 minimization algorithms were used for the 

SRC method. In [24], authors showed that a few of the fast L1 

minimization algorithms provided faster computation time than 

the conventional SRC method for large datasets of real face 

images.  

Note that even though the computation time of the SVM was 

smaller than the SRC, the SVM required more effort to select a 

proper kernel and tune the model parameters for accurate 

classification results [6,25].  

4.4. Online Data Analysis 

In this study, we modeled noisy test data by adding two noise 

sources into the original trial data and controlled the noise power 

to evaluate the noise robustness of the SRC systematically. In 

this section, we aim to evaluate the SRC using online motor 

imagery experimental dataset. In this experiment, the training 

session and online test session were independently performed. 

Thus, in this evaluation, we used a non-stationary dataset from an 

online motor imagery experiment. 

 
Fig. 16. Single trial procedure for online motor imagery experiment. 

Five subjects participated in our online experiment. Right 

hand (R) and foot (F) motor imagery were performed for each 

subject. The sampling rate of these datasets was 512 samples per 

second, and the number of EEG channels was 64. The detailed 

experimental paradigm is illustrated in Fig. 16. The same 

paradigm was used for both training (calibration) and online 

testing (feedback) sessions. In each trial, the target bar was 

presented on 0 sec at the right or left side of the screen 

corresponding to the right or foot motor imagery. Two seconds 

after cue onset, the subject was instructed to perform the motor 

imagery task. During the training session, no feedback was 

provided. However, in the online testing session, the online 

feedback was provided in each trial. We collected 60 training 

trials and 75 online test trials for each class. After data 

segmentation from 2 to 4 sec, we performed the same 

preprocessing step that was used in section 2.2.  

As shown in Fig. 17, using five online datasets, we evaluated 

the classification accuracy of the SRC and SVM_RBF. Even 

though size of the online dataset was small compared with the 

twenty offline datasets used in Fig. 5, we obtained consistent 

results. Thus, the SRC showed better mean classification 

accuracy than the SVM for the online datasets. Except one 

subject’s dataset, which showed the same accuracy, the 

classification accuracy of the SRC was better than the 

SVM_RBF method for four subjects. 

 
Fig. 17. Comparison of the classification accuracy of the SRC and 

SVM_RBF for online experimental dataset. 

 

5. Conclusions  

In this paper, we evaluated and analyzed the robustness of the 

SRC method against the non-stationarity of EEG signal 

classification. For this purpose, we generated noise corrupted 

EEG test signals using two noise sources such as random 

Gaussian noise and scalp recorded background noise. Then, we 

assessed the classification performance of the SRC when the 

noise power was varied. Using the experimental motor imagery 

based EEG and generated noisy test signals, we compared the 

classification results of the SRC with that of the SVM method, 

which has been considered as a robust classifier in many BCI 

studies. From the results, it was evident that the SRC showed 

superior noise robustness than the SVM for both Gaussian and 

background noise. Furthermore, the results of the online-

experimental dataset showed that the classification accuracy of 

the SRC was better than the SVM. We analyzed that the robust 

classification accuracy of the SRC was due to a different 

classification approach compared with the conventional decision 

rule based SVM. Thus, the SRC showed an inherent adaptive 

classification mechanism for each test trial via optimal sparse 

representation of the training trials. In addition, we showed that 

the computation time of the SRC for a robust classification was 

on the order of milliseconds, which was acceptable for real time 

BCI systems.  
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Abstract: The input numerical aperture (NA) of multimode fiber (MMF) 
can be effectively increased by placing turbid media at the input end of the 
MMF. This provides the potential for high-resolution imaging through the 
MMF. While the input NA is increased, the number of propagation modes 
in the MMF and hence the output NA remains the same. This makes the 
image reconstruction process underdetermined and may limit the quality of 
the image reconstruction. In this paper, we aim to improve the signal to 
noise ratio (SNR) of the image reconstruction in imaging through MMF. 
We notice that turbid media placed in the input of the MMF transforms the 
incoming waves into a better format for information transmission and 
information extraction. We call this transformation as holistic random (HR) 
encoding of turbid media. By exploiting the HR encoding, we make a 
considerable improvement on the SNR of the image reconstruction. For 
efficient utilization of the HR encoding, we employ sparse representation 
(SR), a relatively new signal reconstruction framework when it is provided 
with a HR encoded signal. This study shows for the first time to our 
knowledge the benefit of utilizing the HR encoding of turbid media for 
recovery in the optically underdetermined systems where the output NA of 
it is smaller than the input NA for imaging through MMF. 

©2015 Optical Society of America 

OCIS codes: (110.0113) Imaging through turbid media; (100.3190) Inverse problems; 
(060.2350) Fiber optics imaging. 
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1. Introduction 

Multimode fibers (MMF) support multimode propagation of light such that the light travels 
not only along the cylindrical axis of the core, single mode if it does, but also along multiple 
different paths with non-zero wave vector components in traverse directions. 

The use of MMF for imaging has drawn great interests recently [1–7]. Current endoscopic 
imaging systems in clinics are based on bundles of fibers where each fiber transfers the signal 
corresponding to a single pixel of the final image. The multiple propagation characteristic of 
MMF allows a complex image to be transferred through not a bundle of fibers but only with a 
single fiber. This enables the miniaturization of imaging systems. Thus, MMF is expected to 
become a significantly important part for minimally invasive endoscopic imaging where a 
fiber with needle-like dimensions can transfer complex images. However, there is an intrinsic 
limitation in imaging through MMF on the spatial image resolution which is imposed by the 
low numerical aperture (NA) of available MMF [4–7]; the typical NA of MMFs with large 
number of propagation modes range from 0.2 to 0.5 [5] whereas the NA of optical lenses 
reaches up to 0.95 in air and higher than 1.6 with special oil immersions. 

It has been demonstrated that the problem of the low resolution given by the low NA of 
MMFs can be relaxed by the use of turbid media in conjunction with MMFs [6,7]. Wave 
propagation through turbid media, such as white paint, ground glass, and biological tissue, 
produces complex speckle patterns in the image plane due to multiple scattering of waves in 
the media. Multiple scattering of waves, referring to the phenomenon where the light waves 
are forced to deviate from a straight trajectory due to refractive index inhomogeneity through 
which they pass. It is obvious that this multiple scattering process hinders accurate 
transferring of images through turbid media. Recently, interesting results were reported that 
the multiple scattering process in turbid media can be used for overcoming the resolution limit 
determined by the NA of the optical systems [8,9]. The NA of an optical system sets the 
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maximum incident angle maxθ  of the incoming waves that can be accepted by the system. In 
wide-field imaging, the multiple scattering through turbid media changes the directions of 
input waves and some of the waves with large incident angles beyond the acceptance angle of 
a usual lens can be redirected to the detector [8]. Thus, the effective input NA of the lens 
becomes increased. In point scanning imaging, multiple scattering is combined with wave-
front shaping and makes it possible to focus the light beam to a point smaller than the 
diffraction limit given by the NA [9]. These resolution improvements by turbid media can be 
made with the same principle in imaging through MMF when it is used with turbid media. It 
was found that waves with larger incident angles than the acceptance angle of the MMF can 
be transferred in the wide-field imaging [7], and a smaller focusing point can be made in point 
scanning imaging [6]. 

Here, we show that the redirection of waves is not the only useful characteristic of turbid 
media. Multiple scattering in turbid media scrambles the waves in a seemingly randomized, a 
deterministic but complex, manner and this brings forth other positive effects as well. 
Random scrambling of different modes of waves converts the object wave into a speckle 
pattern. The object cannot be directly observed looking at the speckle pattern with bare eyes, 
and thus some form of an inverse operation is necessary such as descrambling for imaging or 
wave-front shaping for focusing [8–12]. Thus, random scrambling gives an impression that it 
is only a hindrance; on the contrary, this traditional perspective can be challenged and 
improved. 

Waves scattered from an object are made of the superposition of multiple different modes. 
Those modes travel through the turbid medium and become scrambled. We note that each 
mode of the scrambled waves in fact contains holistic information of the object. A signal 
mode is holistic in the sense that the mode contains the information of the whole modes of the 
incoming waves. Each mode of incoming waves propagates though the turbid medium is 
scattered and redirected into many different modes at the output of the turbid media. One 
mode is scattered into almost all the modes of the output waves. This is to mean that a single 
output mode is made out of the superposition of many if not all incoming waves. In addition, 
each mode of the incoming waves went through a propagation path completely different from 
other modes. Thus, each output mode offers an independent view of the same object. In this 
sense, the random scrambling can be viewed as a beneficial encoding process, which provides 
multiple independent outlooks of the whole waves from an object. We will refer to this signal 
transforming process in turbid media as holistic random (HR) encoding. 

In this paper, we aim to make an efficient use of the HR encoding of the multiple 
scattering in turbid media and improve the image quality in wide-field imaging through 
MMF. We consider an imaging system through MMF where a turbid medium is placed at the 
input end of the MMF. In this case, the imaging system becomes underdetermined because 
the output NA of the MMF is smaller than the input NA of it. The information of object 
waves is transferred to a less number of wave modes than that of the input wave modes. 
Considering that the degree of freedom of a signal is reduced, it is not easy to transmit 
information of the object waves without loss. To compound the matter, the recovery of the 
object waves is not easy as well since the dimension (the number of elements) of the observed 
signal is smaller than that of the original signal to be estimated. Here, we show that the HR 
encoding of the turbid media enables much improved information transmission and signal 
reconstruction. We employ sparse representation (SR) framework [13–21] and show that the 
object information can be extracted at an improved fidelity when the signal is HR encoded. In 
many literatures, SR has been shown to provide superb estimation of the original signal from 
a smaller number of measurements than the dimension of the original signal [13–21]. 
Previously, SR was shown to be beneficial in imaging through turbid media [11,12]. In [11], 
SR was shown to suppress speckles in reconstructed images. It was shown in [12] that SR 
recovers the image well in the situation where the number of pixels in the CCD array is 
smaller than that the pixels of the original image. This paper provides the first result that SR 
can be used to improve the image reconstruction quality in imaging through MMF when the 
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imaging system is underdetermined due to the use of turbid media at the input end of the 
MMF. 

This paper is organized as follows: Section 2 describes the system for imaging through 
MMF, and Section 3 investigates the HR encoding by the multiple scattering in turbid media 
and links it to the SR framework for image reconstruction. Experimental results are discussed 
in Section 4, and Section 5 concludes the paper. 

2. System description 

2.1 Experimental set-up 

We consider an imaging system where the object wave propagates through a single MMF 
with 1 m of length (NA of 0.22; Thorlabs, M14L01) and recorded at the CCD array. The input 
facet of the MMF is randomly coated by ZnO nanoparticles. 

The experimental schematic of the imaging is depicted in Fig. 1. Figure 1(a) describes the 
calibration stage where the transmission matrix (TM) of the coated MMF is measured. TM is 
a collection of responses of the coated MMF to a set of incoming plane waves ( 633 nmλ =  ) 
with N different incident angles to the input facet of the coated MMF. We used 4000N =  
different angles for our TM. For preparation of the plane waves, no object is presented in the 
object plane. The incident angle of the plane wave is controlled by a galvanometer. 

The transferring of an object wave is described in [Fig. 1(b)]. Once the TM is measured 
and becomes available, the response of the coated MMF to the object wave is measured at the 
CCD. The object wave is distorted in the coated MMF due to the multiple scattering in the 
turbid medium of ZnO nanoparticles and the interference among waves with different 
propagation modes inside the MMF. For the object, we use a sample similar to USAF target. 

Now with the TM and the distorted object image, the object wave is recovered by 
computation. Here, all the measurements are post processed by the off-axis holography [8] to 
obtain the E-field images; the baseline method considered in this paper follows the turbid lens 
imaging (TLI) system in [8]. We use MMF with the NA of 0.22 in the experiment. We fix the 
NA of the sub-systems followed by the MMF slightly larger, 0.24, than 0.22. By doing this, 
we can capture the most of the signal from the MMF even though there are some 
experimental mismatches, for example, the error in the alignment on the optical axis. 

2.2 Image recovery using transmission matrices 

The object wave ( , )oU x y  is decomposed into a set of plane waves with different propagation 
directions as follows 

 ( , ) ( ) ( , ; )o oU x y A P x y=
k

k k  (1) 

where : x x y y z zk k k= + +k i i i  is the wave vector ( / 2 sin /x xk π θ λ= , / 2 sin /y yk π θ λ= , 

/ 2 sin /z zk π θ λ= , and ( , , )x y zθ θ θ  is the angle of propagation), xi , yi , and zi  are unit 

vectors in x, y, and z directions (the optical axis is in the z direction), respectively, ( , ; )P x y k  

is the plane wave with the propagation direction k, and ( )oA k  is the angular spectrum of the 

object wave. The distorted object wave ( , )rU x y  after propagation through the coated MMF 
is expressed as 

 ( , ) ( ) ( , ; )r oU x y A F x y=
k

k k  (2) 
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Fig. 1. Experimental schematics of imaging through turbid media coated MMF. (a) Recording 
of the TM. OP: object plane, MMF: multimode fiber, BS: beam splitter, SB: sample beam, RB: 
reference beam. The photo in the red box shows the image of the input surface of the turbid 
media coated MMF. (b) Recording of the distorted object wave. (c) The recorded TM. Only the 
intensities are shown in the image but the phases are estimated as well; thus the columns are 
complex valued vectors. (d) The recorded distorted object wave. Again, only the intensity is 
shown here. Scale bar: 10 μm. 

where ( , ; )F x y k  is the response wave of the coated MMF for a single plane wave ( , ; )P x y k . 
Now using the vector notations, the distorted object wave can be expressed as follows 

 =r Fa  (3) 

where M∈r   and N∈a   are the vectorized versions of ( , )rU x y  and ( )oA k , and 
M N×∈F   is the TM each column of which is the vectorized version of the ( , ; )F x y k ; there 

are N different propagation directions (modes) k  considered. 
From the distorted object wave, the angular spectrum of the object wave is estimated in 

[7] by using the pseudo inversion (PINV) method, 
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 1
pinvˆ −=a F r  (4) 

where 1−F  is the PINV matrix of F. Using the estimated angular spectrum, the object wave in 
the object plane can be reconstructed. 

3. Imaging through MMF in conjunction with turbid media 

Recall that the input facet of the MMF is coated by a turbid medium. Due to the multiple 
scattering process through the turbid medium, some of those waves whose incident angles to 
the medium are larger than the acceptance angle determined by the NA of the MMF, 

maxzθ θ> , are redirected, z zθ θ ′→ , and are coupled to the MMF, maxzθ θ′ ≤ . This introduces 
more modes of the object (the green arrows in [Fig. 2(b)]) to the detector. The NA of a MMF 
is proportional to the square root of the number of modes captured by the MMF. As a result, it 
was shown in experiments [7] that the effective NA of the input side of the MMF increases. 

 

Fig. 2. Acceptance angle, exit angle, and their corresponding modes of waves for (a) intact 
MMF and (b) coated MMF. In (b), more modes of input waves (green arrows) can be captured 
in coated MMF. But, the number of modes of output waves is the same as that of intact MMF. 

However, we notice that the increase in the effective NA causes the image capturing 
system to be underdetermined where the input NA is larger than the output NA (Fig. 2). 
Larger number of modes of the object waves than the available propagation modes in the 
MMF is captured. This gives a challenge in the recovery of the object. In general, the output 
signal of an underdetermined system does not convey all the information of the input signal. 
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Besides, even in the cases where there are no information losses, it is also well known from 
the linear algebra [22] that the correct estimation of a signal in the underdetermined systems is 
not easy for it has more than one solution. Note that the use of another turbid medium in the 
output facet does not change the situation because the number of propagation modes inside 
the MMF is still the same. 

3.1 HR encoding 

Multiple scattering in turbid media provides HR encoding to the incoming wave. HR 
encoding provides the two kinds of encoding, holistic encoding and random encoding. We 
define “holistic encoding” to be a signal transforming process which makes each component 
of the transformed signal to contain all the components of the original signal with a certain 
format, especially in this paper, a weighted summation of them. We also define “random 
encoding” to be a multiplexing process where the contributions of a component of the original 
signal to components of the output signal are modeled by independent random variables. 

Now, we show that the waves ( , )oU x y  scattered from an object is HR encoded in the 

turbid medium. 1) Holistic encoding: Each input mode ( , ; )P x y k of the incoming waves 

( , )oU x y  experiences multiple scattering in the turbid medium. The object wave ( , )tU x y  
after propagation through the turbid medium (refer to [Fig. 2(b)]) is expressed as 

 ( , ) ( ) ( , ; )t oU x y A T x y
∈

= 
k

k k


 (5) 

where   is the set of modes k  which propagate through the coated MMF and reach to the 
detector and ( , ; )T x y k  is the response wave of the turbid medium to ( , ; )P x y k . The response 

wave ( , ; )T x y k  at the output of the turbid medium for a single plane wave ( , ; )P x y k  has 
many modes of waves. This is because the multiple scattering process in the turbid medium 
changes the directions of the waves in a randomized manner. ( , ; )T x y k  is expressed as 

 ( , ; ) ( ; ) ( , ; )T x y t P x y
′ ′∈

′ ′= 
k

k k k k


 (6) 

where ′k  is the wave vector after propagation through the turbid medium, ′  is the set of 
modes ′k  which propagate through the MMF and reach to the detector, ( ; )t ′ ∈k k   is the 

contribution of a mode k  of input waves to a mode ′k  of output waves, and ( , ; )P x y ′k  is the 

plane wave with the propagation direction ′k . 
Here, ( ; )t ′k k  is well approximated by independent and identically distributed (i.i.d.) 

complex valued Gaussian random variable. It was found in [23,24] that the output waves of a 
turbid medium at a spatial plane ( , )x y′ ′  when a mode of waves is transmitted through the 

medium, ( , ; )t x y′ ′ k , are i.i.d. complex valued Gaussian random variables provided that the 

number of independent scatters is large; ( , ; )t x y′ ′ k  and ( ; )t ′k k  are a two-dimensional 
Fourier transform pair. This has been also supported in the experiments [12,25]. The 
distribution of the eigenvalues of the TM composed of ( , ; )t x y′ ′ k  was close to that of i.i.d. 

Gaussians [25]. The coherence ( 0μ  in Sec 3.2) of the TM of ( , ; )t x y′ ′ k  behaved similarly to 
that of i.i.d. Gaussians [12]. We know that the Fourier transform of a Gaussian random matrix 
is another Gaussian random matrix. Thus, the contribution ( ; )t ′k k  follows i.i.d. complex 
valued Gaussian, too. 

Using [Eq. (6)], the object wave ( , )tU x y  in [Eq. (5)] can be expressed as 

 ( , ) ( ) ( , ; )t tU x y A P x y
′ ′∈

′ ′= 
k

k k


 (7) 
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where the angular spectrum ( )tA ′k  of ( , ; )P x y ′k  is 

 ( ) ( ; ) ( ).t oA t A
∈

′ ′= 
k

k k k k


 (8) 

Here, the probability that ( ; ) 0t ′ =k k  is very small; the probability approaches zero for the 
event that a realization of complex Gaussian random variable equals to 0. Thus, the angular 
spectrum ( )tA ′k  of a mode ′k  of the output waves is now the combination of the angular 

spectrum ( )oA k  of all the modes k . Therefore, a mode of the output waves contains holistic 
information of the input waves. 

2) Random encoding: As it was discussed in the previous paragraph, ( ; )t ′k k  for ∈k   

are approximated by independent random variables. Thus, the angular spectrum ( )tA ′k  of 

each mode ′k  of the output waves shows an independent view of the same object ( , )oU x y . 
This HR encoding has a couple of desirable aspects to send information of object waves in 

underdetermined systems. i) The information of all the input modes is transferred no matter 
how few modes are in the output waves, if it is more than one. It is because each output mode 
captures information about all the input modes of the object wave. ii) It sends information of 
the object waves in an efficient manner. The information of a mode is not redundant to that of 
other modes as each output mode captures unique information about the object wave. Due to 
these two aspects, the HR encoded signal is expected to be appropriate for information 
transmission in underdetermined systems. In the literature, it is shown that HR encoded 
signals can transmit enough information for a certain kind of signals in underdetermined 
systems [16–18]. 

Now, let us see the effect of HR encoding on the object wave after propagation through 
the MMF. The HR encoded waves ( , )tU x y  at the output of the turbid medium are 

propagated through the MMF. The object wave ( , )rU x y  after propagation through the MMF 
([Fig. 2(b)]) is expressed as 

 intact( , ) ( ) ( , ; )r tU x y A F x y
′ ′∈

′ ′= 
k

k k


 (9) 

where intact ( , ; )F x y ′k  is the response wave of the intact MMF to ( , ; )P x y ′k . intact ( , ; )F x y ′k  
usually has more than one propagation modes of waves in MMF. This is because that it is 
almost infeasible to match a mode of incoming waves to only a single propagation mode in 
MMF. intact ( , ; )F x y ′k  is expressed as 

 intact intact( , ; ) ( ; ) ( , ; )F x y f P x y
′′ ′′∈

′ ′′ ′ ′′= 
k

k k k k


 (10) 

where ′′k  is the wave vector after propagation through the MMF, ′′  is the set of modes ′′k  
which are captured at the detector, intact ( ; )f ′′ ′k k  is the contribution of a mode ′k  of input 

waves to a mode ′′k  of output waves, and ( , ; )P x y ′′k  is the plane wave with the propagation 

direction ′′k . Using [Eq. (8)], [Eq. (9)], and [Eq. (10)], the object wave ( , )rU x y  can be 
rewritten as 

 ( , ) ( ) ( , ; )r rU x y A P x y
′′ ′′∈

′′ ′′= 
k

k k


 (11) 

where the angular spectrum ( )rA ′′k  is 

 ( ) ( ; ) ( ),r oA C A
∈

′′ ′′= 
k

k k k k


 (12) 
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and the weight ( ; )C ′′k k  is 

 intact( ; ) ( ; ) ( ; ).C t f
′ ′∈

′′ ′ ′′ ′= 
k

k k k k k k


 (13) 

Please recall that a larger number of modes k  of the incoming waves than that of propagation 
modes ′′k  in the intact MMF (equivalently ′k ) are captured with the help of the turbid 
medium in the coated MMF, ′′>  . We see that the angular spectrum ( )oA k  for ∈k   

of the object waves ( , )oU x y  are transferred through waves ( , ; )P x y ′′k  with a smaller 

number of propagations modes ′′ ′′∈k   in [Eq. (12)]. Thus, the reconstruction of the 
( )oA k (or equivalently ( , )oU x y ) from the ( )rA ′′k  (or ( , )rU x y ) is an underdetermined 

problem. 
We see that the signal is still holistically encoded in the output waves ( , )rU x y  in [Eq. 

(12)]. Every component of the angular spectrum ( )oA k  of the input waves is contained in 

each single components of the angular spectrum ( )rA ′′k  of the output waves. The random 

encoding property of ( , )tU x y  is not inherited to ( , )rU x y  since ( ; )C ′′k k  is not independent 

for different ′′k . But, we will see that the correlation between ( ; )C ′′k k  with different ′′k  is 
small in [Fig. 4(c)]. This is desirable for image recovery (Sec 3.2). A further explanation on 

( ; )C ′′k k  is given in Sec 3.3. Please note that we use ( , ; )P x y ′′k  for the modes of the output 
waves of the MMF and for the propagation modes in the MMF interchangeably without 
distinction as they are one-to-one mapped. 

3.2 Sparse representation 

SR is a signal representation framework, which has received great interests since it can be 
used to estimate a signal even in the underdetermined systems [13–21]. HR encoding 
increases the oversampling ratio of the underdetermined systems in which a signal is 
estimated correctly [16–18]. It is well known that there are two conditions for successful 
application of the SR framework for recovery of original signal from its HR encoded one. 
First, the signal a is compressible. A compressible signal means that the signal a is well 
approximated with a small number of nonzero elements in a, say K where K = N. The object 
signals of interest in this paper are natural signals and we have many research results showing 
that they are compressible. It is well known that most natural images are well approximated 
with only a few elements in the Wavelet domain [15]. Not only with the Wavelet domain, if 
the signal is represented with a few elements in any other orthogonal signal bases, the signal 
is compressible [16]. Second, the measurement matrix F needs to be incoherent. We say a 
matrix is incoherent if the cross-correlations of columns of the matrix are small. This follows 
the conventional meaning for incoherence of a matrix in [14,17,20]. Note that this 
incoherence is different from that in optics which is typically a phase relationship among 
waves. The incoherence of a measurement matrix can be measured in its Gram matrix 

*=D F F . We assume that the norm of each column of F is normalized to be one. The 

amplitude ijd  of the off-diagonal elements of D indicates the cross-correlation of different ith 

and jth columns of the measurement matrix where ijd  is the (i,j)th element of D and ⋅  denotes 

the absolute value of the complex number. 
Several different measures are used for incoherence of a measurement matrix. The 

simplest one is i) the largest off-diagonal element in the Gram matrix, 0 ,max i j ijoμ   where 

ijo  is the (i,j)th element of O = D-I [14,17,20]. But, this does not characterize the incoherence 

of a measurement matrix well for it only considers the most extreme case [20]. The other two 
measures are ii) the size of the smallest group of off-diagonal elements in a single row of the 
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Gram matrix which have the sum greater than one, ( )1 min min s.t. 1i ijj J
J oμ

∈
≥    where 

J  is the cardinality of an index set J [14], and iii) the maximum value of the summation of 

M off-diagonal elements in a single row of the Gram matrix, 2 max max i J ijJ M j J
oμ ∉= ∈  

[20]. Those two measures provide somewhat more of the general behavior of a measurement 
matrix. However, they still do not provide an overall behavior of the measurement matrix as 
they also reflect extreme cases by taking the minimum size or the maximum sum; actually, 
the two measures are designed to provide theoretical bounds of M which guarantee the 
successful estimation of sparse signals, which are signals with small numbers of nonzero 
elements, in the SR framework. 

In this paper, we aim to use { } ( )2
3 ij ijo o N Nμ α> −  the fraction of the off-diagonal 

elements of a Gram matrix whose absolute values are comparable, ijo α>  where α  is the 

degree of comparableness ( 0 1α< < ), to the value of the diagonal elements as the measure of 
incoherence. The rationale for this is i) that it does not take any extreme values, ii) that it is 
coherent to the previous three measures, 0μ , 1μ , and 2μ , as more number of large off-
diagonal elements is likely to lead to values of the three measures which indicate the matrix is 
less incoherent, and iii) that the use of fractions is appropriate to compare the incoherence of 
the two different Gram matrices with different size; this is the case we consider in this paper. 
It is desirable to have smaller 3μ . Construction of an incoherent measurement matrix in a 
deterministic manner for an underdetermined system is known to be difficult. Fortunately, in 
the literature, it is shown analytically or empirically that many kinds of randomly generated 
matrices are incoherent [16–19]. That is, we can make good measurement matrices by using 
random generation, without a careful precise matrix design. 

Now we aim to explain how SR framework can be utilized to recover the signal 
successfully in our turbid lens based MMF imaging. The current state-of-the-art SR systems 
can recover a signal with K nonzero elements, the so-called K-sparse signal, correctly with 
just ( )log( / )M O K N K=  number of random measurements [17]. 

The estimation in SR can be done by finding solution of the following problem [17] 

 *
SR 1

ˆ arg min subject to ,= =
a

a Ψ a r Fa    (14) 

where Ψ  is the sparsifying basis in which the signal a can be approximated with just a small 
number of nonzero elements, *( )⋅  denotes the conjugate transpose of a matrix, and 

1
⋅  

denotes the L1 norm, that is, the sum of the absolute values of the vector elements. 

3.3 Effect of the random scrambling of turbid media on TM 

As it was discussed in Sec 3.1, turbid media provide HR encoding to the object waves. In this 
subsection, we show that HR encoding provides incoherent TM to MMF. We focus on how 
improved the coated MMF is compared to the intact MMF in terms of incoherence. As we 
have discussed in Sec 3.2, we will use 3μ  as the measure of incoherence. 

TM is a collection of responses ( , ; )F x y k  of the MMF to a set of incoming plane waves 

( , ; )P x y k  with N different modes k  (Sec 2.2). Let us consider first the TM of an intact 
MMF without a turbid medium deposited. For an intact MMF, the response of the MMF 

( , ; )F x y k  is intact ( , ; )F x y k  in [Eq. (10)]; here, k  and ′k  are the same. The TM of the MMF 

consists of intact ( , ; )F x y k  with different modes k . As it was told in Section 3.1, intact ( , ; )F x y k  
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is a superposition of waves ( , ; )P x y ′′k  for more than one propagation modes ′′k  in MMF. 

intact ( , ; )F x y k  in [Eq. (10)] can be written as 

 
intact

intact intact
( )

( , ; ) ( ; ) ( , ; )
S

F x y f P x y
′′∈

′′ ′′= 
k k

k k k k  (15) 

where { }intact intact( ) : | ( ; ) 0S f′′ ′′= ≠k k k k  is the set of excited propagation modes in the MMF 

when plane waves ( , ; )P x y k  with the mode k  are inserted; intact ( )S ′′⊂k  . We found that a 
small number of propagation modes in the MMF are excited when waves with a single mode 
are inserted ([Fig. 3(c)]); this is serious especially when the incident angles zθ  of the 

incoming waves are small. With a small number of propagation modes ( , ; )P x y ′′k , there are 

not many incoherent intact ( , ; )F x y k  available because they are the combinations of the few 

plane waves whose modes ′′k  are included in intact ( )S k ; it is analogous to generating 
incoherent vectors which are linear combinations of a small number of basis columns. Thus, it 
is not easy to fill up the columns of the TM with incoherent intact ( , ; )F x y k  for k  with small 
incident angles. This results in a not incoherent TM. 

We show in [Fig. 3(a)] some of the intact ( , ; )F x y k  with several k , respectively. We 

consider discrete incident angles ik  for 1 2000i≤ ≤ . Among the responses intact ( , ; )iF x y k  of 

all the considered incident angles ik , we show ik  with i = 1, 101, 201, and 1001. The 
incident angle changes with the pattern of a spiral starting from the center. A small index i of 
the response means that it is for that with a small incident angle zθ . We see that the responses 

intact ( , ; )iF x y k  of smaller incident angles (i = 1, 101, 201) are not complex due to lack of the 

available propagation modes ( , ; )P x y ′′k  ([Fig. 3(c)]). Here, we mean by complex that the 

value in each pixel ( , )x y  of the response intact ( , ; )iF x y k  changes enough from those in its 

neighboring pixels. This can be seen in the autocorrelation of intact ( , ; )iF x y k , 

*
;intact intact intact( , ; ) ( , ; ) ( , ; )FF i i i

x y

R x y F x y F x x y y+ +k k k
 

     in [Fig. 3(b)]. It looks 

complex around i = 1001. But it is also made of plane waves with only several different 
modes, not all the modes considered. Compared to ( , ; )FF iR x y k  in [Fig. 4(b)], 

;intact ( , ; )FF iR x y k  has more non-ignorable values at those with 0x ≠  or 0y ≠ . 
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Fig. 3. (a) Recorded responses intact ( , ; )iF x y k , (b) Amplitude of the autocorrelation for the 

response, ;intact ( , ; )FF iR x y k , and (c) Angular spectrum of the response, intact ( ; )if ′′k k , of 

intact MMF. Among the responses of all the incident angles covering the NA of 0.22, the 1st, 
the 101st, the 201st, and the 1001st of them are presented. Only the intensities are shown here. 
Scale bar: 10 μm. 

Now consider the TM of the coated MMF with a turbid medium deposited in the input 
facet. The response ( , ; )F x y k  of the coated MMF to ( , ; )P x y k  can be obtained in two steps. 

First, the response ( , ; )T x y k  of the turbid medium to ( , ; )P x y k  is obtained. Second, the 

response ( , ; )F x y k  of the intact MMF to ( , ; )T x y k  is obtained. ( , ; )T x y k  is available in 

[Eq. (6)]. ( , ; )F x y k  is derived as 

 

coated

intact(a)

intact(b)

( )

( , ; ) ( ; ) ( , ; )

( ; ) ( ; ) ( , ; )

( ; ) ( , ; )
S

F x y t F x y

t f P x y

C P x y

′ ′∈

′′ ′′ ′ ′∈ ∈

′′∈

′ ′=

′ ′′ ′ ′′=

′′ ′′=



 



k

k k

k k

k k k k

k k k k k

k k k



 

               

               

 (16) 

where (a) is from [Eq. (6)] and the fact that intact ( , ; )F x y ′k  is the response wave of the intact 

MMF to ( , ; )P x y ′k , (b) is from [Eq. (10)], and { }coated ( ) : | ( ; ) 0S C′′ ′′= ≠k k k k  denotes the set 

of excited propagation modes in the MMF when plane waves ( , ; )P x y k  with the mode k  are 
inserted. Here, different from that of the intact MMF, the number of excited modes in the 
coated MMF for ( , ; )F x y k  is not small ([Fig. 4(c)]). We can easily see in [Eq. (13)] that 

coated intact( ) ( )S S
′

′=
k

k k , the set of excited modes in the coated MMF is the union of all the 
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sets of excited modes in the intact MMF. This is because the random scrambling in the turbid 
medium varies the directions of the waves. This makes the MMF to have incoming waves 
with a variety of incident angles, and the propagation modes corresponding to those incident 
angles are all excited. Now, ( , ; )F x y k  are made by combining many ( , ; )P x y ′′k  with a 

variety of ′′k . Thus, there are many possible incoherent ( , ; )F x y k  patterns. It is easier to find 
many incoherent interference patterns out of them. As a result, it becomes easier to compose 
the TM with many incoherent interference patterns. In [Fig. 4(a)] and [Fig. 4(c)], we see that 
the responses of the coated MMF to plane waves with the considered incident angles zθ  are 
complex enough to be speckle patterns. 

 

Fig. 4. (a) Recorded responses ( , ; )iF x y k , (b) Amplitude of the autocorrelation for the 

response, ( , ; )FF iR x y k , and (c) Angular spectrum of the response, ( ; )iC ′′k k , of coated 

MMF. Among the responses of all the incident angles covering the NA of 0.22, the 1st, the 
101st, the 201st, and the 1001st of them are presented. Only the intensities are shown here. 
Scale bar: 10 μm. 

Having more propagation modes in the coated MMF surely provides a better situation for 
the TM to be incoherent. But, this does not always mean that the TM would be incoherent. 
For an incoherent TM, the way of combining of the propagation modes ( ; )C ′′k k  needs to be 
incoherent for the beams of light with different incident angles k . It would serve no point if 
the way of combining the propagation modes was the same for all the incident beams 
considered, then, as the TM would be completely coherent. We can see in [Eq. (13)] that the 
way of combining becomes different if ( ; )t ′k k  is different from each other for k . For two 

different modes ik  and jk  ( i j≠k k ), it is found that the contributions ( ; )it ′k k  and 

( ; )jt ′k k  are uncorrelated if the angle difference of the two modes is not too small, 
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1cos ( )i j δ− ⋅ ≥k k  for a certain small δ  [26]. Please be reminded that a random matrix 

generation gives an incoherent TM (Sec. 3.2). Now, with the incoherent combinations of the 
coated MMF, we expect the TM to be more incoherent than that of the intact MMF. 

We compare the incoherence 3μ  ( 30 1μ≤ ≤ ) of the TMs of the intact MMF and the 
coated MMF in Fig. 5. The respective number of rows and that of columns of TM are 2025 
and 2000 for the intact MMF and 2025 and 4000 for the coated MMF. We consider several 
values of α  for 1 0α≥ ≥ . Please note that it is desirable to have smaller 3μ  for superior 

incoherence. 3μ  of the intact MMF starts to have nonzero value from 0.75α =  and becomes 

larger as α  decreases. The start of nonzero value of 3μ  for the coated MMF is at 0.65α =  

and 3μ  becomes larger as α  decreases. For 0.65 0.45α≥ ≥ , the ratios of the 3μ  of the 

intact MMF and that of the coated MMF tend to increase (4 at 0.66α =  and 6.55 at 
0.45α = ). For 0.4 0.1α≥ ≥ , the ratios tend to decrease (6.09 at 0.4α =  and 4.5 at 
0.1α = ). Regardless of the tendency, the ratios are considerable for 0.65 0.1α≥ ≥ . At 
0.05α = , the 3μ  for the coated MMF is larger than that of the intact MMF, and they become 

the same at 0α = . Though the 3μ  for the intact MMF is better at 0.05α = , the incoherence 

here is not meaningful because 0.05α =  is not comparable to 1. In all the values of α  which 
are reasonably comparable to 1 ( 0.75 0.1α≥ ≥ ), it is found that the coated MMF has superior 
incoherence than the intact MMF does. 

 

Fig. 5. The incoherence of TMs for intact MMF (M = 2025 and N = 2000) and coated MMF (M 
= 2025 and N = 4000). The incoherence of them is plotted in log scale. 

4. Results 

We now aim to compare the object image reconstruction capabilities with and without 
efficiently utilizing the HR encoding effect. For the conventional object wave reconstruction, 
we use PINV (Section 2.2). For the proposed reconstruction, we use the SR framework which 
is reported to take advantage of the HR encoding effect in a satisfactory manner [19]. For the 
sparse recovery in the SR framework, we use the alternating direction method [21] for its 
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efficiency. For the sparsifying basis in the sparse recovery, we use the Fourier basis directly, 
=Ψ I . For a fair comparison between the two reconstructions, the reconstructed images are 

normalized so that their norms become one. For the TM measurements, N = 2000 and N = 
4000 incident angles of the incoming waves are considered and the responses of them are 
captured respectively for the intact MMF and the coated MMF. The TMs cover the NA of 
0.22 ( 0 12.71zθ≤ ≤  ) and the NA of 0.4 ( 0 23.58zθ≤ ≤  ). The dimension of M, the number 
of pixels in the CCD used in our experiment, corresponding to the output NA of 0.24 (Sec. 
2.1) is 2025 (M = 2025). Thus, the TMs have the dimensions ( M N× ) 2025 × 2000 and 
2025× 4000 for the intact fiber and for the coated fiber, respectively. 

 

Fig. 6. Reconstruction for imaging through intact MMF. (a) Recovered amplitude image using 
PINV. (b) Recovered amplitude image using SR. (c) Cross sections of them. Images are 
averaged over 1000 samples. Scale bar: 10 μm. SNRs are calculated in the cross sections. 

Figure 6 shows the reconstructed images when the image is transferred through the MMF 
without depositing the turbid medium on the input facet of the fiber, hence there is no HR 
encoding effect as it should be. It is seen that the smallest structures in the object image 
cannot be resolved for both reconstructions. This is reasonable since higher modes of object 
waves which have incident angles beyond the acceptance angle of the intact MMF are not 
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captured. Here, both PINV and SR are shown to reconstruct the given signal well without 
significant perturbations; the system is not underdetermined. We found some image quality 
improvements when the SR is employed. For example, pay attention to the quality of 
reconstruction of the alphanumeric numbers 2, 3, and 4 at the image shown in Fig. 6. The 
number 2 at the upper left corner of the image becomes reconstructed and the numbers 3 and 
4 becomes clearer. However, the improvement overall by SR is not very significant. The 
signal-to-noise ratio (SNR) is increased from 9.27 to 10.61; just a 14% increment. Here, the 

SNR was calculated as sig bg bgSNR S S σ= −  where sigS  is the mean of the signal patterns, 

bgS  is the mean of the background, and bgσ  is the standard deviation of the background. 

 

Fig. 7. Reconstruction for imaging through coated MMF. (a) Recovered amplitude image using 
PINV. (b) Recovered amplitude image using SR. (c) Cross sections of them. Images are 
averaged over 2000 samples. Scale bar: 10 μm. SNRs are calculated in the cross sections. 

Now, consider the recovered images when the turbid medium is used. It is found in Fig. 7 
that the structures in the patterns are significantly improved in terms of resolution. This is true 
regardless of the use of recovery routines PINV or SR. Both methods deliver much improved 
reconstruction fidelity compared to those of the intact MMF. This is because higher mode 
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waves are introduced through the turbid medium. However, as it was already discussed, the 
use of turbid medium makes the system underdetermined. This makes the reconstruction of 
the object image difficult. As a result, it is shown that the reconstructed image by PINV 
becomes significantly perturbed by speckles. The SNR also becomes reduced considerably 
compared to that with the intact MMF. 

We now show the results employing the SR framework for object wave recovery. As 
discussed earlier, the point here is to see if it will bring forth improved quality in 
reconstruction via efficient utilization of the HR encoding process offered by the use of turbid 
medium. As expected, in contrast to the case of PINV, SR is shown to improve the 
reconstruction significantly well. The speckle is successfully removed in the reconstructed 
image. We can also see all the small scale structures in the recovered image. The SNR 
becomes increased from 4.31 to 6.51; a 51% increment. With these, we have verified that the 
SR framework can exploit the HR encoding process of the turbid medium and improve the 
quality of the image reconstruction. 

5. Conclusion 

In conclusion, we demonstrated that the random scattering in the turbid media can be 
exploited for improving the quality of image reconstruction in MMF imaging. Random 
scattering through turbid medium provides random encoding of the object signal in holistic 
and incoherent manner. This encoding can be efficiently utilized in the signal recovery 
process within the proposed sparse representation framework. As a result, the perturbation is 
significantly reduced, the image contrast becomes sharper, and the fine details within the 
image can be captured. 
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Bayesian Hypothesis Test using Nonparametric
Belief Propagation for Noisy Sparse Recovery
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Abstract—This paper proposes a low-computational Bayesian
algorithm for noisy sparse recovery (NSR), called BHT-BP. In this
framework, we consider an LDPC-like measurement matrices
which has a tree-structured property, and additive Gaussian
noise. BHT-BP has a joint detection-and-estimation structure
consisting of a sparse support detector and a nonzero estimator.
The support detector is designed under the criterion of the
minimum detection error probability using a nonparametric
belief propagation (nBP) and composite binary hypothesis tests.
The nonzeros are estimated in the sense of linear MMSE, where
the support detection result is utilized. BHT-BP has its strength in
noise robust support detection, effectively removing quantization
errors caused by the uniform sampling-based nBP. Therefore,
in the NSR problems, BHT-BP has advantages over CS-BP [13]
which is an existing nBP algorithm, being comparable to other
recent CS solvers, in several aspects. In addition, we examine
impact of the minimum nonzero value of sparse signals via BHT-
BP, on the basis of the results of [27],[28],[30]. Our empirical
result shows that variation of xmin is reflected to recovery
performance in the form of SNR shift.

Index Terms—Noisy sparse recovery, compressed sensing, non-
parametric belief propagation, composite hypothesis testing,
joint detection-and-estimation

I. INTRODUCTION

A. Background

Robust reconstruction of sparse signals against measure-
ment noise is a key problem in real-world applications of
compressed sensing (CS) [1]-[3]. We refer to such signal
recovery problems as noisy sparse signal recovery (NSR)
problems. The NSR problems can be directly defined as
an l0-norm minimization problem [4],[5]. Solving the l0-
norm task is very limited in practice when the system size
(M,N) becomes large. Therefore, several alternative solvers
have been developed to relax computational cost of the l0-
norm task, such as l1-norm minimization solvers, e.g., Dantzig
selector (l1-DS) [6] and Lasso [7], and greedy type algorithms,
e.g., OMP [8] and COSAMP [9]. Another popular approach
to the computational relaxation is based on the Bayesian
philosophy [11]-[17]. In the Bayesian framework, the l0-norm
task is described as maximum a posteriori (MAP) estimation
problem, and sparse solution then is sought by imposing a
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certain sparsifying prior probability density function (PDF)
with respect to the target signal [10].

Recently, Baysian solvers applying belief propagation
(BP) have been introduced and caught attention as a low-
computational approach to handle the NSR problems in a large
system setup [13]-[17]. These BP-based solvers reduce com-
putational cost of the signal recovery by removing unneces-
sary and duplicated computations using statistical dependency
within the linear system. Such BP solvers are also called
message-passing algorithms because their recovery behavior
is well explained by passing statistical messages over a tree-
structured graph representing the statistical dependency [18].

For implementation of BP, two approaches have been mainly
discussed according to message representation methods: para-
metric BP (pBP) [15]-[17],[39],[40] where the BP-message is
approximated to a Gaussian PDF; hence, only the mean and
variance are used for message-passing, and nonparametric BP
(nBP) [13],[14],[19]-[23] where the BP-message is represented
by samples of the corresponding PDF. When the pBP approach
is used, there are errors from the Gaussian approximation;
these errors decrease as problem size (N,M) increases. If
the nBP approach is used, there is an approximation error
which generally depends upon the choice of message sampling
methods.

B. Contribution
In this paper, a low-computational Bayesian algorithm is de-

veloped based on the nBP approach. We refer to the proposed
algorithm as Bayesian hypothesis test using nonparametric
belief propagation (BHT-BP)1. Differently from the pBP-
based solvers, BHT-BP can precisely infer the multimodally
distributed BP-messages via an uniform sampling-based nBP.
Therefore, BHT-BP can be applied to any types of sparse
signals in the CS framework by adaptively choosing a signal
prior PDF. In addition, the proposed algorithm uses low-
density parity-check codes [24] (LDPC)-like sparse measure-
ment matrices as works in [13],[15],[16]. Although such sparse
matrices perform worse than the dense matrices do in terms of
compressing capability in the CS framework, they can highly
speed up the generation of the CS measurements [27].

Most CS algorithms to date for the NSR problems have
been developed under the auspices of signal estimation rather
than support detection. However, recently studies have indi-
cated that the existing estimation-based algorithms, such as
Lasso [7], lead to a potentially large gap with respect to the
theoretical limit for the noisy support recovery [28]-[30]. Moti-
vated by such theoretical investigation, the proposed BHT-BP
takes a joint detection-and-estimation structure [31],[41], as
shown in Fig.3, which consists of a sparse support detector

1The MATLAB code of the proposed algorithm is available at our webpage,
https://sites.google.com/site/jwkang10/
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Fig. 1. An illustrative recovery example of BHT-BP (the proposed), CS-BP
[13] and BCS [12] in the presence of noise. The original image, known as the
Cameraman, of size N = 1282, is transformed via three step discrete wavelet
transform. For this example, we pad zeros for the coefficients having values
below 100 in wavelet domain, and we recover these images from M/N = 0.5
undersampled measurements. From this example, we see that the recovered
image via BCS includes flicker noise but which is not shown in that of BHT-
BP in the noisy setup. In the clean setup, BHT-BP more clearly recovers the
image than those of CS-BP and BCS.

and a nonzero estimator. The support detector uses uniform
sampling-based nBP and composite binary hypothesis tests
to the CS measurements Z at hand for the sparse support
finding. Given the detected support, the underdetermined CS
problem is reduced to an overdetermined problem. Then, the
nonzero estimator is applied under the criterion of linear
minimum mean-square-error (LMMSE) [33]. Then, let us state
the detailed novel points of the proposed algorithm. In the
CS framework considering reconstruction of a sparse signal
X ∈ RN from noisy measurements Z ∈ RM , BHT-BP is
novel in terms of

1) Providing robust support detection against additive mea-
surement noise based on the criterion of the minimum
detection error probability,

2) Removing MSE degradation caused by the message
sampling of the uniform sampling-based nBP using a
joint detection-and-estimation structure,

3) Handling sparse signals whose minimum nonzero value
is regulated by a parameter xmin ≥ 0, proposing a signal
prior PDF for such signals,

4) Providing fast sparse reconstruction with recovery com-
plexity O(N logN + KM) where K is the signal
sparsity.

For the support detection of BHT-BP, we use a hypothesis-
based detector designed under the criterion of the minimum
detection error probability [32]. BHT-BP represents the signal
support using a binary vector, scalarwisely applying the hy-
pothesis testing to each binary element for the support finding.
This hypothesis test is “composite” because the likelihood
for the test is associated with the value of each scalar Xi.
Therefore, we calculate the likelihood under the Bayesian
paradigm; then, the likelihood for the test is a function of
the signal prior and the marginal posterior of Xi. This is
the reason why we refer to our support detection as Bayesian
hypothesis test (BHT) detection. BHT-BP has noise robustness,
outperforming the conventional algorithms, such as CS-BP
[13], in the support detection. In this BHT detection, the nBP

part takes a role to provide the marginal posterior of Xi.
Therefore, the advantage of BHT-BP in support detection can
be claimed when the BP convergence is achieved with the
sampling rate, MN , above a certain threshold.

Typically, recovery performance of the nBP-based algo-
rithms is dominated by the message sampling methods. In
the case of CS-BP [13], its performance is corrupted by
quantization errors because CS-BP works with the uniform
sampling-based nBP such that the signal estimate is directly
obtained from a sampled posterior. The joint detection-and-
estimation structure of BHT-BP overcomes this weakpoint
of CS-BP, improving MSE performance. The key behind the
improvement is that the sampled posterior is only used for the
support detection in BHT-BP. Furthermore, BHT-BP closely
approaches to the oracle performance2. in high SNR regime if
the rate M

N are sufficiently maintained for the signal sparsity
K. Fig.1 is an illustration intended to see a motivational
evidence of the recovery performance among the proposed
BHT-BP, CS-BP [13] and BCS [12].

The importance of the minimum nonzero value xmin of
sparse signals X in the NSR problems was highlighted by
Wainwright et al. in [27],[28] and Fletcher et al. in [30], where
they proved that the perfect support recovery is very difficult
even with arbitrarily large signal-to-noise ratio (SNR) if xmin
is very small. Following these works, in the present work,
we consider recovery of X whose minimum nonzero value is
regulated by xmin. In addition, we propose to use a signal
prior including the parameter xmin, called spike-and-dented
slab prior, investigating how helpful the knowledge of xmin
for the performance is. We empirically show in the BHT-BP
recovery3 that variation of xmin is reflected to the recovery
performance in the form of SNR shift. In addition, we support
this statement with a success rate analysis for the BHT support
detection under the identity measurement matrix assumption,
i.e., Φ = I.

The recovery complexity of BHT-BP is O(N logN+KM)
which includes the cost O(KM) of the LMMSE estimation
and that of the BHT support detection O(N logN). This is
advantageous compared to that of the l1-norm solvers Ω(N3)
[6],[7] and BCS O(NK2) [12], being comparable to that
of the recent BP-based algorithms using sparse measurement
matrices O(N logN): CS-BP [13] and SuPrEM [16].

C. Organization

The remainder of the paper is organized as follows. We first
provide basic setup for our work in Section II. In Section III,
we discuss our solution approach to the NSR problem. Section
IV describes a nonparametric implementation of the BHT
support detector and its computational complexity. Section
V provides experimental validation to show performance and
several aspects of the proposed algorithm, compared to the
other related algorithms. Finally, we conclude this paper in
Section VI.

2Here, the oracle performance means the performance of the LMMSE
estimator having the knowledge of the sparse support set of the signal X.

3To the best of our knowledge, we have not seen CS algorithms using xmin

as an input parameter.
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Fig. 2. Example of spike-and-dented slab PDF in log-scale where the prior
is drawn with the parameters, q = 0.05, σX = 5, xmin = σX

4
, λ = 10−4,

and normalized to be
∫
Xi
fXi (x)dx = 1.

II. BASIC SETUP

In this section, we introduce our signal model, and a factor
graphical model for linear systems used in this work.

A. Signal Model
Let x0 ∈ RN denote a sparse vector which is a deterministic

realization of a random vector X. Here, we assume that the
elements of X are i.i.d., and each Xi belongs to the support
set with a sparsity rate q ∈ [0, 1). To indicate the supportive
state of X, we use a state vector S ∈ {0, 1}N whose each
element Si is Bernoulli random with the rate q as following

Si =

{
1, if Xi 6= 0 with q
0, if Xi = 0 with 1− q . (1)

Then, the signal sparsity, K = ||S||0, becomes Binomial
random with B(k;N, q). In the present work, we consider the
signal x0 whose minimum nonzero value is regulated by a
parameter xmin ≥ 0. For such signal generation,
• We first draw a state vector s by generating N i.i.d.

Bernoulli numbers of (1).
• Then, we assign zero value to the signal scalars corre-

sponding to si = 0, i.e., x0,i = 0.
• For the signal scalar corresponding to si = 1, a Gaussian

number is drawn from N (x; 0, σ2
X) and assigned to the

signal scalar x0,i if |x0,i| ≥ xmin; otherwise, the number
is redrawn until a realization with |x0,i| ≥ xmin occurs.

For such signals with xmin, we propose to use a spike-and-
dented slab prior which is a variant of the spike-and-slab prior
[36]. According to (1), the signal prior of Xi can be described
as a two-state mixture PDF with the state Si, i.e.,

fXi(x) = (1− q)fXi(x|Si = 0) + qfXi(x|Si = 1). (2)

Then, the spike-and-dented slab prior includes the conditional
priors as following

fXi(x|Si = 0) = δ(x), (3)

fXi(x|Si = 1) ∝

{
N (x; 0, σ2

X), |x| ≥ xmin

λ, |x| < xmin

where δ(x) is the Dirac delta PDF and λ > 0 is a near-
zero constant. Fig.2 shows an example of the spike-and-dented
slab prior where the prior is drawn with the parameters, q =
0.05, σX = 5, xmin = σX

4 , λ = 10−4, and normalized to be∫
Xi
fXi(x)dx = 1.

The goal of the proposed algorithm is to recover the signal
vector x0 from a noisy measurement vector

z = Φx0 + w ∈ RM , (4)
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Fig. 3. Diagrammatic representation of the proposed algorithm (when
N = 6,M = 4, L = 2) where the inputs of the proposed algorithm is
the measurement z = [z1, z2, z3, z4] and the output is a signal estimate x̂0.
The proposed algorithm first detects the signal support ŝ = [ŝ1, ..., ŝ6] from
the measurements z at hand, and then applies linear MMSE estimation to find
the signal estimate x̂0 given the detected support ŝ.

given a fat measurement matrix Φ ∈ {0, 1,−1}M×N (M <
N), where the vector w ∈ RM is a realization of a Gaussian
random vector W ∼ N (w; 0, σ2

W I); therefore, the vector
z ∈ RM is drawn from a mean shifted Gaussian random
vector conditioned on X = x0, i.e., Z ∼ N (z; Φx0, σ

2
W I). For

the measurement matrix Φ, we consider an LDPC-like sparse
matrix which has very low matrix sparsity (typically less than
1% matrix sparsity) and the tree-structured property [25],[26].
We regulate the matrix sparsity by the fixed column weight
L such that E[‖φcolumn‖22] = L. This regulation enables the
matrix Φ to span the measurement space with column vectors
having equal energy.

B. Factor Graphical Modeling of Linear Systems

Factor graphs effectively represent such sparse linear sys-
tems in (4) [18]. Let V := {1, ..., N} denote a set of
variable nodes corresponding to the signal elements, x0 =
[x0,1, ..., x0,N ], and C := {1, ...,M} denote a set of fac-
tor nodes corresponding to the measurement elements, z =
[z1, ..., zM ]. In addition, we define a set of edges connecting
V and C as E := {(j, i) ∈ C × V | φji = 1} where φji is the
(j, i)-th element of Φ. Then, a factor graph G = (V, C, E) fully
describes the neighboring relation in the sparse linear system.
For convenience, we define the neighbor set of V and C as
NV(i) := {j ∈ C |(j, i) ∈ E} and NC(j) := {i ∈ V |(j, i) ∈
E}, respectively. Note that the column weight of the matrix Φ
is expressed as L = |NV(i)| in this graph model.

III. SOLUTION APPROACH OF PROPOSED ALGORITHM

The proposed algorithm, BHT-BP, has a joint detection-and-
estimation structure where we first detect the sparse support
by a combination of BP and BHT, then estimating nonzeros
in the detected support by an LMMSE estimator, as shown in
Fig.3. In this section, we provide our solution approach to the
support detection and the nonzero estimation under the joint
structure.
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Fig. 4. Fig.4 illustrates the scalar state detection by BHT under an assumption
of Φ = I. Under this assumption, “the hypothesis test given a vector z” is
simplified to “the test given a scalar zj”, described in (8), where the threshold
γ′ is derived from the equality condition of (9). In the figure, the horizontal-
lined region (blue) represents Pr{ŝi 6= si|H1} and the vertical-lined (red)
region does Pr{ŝi 6= si|H0}.

A. Support Detection using Bayesian Hypothesis Testing

1) Support detection in BHT-BP: The support detection
problems can be decomposed to a sequence of binary state
detection problems given the marginal posterior fXi(x|Z = z)
of each signal scalar. Our state detection problem is to choose
one between the two hypotheses:

H0 : Si = 0 and H1 : Si = 1,

given the measurements z. Our methodlogy to this problem
is related to Bayesian composite hypothesis testing [32, p.
198]. In contrast to the simple hypothesis test where the PDFs
under both hypothesis are perfectly specified, the composite
hypothesis test must consider associated random variables. In
our problem, the associated random variable is Xi. Then, the
binary state detector decides H1 if

fZ(z|H1)

fZ(z|H0)
=

∫
fZ(z|H1, Xi = x)fXi(x|H1)dx∫
fZ(z|H0, Xi = x)fXi(x|H0)dx

> γ, (5)

where γ is a threshold for the test. The PDF fz(z|Hsi , Xi = x)
is simplified to fZ(z|Xi = x) since the hypothesis Hsi and
the measurements Z are conditionally independent given Xi.
Therefore, finally, the binary hypothesis test in (5) can be
rewritten as

TBHTBP(z) :=

∫ fXi (x|Si=1)

fXi (x) fXi(x|Z = z)dx∫ fXi (x|Si=0)

fXi (x) fXi(x|Z = z)dx

H1

≷
H0

γ (6)

where the Bayesian rule is applied to fZ(z|Xi = x) =
fXi (x|Z=z)fZ(z)

fXi (x) , and obviously fXi(x|Hsi) = fXi(x|Si = si)

holds from the prior knowledge of (2).
In some detection problem under Bayesian paradigm, one

can reasonably assign prior probabilities to the hypotheses.
In the present work, we assign the sparsity rate q to the
hypotheses, i.e., Pr{H0} = 1 − q and Pr{H1} = q. Then,
we can define the state error rate (SER) of the scalar state
detection (6) [32, p. 78]

PSER := Pr{ŝi 6= si|H0}(1− q) + Pr{ŝi 6= si|H1}q. (7)

It is well known that the threshold γ of (6) can be optimized
under the criterion of the minimum detection error probability
with the SER expression (7). By the criterion, we assign the
threshold to γ = γ∗ := 1−q

q . We omit the derivation for
this threshold optimization here, referring interested readers
to [32, p. 90]. We call this binary hypothesis test (6) with the
threshold γ∗ as Bayesian hypothesis test (BHT) detection. The
proposed algorithm generates a detected support ŝ ∈ {0, 1}N
according to the results of a sequence of BHTs. Therefore,
given a marginal posterior of each Xi, BHT-BP can robustly
detect the signal support even when the measurements are
noisy.

Fig.4 illustrates the scalar state detection of BHT-BP when
the matrix is Φ = I such that the measurement channel can
be decoupled to N scalar Gaussian channels, i.e., Zj = Xi +
Wj , (i = j). Under this assumption, “the hypothesis test given
a vector z” can be scalarwise to “the test given a scalar zj”,
being simplified

∀j ∈ C : |zj |
H1

≷
H0

γ′ (8)

where the threshold γ′ is derived from the equality condition
with the two scalar likelihood and the threshold γ∗ = 1−q

q ,

fZj (z|H1)

fZj (z|H0)
= γ∗. (9)

Hence, the threshold γ′ is a function of σX , σW , xmin,
and q (see Appendix II). With this threshold γ′, we can
find the conditional SER, Pr{ŝi 6= si|Hsi}, for the case
Φ = I. In Fig.4, the horizontal-lined region (blue) represents
Pr{ŝi 6= si|H1} and the vertical-lined (red) region does
Pr{ŝi 6= si|H0}. The corresponding SER analysis will be
provided in Appendix II. Although Fig.4 does not show typical
behavior of the BHT detection given a vector measurement z,
the figure helps intuitive understanding of the BHT detection.

In addition, it is noteworthy in Fig.4 that the shape of
fZj (z|H1) is dented near zj = 0. This is caused by the use of
the spike-and-dented slab prior, given in (3), where the dented
part varies with the parameter xmin.

2) Support detection of CS-BP: Support detection is not
performed in practical recovery of CS-BP, but we describe it
here for a comparison purpose. CS-BP estimates the sparse
solution x̂0 directly from a BP approximation of the signal
posterior, through MAP or MMSE estimation. Let us consider
CS-BP using the MAP estimation. Then, given the marginal
posterior fXi(x|Z = z), the scalar state detection of CS-BP
is equivalent to choose one of the two peaks at x = 0 and
x = x̂MAP,i := arg max

x
fXi(x|Z = z). Namely, the binary

state detector of CS-BP decides H1 if

TCSBP(z) :=
Pr{x̂MAP,i −∆x < Xi ≤ x̂MAP,i + ∆x|Z = z}

Pr{0−∆x < Xi ≤ 0 + ∆x|Z = z}

=

∫ x̂MAP,i+∆x

x̂MAP,i−∆x
fXi(x|Z = z)dx∫ 0+∆x

0−∆x
fXi(x|Z = z)dx

> 1, (10)

where ∆x is a small quantity that we eventually let approach
to 0. When x̂MAP,i = 0, the test cost becomes one; then,
the detector immediately decides H0. Hence, in CS-BP, the
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detected support ŝ is just a by-product of the signal estimate
x̂MAP, which is not robust support detection against additive
measurement noise.

B. Conditions for BP Convergence
In the proposed algorithm, marginal posterior of each Xi,

fXi(x|Z = z), for the BHT detection is computed by BP.
It was known that BP efficiently computes such marginal
posteriors, achieving its convergence if the conditions
in Note 1 are satisfied [42]. Given the BP convergence,
each approximate marginal posterior converges to a PDF
peaked at an unique value x̂i during the iteration. In noiseless
setup, the unique value is exactly the true value, i.e., x̂i = x0,i.

Note 1 (Conditions for BP convergence):
• The factor graph, which corresponds to the relation

between X and Z, has a tree-structure.
• Sufficiently large number of iterations l is maintained

such that BP-messages have been propagated along every
link of the tree, and a variable node has received messages
from all the other variables nodes.

Although the second condition in Note 1 is practically de-
manding, it has been reported that BP provides a good
approximation of marginal posteriors even with factor graphs
including cycles, which is called loopy BP [25],[39],[40].

A related argument for BP was stated by Guo and Wang
in the context of the multiuser detection problem of CDMA
systems, where the problem is actually equivalent to solve a
linear system [37],[38]. In the works, Guo and Wang showed
that the marginal posterior computed by BP is almost exact
in a large linear system (M,N → ∞) if the factor graph
corresponding to the matrix Φ is asymptotically cycle-free and
the sampling rate M

N is above a certain threshold4. Namely,
Guo and Wang showed that

lim
l→∞

lim sup
M,N→∞

∣∣∣f (l)
BP(Xi)

(x|Z = z)− fXi(x|Z = z)
∣∣∣ = 0, (11)

where f (l)
BP(Xi)

(x|Z = z) is an approximate marginal posterior
of each Xi by l iterations of BP.

According to the literature, in the linear system with the
LDPC-like matrix Φ, the sampling rate M

N is the only obstacle
for the BP convergence. The asymptotic condition used in
(11) is not always necessary if the tree-structured property
is guaranteed for the matrix Φ because the main reason to use
the asymptotic condition in the works of [37],[38] is to make
the system “asymptotically cycle-free”, which is equivalent to
having an “asymptotically tree-structured” matrix Φ5. Thus,
we claim the advantage of BHT-BP over CS-BP in support
detection with a certain threshold of the rate M

N . Given M
N

below the threshold, the BP convergence is not achieved such
that the likelihood fZ(z|Hsi) is not properly calculated for the
BHT detection. We will empirically find the threshold using
information entropy of the approximate marginal posterior,
f

(l)
BP(Xi)

(x|Z = z), in Section V-A. Although we do not
provide an analytical threshold of M

N for the BP convergence
in this paper, simulation results with M

N above the empirical
threshold are quite favorable, as shown in Section V-B and -C.

4In [37],[38], the authors considered the sampling rate M
N

above one.
5If the graph corresponding to the matrix Φ has at least one cycle, the BP

convergence cannot be rigorously guaranteed.

C. LMMSE Estimation of Nonzero Values

Given the support information by the BHT detection, the
rest of the work is reduced to the nonzero estimation problem,
represented as

x̂0 = E [X|S = ŝ,Z = z] , (12)

and it can straightforwardly solved by combining the nonzero
position by ŝ and the nonzero values given by the LMMSE
estimate [33, p. 364]

x̂0,̂s =

(
1

σ2
X

I +
1

σ2
W

ΦT
ŝ Φŝ

)−1
1

σ2
W

ΦT
ŝ z, (13)

where Φŝ ∈ {0, 1}M×K denotes a submatrix of Φ that con-
tains only the columns corresponding to the detected support
ŝ, σ2

X are the variance of an nonzero scalar Xi.
The estimate x̂0 from the proposed joint detection-and-

estimation structure is not optimal. As we have seen, our
support detector (6) is based on the criterion of minimum
detection error probability. Even with this detector, however,
we cannot guarantee the estimation optimality since the
LMMSE estimator of (12) is not designed from the cost
function involving the detection part [31],[41]. Nevertheless,
worth mentioning here is that the proposed joint structure has
advantages as given in Note 2.

Note 2 (Claims from the joint detection-and-estimation
structure):
• Removing the MSE degradation caused by the uniform

sampling-based nBP.
• Achieving the oracle performance in the high SNR regime

with the sufficiently high rate M
N for the BP convergence.

We will empirically validate this claim in Section V-C.

IV. NONPARAMETRIC IMPLEMENTATION OF BHT
SUPPORT DETECTOR

This section describes a nonparametric implementation of
the proposed support detector consisting of BP and the BHT
detection. We discuss our nonparametric approach of the BP
part first, and then explain the BHT detection part. This BHT
support detection is summarized in Algorithm 1.

A. Nonparametric BP using Uniform Sampling

In the BHT support detector, the BP part provides the
marginal posterior of Xi for the hypothesis test in (6). Since
the signal x0 is real valued, each BP-message takes the form
of a PDF, and the BP-iteration becomes a density-message-
passing process. To implement the density-message-passing,
we take the nBP approach [19]-[22]. Many nBP algorithms
have been proposed according to several message sampling
methods such as discarding samples having low probability
density [20], adaptive sampling [21], Gibbs sampling [19],
rejection sampling [22], or importance sampling [23].

Our nBP approach is to use an uniform sampling for the
message representation where we set the sampling step Ts on
the basis of the three sigma-rule [35] such that

Ts =
2 · 3σX
Nd

(14)
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where Nd is the number of samples to store a BP-message.
Then, we define the uniform sampling of a density-message
f(x) as

Samp {f(x);Ts} := f(mTs − 3σX)

= f [m], for m ∈ {0, 1, ..., Nd − 1}, (15)

where Samp {·; Ts} denotes the uniform sampling function
with the step size Ts. Hence, the sampled message f [m] can
be treated as a vector with size Nd by omitting the index
m. The main strength of the uniform sampling-based nBP is
adaptivity to various signal prior PDFs. In addition, we note
that the calculation of uniformly sampled messages can be
accelerated using the Fast fourier transform (FFT).

Consider the factor graph G = (V, C, E) depicted in the
support detection part of Fig.3 where a signal element Xi

corresponds to a variable node i ∈ V and a measurement
element Zj corresponds to a factor node j ∈ C. At every
iteration, messages are first passed from each variable node
i ∈ V to its neighboring factor nodes NV(i); each factor
nodes j ∈ C then calculates messages to pass back to the
neighboring variable nodes NC(j) based on the previously
received messages. These factor-to-variable (FtV) messages
include extrinsic information of Xi, and will then be employed
for the computation of updated variable-to-factor (VtF) mes-
sages in the next iteration. (For the detail, see the paper [18]).

Let a
(l)
i→j ∈ [0, 1)Nd denote a sampled VtF message at the

l-th iteration in the vector form, given as

a
(l)
i→j = η

pXi ×
∏

k∈NV(i)\{j}

b
(l−1)
k→i

 ∀(j, i) ∈ E , (16)

where all product operations are elementwise, the vector
pXi ∈ [0, 1)Nd denotes the sampled signal prior, i.e., pXi :=
Samp{fXi(x), Ts}, and η[·] is a normalization function to
make

∑
a

(l)
i→j = 1. The sampled FtV message at the l-th

iteration, b
(l)
j→i ∈ [0, 1)Nd , is defined as

b
(l)
j→i = pZj |X ⊗

 ⊗
k∈NC(j)\{i}

a
(l)
k→j

 ∀(j, i) ∈ E , (17)

where ⊗ is the operator for the linear convolution of vectors,
and the vector pZj |X ∈ [0, 1)Nd is the sampled measurement
PDF, i.e., pZj |X := Samp{N (zj ; (ΦX)j , σ

2
W ), Ts}.

The convolution operations in (17) can be efficiently com-
puted by using FFT. Accordingly, we can rewrite the FtV
message calculation as

b
(l)
j→i = F−1

FpZj |X ×

 ∏
k∈NC(j)\{i}

Fa
(l)
k→j

 (18)

where F denotes the FFT operation. Therefore, for efficient
use of FFT, the sampling step Ts should be appropriately
chosen such that Nd is power of two. In fact, the use of FFT
brings a small calculation gap since the FFT-based calculation
performs a circular convolution. However, this gap can be
ignored, especially when the messages take the form of bell-
shaped PDFs such as Gaussian PDFs.

The sampled approximation of the marginal posterior of
each Xi, i.e., p

(l)
Xi|Z := Samp{f (l)

BP(Xi)
(x|Z = z), Ts}, is

Algorithm 1 BHT support detection
Inputs: Noisy measurements z, measurement matrix Φ, sparsity rate
q, sampled prior PDF pX , sampled measurement PDF pZj |X, The
number of samples Nd, Termination condition ε.

Outputs: Reconstructed signal x̂0, Detected support vector ŝ.

1) Belief propagation:
set b

(l=0)
j→i = 1 for all (j, i) ∈ E

while 1
N

N∑
i=1

∥∥∥p(l)
Xi|Z

−p
(l−1)
Xi|Z

∥∥∥2
2∥∥∥p(l)

Xi|Z

∥∥∥2
2

> ε do

∀(j, i) ∈ E :

set a
(l)
i→j = η

[
pXi ×

∏
k∈NV (i)\{j}

b
(l−1)
k→i

]

set b
(l)
j→i = pZj |X ⊗

( ⊗
k∈NC(j)\{i}

a
(l)
k→j

)
∀i ∈ V:

set p
(l)

Xi|Z
= η

[
a
(l)
i→j∗ × b

(l−1)
j∗→i

]
end while

2) BHT detection:
∀i ∈ V:

if log
∑

r1×pXi|Z∑
r0×pXi|Z

> log 1−q
q

then set ŝi = 1

else set ŝi = 0
end if

produced by using the FtV message (17) for every i ∈ V .
Namely,

p
(l)
Xi|Z = η

pXi ×
∏

k∈NV(i)

b
(l−1)
k→i

 ∀i ∈ V, (19)

To terminate the BP loop, we test the condition at every
iteration, which is given as

1

N

N∑
i=1

‖p(l)
Xi|Z − p

(l−1)
Xi|Z ‖

2
2

‖p(l)
Xi|Z‖

2
2

≤ ε (20)

where ε > 0 is a constant for the termination condition. If
the condition given in (20) is satisfied, the BP loop will be
terminated. After the BP termination, we can simply express
the marginal posterior of Xi by dropping out the iteration
index l, i.e., pXi|Z.

B. BHT Detection using Sampled Marginal Posterior
We perform the hypothesis test in (6) by scaling it in

logarithm. Using the sampled marginal posterior obtained
from the BP part, an nonparametric implementation of the
hypothesis test in (6) is given as

log

∑
r1 × pXi|Z∑
r0 × pXi|Z

H1

≷
H0

log
1− q
q

(21)

where × is elementwise multiplication of vectors, and r0, r1 ∈
RNd are reference vectors from the signal prior knowledge,
defined as

r0 :=
pXi|Si=0

pXi
, r1 :=

pXi|Si=1

pXi
. (22)

This BHT-based detector is only compatible with the nBP
approach because the BHT detection requires full information
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TABLE I
LIST OF ALGORITHMS IN THE PERFORMANCE VALIDATION

Algorithms Complexity Type of Φ Type of Prior PDFs Utilized Techniques

BHT-BP (Proposed) O(N logN +KM) LDPC-like Spike-and-dented slab nBP
CS-BP [13] O(N logN) LDPC-like Spike-and-dented slab nBP

SuPrEM [16] O(N logN) LDF Two-layer Gaussian with Jeffery EM, pBP
BCS [12] O(NK2) LDPC-like Two-layer Gaussian with Gamma EM
l1-DS [6] Ω(N3) Std. Gaussian - CVX opt.

on the multimodally distributed posterior of Xi which cannot
be provided through the pBP approach.

C. Computational Complexity
In our uniform sampling-based nBP, the density-messages

are vectors with size Nd. Therefore, the decoder requires
O(LNd) flops to calculate a VtF message a

(l)
i→j and

O(NLNdM logNd) flops for a FtV message b
(l)
j→i per iteration.

In addition, the cost of the FFT-based convolution given
in (18) spends O(Nd logNd) flop if we assume the row
weight is NL/M in average sense. Hence, the per-iteration
cost of the uniform sampling-based nBP is O(NLNd +
M NLNd

M logNd) ≈ O(NLNd logNd) flops. For the BHT
detection, the decoder requires O(Nd) flops to generate the
likelihood ratio of (21), which is much smaller than that of
the BP part. Therefore, the cost for the BHT detection can be
ignored.

For the linear MMSE estimation to find nonzeros on the
support, the cost can be reduced upto O(KM) flops by apply-
ing QR decomposition [34]. Thus, the total complexity of the
proposed algorithm is O (l∗ ×NLNd logNd +KM) flops
and it is further simplified to O(l∗×N+KM) since L and Nd
are fixed constants. In addition, it is known that the message-
passing process is applied recursively until messages have
been propagated along with every edge in the tree-structured
graph, and every signal element has received messages from all
of its neighborhood, which requires l∗ = O(logN) iterations
[13],[25],[42]. Therefore, we finally obtainO(N logN+KM)
for the complexity of the proposed algorithm, BHT-BP.

V. PERFORMANCE VALIDATION

We validate performance of the proposed algorithm, BHT-
BP, with extensive experimental results. Four types of experi-
mental results are discussed in this section, as given below:

1) Threshold (MN )∗ for BP convergence,
2) Support detection performance over SNR,
3) MSE comparison to recent algorithms over SNR,
4) Empirical calibration of BHT-BP over Nd and L.

The support detection performance is evaluated in terms of the
success rate of perfect support detection, defined as

Psucc := Pr{ŝ = s|Z = z}, (23)

and the MSE comparison to the other algorithms is performed
in terms of normalized MSE, given as

MSE :=
‖x̂0 − x0‖22
‖x0‖22

. (24)

We generate all the experimental results by averaging the
measures, given in (23) and (24), with respect to the signal
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Fig. 5. The entropy phase transition curve over the sampling rate M
N

for
a variety of the signal length N and the sparsity rate q where we set the
threshold (M

N
)∗ to the point achieving 1

N

∑N
i=1 h(Xi|Z = z) ≤ 10−3,

which is given in Table II. These curves are information entropy of the ap-
proximate marginal posterior, f (l)BP(Xi)

(x|Z = z), drawn with the parameters
σX = 5, xmin = σX/4, Nd = 256, ε = 10−5, λ = 10−4 and a noiseless
setup. In addition, we set the column weight of the matrix Φ to L = 4 for
N = 512, 1024, and L = 5 for N = 4096, in this experiment.

x0 and the additive noise w using Monte Carlo method6. In
addition, we define a SNR measure used in the experiment as

SNR := 10 log10

E‖ΦX‖22
Mσ2

W

(dB) . (25)

For a comparison purpose, in this validation, we include
several recent Bayesian algorithms, CS-BP [13], BCS [12],
and SuPrEM [16], as well as an l1-norm based algorithm,
l1-DS [6]7. We provide brief introduction to the Bayesian
algorithms in Appendix I for interested readers. In this val-
idation, BHT-BP and CS-BP use the spike-and-dented slab
prior, given in (3), by applying the uniform sampling, i.e.,
pXi := Samp{fXi(x), Ts}. Worth mentioning here is that
the nBP-based solvers, such as BHT-BP and CS-BP, are only
compatible with such an unusual signal prior, like the spike-
and-dented slab prior, which is one main advantage of the
nBP solvers. For the measurement matrix Φ, we basically
consider a LDPC-like matrix in BHT-BP, CS-BP and BCS.
In case of SuPrEM, a LDF matrix is used for the measure-
ment generation8, and l1-DS is performed with the standard
Gaussian matrix as a benchmark of the CS recovery. For fair
compariosn, all types of the matrices Φ are equalized to have

6At every Monte Carlo trial, we realize x0 and w to produce a measurement
vector z given the matrix Φ.

7The source codes of those algorithms are obtained from each author’s
webpage. For CS-BP, we implemented it by applying the uniform sampling-
based nBP introduced in Section IV-A.

8SuPrEM is only compatible with the LDF matrix which was autonomously
proposed in the work [16].
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Fig. 6. Experimental result for the success rate of support detection over SNR for a variety of xmin where we consider the case of N = 1024, L = 5, and
σX = 5. In Fig.6, we plot the success rate of of BHT-BP (proposed) and CS-BP [13] together with the analytic bound for the case of Φ = I, where the
nBP part of the both algorithms is implemented with Nd = 256, ε = 10−5, λ = 10−4.

TABLE II
EMPIRICAL THRESHOLD (M/N)∗ FOR THE BP CONVERGENCE

Sparsity rate N = 512 N = 1024 N = 4096

q = 0.05 0.325 0.25 0.25
q = 0.1 0.575 0.50 0.475

the same column energy, i.e. E
[
‖φcolumn‖22

]
= L; therefore,

each entry φji of the standard Gaussian matrix is drawn from
N (φji; 0, LM ). Table I summarizes all the algorithms included
in this performance validation.

A. Threshold (MN )∗ for BP Convergence,
We claimed the advantage of BHT-BP over CS-BP in

support detection with the rate M
N above a certain threshold

(MN )∗ in Section III-B. Given the rate M
N ≥ (MN )∗, a BP

approximation of the marginal posterior f (l)
BP(Xi)

(x|Z = z)
contains sufficiently less uncertainty on the true value x0,i. We
empirically find the threshold

(
M
N

)∗
in a noiseless setup using

the average information entropy, 1
N

∑N
i=1 h(Xi|Z = z) which

measures uncertainty of f (l)
BP(Xi)

(x|Z = z). The empirical
entropy curves in Fig.5 show sharp phase transition as M

N
increases. From the result, we set the threshold to the point
achieving 1

N

∑N
i=1 h(Xi|Z = z) ≤ 10−3, which is given

in Table II for a variety of the signal length N and the
sparsity rate q. We also note from Fig.5 that the entropy phase
transition becomes sharper as N increases.

B. Support Detection Performance over SNR
Fig.6 depicts an experimental comparison of the success

rate, defined in (23), between BHT-BP and CS-BP over SNR
for a variety of xmin. According to the threshold (MN )∗ given
in Table II, the BP convergence is achieved only for the cases
of (a),(b),(c),(f) in Fig.6. Therefore, we confine our discussion

here to such cases, claiming the advantage of BHT-BP over
CS-BP in support detection.

1) SNR gain by BHT support detection : The empirical
results of Fig.6 validate our claim that BHT-BP has more
robust support detection ability against noise, than CS-BP.
Indeed, Fig.6 shows that BHT-BP enjoys a remarkable SNR
gain from CS-BP in the low SNR regime. This SNR gain
is from difference of the detection criterion as discussed in
Section III-A. As SNR increases, the success rate of the both
algorithms gradually approach to one. In the high SNR regime,
BHT-BP and CS-BP do not have notable difference in the
performance.

We support the advantage of BHT-BP over CS-BP with
Fig.7. This figure depicts an exemplary marginal posterior,
obtained from the BP part, according to two different SNR
levels, SNR=10 and 30dB, where the true value of Xi is
x0,i = −4.0; hence si = 1.
• When SNR is sufficiently high such as the SNR=30 dB

case, both of the algorithms can successfully detect the
state Si from the posterior since the probability mass is
concentrated on the true value x0,i.

• When SNR is low such as the SNR=10 dB case, however,
CS-BP may result in misdetection because the point-mass
at x = 0 is higher than the point-mass at x0,i = −4.0
due to the additive noise, leading to ŝi = 0. In contrast,
the BHT detector decides the state Si by incorporating
all the spread mass due the noise. This is based on that
the likelihoods fZ(z|Hsi), which construct the hypothesis
test of (5), is associated with the entire range of the x-axis
rather than a specific point-mass. Therefore, BHT-BP can
generate ŝi = 1 and success in the detection even when
SNR is low.

2) Analytic Bound of BHT detection when Φ = I: Fig.6
includes an analytic bound of the BHT detection for the case
that the measurement matrix is an identity matrix, i.e. Φ = I,
such that there is no performance degradation from lack of
measurements. Therefore, this bound provides a performance
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Fig. 7. Example of the approximate marginal posterior f (l)BP(Xi)
(x|Z = z),

obtained from the nBP part, for two different SNRs: 10 dB and 30 dB, where
the true value of Xi is x0,i = −4.0, and the other parameters are set to
M/N = 0.5, q = 0.05, σX = 5, l∗ = 30, and the minimum value is
xmin = σX/4.

benchmark of the BHT detection when M
N ≥

(
M
N

)∗
, because

exact marginal posteriors are given to the BHT detector under
the assumption of Φ = I. We refer to Appendix II for
the detailed derivation of the analytic bound. This derivation
reveals that the bound is a function of q, xmin, and SNR. In
Fig.6, it is clearly shown that the empirical points are fit into
the analytic bounds as M

N increases.
3) Support detection with xmin: Fig.6 also shows the

support detection behavior according to xmin, confirming that
xmin is a key parameter in the NSR problem. From Fig.6,
we have the observation as given in Note 3.

Note 3 (Empirical observations for xmin):
• All the success rate curve shift toward high SNR region

as xmin decreases.
• Extremely, when xmin = 0, the experimental points stay

near zero even with M
N ≥

(
M
N

)∗
and high SNR.

These empirical observations intuitively tells us that contribu-
tion of xmin is as significant as SNR in the NSR problem,
implicating that we need SNR→ ∞ for the perfect support
recovery if the signal has xmin → 0. Note that our interpre-
tation on the result here shows good agreement with not only
our analytic bound under the assumption of Φ = I, but also
the information-theoretical results [27],[28],[30] showing that
support recovery is arbitrarily difficult by sending xmin → 0
even as SNR becomes arbitrarily large.

C. MSE Comparison to Recent Algorithms over SNR
In Fig.8 and Fig.9, we provide an MSE comparison among

the algorithms listed in Table I and the support-aware oracle
estimator over SNR for a variety of (MN , q), where MSE∗

denotes the performance of the support-aware oracle estimator,
given as

MSE∗ :=

Tr

[(
1
σ2
X

I + 1
σ2
W

ΦT
s Φs

)−1
]

‖x0‖22
. (26)

In this section, we discuss the comparison result by cate-
gorizing the setup of (MN , q) into two cases: the “region of
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Fig. 8. MSE comparison among the algorithms (BHT-BP (Proposed), CS-
BP [13], SuPrEM [16], BCS [12], l1-DS [6]) over SNR where we consider
signal recovery with M

N
≥
(
M
N

)∗
. We simulate the MSE performance under

N = 1024, L = 5, σX = 5, xmin = σX/4. The nBP part embedded in
BHT-BP (proposed) and CS-BP is implemented with Nd = 128 and ε =
10−5, λ = 10−4.

M
N ≥

(
M
N

)∗
” and the “region of MN <

(
M
N

)∗
” cases, according

to the empirical threshold
(
M
N

)∗
given in Table II, where we

fix the parameters N = 1024, L = 5, σX = 5, xmin = σX/4.
1) MSE performance in region of M

N ≥
(
M
N

)∗
: With

Fig.8, we argue that in the region of M
N ≥

(
M
N

)∗
, BHT-BP

catches up with the oracle performance, MSE∗, beyond the
SNR point allowing the accurate support finding. Fig.8-(b)
and -(c) validate our claim by showing that the BHT-BP curve
coincides very closely with the MSE∗ curve beyond a certain
SNR point. Worth mentioning here is that the SNR point,
which starts to achieve the oracle MSE∗, nearly corresponds
to the point which attains the perfect support detection with
Psucc ≈ 1.0 in Fig.6. For the cases of Fig.8-(a) and -(d), the
BHT-BP curve does not fit to the oracle MSE∗ at the high SNR
region. The reason is coming from lack of measurements for
the BP convergence. Indeed, it is observed from Fig.5 that the
entropy points corresponding to (MN , q) of Fig.8-(a) and -(d)
is in not a steady region but a transient region. This means
that the corresponding posterior includes residual uncertainty
on Xi. Although this residual uncertainty does not remarkably
work in the low SNR region due to noise effect, it is gradually
exposed as SNR increases, degrading the MSE performance
in the high SNR region.

In Fig.8, the CS-BP curve forms an error floor as SNR
increases, leading to a MSE gap from BHT-BP in the high
SNR regime. This MSE gap is mainly caused by the quan-
tization error of the nBP. Since CS-BP obtains its estimate
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Fig. 9. MSE comparison among the algorithms (BHT-BP (Proposed), CS-
BP [13], SuPrEM [16], BCS [12], l1-DS [6]) over SNR where we consider
signal recovery with M

N
<
(
M
N

)∗
. We simulate the MSE performance under

N = 1024, L = 5, σX = 5, xmin = σX/4. The nBP part embedded in
BHT-BP (proposed) and CS-BP is implemented with Nd = 128 and ε =
10−5, λ = 10−4.

directly from the sampled posteriors, the quantization error is
unavoidable, leading to an error floor. The level of the floor
can be approximately predicted by the MSE degradation of
the quantization, given as

E ‖QTs [XS]−XS‖22
E||XS||22

=
T 2
s /12

σ2
X

=
3

N2
d

(27)

where QTs [·] is the quantization function with the step size
Ts given in (14), and XS is a random vector on the signal
support S. Under our joint detection-and-estimation structure,
the LMMSE estimator (13) enables BHT-BP to go beyond the
error floor.

For SuPrEM, the performance is poor to the other algo-
rithms in the experimental results of Fig.8. But, it is not
surprising since SuPrEM is basically for signals having fixed
signal sparsity K.9 Indeed, the SuPrEM algorithm requires the
sparsity K as an input parameter. However, in many cases,
the signal sparsity K is unknown and random. In our basic
setup, recall that we assumed signals having Binomial random
sparsity, i.e., K ∼ B(k;N, q). Therefore, naturally SuPrEM
underperforms the other algorithms in this experiment. l1-DS
and BCS are comparable to BHT-BP, but l1-DS has a certain
SNR loss from the BHT-BP over all range of SNR, and BCS
shows an error floor at high SNR region.

2) MSE performance in region of M
N <

(
M
N

)∗
: In

Fig.9, we investigate the MSE comparison in the region of
M
N <

(
M
N

)∗
. Under the setup of M

N = 0.25, q = 0.1, every
algorithm generally does not work as shown in Fig.9-(a). From
the setup of M

N = 0.375, q = 0.1, all the algorithms begin to
find signals but, BHT-BP underperforms BCS, L1-DS, and
SuPrEM in this setup, as shown in Fig.9-(b). The reason is
that in the region of M

N <
(
M
N

)∗
, the BP does not converge

properly due lack of the measurements such that probability
mass on the true value x0,i is not dominant in the approximate
marginal posteriors, as we discussed in Section III-B. From
the results, we conclude that BHT-BP is not advantageous

9We empirically confirmed that when K is fixed, SuPrEM works as
comparable to BHT-BP even though we does not include that result in this
paper.
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Fig. 10. MSE comparison of BHT-BP (proposed) and CS-BP [13] with clean
measurements (SNR=50dB) over Nd ∈ {8, 16, 32, 64, 128, 256, 512, 1024}
for a variety of M

N
, q, where we plot the MSE curves together with the MSE

degradation by the quantization error, given in (27). In this experiment, we
consider a case of N = 1024, L = 5, xmin = σX/4, ε = 10−5, λ =
10−4.

over the other algorithms excluding CS-BP when sufficient
measurements is not maintained for the signal sparsity.

D. Empirical Calibration of BHT-BP over Nd and L
1) Number of samples Nd for nBP : From the discussion in

Section IV-C, one can argue that the complexity of BHT-BP is
highly sensitive to the number of samples Nd; therefore, BHT-
BP cannot be low-computational in a certain case. It is true, but
we claim that the effect of Nd is limited in the BHT-BP recov-
ery. To support our claim, Fig.10 compares MSE performance
of BHT-BP, CS-BP, and the support-aware oracle estimator
as a function of Nd in a clean setup (SNR=50 dB) where we
plot the MSE curves together with the MSE degradation by the
quantization error, given in (27). From Fig.10, we confirm that
BHT-BP can achieve the oracle performance if Nd is beyond a
certain level and (MN , q) belongs to the success phase, whereas
CS-BP cannot provide the oracle performance even as Nd
increases. Consequently, Nd does not significantly contribute
to the MSE of the BHT-BP recovery once Nd exceeds a certain
level. This result implies that the complexity of the BHT-
BP recovery can be steady with a constant Nd in practice.
Therefore, BHT-BP can holds the low-computational property
given by the BP philosophy. In addition, we confirm from
Fig.10 that the MSE of CS-BP is bounded by (27).

2) Column weight L of LDPC-like matrices : Another
interesting question is how to determine the column weight
L of the LDPC-like matrix Φ for BHT-BP. Fig.11 provides
an answer for this question by showing the MSE of the
BHT-BP recovery as a function of L, where we consider
the recovery from clean measurements (SNR= 50 dB). When
M
N is sufficiently large, for example M

N = 0.75 as shown in
Fig.11-(b), the BHT-BP recovery generally becomes accurate
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Fig. 11. MSE performance of the BHT-BP recovery over the column
weight L of the measurement matrix Φ where we set N = 1024, Nd =
128, xmin = σX/4, ε = 10−5, λ = 10−4 and consider the recovery from
clean measurements (SNR= 50dB).

as L increases. Then, the accuracy is almost constant after
a certain point L = L∗. On the other hands, when M

N is
not sufficient, for example M

N = 0.5 as shown in Fig.11-
(a), the recovery accuracy rather can be degraded beyond a
certain point L∗. The reason is that when M

N is small, the
large L spoils the tree-structured property of the matrix Φ,
reducing the accuracy of the marginal posterior approximation
by BP [25],[26]. Therefore, L should keep as small as possible
once the desirable recovery accuracy is achieved. In the case
of Fig.11, we empirically set L∗ = 6, 5 for M

N = 0.5, 0.75
respectively.

From the calibration shown in Fig.10 and Fig.11, we support
our claim that the computational cost of BHT-BP can be
O(N logN + KM) in practice by fixing L and Nd, as we
discussed in Section IV-C.

VI. CONCLUSION

The theoretical and empirical research in this paper
demonstrated that BHT-BP is powerful as not only a low-
computational solver, but also a noise-robust solver. In BHT-
BP, we employed a joint detection-and-estimation structure
consisting of the BHT support detection and the LMMSE
estimation for the nonzeros on the signal support. We have
shown that the BHT-BP detects the signal support based on
a sequence of binary hypothesis tests, which is related to
the criterion of the minimum detection error probability. This
support detection approach brings SNR gain of BHT-BP from
CS-BP [13], which is an existing nBP-based algorithm, for
the support detection. In addition, we noted the fact that
BHT-BP effectively removes the quantization error of the nBP
approach in the signal recovery. We have claimed that our joint
detection-and-estimation strategy prevents from degrading the
MSE by the quantization error. We have supported the claim
based on an empirical result that the performance of BHT-BP
achieves the oracle performance when sufficient measurements
is maintained for the signal sparsity. Furthermore, we confirm
the impact of xmin on the noisy sparse recovery (NSR)
problem via BHT-BP. Based on the empirical evidence, we
showed that exact sparse recovery with small xmin is very
demanding unless sufficiently large SNR is provided, which is
an agreement with the result of [27],[28],[30] that emphasizes
the importance of xmin in the NSR problem.

APPENDIX I
BRIEF INTRODUCTION TO

RECENT BAYESIAN ALGORITHMS

In this appendix, we provide a brief introduction to some
previously proposed Bayesian algorithms for the NSR prob-
lem: BCS [12], CS-BP [13], SuPrEM [16]. These algorithms
have been developed by applying several types of signal prior
PDFs and statistical techniques. These algorithms are included
for simulation based comparison in Section V.

A. BCS Algorithm
Ji et al. proposed a Bayesian algorithm based on the sparse

Bayesian learning (SBL) framework, called BCS [12]. In the
SBL framework, a two-layer hierarchical Gaussian model has
been invoked for signal estimation. Namely, the signal prior
PDF takes the form of

fX(x|a, b) =

N∏
i=1

∫ ∞
0

N (xi; 0, γ−1
i )fΓ(γi|a, b)dγi, (28)

where fΓ(γi|a, b) is a hyper-prior following the Gamma dis-
tribution with its parameters a, b. Then, the MAP estimate x̂0

of the signal can be analytically expressed as a function of the
hyperparameter Γ = [γ1, ..., γN ], the measurement matrix Φ,
and the noisy measurements z.

In BCS, the hyperparameter Γ is estimated by performing a
type-II maximum likelihood (ML) procedure [11]. Specifically,
the type-II ML finds the hyperparameter Γ maximizing the
evidence PDF, i.e., fY(y|Γ) =

∫
fY(y|X = x)fX(x|Γ) dx.

The expectation maximization (EM) algorithm can be an
efficient approach for the type-II ML procedure. The strategy
of EM is to derive a lower bound on the log evidence PDF,
log fY(y|Γ), at the E-step, and optimize that lower bound to
find Γ at the M-step. The E-step and M-step are iterated until
the lower bound becomes tighter.

The BCS algorithm is input parameter-free, which means
this algorithm is adaptive to any types of signals and noise
level since BCS properly catches the hyperparameter γ and the
noise variance σ2

W during the recovery. In addition, the BCS
algorithm is well compatible with any type of the measurement
matrices.

B. CS-BP Algorithm
Baron et al. for the first time proposed the use of BP to

the sparse recovery problem with LDPC-like measurement
matrices [13]. The algorithm is called CS-BP. Signal model of
CS-BP is a compressible signal which has a small number of
large elements and a large number of near-zero elements. The
authors associated this signal model with a two-state mixture
Gaussian prior, given as

fX(x) =

N∏
i=1

[
qN (xi; 0, σ2

X1
) + (1− q)N (xi; 0, σ2

X0
)
]
, (29)

where q ∈ [0, 1) denotes the probability that an element has
the large value, and σX1

� σX0
. Therefore, the prior is fully

parameterized with σX0
, σX1

, and q. CS-BP performs MAP or
MMSE estimation using marginal posteriors obtained from BP
similarly to the proposed algorithm, where the authors applied
both nBP and pBP approaches for the BP implementation. The
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recovery performance is not very good when measurement
noise is severe since the CS-BP was basically designed to
work under noiseless setup.

C. SuPrEM Algorithm
Most recently, Akcakaya et al. proposed SuPrEM under

a framework similar to BCS which uses the two-layer hier-
archical Gaussian model for the signal prior. SuPrEM was
developed under the use of a specific type of hyper-prior
called the Jeffreys’ prior fJ (τi) = 1/βi, βi ∈ [Ti,∞] ∀i ∈ V .
This hyper-prior reduces the number of input parameters while
sparsifying the signal. The overall signal prior PDF is given
as

fX(x) =

N∏
i=1

∫ ∞
0

N (xi; 0, βi)fJ (βi)dβi. (30)

SuPrEM utilizes the EM algorithm to find each hyperparam-
eter βi like the BCS algorithm. However, differently from
BCS that calculates the signal estimate x̂0 using matrix opera-
tions which include matrix inversion, SuPrEM elementwisely
calculates the signal estimate from βi via a pBP algorithm.
Therefore, SuPrEM can be more computationally efficient than
BCS.

The measurement matrix used in SuPrEM is restricted to an
LDPC-like matrix which has fixed column and row weights,
called low-density-frames (LDF). They are reminiscent of the
regular LDPC codes [24]. In addition, the signal model is
confined to K-sparse signals consisting of K nonzeros and
N −K zeros since SuPrEM includes a sparsifying step which
chooses the K largest elements at each end of iteration. The
noise variance σ2

W is an optional input to the algorithm.
Naturally, if the noise variance is provided, SuPrEM will
produce an improved recovery performance.

APPENDIX II
SUCCESS RATE ANALYSIS OF THE BHT DETECTION

WHEN Φ = I

Under the assumption of Φ = I, the measurement channel
can be decoupled to N scalar Gaussian channels which are
Zj = Xi + Wj ∀i, j ∈ V where clearly i = j holds.
Accordingly, the success rate, given in (23), can be represented
as the product of the complementary probability of the state
error rate (SER) given in (7), i.e., Psucc = (1− PSER)N .
Then, the problem is reduced to the analysis of the rate PSER
(see Fig.4). The conditional SER given the hypothesis Hsi is
calculated from the likelihood PDF fZj (z|Hsi) as following:

PSER|Hsi := Pr{ŝi 6= si|Hsi} =

∫
DHsi

fZj (z|Hsi)dz, (31)

where we define the decision regions with a threshold γ′ as

DH0 := {|z| < γ′} and DH1 := {|z| ≥ γ′}, (32)

and DH0
= DH1

vice versa. The likelihood PDFs can be
obtained from

fZj (z|Hsi) =

∫
fZj (z|Xi = x)fXi(x|Hsi)dx (33)

as we have done in (5), where fZj (z|Xi = x) = N (z;x, σ2
W )

under the scalar Gaussian channel. Then, the likelihood given

H0 simply becomes fZj (z|H0) = N (z; 0, σ2
W ). In contrast,

the likelihood conditioning H1 is not straightforward due to
the dented slab part of our prior in (3), which is given by

fZj (z|H1) ∝
∫
|x|≥xmin

N (z;x, σ2
W )N (x; 0, σ2

X)dx (34)

+ λ

∫
|x|<xmin

N (z;x, σ2
W )dx

= N (z; 0, σ2
W + σ2

X)
(

1− 1
2 erf

(
A(z)√

2

)
− 1

2 erf
(
B(z)√

2

))
+
λ

2

(
erf
(
xmin−z
σW
√

2

)
+ erf

(
xmin+z
σW
√

2

))
where normalization is required to satisfy

∫
fZj (z|H1)dz = 1,

and the functions A(z), B(z) are respectively described as

A(z) :=
xmin

(
1

σ2
W

+ 1

σ2
X

)
− z

σ2
W√

1

σ2
W

+ 1

σ2
X

, B(z) :=
xmin

(
1

σ2
W

+ 1

σ2
X

)
+ z

σ2
W√

1

σ2
W

+ 1

σ2
X

.

In this problem, an analytical expression of γ′ is unattainable
from the equality condition (9) since the PDF fZj (z|H1)
involves the error function terms as shown in (34). Therefore,
we utilize a root-finding algorithm to compute γ′. We use the
SNR definition given in (25) such that SNR = 10log10

qLσ2
X

σ2
W

under the assumption of Φ = I. We specify the decision
regions (32) with γ′, finalizing this analysis by computing the
condition SERs, which are given as

PSER|H0
= 1− erf

(
γ′

σW
√

2

)
, (35)

PSER|H1
= 2

∫ γ′

0

fZj (z|H1)dz (36)

where the calculation of PSER|H1
requires a numerical integra-

tion owing to the error function terms in fZj (z|H1). Using (7),
(35), and (36), we can evaluate the SER, then obtaining the
success rate of the BHT detection when Φ = I. We compare
this analysis result to the empirical results in Section V-B.
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1. INTRODUCTION

The band gap and band-edge positions of semiconductors
are of importance in photoelectrochemical and photocatalytical
applications.[1] Iron oxide, particularly α-Fe2O3 has several
advantages over other semiconductor materials when used to
realize devices with an optical band gap of approximately
2.00 eV. It possesses excellent chemical stability over a
broad range of pH values, an absorption spectrum in the
wavelength region between 600 and 295 nm,[2] is abundantly
available in the earth’s crust, and is inexpensive and non
toxic.[3] This makes α-Fe2O3 an attractive candidate for
photoelectrochemical [PEC] water splitting,[4] optical limiting,[5]

and optoelectronic applications.[6] Most of these applications
require a tunable optical band gap for improved performance,
e.g., an optical band gap of around 2.46 eV is necessary for

water photocatalysis while using α-Fe2O3 without the
application of any bias voltage.[7] In this light, realizing a
blue shift in the band gap of hematite by an energy of about
0.3 to 0.6 eV can make hematite an ideal anode material for
photocatalytic oxidation of water as well.[1,7] 

In applications wherein the optical band gap of α-Fe2O3

requires to be greater than 2.00 eV, control of the crystallite
size/thickness can enables tuning of the optical band gap.
Similar to the optical band gap, the refractive index of
materials is also an important factor in several optical
designs/applications.[8,9] The performance of many solid
state devices such as integrated optical emissive displays,
optical sensors, integrated optical circuits, and light-emitting
diodes can be improved by applying a high refractive index
film/coating on the light emitting/sensing portion of the
devices.[10-15] In fact, both the optical band gap and refractive
index depend upon the crystallite size and thickness of the
film. 

In the backdrop of controlling crystallite size, nanostructures

Dopant-free hematite (α-Fe2O3) films are formed at a liquid-vapor
interface by means of an easy method in order to control the band
gap and refractive index of the films. The α-Fe2O3 films after being
transferred to a glass substrate are studied for their structural and
optical properties. Control over the thickness of the films in the
range from 75 to 400 nm and the constituent nanocrystallite size
from 3 to 46 nm is achieved by controlling the synthesis
parameters. By controlling the film thickness, crystallite size, and
crystallinity of dopant-free α-Fe2O3 films, the optical band gap is
increased significantly (by ≈ 0.64 eV) from 2.30 to 2.94 eV, along
with increase in the refractive index from 1.35 to 2.8. The
observed increase in the optical band gap is explained on the
basis of change in lattice symmetry (via change in the c/a ratio) of
α-Fe2O3 crystallites. 

Keywords: oxide materials, optical materials, α-Fe2O3 thin films,
band gap, and optical properties 
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of α-Fe2O3 have been synthesized by numerous methods,[16-23]

but the practical application of these methods has been
restricted because of the high cost of synthesis equipment,
limitations in achieving a large surface area, and uniform
deposition of film.[24-26] Thus, a facile and cost effective
method providing easy tuning of the optical band gap and
refractive index of α-Fe2O3 film is highly desirable. The
techniques reported earlier[27-29] for band gap engineering
requires doping of other elements or the fabrication of
nanocomposites, which are disadvantageous in terms of
stability and cost effectiveness. Previously, we have reported
a novel technique for the synthesis of undoped α-Fe2O3 films
on the surface of a precursor solution at low temperature.[30]

Here, the same method is adopted for the tuning of the
optical properties of the band gap and refractive index of
undoped α-Fe2O3 films. The optical properties of the films
depend upon their thickness and crystallite size, and this
method enables easy control over the thickness and crystallite
size of the film and thus on the optical properties. In the
present study, unlike the case of the quantum confinement
effect on the band gap,[1,29] we observed that the variation in
the optical band gap of film is dependent upon the change in
lattice symmetry caused by lattice modification. When
compared with reported band gap values,[31-33] a larger
variation in the optical band gap of undoped α-Fe2O3 film is
observed, which is attributed to the small crystallite size and
partial amorphous nature of the film. The variation in
refractive index is explained in terms of the packing density

of α-Fe2O3 films, which is easily controlled by the synthesis
parameters.

2. EXPERIMENTAL PROCEDURE

Floating films of α-Fe2O3 were formed on a liquid-vapor
interface. A mixed solution containing 24.0 mM of FeCl2

(purity 99.99%, Sigma Aldrich) and 22.0 mM of FeCl3·
6H2O (purity 99.99%, Sigma Aldrich) was used as the
precursor solution.

The floating films were transferred to glass substrates that
were annealed in a horizontal tube furnace in presence of
argon gas. The variation in optical properties of the films
was studied with the following variations in the synthesis
parameters, i.e., (i) dose (vol. %) of NH3, (ii) concentration
of polyvinyl alcohol (PVA), and (iii) the annealing
temperature. The dose of NH3 vapor was varied from 2%
(40 cm3) to 4% (80 cm3) and then to 6% (120 cm3) at a fixed
(32 μM) concentration of PVA. The concentration of PVA
was varied from 8 to 32 and then to 80 μM for a fixed dose
of NH3 at 6% (120 cm3). The films obtained in these two sets
of experiments were annealed at 500°C. In the third set, the
films formed for a fixed concentration (32 μM) of PVA and
a fixed dose of NH3 (6% (120 cm3)) were annealed at 200°C,
400°C, 600°C, 800°C, and 1000°C. These films were
characterized for a study of their structural and optical
properties. The structural properties were examined using an
x-ray diffractometer (XRD, PANalytical’s X’Pert-PRO) and

Fig. 1. (a) XRD patterns of α-Fe2O3 films obtained with 2%, 4%, and 6% NH3 doses. The films were annealed at 500°C. (b), (c), and (d) SEM
images of films formed with 2, 4, and 6% NH3 doses, respectively.
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a transmission electron microscope (TEM, JEOL, JEM
2100), the morphological properties were studied via a
scanning electron microscope (SEM, Hitachi, S-4700), and
the film thickness was examined using a Stylus profilometer.
The optical properties were studied using a UV-Vis-NIR
double-beam spectrophotometer (Perkin Elmer Lambda-
750) in the 250 - 900 nm wavelength range. 

3. RESULTS AND DISCUSSION

3.1 Variation in optical properties with NH3 dosage 

For all three sets of experiments, we analyzed the
morphological and structural changes in the films. We first
discuss the films formed under the condition when the NH3

dose was varied. Figure 1(a) shows the XRD images of films
formed for 2%, 4%, and 6% doses of NH3. The films were
investigated using XRD with a Cu Kα (1.54 Å) source and
scanning angles ranging from 20° to 65° with a step size of
0.01 at room temperature. The XRD plot shows diffraction
peaks corresponding to α-Fe2O3 (according to JCPDS-ICCD
PDF card No. 33-0664). Crystalline peaks around 32.4° and
35.4° correspond to the (104) and (110) planes of α-Fe2O3,
thereby indicating its hexagonal (corundum-type) structure.
The XRD shows that the intensity of the crystalline peaks
increases with NH3 dose which may be due to increasing
thickness of the α-Fe2O3 film as obtained by profilometer
data (Table 1). The increase in thickness of the α-Fe2O3 film
with increasing doses of NH3 is due to the presence of a large
number of NH3 molecule within the reaction chamber that

react with a large number of precursor ions (Fe3+/Fe2+) on the
solution surface, thereby resulting increased film thickness.
The average crystallite size (D) in α-Fe2O3 films is estimated
using Scherrer’s formula,[34] D = 0.9λ/β cosθ, where β
denotes the full width at half maximum and λ the wavelength
of x-rays. The average crystallite sizes with the corresponding
lattice parameters are listed in Table 1. As the film thickness
increases, the size of crystallites in the film also increases as
can be observed from Table 1, and this behavior is in
accordance with other reports.[35] Figures 1(b) to 1(d) show
the SEM images of α-Fe2O3 films prepared with 2, 4, and
6% NH3 doses respectively. The increasing thickness of the
film with increase in the NH3 dosage gives rise to clustering
of α-Fe2O3 particles, which leads to an increase in the film’s
roughness as indicated in SEM images (Figs. 1(b) to 1(d)). 

As regards the optical properties, a UV-Vis-NIR spectro-
photometer was used to observe the variation in the optical
band gap and refractive index of α-Fe2O3 films. The obtained
transmission (T) spectra with respect to variation in the NH3

dosage are shown in Fig. 2(a). There is a decrease in the
transmission of α-Fe2O3 films with increase in NH3 dosage.
This decrease in transmission is attributed to increase in the
size of the clustered nanocrystals and the thickness of the
film. Due to clustering of nanocrystallites, the increased
roughness of the films enhances the scattering of light and a
consequent reduced transmittance.[36] From the transmission
spectra, the optical absorption coefficient α was calculated
using[37] α = (1/t) ln (1/T), where t denotes the thickness of
the film. Further, the optical band gap (Eg) was calculated

Table 1. Values of NH3 dosage, PVA concentration, average thickness (t), crystallite size (D), lattice parameters (a = b, c), optical band gap
energy (Eg), refractive index (n), and relative density (ρf /ρb) for α-Fe2O3 films. 

Dose of
NH3

PVA 
Concentration

Thickness (t) 
(nm)

D (nm) 
from XRD

a = b (Å) c (Å) c/a (Å)
Eg 

(eV)
n 

(at 589 nm)
ρf /ρb

2% 32 μM 75 14.24 ± 0.81 5.06 13.92 2.75098 2.72 1.35 0.265

4% 32 μM 155 15.05 ± 1.01 5.05 13.88 2.74851 2.56 1.54 0.379

6% 32 μM 350 19.70 ± 2.30 5.05 13.86 2.74455 2.35 2.32 0.692

Fig. 2. (a) Transmission (T) spectra of α-Fe2O3 film obtained with 2, 4, and 6% doses of NH3 and (b) plots of (αhν)2 vs hν for these α-Fe2O3

films.
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using the Tauc relation[38] αhν = C1(hν − Eg)
n, where C1

denotes a constant, h the Planck’s constant, and the prefix
n = 0.5 for a direct optical band gap transition.

The calculated optical direct band gap values were 2.72,
2.56, and 2.35 eV, respectively, for 2%, 4%, and 6% doses of
NH3, and these results indicate that the optical band gap
decreases with increase in film thickness. We attribute that
the variation in the optical band gap to (i) stress-induced
distortion of the optical band gap by film/substrate interactions,
(ii) density of dislocation, (iii) quantum size effect, (iv)
change in grain boundary barrier height due to change in
crystallite size in the polycrystalline film,[39] and (v) change
in lattice symmetry.[31] In our case, as all the films were
prepared under similar synthesis conditions on similar
substrates, factors (i) and (ii) may be ignored. The quantum
confinement effect is mostly observed in crystallites with
sizes less than 6 nm (for α-Fe2O3 crystallites).[1,29,40] The
barrier height depends upon the crystallite size D according
to the expression[41] Eb = Ebo+ C(X − fD)2, where the original
barrier height Ebo, constant C, barrier width X, and f are
specific to the materials. In our case, the variation in the
crystallite size is negligible (~14 to 19 nm), and therefore,
we speculate that the change in barrier height is also
negligible in its contribution to the change in the band gap. 

Lattice modification has been reported to affect the
electronic energy levels of α-Fe2O3 nanocrystals.[31] A
decrease in the size of α-Fe2O3 nanocrystallites is reported to
be equivalent to the application of negative pressure, which
is expected to lower the lattice symmetry owing to the
anisotropic nature of the α-Fe2O3 lattice with a consequent
increase in the axial ratios c/a, as can be observed from the
values listed in Table 1.[31] We note that size-induced lattice
modification (c/a) yields distinct electronic (or magnetic)
properties of α-Fe2O3 nanocrystals.[31] An increase in the c/a

ratio results in an increase in ionicity and Fe-O bond
separation during the anisotropic expansion of smaller size
crystallite. The most intense absorption peak of α-Fe2O3

[31,42]

is given by the expression E = −10Dq + 10B + 6C − 26B2/

10Dq, where 10Dq denotes the crystal field splitting, and B
and C the Racah parameters that describe the neighboring
covalency effect in a transition metal system.[31] The second-
order term (−26B2/10Dq) is extremely small compared to the
sum of the terms 10B and 6C according to the estimated
ligand field theory parameters.[31] Since the Racah parameters
B and C increase with decrease in nanocrystallite size under
low pressure,[42] the observed blue shift (band gap change) in
the absorption peak of the α-Fe2O3 film with reduced
crystallite size is likely the consequence of increase in the
magnitude of the Racah parameters.

To calculate the refractive index of α-Fe2O3 films, the
reflectance was determined by using the expression [42] R = 1
− [T exp(A)]1/2, where A denotes the absorption of the film.
Finally, the refractive index (n) of the films was calculated
using the approximation[43,44] n = [(1 + R) / (1 − R)] + [((4R)/
(1 + R)2) − (k)2]1/2, where k denotes the extinction coefficient
related to the absorption coefficient (α) as k = αλ/4π. We
observed that at a particular wavelength, the refractive index
of the film increases with the NH3 doses, as shown in Fig. 3.
The increase in refractive index with increasing film
thickness can be attributed to an increase in the packing
density of the film that is concurrent with increase in the film
thickness. As the film thickness increases, its porosity
decreases,[45] thereby resulting in increased refractive index
of the film. The increased size of the crystallites in the film
increases its density due to the reduced crystallite
boundaries[46-48] and consequently, this contributes to
increase in the refractive index. The film density was
calculated by using the Lorentz-Lorenz relation,[49] ρf /ρb =
[(nf

2 
− 1) (nb

2 + 2)]/[(nf
2 + 2) (nb

2 
− 1)], where ρf denotes the

density of the α-Fe2O3 film, ρb the density of bulk α-Fe2O3,
nf the refractive index of the film, and nb the refractive index
of bulk material (nb = 3.003 at λ = 633 nm).[36] For nf values
of 1.31, 1.47, and 2.01 corresponding to films formed with
2%, 4%, and 6% doses of NH3, respectively, the calculated
relative densities (ρf /ρb) are listed in Table 1. The results
indicate that with increase in the NH3 dose, the thickness as
well as the size of nanocrystallites in the α-Fe2O3 film
increases, which results in an increase in the packing density
and refractive index of the film. 

3.2 Variation in optical properties with PVA concentra-

tion

The XRD patterns of the films obtained with various PVA
concentration values are shown in Fig. 4(a). Here, the XRD
peak intensity decreases with increasing PVA concentration.
This decrease in the peak intensity is due to decrease in the
crystalline nature of film via the PVA capping effect.[50]

Based on calculations from the XRD data (Table 2), we
obtain the crystallite sizes for PVA concentrations of 8, 32,
and 80 μM as 26.80, 14.6, and 12.26 nm, respectively. The
SEM images in Figs. 4(b) to 4(d) also exhibit a change in the

Fig. 3. Refractive index (n) vs wavelength (λ) plots of α-Fe2O3 films
obtained with 2%, 4%, and 6% doses of NH3.
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Fig. 4. (a) XRD patterns and (b), (c), and (d) SEM images of α-Fe2O3 films formed at 8, 32, and 80 μM PVA concentrations, respectively. 

Fig. 5. TEM images of α-Fe2O3 films formed at 6% dose of NH3 with (a) 8, (b) 32, and (c) 80 μM PVA concentrations.

Fig. 6. (a) Transmission (T) spectra of α-Fe2O3 films formed at 8, 32, and 80 μM PVA concentrations, and (b) (αhν)2 vs hν plot of the films.
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morphology of the films with increasing concentration of
PVA. Figure 4(d) shows an aggregation of small nanoparticles,
which is confirmed by the XRD data and the TEM image in
Fig. 5(c). From the TEM image, it is observed that the larger
nanoparticles are aggregations of smaller nanoparticles, as
reported in a previous study.[30] Figures 5(a) to 5(c) show
TEM images corresponding PVA concentrations of 8, 32,
and 80 μM, respectively. It is clear from the TEM images
that small nanocrystallites aggregate with increasing PVA
concentration. We conclude that for a particular dose of NH3,
increasing the PVA concentration results in a decrease in the
nanocrystallite size (although they are aggregated). 

As regards optical properties, the α-Fe2O3 films show
increased transmission with increasing PVA concentration
from 8 to 32 μM, as shown in Fig. 6(a). The increased
transmission with increasing PVA concentration is due to
reduction in the crystallinity of the films. The crystallinity of
the film increases as the crystallites size increases because
the increased crystallite size results in the reduction of
nanocrystallites boundaries due to coalition of small
crystallites.[48] However in our case, the situation is opposite;
as the concentration of PVA is increased, the crystallite size
decreases, and hence, decreased crystallinity leads to
increased transmission. On the other hand, we observed that
for PVA concentrations ranging from 32 to 80 μM, the
transmission remains unchanged (Fig. 6(a)). This may be

due to increase in transmission being counteracted by
increase in light scattering. An increase in light scattering is
expected due to increasing roughness caused by the
aggregation of small nanocrystallites with increase in PVA
concentration. The blue shift in the transmission spectra
(Fig. 6(a)) with increasing concentration of PVA indicates an
increasing optical band gap in the α-Fe2O3 films. Figure 6(b)
shows the increase in the optical band gap from 2.37 to 2.54
and then to 2.57 eV corresponding to PVA concentrations of
8, 32, and 80 μM. In this case as well the band gap variation
can be explained on the basis of change in the lattice
symmetry in a manner similar to the case of NH3. The
parameters related to change in PVA concentration are listed
in Table 2. 

Next, we examine the change in the refractive index with
increasing PVA concentration. The refractive index decreases
with increasing PVA concentration, as shown in Fig. 7,
which is again due to variation in the density of the α-Fe2O3

films. In this case, the trend is opposite to that observed in
case when ammonia dosage is increased, i.e., the density of
the film decreases (Table 2) with increasing PVA concentration
unlike the case of increasing NH3 dosage. 

The density of the films decreases due to the increasing
porosity of α-Fe2O3 nanocrystals in the film with increasing
concentration of PVA.[51] The PVA molecules that are
flexible penetrate the voids between clusters of α-Fe2O3

nano crystallites, and when the films are annealed, the PVA
molecule evaporate leaving large voids within the α-Fe2O3

nanocrystallites, thereby making them mesoporous. This
increase in the porosity (decrease in packing density of α-
Fe2O3 films) with increasing PVA concentration results in a
decrease in the refractive index of the films. From the
application point of view, these mesoporous α-Fe2O3

nanostructures are highly desirable in many applications
such as lithium-ion batteries[52] gas sensors,[53] and
photochemical[54] and photoelectrochemical applications.[54] 

In the above mentioned set of experiments, we observed
that the synthesis parameters i.e., dosage of NH3 and PVA
concentration, significantly affect the optical properties of α-
Fe2O3 films. We also observed that annealing temperature is
also an important factor for the tuning of the optical
properties of the films,[55] and therefore we examined the
combined effect of annealing temperature along with
variation in these synthesis parameters in our third set of

Table 2. Values of PVA concentration, NH3 dosage, average thickness (t), crystallite size (D), lattice parameters (a = b, c), optical band gap
energy (Eg), refractive index (n), and relative density (ρf /ρb) for α-Fe2O3 films.

PVA
 concentration

Dose of
 NH3

Thickness (t) 
(nm)

D (nm) 
from XRD

a=b (Å) c (Å) c/a (Å) Eg (eV)
n

 (at 589 nm)
ρf /ρb

8 μM 6% 398 26.80 ± 2.82 4.98 13.55 2.72088 2.37 2.30 0.6857

32 μM 6% 401 14.60 ± 1.10 4.99 13.66 2.73747 2.54 2.13 0.6637

80 μM 6% 396 12.26 ± 0.87 5.02 13.78 2.74502 2.57 2.09 0.5323

Fig. 7. Refractive index (n) vs wavelength (λ) plots of α-Fe2O3 films
formed at 8, 32, and 80 μM PVA concentrations.
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experiments. As regards this set of experiments, we fixed the
NH3 and PVA concentrations and varied only the annealing

temperature, as discussed in following section.

3.3 Variation in optical properties with annealing tem-

perature

To study the effect of annealing temperature on the films,
we selected an α-Fe2O3 film formed at 6% dosage of NH3

and a PVA concentration of 32 μM. The α-Fe2O3 films were
annealed in an argon environment at 200°C, 400°C, 600°C,
800°C, and 1000°C. The films were characterized for
structural and optical properties as in the previous cases. We
observed that unheated films and those annealed at 200°C,
and 400°C exhibited no XRD peak. This is probably due to
the amorphous nature of the films below 400°C. Figure 8
shows the XRD patterns of films annealed at and above
400°C. Here, only the films annealed above 400°C exhibit
crystalline XRD peaks. Further, our calculation from XRD
data indicate that for the film annealed at 600°C, the average
crystallite size is 24 nm, and this size increased to 31 nm and
then to 46 nm for annealing temperatures of 800°C and
1000°C. The variation in the nanocrystallites sizes of the
samples annealed at 600°C, 800°C, and 1000°C can also be
observed in the SEM images shown in Fig. 9. 

Since no XRD peaks were observed for films annealed at
200°C and 400°C, in order to estimate the crystallite sizes in
these films, the corresponding TEM images (Fig. 10) were
processed by using Image J software package. These
samples exhibited nanocrystallite sizes of approximately

Fig. 8. XRD patterns of α-Fe2O3 films annealed at 400°C, 600°C,
800°C, and 1000°C.

Fig. 9. SEM images of α-Fe2O3 films annealed at (a) 600°C, (b)
800°C, and (c) 1000°C.

Fig. 10. TEM images of α-Fe2O3 films annealed at (a) 200°C, and (b)
400°C.



20 P. Kumar et al.

Electron. Mater. Lett. Vol. 11, No. 1 (2015)

3 nm (200°C) and 6 nm (400°C). The increase in crystallite
size with increasing annealing temperature indicates that the
crystalline particle size in the film can be varied by varying
either the dosage of NH3, concentration of PVA, or annealing
temperature. 

Figure 11(a) shows the transmission spectra of these films.
With increase in annealing temperature, the transmission
decreases and a red shift is observed. The decrease in the
transmission of α-Fe2O3 films with increased annealing
temperature is due to the increasing crystallite size with
increasing temperature and increasing roughness caused by
the formation of large nanocrystallites that increase
scattering.[56,57] The density of the crystallite boundaries in
the film decreases due to the increasing crystallite size
(crystallinity) as well as reflection, which enhances the
absorption, thereby leading to reduced transmission.[48,58-60]

However, the film in the SEM image (in Fig. 9(c)), appears
to be porous when compared with the films shown in Figs.
9(a) and 9(b); nevertheless, the film simultaneously (Fig.
11(a)) exhibits decreased transmission, which indicates that
the porosity may exist only at the surface of the film and the
overall porosity of the film does not affect the transmittance

as much the crystallinity of the film does. 
The optical band gaps for films annealed at 200°C, 400°C,

600°C, 800°C, and 1000°C temperatures are obtained as
2.94, 2.70, 2.58, 2.46, and 2.30 eV, respectively. The
maximum band gap of 2.94 eV is obtained for the sample
annealed at 200°C, which band gap value decreases with
increasing annealing temperature, as shown in Figs. 11(b)
and 11(c). 

As regards our experiments in varying the annealing
temperature, we can classify α-Fe2O3 films into two
categories: films that exhibit the quantum size effect as they
have crystallite sizes less than 5 or 6 nm and those that do
not exhibit the quantum size effect as they have relatively
larger crystallite sizes (their blue shift is due to only the
change in lattice symmetry). The crystallite-size dependence
of the optical band gap due to quantum confinement is
expressed by the equation[31] Eg = Eg

o + n2ħ2π2/2μR2 − 1.8 e2/

εR, where Eg
o can be assumed as the lowest value of the band

gap[29] obtained in our experiment, R denotes the size of the
crystallite, e the electronic charge, ε the dielectric constant,
and μ the effective electron and hole masses. It is known that
smaller crystallites in the film exhibit a larger optical band

Fig. 11. (a) Transmission spectra of α-Fe2O3 films annealed at 200°C, 400°C, 600°C, 800°C, and 1000°C, (b) plots of (αhν)2 vs hν of α-Fe2O3

films, (c) variation in optical band gap (Eg) with annealing temperature, and (d) optical band gap vs crystallite size for experimental and theoreti-
cal values.
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gap due to the quantum size effect and therefore, we
observed a blue shift in the 3 nm crystallite film (Fig.
11(d)).[29] In Fig. 11(d), we observe that the experimental
value of the band gap for the 3 nm crystallite size coincides
with the theoretical value, thereby indicating that this film
exhibits the quantum size effect. On increasing the
crystalline size above 3 nm by increasing the annealing
temperature, a deviation between experimental and theoretical
values is observed, as shown in Fig. 11(d). The reason for
this observed deviation is speculated to be due to the partial
amorphous nature [61] of α-Fe2O3 films along with the change
in the lattice symmetry of α-Fe2O3 crystallites. The resultant
absorption of photons is due to both the amorphous and
nanocrystalline phases of α-Fe2O3 particles, and hence, the
absorption edges in the experimental results exhibit a higher
blue shift than the theoretical values. 

As regards the second category of α-Fe2O3 films, other
studies have also reported variations in the band gap with
change in the annealing temperature due to change in lattice

symmetry.[32] In fact, the phase sharing of the octahedral
dimer and the electrostatic repulsion of the Fe3+ cation are
responsible for the trigonal distortion of the octahedran,
thereby giving rise to C3v-type symmetry.[33] With appropriate
thermal treatment, the crystallite size of the α-Fe2O3 films
increases and the structure relaxes to maximize the distance
between two iron cations in Fe2O9 dimers.[32] As the annealing
temperature is increased, the average crystallite size
increases, and hence, the optical band gap decreases (Fig.
11(c)). The variation in the crystallite size in α-Fe2O3 films
with annealing temperatures is shown in Fig. 12(a). Here,
the calculated c/a ratios corresponding to α-Fe2O3 films
annealed at 600°C, 800°C, and 1000°C are 2.749, 2.739, and
2.732, respectively. As the c/a ratio decreases with increasing
annealing temperature, the films exhibit structural relaxation,
which leads to decrease in the optical band gap.

Finally, the variation in the refractive index (1.7 to 2.8 at
589 nm) of these films formed with increasing annealing
temperature is shown in Fig. 12(b). As expected, the α-
Fe2O3 films show an increase in the refractive index with
annealing temperature.[62,63] The variation in the refractive
index with annealing temperature can be correlated with the
packing density of the films as in the previous cases. From
Fig. 13, we observe that the films annealed at lower
temperatures have lower packing densities than those
annealed at higher temperatures. 

The lower packing density at lower annealing temperatures
is due to the incorporation of oxygen during film growth,[36]

which creates voids on annealing. As the annealing
temperature increases, the increase in thermal energy
facilitates the coalition of small crystallites, which increases
the packing density of α-Fe2O3 films due to reduction in the
number of voids.[64,65] In conclusion, we note that our method
facilitates greater control over the tuning of the optical
properties of α-Fe2O3 films by varying either one, two or all
three process parameters, i.e., NH3 dosage, PVA concentration,

Fig. 12. (a) Plot of crystallite size (D) vs annealing temperature and (b) variation in refractive index (n) as a function of wavelength (λ) of the
unheated and annealed α-Fe2O3 films at different temperatures.

Fig. 13. Variation in refractive index (n) and relative density (ρf /ρb)
with annealing temperature.
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and annealing temperature. 

4. CONCLUSIONS 

We tailored the structural and optical properties of α-
Fe2O3 films formed on the surface of a precursor solution. In
our method the parameter of NH3 dosage can be used to
easily control the thickness of a floating α-Fe2O3 film on the
surface of a precursor solution, and the PVA concentration in
the precursor solution can be used to control the size of
nanocrystallites composing the film. Lattice modification
due to the change in lattice symmetry with the α-Fe2O3

crystallite size is speculated as the reason for the observed
shift in the band gap. Further, the refractive index also
changes due to change in the packing density of α-Fe2O3

films. The post-synthesis annealing temperature can be
varied to control the size of the resultant crystalline particles,
which can be utilized to further tune the optical band gap and
refractive index of α-Fe2O3 films. Our method can significantly
affect the optical band gap without the use of any dopant,
and therefore, the α-Fe2O3 films obtained using our method
are suitable for hydrogen generation from water via
photocatalysis without the application of a bias voltage. 
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