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Abstract 

Collision avoidance, or obstacle avoidance, is a fundamental problem dealt in autonomous navigation that 

allows unmanned vehicles, such as UAVs, to perform tasks in unknown environments. In this paper, we 

introduce simple and effective deep learning based collision avoidance that does not require any pre-acquired 

training dataset for learning. We take a method based on experiencing adverse events, or events that must not be 

repeated in the future. This is accompanied by an online, self-learning algorithm combining the concept of both 

reinforcement learning and supervised learning that allows UAV to gain experiences and learn by itself. 

Through taking both learning mechanism approach, we make agent learn fast that does not require any human 

efforts into gathering and labelling of training dataset. In the algorithm, two procedures are performed during its 

training phase; data gathering procedure and learning procedure. We run simulation tests on its effectiveness in 

its learning rates and its learning performance. Simulation results show that our system can achieve minimum of 

99.25% up to 100% accuracy in classifying collision event from all possible events, allowing UAV to freely fly 

without collision in simulated unknown environments. 
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1. Introduction 

1.1 Motivation 

From military, commercial, to personal uses, Unmanned Aerial Vehicles (UAVs), with its growing 

popularity, are proven to be extremely beneficial in accomplishing tasks within places unreachable by man. 

Especially with the aid of rapidly growing deep learning techniques, UAV related technologies are actively 

being developed that increases its potential to be used as an effective tool. Among those is collision avoidance, 

or obstacle avoidance, which is a fundamental system that ensures UAVs to autonomously fly without user 

controls and perform tasks in unknown environments.  

In this paper, we propose a new deep learning based collision avoidance system that learns by itself and 

can adapt to any environments using a single simulated depth sensor. We achieve this through a learning 

algorithm that combines advantages of both supervised learning and reinforcement learning that ultimately 

allows agent to interact with its environment, gather data, and train throughout its learning procedure without 

requiring any pre-acquired training dataset. As a result, we achieved high accuracy in avoiding collision within 

simulated environments using an LSTM network. 

 

 

1.2 Thesis Outline 

The rest of the paper will be organized as follows:  

In Chapter 2, prerequisite knowledges regarding the types of machine learning related to the proposed 

system will be discussed to help readers better understand the context. Supervised learning, reinforcement 

learning, and deep learning will be introduced along with some examples. Deep learning will be categorized 

into three sub-sections, namely Convolutional Neural Network, Deep Q-learning Network, and Recurrent 

Neural Network. 

Chapter 3 will briefly discuss about related works regarding the proposed system with respect to two types 

of machine learning approach; supervised learning and reinforcement learning.  

In Chapter 4 and 5, the proposed collision avoidance system, simulation, and its result will be discussed in 

detail. 

In Chapter 6, we will conclude with summary and future work.  
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2. Prerequisite Knowledge 

2.1  Machine Learning 

Machine Learning is “a field of study that gives computers the ability to learn without explicitly 

programmed.” This definition was stated by an American pioneer in the field of computer gaming and artificial 

intelligence, Arthur Samuel, who coined the term “machine learning” in 1959 [1]. Tom M. Michell, a former 

Chair of the Machine Learning Department at CMU, quoted that a computer program is said to learn from 

experience E with respect to some task T and some performance measure P, if its performance on T, as 

measured by P, improves with experience E [2]. As such, machine learning is a study that evolved from the 

study of pattern recognition and computational learning theory in artificial intelligence that seeks constructions 

of algorithms that can learn and make predictions on data [3].  

 

Fig. 1. Machine learning and its types. 

Machine learning in general can be divided into three types. First one is supervised, or predictive, learning. 

In this approach, the goal is to map input x into output y in a given input pairs
1{( , )}N

i i iD x y  , where D is a 

training set and N is the number of training examples. As a simple example, input xi in each training set is a 

number of D-dimensional vector, and, say, it represents a man’s height and weight. This is called features, 

attributes, or covariates. However, in general, xi can be into a form of complicated structured instances, such an 



 3 

image, a sentence, e-mail message, sequential data, or even graphs. Similarly, the output form yi, or response 

variable, theoretically can be in any format, but in most cases is limited to a set of categorical or nominal 

variables such that {1, , }iy C . If yi is in the form of scalar or categorical variable, the problem is defined 

to be classification or pattern recognition problem, where as it is considered as a regression problem if yi is in a 

form of real numbers. As another variant form, ordinal regression is labelling given inputs into different ranks, 

such as A through F, within the label space Y that has a natural ordering property. 

Second type of machine learning is known as unsupervised, or descriptive, learning. In this approach, only 

the input 
1{ }N

i iD x  is given without any wanted outputs yi, and the goal is to discover “interesting patterns” 

among the given input data. This can be referred as a knowledge discovery. Because the resulting pattern from 

unsupervised learning is often unpredictable and cannot be predefined, this area is still in the progress of being 

defined, and thus, no accurate measurement, or metric, for error exists yet (Unlike supervised learning, 

produced output y of given x cannot be mapped to predicted output to measure error). Unsupervised learning has 

not been used in this research, and thus will not be further discussed in this paper. 

The last type of machine learning is reinforcement learning. This approach uses a method of giving reward 

or negative reward that is especially effective at making agent learn to take specific actions at its environment. 

The biggest difference between supervised learning is that there exists no correct input and output pairs nor 

corrections on sub-optimal actions that agent takes. The only attempt made in reinforcement learning is finding 

a policy that can map the environment states to actions that learning agent should take in those states that 

ultimately lead to maximization of future reward.  

In the following sub-chapters, supervised learning, reinforcement learning, and deep learning will be 

discussed in detail as a prerequisite knowledge to help readers understand the rest of the paper regarding the 

main contribution of the paper, a self-learning approach in making agent learn to avoid collision using concept 

from both supervised and reinforcement learning. 
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2.2  Supervised Learning 

According to S.B. Kotsiantis [4], the goal of supervised learning is to build a concise model of the 

distribution of class labels in terms of predictor features, where the term supervised means to have each 

instances of training data be labelled in contrast to unsupervised learning where instances are not labelled. It is 

the most common form of machine learning that is widely used and applied in many fields, and is divided into 

two problems; classification and regression.  

In classification problem of supervised learning, the goal is to map input x to output y, {1, , }y C  

where C indicates the number of classes. If C = 2, it is referred to as a binary classification problem, and often 

denoted as {0,1}y . If C > 2, it is called multiclass classification, or multi-label classification if the labels 

are mutually exclusive. The problem to classification is often approached using function approximation. For an 

unknown function f, we assume y=f(x), and by using ˆˆ ( )y f x , the goal of learning is to predict f, a function 

of training set that contains all labels, Thus, we want a generalization to an input that has not been seen in 

training set through predictions on learnt training sets. 

How is classification used in real life? Some of the applications to classification are categorizing 

documents and email spam filtering, classification of dogs according to its different body size, color, and breed, 

and recognition of hand written numbers, such as using MNIST (Modified National Institute of Standards). 

Recent advances in machine learning with the aid of deep learning techniques, which will be discuss in the 

proceeding subchapters, has allowed facial recognition which is accurate as 97.35% on the Labeled Faces in the 

Wild (LFW) dataset in 2014 [5].  

 

Fig. 2. An example of supervised learning. Wolf et al. [5] achieved 97.35% accuracy in facial recognition in 

2014 using deep learning. 
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Regression, the other part of supervised learning, is similar to classification other than the continuity of 

response variable. Fig. 3 shows a diagram that shows a difference between different regressions where the input 

of a single real number is ix  , and the response to a single real number is iy  . These simple 

problems have multi-dimensional input, singular value, non-smooth response that can be expanded into various 

forms.  

 

Fig. 3. (a) Linear regression of a 1-D data. (b) Polynomial regression on the same data. 

The followings are real regression problems that occur in real life. 

 Estimation of future stock price given current stock price along with side information. 

 Estimation of probability of economic growth given past data regarding financial information and 

population. 

 Estimation of average age of subscribed members of a specific Youtube channel given a portion of 

user information. 

 Estimation of temperature within a building given weather information and number of people 

inside. 

Advantages and disadvantages of supervised learning can be as follows.  

Advantages:  

 Specific definition of classes, that is the pairs of input and output, results into clear decision 

boundary that can distinguish different classes accurately after training process. 
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 Number of classes that can explicitly be determined by the user 

Disadvantages: 

 Overtraining that result into overfitting. Overfitting is the production of an analysis that 

corresponds too closely or exactly to a particular set of data, and may therefore fail to fit 

additional data or predict future observations reliably . 

 High dependency on training set. Training set must carefully be selected that can generalize the 

whole features of data including data that are not available in the training dataset, such as testset.  

 Large amount of dataset required for training that must also be labelled. This makes creation of 

training dataset a very time-consuming and laborious work. 

 

2.3  Reinforcement Learning 

Reinforcement learning is another type of learning in which the training information provided to the 

learning system by the environment is in the form of a scalar signal (reinforcement signal) that measures how 

well the system operates through discovering actions that maximizes future reward without explicitly being told 

which actions to take [4]. Simply, reinforcement learning allows agents to determine the ideal behavior by itself 

within a specific context to maximize its performance through feedback from its interacting environment. This 

environment is typically formulated as MDP, which also known as Markov Decision Process, which can be 

described as a discrete time stochastic control process. In detail, MDP is a 5-tuple process ( , , , , )S A r P  , and 

at time t, the system is in state ts S , the agent chooses an action ta A , resulting the system transfer to a 

new state st+1, and a corresponding reward ( , )t tr s a  is given to the agent with new state st+1 randomized 

according to a transition probability function, ( | , )t tP s a  [6]. Thus, the agent’s goal is to maximize 

cumulative reward 
1

0

n
t

t t

t

R r 



 , where (0,1]   is a discount factor, by choosing a policy  , a 

function that specifies the action  (s) that the agent will choose during state s.  
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Q-learning is one of a model-free reinforcement learning that can be used for finding an MDP’s optimum 

policy, defined by,  

1 1( , ) ( , ) [ max ( , ) ( , )]t t t t t t t t
a

Q S A Q S A R Q S a Q S A      . 

In Q-learning, a Q function that predicts the expected reward resulting from taking an action at current state is 

optimized thereby learning the optimal policy  , also known as action-value function denoted as 

1

0

( , ) [ | , ] { | , }k

t t t t k t t

k

Q s a E R s s a a E r s s a a  




 



      . Table 1 shows an algorithm for Q-

learning [7].  

One advantage of this approach is that no model is required unlike utility learning, another type of 

reinforcement learning that uses utility function and selects actions that maximize expected utility. However, 

agent can only have shallow knowledge due to limited access to future data and its restriction on its ability to 

learn, which is only through s.  

 

TABLE I 

 

 

 

 

 

 

 

 

Algorithm 1 Q-learning. 

Initialize Q(s,a,), , ( )s S a A s   , arbitrarily, and Q(terminal-state,〮)=0 

For each episode: 

Initialize s 

for each step of episode: 

                   Choose action a from s using policy derived from Q 

Take action a, observe r, s  

Q(s,a)  ( , ) [ max ( , ) ( , )]aQ s a r Q s a Q s a  
     

s s  

          Until s is terminal 
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Reinforcement learning results into an automated procedure that allows a trial and error learning which 

selects actions based on its past experiences as well as making new decisions, thus achieving both exploitation 

and exploration throughout the learning process. One advantage over supervised learning is that learning 

process does not require user’s involvement throughout learning process as opposed to supervised learning, and 

therefore requires less manual laborious work, such as gathering of training data and labelling work. 

Reinforcement Learning combined with deep learning techniques has been one of the most promising 

researches recently and will be discussed in the following chapter.  

 

2.4  Deep Learning 

Deep learning is a class of machine learning algorithms and is based on learning data representations. Deep 

learning can be defined with following characteristics [8]. 

 Cascade of multiple layers of nonlinear processing units, which is used for feature extraction and 

transformation, where each successive layer uses previous layer’s output as input. 

 Can learn through supervised, unsupervised, and reinforcement learning methods. 

 Learn multiple levels of representations that correspond to different levels of abstraction. 

 Training done through loss functions, such as Stochastic Gradient Descent, for backpropagation 

that calculates distance between ground truth and predicted value. 

Deep learning architecture is a multilayer stack of simple modules which all constitute to learning and 

computing non-linear input-output mappings. With a collection of multiple non-linear layers, a system can 

implement extremely intricate functions from its inputs to distinguish even the extremely sensitive subjects [9].  

Deep learning is unique in a way that it’s performance depends on how a machine should change its 

internal parameters in the discovery process of intricate structure in large dataset through back-propagation 

process. Thus, layers of features are not designed by man, but learnt through general-purpose learning, or 

feature learning, procedure.  
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Founding father of convolutional nets, Yann LeCun, in his paper [9] states that deep learning is a technique 

that brought breakthroughs in processing images, videos, speech and audio using deep convolutional nets, and 

have shone light on sequential data such as text and speech using recurrent nets. In the following sections, 

convolutional neural network, deep q-learning network, and recurrent neural network will briefly be explained. 

2.4.1 CNN 

Convolutional Neural Network (CNN) [10] is a network inspired by the natural visual perception 

mechanism of the living creatures [11] designed to effectively process high dimensional data which can be 

expressed in the form of multiple array such as 3 color channeled RGB images. It is a multi-layer artificial 

neural network that can obtain effective representations of the original image and recognize patterns within 

directly via raw pixels through backpropagation algorithm [12]. Fig. 4 shows a typical example of a 

Convolutional Neural Network, LeNet-5, one of the first of its kind that could classify handwritten digits [13].  

 

Fig. 4. Architecture of LeNet-5 proposed in 1998 by Yann LeCun, a Convolutional Neural 

Network for handwritten digit classification.  

As shown in the figure, CNN is composed of three types of layers; convolutional, pooling, and fully-

connected layers, and through these layers, the network learns feature representations of its input data, which are 

training sets, by repeatedly passing through convolution layer and pooling layer. The resulting feature maps 

starts first with basics such as representation of edges, followed through by arrangements of edges, and the third 

layer may assemble motifs into larger combinations that represent part of familiar objects. The point is those 

subsequent layers show combinations of parts that have been learnt in the previous layers, and that these are not 

engineered intentionally by human hands, but through input data’s general-purpose learning [9]. AlexNet, 

proposed by Krizhevsky et al. in 2012 [14], is a simple structured CNN similar to that of LeNet-5 but with 

addition to using 2 GPUs, dropout technique, and ReLU. Their proposed architecture achieved breakthrough in 
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the area of image classification at ImageNet Large-Scale Visual Recognition Challenge, ILSVRC-2012, with 

accuracy of top-5 error rate of 15.3%, bringing spotlight to the power of deep learning and convolutional neural 

network to the world. Fig. 5 is a visualization of AlexNet of each feature map after subsequent layers which are 

designed by the network. Note that there exists strong grouping within each feature map, greater invariance at 

higher layers, and exaggeration of discriminative parts of the image [15].  

Since then, outstanding achievements using Convolutional Neural Networks have been proposed, setting 

new records every following ILSVRC challenges. Some examples include ZFNet, VGGNet [16], GoogLeNet 

[17], ResNet [18] that achieved performance of top-5 error rate of 11.7%, 7.3%, 6.7%, and 3.57% accordingly. 

As such, CNN have been developed to deeper and more complicated network structures that succeeds human’s 

performance, approximated to be 5%, in 2015.  

However, it must be noted that Convolutional Neural Networks have thousands to millions of free 

parameters to train and deep, complicated network structure. Therefore, it is necessary to have high-

performance Graphical Processing Unit (GPU) to perform computation heavy training process and large training 

data that can be accommodated to fully train is required, not to mention the long period of time it takes to fully 

train them.  
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Fig. 5. Work of Matthew D. Zeiler et. al on visualization of feature maps of AlexNet. 

 

2.4.2 DQN 

Also known as Deep Q-Network (DQN), this new deep learning technique is a combination of Q-learning, 

mentioned in Section 2.3, and Convolutional Neural Network, and was proposed in the 2013 by Minh, V., et al 



 12 

regarding agents learning to play Atari 2600 games [19]. Using a single neural network agent, their goal was to 

learn successfully to play as many games possible through visual RGB input (210 x 160 x 3), without any game-

specific information or hand-designed visual features given. 

 

Fig. 6. Atari 2600 games for DQN testbed. 

In their work, they introduce what is known as experience replay [20], where agent’s experiences at 

each time-step, 1( , , , )t t t t te s a r s  , is stored in a dataset 1,..., ND e e  pooled over many episodes into a 

replay memory [19]. Table 2 shows the algorithm for DQN with experience relay. Through experience replay 

approach that utilizes historical information of fixed lengths, several advantages over standard online Q-learning 

[7] could be achieved. First is greater data efficiency that comes from multiple weight updates from each step of 

experiences. Second is effective sampling through random selection that breaks correlation between samples, 

reducing variance of updates. Third advantage is oscillation or parameter divergence avoidance through 

averaged multiple previous states which overcomes falling into local minimum.  
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TABLE II 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Because 210 x 160 x 3 image data requires computation heavy process, input dimensionality has been 

made by converting the RGB to gray-scale and down-sampling to 110 x 84, with additional cropping into an 84 

x 84 x 4 image that roughly summarizes the whole scene. Inputs to neural network were state representations 

and outputs were number of valid actions that an agent can perform within games, ranging from 4 to 18 

depending on the games.  

 In 2015, Volodymyr Mnih et al. introduce DQN that further test its performance on 49 Atari games 

using the same network [21], and achieved more than 75% of the human score on 29 games. Fig. 7 shows the 

DQN architecture diagram. Unlike supervised learning where all labelled training data must be prepared 

Algorithm 2 Deep Q-learning with Experience Replay 

Initialize replay memory D to capacity N 

Initialize action-value function Q with random weights 

for epidsode=1, M do 

    Initialize sequence s1={x1} and preprocessed sequenced ф1 =ф(s1) 

    for t=1, T do 

     with probability ε select a random action at 

           otherwise select at=maxaQ
*
(ф(s1),a;θ ) 

        Execute action at in emulator and observe reward rt and image xt+1 

     Set st+1=st,at,xt+1 and preprocess фt+1= ф(st+1) 

     Store transition (фt,at, rt, фt+1) in D 

     Sample random minibatch of transitions (фj,aj, rj, фj+1) from D 

j+1

1 j+1

   for terminal  
set 

max ( , ; )         for non-terminal 

j

j

j a j

r
y

r Q a



    


 


 

Perform a gradient descent step on 
2

1( ( , ; ))j jy Q a 
  accroding to 

equation 3 

    end for 

end for   

 

Where equation 3 is 

 , ~ ( ); ~ 1( ) max ( , ; ) ( , ; ) ( , ; )
i ii i s a p s i i i

a
L r Q s a Q s a Q s a       



       
  

. 
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beforehand, a single architecture of DQN required only very minimal prior knowledge i.e., pixel and the game 

score as inputs, and could achieve high performance on most of the environments using a single algorithm 

which was the result of interaction of agent with its environment by selecting actions that gives maximum future 

reward.  

 

Fig. 7. DQN used for training agent in Atari 2600 based on a convolutional neural network.  

 

2.4.3 RNN 

Recurrent Neural Networks (RNN) are connectionist models with the ability to selectively pass 

information across sequence steps, while processing sequential data one element at a time allowing the network 

to input and/or output sequences of data that are not independent [22]. Fig. 8 is a simple diagram illustrating 

RNN structure. This structure allows RNN output for recognition, production, or prediction problem to be 

applicable in many fields, such as machine translation, speech recognition, image captioning, and so on. The 

word recurrent comes from the way how the networks perform the same task for every element of a sequence. 

RNNs have memories that allow abstraction of its past calculations that can, in theory, capture information in 

arbitrarily long sequences. However, in reality, only few time-steps backward, practically less than 5 [23], can 

give influence to the output making the network unsuitable for handling long sequence of information due to 

long-term dependency problem caused by vanishing gradient and exploding gradient during training process. 
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Fig. 8. RNN structure. 

First proposed in 1997 by Sepp Hochreiter and Jurgen Schmidhuber [24], Long Short-Term Memory 

(LSTM) networks are different type of recurrent neural network that is able to learn from order dependencies in 

its input sequences, solving problem of long-term dependency. It is said that LSTM can learn to bridge minimal 

time lags in excess of 1000 discrete time steps [23]. The key to solving the problem was through internal 

structure of the units used in the model, the memory cells and three multiplicative units, the input, output and 

forget gates, within which only net can interact with cells, that provide continuous analogues of write, read, and 

reset operations for the cells [25]. Fig. 9 shows LSTM cell structure. 

 

Fig. 9. LSTM memory block with one cell, with forget, input, output gates. 

The gates within each cells allow learnt information from previous cells to be erased or added to current 

state, which are carefully controlled by the gates, where each of the gates are composed of sigmoid layer that 

outputs value between 0 and 1 and element multiplications. As for training LSTM, iterative gradient descent, 

such as backpropagation through time (BPTT), is used to change each weight through derivative with respect to 

an error.  More details to structures and operations within LSTM cell are out of scope of the paper and will not 

be discussed further.  
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As of now, LSTM network is actively being used as fundamental components within state-of-the-art 

technologies and markets from Good, Apple, and Microsoft for speech recognition, smart assistant, and 

language translations. In the following chapter, a collision avoidance system will be introduced in detail that 

combines the advantage of supervised learning and reinforcement learning through LSTM. 
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3. Related Works 

In this chapter, recent technologies on collision avoidance using deep learning techniques will be 

introduced regarding two learning types; supervised learning and reinforcement learning. 

3.1 Collision Avoidance using Supervised Learning 

Among recent researches regarding autonomous flight using deep learning techniques, one common 

approach is the use of image data acquired by cameras and processing them through Convolutional Neural 

Network [10], a network designed to effectively process high dimensional data such as images. This method is 

often accompanied by supervised learning to train their networks and produce outputs that specify actions agent 

needs to take when certain input image is given [26]–[31]. Fig. 10 is an example of CNN used for controlling 

agent through image input [32]. However, this procedure faces challenges in construction of image dataset itself 

due to large number of training sets required for properly training the networks, not to mention a time-

consuming task that necessitates each training data be labelled beforehand. To solve such data demanding issue, 

there have been researches regarding various methods of gathering or creating training data. Examples include 

self-supervised method in autonomously gathering collision image dataset [31] and use of synthetic 3D 

environment [33]. Still, large amount of dataset that must be pre-acquired and be labelled before training 

remains as a challenge yet to be solved in supervised learning. In addition, using CNN to process image inputs 

through on-board camera and calculating features on the fly requires heavy computation device on-board as well, 

such as Jetson board [26] that has mounted GPU processor, which is expensive in price as well. 

 

 

Fig. 10. Proposed model by Lei Tai et al., used for collision avoidance through CNN. 
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3.2 Collision Avoidance using Reinforcement Learning 

Deep reinforcement learning is another method that is being researched in obstacle avoidance especially 

after recent progresses in reinforcement learning that have been proved to outperform human levels in certain 

fields [19], [21]. Ranging from use of depth sensors [34], synthetic 3D images [33], to direct raw image inputs 

from cameras [35], [36] as input data, DRL methods are based on trial-and-error procedures that optimize its 

performance in a given environment with proceeding iterations by taking actions that maximizes its future 

reward based on Q-value function. Thus, DRL is often data-intensive and time-consuming to train compared to 

supervised learning. However, the fact that no data labelling and pre-acquired training dataset are required gives 

DRL an advantage that supervised learning does not. Fig. 11 is a DRL based network that combines fully 

convolutional residual network (FCRN) and Q-learning network by Linhai Xie et al [37]. 

 

 

Fig. 11 Network architecture that uses deep reinforcement learning in combination with fully 

convolutional residual network for acquiring depth map. 

 

  



 19 

4 Proposed Method 

In this section, we give a detailed description about the neural network model along with its input and 

output data that has been used. Also, training methodology will be introduced that goes through the following 

phases; data gathering phase and training phase.  

 

4.1  Problem Description 

The goal of this research is to make a learning agent using neural network that can freely navigate within a 

2D simulated grid environment avoiding any collisions with no access to dataset required for training. 

Under limited computation capacity, the agent is given only a single distance indicating sensor to interact 

with the environment, where the sensor is presumed to return precise measurement without malfunction at any 

time input is required. Thus, we assume the agent has no knowledge on its surrounding environment. We 

assume that at every time-unit, the agent, or UAV, can only move forward, rotate left or right from its current 

position, and freely increase or decrease its travelling speed in a simulated grid environment.  

 

4.2 Model Selection 

Collision can be defined as an event that is dependent on time, because the same data containing distance 

information could be indicating either moving closer to or moving away from its facing obstacle depending on 

its previous data received. Thus, we adopted LSTM, or Long Short-Term Memory, which is a neural network 

architecture originated from recurrent neural network (RNN) that is specialized in handling sequential data [11].  

The maximum number of time-steps in LSTM, denoted as n, determines the complexity of an event to be 

remembered. In our designed model, we used a short LSTM with n=4. This is because collision is an event that 

could be predicted and be avoided shortly before the collision and does not require data long before the impact. 

 

4.3  Input and Output Data Processing 

The key factor determining the event collision is the distance between the moving object and the obstacle. 

As such, we use simplest form of input data xti as a means to process distance information, i.e., xti is positive 

integer values for i=1, 2, 
…

, n where i represents each LSTM time-unit and n is the maximum time-step value 
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with i=1 being oldest and i=n being the most recent data acquired. Hence, input data xti represents a distance 

between UAV and an obstacle along UAV’s facing direction at time ti, acquired by a single front facing depth 

sensor that returns distance value between itself and facing obstacle.  

All experiences, or sequences of distance information acquired, will be stored into memory, or dynamic 

dataset, to be used for training as a supervised learning approach. However, when considering different 

travelling speeds of UAV, depending solely on the combinations of distance data to represent an event produces 

multiple identical sequences of input that may point out to different outputs due to the simplicity of input data, 

i.e., a single integer. Therefore, speed information xs has been additionally appended to input sequence as X = 

(xt1, xt2,
 …

, xtn-1, xs), allowing uniqueness to each input sequences regardless of flight speeds. As a result, among 

the 4 time-steps in our LSTM network, first three time-units are used for processing sensor inputs and the 4
th

 

time-step xtn for inputting travelling speed obtained through distance difference between xtn-2 and xtn-1. 

When n numbers of input data from (xt1, xt2, 
…

, xtn-1, xs) has been fed into an LSTM with maximum time-

step of n, a single event X is formed. This event will then produce an output indicating collision or non-collision 

event depending on the state of agent, which is pre-defined by the validity of the current position. If current 

position of UAV after acquiring xtn is out of bounds or has collided into an obstacle, state St is defined invalid 

and will produce output “collision”. State is otherwise defined valid and will output non-collision event for all 

the other happenings. Fig. 12 illustrates the relationship between the agent and the environment, and Fig. 13 

shows the overall LSTM model, input and output data processing. 

  

Fig. 12. Interaction between an agent and its environment. 
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Fig. 13. Simulation running at time t1, t2, t3, and its corresponding input to LSTM. Each input data fed to an 

LSTM is a distance between UAV and an obstacle in its travelling direction at time t, with xt1 being the 

oldest and xt3 being the most recent input data. Output is a label indicating collision or non-collision event. 

After three consecutive inputs to the network, travelling speed xs is appended before producing a single 

output to uniquely define each experiences, i.e., {xt1, xt2,xt3, xs}.  

 

4.4  Learning Procedure 

The goal of training is to optimize the given model to distinguish collision events from any other events, 

where each event is comprised of distance data acquired at different time along with additional speed 

information. By combining supervised learning’s train data labelling method and reinforcement learning’s 

online trial-and-error learning approach, we have allowed the agent to dynamically gather data, store them, and 

learn through the accumulated data to train itself. The training procedure is composed of two phases, data 

gathering phase and training phase. Each phase switches back and forth between each other during the whole 

learning process. 

 

1) Data Gathering Phase: In data gathering phase, the aim is to let agent experience events that represent 

either collision or non-collision through interaction with its environment based on iterative trial-and-error 

approach similar to reinforcement learning. 

Starting with an empty memory, however, the agent will record all experiences into its memory, which we 

define as dynamic dataset similar to that of dataset used in supervised learning, along with definition on which 

experiences are good or bad depending on its state at the moment of experience.  
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In detail, for every input sequence X being formed throughout data gathering phase, duplication is checked 

from its dynamic dataset. If a sequence that has not previously been discovered is found, current state of the 

agent is checked immediately.  If the state indicates valid, the new input sequence will be assigned with value 

0, where 0 represents non-collision events. This set of input sequence and label will then be recorded into 

agent’s memory, and the exploration within the map will be continued for further sequence acquisition. 

However, if the new input sequence results in invalid state, this implies a discovery of a new collision sequence, 

and label 1 will be assigned to the sequence. This new collision discovery shifts running process from data 

gathering phase into training phase.  

On the other hand, if the inputted sequence already exists in the dataset, it is directly processed through 

LSTM for an output and action will be taken accordingly as programmed.  

 

2) Training Phase: In training phase, optimization of LSTM model is processed with the dataset that has been 

accumulated at its present memory, and this procedure happens every time a new collision sequence is 

discovered.  

Once the training is complete with the provided dataset, phase shifts back from training phase to data 

gathering phase to further proceed in data gathering. The position of the UAV must also be reset to the initial 

position. As a result of the training phase, UAV in data gathering phase will be able to bypass learnt colliding 

sequences through LSTM processing, and continue its exploration.  

 

3) Overall Procedure - Algorithm:  Pseudocode for detailed process of the algorithm can be summarized as 

algorithm shown in Table 3. 

It must be noted that gathering of data is heavily dependent on the agent’s action taken especially due to 

the randomness within agent’s movement. As a result, numbers and types of training data gathered may be 

different when run again under the same parameters values. 
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TABLE III 

ALGORITHM PSEUDO CODE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Algorithm 3 Adverse event based learning procedure. 

initialize dataset M  

xt=do_random_movement()  

While s_iter < s_max_iter do 

    discard oldest input data xt1 in sequence X  

set xt as xtn-1 of S   

replace new speed xs as xtn of S 

    if X exists in M do 

        if LSTM(X) is non-collision do 

            xt = do_random_movement() 

        else 

            xt= rotate() 

    if X does not exist in M do 

        xt = move_forward() 

        if state St is VALID do 

            add X to M and label as non-collision 

        else if St is INVALID do 

            add X to M and label as collision 

            for t_iter= 1,t_max_iter do 

  run training with all data in M  

            reset UAV position 

 s_iter += 1 

where         

X = sequence of input data, {xt1, xt2, …, xtn} 

M = dataset containing all sequences 

xt = distance data acquired at time t 

n = maximum time-step length in LSTM model 

s_iter = number of collision sequences learnt  

s_max_iter = maximum number of iteration 

t_iter = training iteration number with dataset M 

t_max_iter = max number of training for optimization  
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5 Simulation and Results 

5.1  Experimental Setups 

All simulations and results were processed in Windows OS environment and implemented with Python 

using Tensorflow deep learning library. A single GPU system with Nvidia GTX 1060 has been used during the 

whole procedure. 

 

5.2  Flight Environment Design 

The flight environment for UAV has been designed as grid model, with a map size of 25 x 25 grids. 

Multiple obstacles of various sizes are randomly positioned within the grid map. Providing UAV a space to 

freely roam around and gather as many input sequences as possible is the primary purpose the flight 

environment must provide. Thus no complicated obstacle structures were additionally considered within the 

environmental settings. Fig. 14 illustrates a flight environment used for simulation.  

 

Fig. 14. A flight environment with multiple obstacles (black squares) for simulation. 

The UAV (blue triangle) starts gathering data once training starts. 

 

5.3  UAV Setting 

UAV can perform 3 actions while flying, i.e., rotate left, rotate right, and move forward. We have allowed 
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diagonal flight within the environment by allowing each rotation to change the facing angle by 45 degrees, 

giving total of 8 different facing positions for UAV. A simulated depth sensor has been attached to the UAV’s 

forward facing direction with the maximum distance measuring up to 20 grids. For every action UAV performs, 

distance measured from the distance indicator is read and used as an input to LSTM network.  Lastly, the 

speed for the UAV is by default 1 grid per movement and may increase its speed up to 3 grids per movement, 

where each movement refers to a single frame within the simulation.  

 

5.4  Training 

Under the given setups, training has been performed as mentioned in algorithm 1 of table 1. Training 

parameters were configured as follows; 4 unit LSTM with 10 hidden states, Adam optimizer [38] with learning 

rate of 0.001 and full batch training. Maximum training iteration (t_max_iter), and sequence number 

(s_max_iter) were set to 100. We used many-to-one LSTM, where only the last sequence output of size [time-

step, hidden state] was used as an input to fully connected network. Output of fully connected network was then 

passed through sigmoid function for binary classification of value between 0 and 1; 0 symbolized non-collision 

event and 1 represented collision. Threshold value of 0.5 was used for classifying output value.  

Before the UAV’s first random movement, we have programmed it to rotate on its starting position one 

complete round as a means to acquire input to fully occupy the sequence in order to prevent empty values from 

being processed through the network. Also, we have run the algorithm to increase its speed by 1 grid/movement 

after one complete run, allowing it to collect data at 3 different travelling speeds.  

To show learning rate of our algorithm, we have first compared numbers of movements required before 

collision to number of iteration, i.e., number of collisions learned. Fig. 15 shows average number of movements 

at specific intervals of iterations, and Fig. 16 shows total accumulated number of movements versus number of 

collision events learned.  
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Fig. 15. A graph showing average number of movements required to discover new 

collision at different intervals of events learned. 

 

 

Fig. 16. The amount of total accumulated movements taken at learning moment of 

collision at certain index. An exponential increase in number of movements can be 

observed. 

 

Despite randomness in learning agent’s actions, the graph shows exponential increase in total movements 

required, and hence implies that more efforts to seek new “experience” are required with respect to the amount 

of already experienced collisions.  



 27 

5.5  Testing and Results 

To test how well our trained model can classify collision and non-collision events, we constructed a testset 

by calculating all possible combinations of sequences that are available in the simulated environment, which 

numbered out to be 24,000, where 21,600 sequences are non-collision events and 2,400 are collision events. 

Note that the test set consisted of the trained sequences that had been gathered in the training process as well 

due to different number of dataset at each number of iterations. The average number of trained sequences after 

100 iterations numbered 1770 for non-collision events and 300 for collision events, totaling 2070 learnt 

experiences.  

Using this test dataset, we first calculated precision (PPV), recall (TPR), and accuracy (ACC) for each 

iterations of learning processes. Precision, recall, and accuracy can be calculated as follows  

 

TP
PPV

TP FP

TP
TPR

TP FN

TP TN
ACC

TP TN FP FN










  

 (1) 

 

where TP refers number of collisions correctly classified as collision, FN is collision incorrectly classified as 

non-collision, FP is number of non-collisions incorrectly classified as collision, and TN is number of non-

collision events correctly classified as non-collisions. Fig. 17 shows results of precision, recall, and accuracy 

percentage of our training model throughout its training process accordingly under 3 different trials of training 

using the same learning parameters. Due to convergence, only iterations of up to 50 have been considered.  
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Fig. 17. Precision, recall, and accuracy of training model during its learning process. 

Due to random learning behavior of the agent, note that each learning trial shows 

different learning curve in early learning stages of iterations. 
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From Fig. 17, it can be noticed that each trials show very different learning curving especially in the early 

stages of iteration, i.e., only few collisions have been learnt. That is primarily due to dependency on learning 

agent’s randomness in discovering collision sequences, where order of sequences and contents within dataset 

itself would differ from one another. Thus, each trial can be defined as each agent’s unique memory. However, 

after 50 iterations at max, all trials within each graphs converged to nearly the same values. Table 4 shows the 

table with highest value for each metric within 50 iterations for trial 1, 2, and 3 and the iteration number it was 

achieved. 

TABLE IV 

RESULT (%) AFTER 50 ITERATIONS 

Metric 
Model trial number 

1 2 3 

Precision (iter. #) 100% (36) 100% (46) 100% (39) 

Recall (iter. #) 98.88% (31) 99.96% (43) 99.04% (46) 

Accuracy (iter. #) 99.86% (36) 99.99% (44) 99.90% (46) 

 

 

The highest recall and accuracy rate was achieved with trial 2, achieving recall rate of 99.96% at 43
rd

 

iteration and accuracy of 99.99% at 44
th

 iteration. In case of precision, each trial could achieve 100% at least by 

46
th

 iteration. This means that our system misclassified only 2 events out of 24000 total events at the best within 

the three trials. Fig. 18 is a graph showing total number of misclassifications, which is number of false negative 

(FN) and false positive (FP) combined, along the training process. The least number of misclassification was 

numbered 37, 2, and 21 accordingly for trial 1, 2 and 3 within the first 50 iterations.  
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Fig. 18. Graph showing total number of misclassifications within each training iteration 

for different learning trials. 

 

Lastly, we gave our trained UAV a simple destination reaching test. We assigned a destination point within 

given maps and provided simple guidelines on when to rotate left or right depending on the relative position and 

angle with the destination point. We assumed UAV knows its coordinates as well as that of destination. For this 

test, we have tried different maps, which are shown in Fig. 19, that are without dangers of falling into a local 

minimum. Fig. 20 shows the path UAV travelled within each maps under dynamically changing flight speed. 

The result shows that our system allows the agent to safely reach destination points without complex algorithms 

or high dimensional sensory inputs. However, it is expected that additional sensory inputs will give the agent 

ability to effectively reach its destination even in complex environments, which will be discussed as future work 

in Section 5 
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.  

Fig. 19. Simple flight environemnts for testing destination reaching experiment. 

 

 

Fig. 20. Destination reaching test with manual instructions on rotation with respect to 

the destination point. Destination point is shown as a red dot, and each blue triangle 

indicates UAV’s position at different times along its flight path. 
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6. Conclusion 

6.1  Summary 

In this paper, we proposed a collision avoidance system that is based on learning events where each event 

is composed of sequences of distance data acquired from a single simulated distance indicator. We introduced a 

training algorithm that combines reinforcement learning’s online trial-end-error learning method and supervised 

learning’s labelling approach using an LSTM network that allows the agent to gather data and learn by itself 

with proceeding training iterations without pre-acquired training dataset.  

The experiment result showed that the designed model can perform its purpose clearly, achieving 

minimum of 99.90% accuracy in identifying collision among all possible events that can happen within the 

simulated environment. The event based learning also has allowed UAV to fully adapt to and navigate in 

environments with no prior knowledge or additional training. 

 

6.2  Future Works 

Future researches may include adaptation into real world environment as well as multiple sensor 

attachments for wider field of view allowing detection of collision from multiple angles. Also, it is expected that 

our system combined with effective decision making system to be used at the moment of collision detection, 

such as CNN for effectively choosing travelling direction, will make the system applicable to path finding in 

complex environments. Such systems will provide UAVs a far more cost efficient autonomous flight system 

compared to other systems that only depend on computation heavy data such as images, which also requires 

large training dataset beforehand. 

  



 33 

7. References 

[1] A. Samuel, “Some Studies in Machine Learning Using the Game of Checkers,” IBM J. Res. Dev., 1959. 

[2] M. T. Michael, “Machine learning,” no. ISBN 0-07-042807-7, 1997. 

[3] R. Kohavi, “Glossary of terms,” Mach. Learn., no. 30, pp. 271–274, 1998. 

[4] S. B. Kotsiantis, “Supervised Machine Learning: A Review of Classification Techniques,” Informatica, 

vol. 31, pp. 249–268, 2007. 

[5] Y. Taigman, M. Yang, and M. A. Ranzato, “Deepface: Closing the gap to human -level performance in 

face verification,” CVPR IEEE Conf., pp. 1701–1708, 2014. 

[6] K. Y. Levy and N. Shimkin, “Unified Inter and Intra Options Learning Using Policy Gradient Methods,” 

Recent Adv. Reinforecement Learn. 99th Eur. Work., pp. 153–164, 2012. 

[7] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. 2016. 

[8] L. Deng and D. Yu, “Deep Learning: Methods and Applications,” Found. Trends®  Signal Process., vol. 

7, no. 3–4, pp. 199–200, 2013. 

[9] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521, pp. 436–444, 2015. 

[10] Y. Lecun and Y. Bengio, “Convolutional Networks for Images, Speech, and Time-Series,” Handb. 

brain theory neural networks, no. November, pp. 255–258, 1995. 

[11] J. Gu et al., “Recent Advances in Convolutional Neural Networks,” pp. 1–38, 2015. 

[12] R. Hecht-Nielsen, “Theory of the backpropagation neural network,” Neural Networks, vol. 1, pp. 445–

448, 1988. 

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based Learning Applied to Document 

Recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, 1998. 

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional 

Neural Networks,” Adv. Neural Inf. Process. Syst., pp. 1–9, 2012. 

[15] M. D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional Networks 

arXiv:1311.2901v3 [cs.CV] 28 Nov 2013,” Comput. Vision–ECCV 2014, vol. 8689, pp. 818–833, 2014. 

[16] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image 

Recognition,” pp. 1–14, 2014. 

[17] C. Szegedy et al., “Going Deeper with Convolutions,” pp. 1–9, 2014. 

[18] S. Wu, S. Zhong, and Y. Liu, “Deep residual learning for image steganalysis,” CVPR IEEE Conf., pp. 



 34 

1–17, 2015. 

[19] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., et al. Playing Atari 

with deep reinforcement learning. Technical report. Deepmind Technologies, arXiv:1312.5602, 2013 

[20] L.-J. Lin, “Reinforcement learning for robots using neural networks,” Tech. report, DTIC Doc., 1993. 

[21] V. Mnih et al., “Human-level Control through Deep Reinforcement Learning,” Nature, vol. 518, 2015. 

[22] Z. C. Lipton, J. Berkowitz, and C. Elkan, “A Critical Review of Recurrent Neural Networks for 

Sequence Learning,” pp. 1–38, 2015. 

[23] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to Forget: Continual Prediction with LSTM,” 

Neural Comput., vol. 12, no. 10, pp. 2451–2471, 2000. 

[24] S. Hochreiter and J. Urgen Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, 

pp. 1735–1780, 1997. 

[25] A. Graves and J. Schmidhuber, “Framewise phoneme classification with bidirectional LSTM networks,” 

in Neural Networks, 2005. IJCNN ’05. Proceedings. 2005 IEEE International Joint Conference on, 

2005. 

[26] N. Smolyanskiy, A. Kamenev, J. Smith, and S. Birchfield, “Toward Low-Flying Autonomous MAV 

Trail Navigation using Deep Neural Networks for Environmental Awareness,” 2017. 

[27] P. Chakravarty, K. Kelchtermans, T. Roussel, S. Wellens, T. Tuytelaars, and L. Van Eycken, “CNN-

based single image obstacle avoidance on a quadrotor,” Proc. - IEEE Int. Conf. Robot. Autom., pp. 

6369–6374, 2017. 

[28] K. Sullivan and W. Lawson, “Deep Obstacle Avoidance ∗,” 2013. 

[29] D. K. Kim and T. Chen, “Deep Neural Network for Real-Time Autonomous Indoor Navigation,” 2015. 

[30] A. Guisti J. Guzzi, D. C. Ciresan, F.-L. He, J.P. Rodriguez, F. Fontana, M. Faessler, C. Forster, J. 

Schmidhuber, G. Di Caro, et al ., “A Machine Learning Approach to Visual Perception of Forest Trails 

for Mobile Robots,” Robot. Autom. Lett., vol. 1, no. 2, pp. 661–667, 2016. 

[31] D. Gandhi, L. Pinto, and A. Gupta, “Learning to Fly by Crashing,” arXiv:1704.05588,  2017. 

[32] L. Tai, S. Li, and M. Liu, “A deep-network solution towards model-less obstacle avoidance,” IEEE Int. 

Conf. Intell. Robot. Syst., vol. 2016–Novem, no. 6140021318, pp. 2759–2764, 2016. 

[33] F. Sadeghi and S. Levine, “CAD2RL: Real Single-Image Flight without a Single Real Image,” 

arXiv:1611.04201, 2016. 



 35 

 [34] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real Deep Reinforcement Learning: Continuous Control of 

Mobile Robots for Mapless Navigation,”arXiv:1703.00420, 2017. 

[35] A. Ueno, N. Kajihara, N. Fujii, and T. Takubo, “Vision-based path learning for home robots,” Proc. - 

2014 10th Int. Conf. Intell. Inf. Hiding Multimed. Signal Process. IIH-MSP 2014, pp. 411–414, 2014. 

[36] L. Tai and M. Liu, “Towards Cognitive Exploration through Deep Reinforcement Learning for Mobile 

Robots,” arXiv:1610.01733, 2016. 

[37] L. Xie, S. Wang, A. Markham, and N. Trigoni, “Towards Monocular Vision based Obstacle Avoidance 

through Deep Reinforcement Learning,” 2017. 

[38] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” pp. 1–15, 2014. 

  



 36 

8. Acknowledgements 

 

걱정 반 기대 반으로 대학원 생활을 시작한지 2년이란 시간이 흘러 졸업을 하게 되었습니다. 

석사과정 2년의 생활은 제 삶에 있어 빠르게 지나간 시간인 만큼 정말 귀한 시간이었습니다. 참 

많은 일들이 있었지만, 지금 돌이켜보면 정말 행복한 시간들로 가득 차있는 것 같습니다. 이 모든 

과정의 중심이 되셨던 이흥노 교수님께 깊은 감사의 말씀을 드리고 싶습니다. 저의 연구 분야에 

있어 언제든지 성실하게 지도해주시고 후원을 아껴주시지 않으시며, 제 연구에 있어 책임감과 용

기를 가지게 해주셔서 감사합니다. 인포넷 연구실의 선배, 후배, 그리고 동기들 한 명 한 명, 정말 

감사합니다. 특히, 개인 연구에 있어 많은 지도를 해준 주성이형 감사합니다. 랩 멤버들로 인해 

학문적으로 많은 도움을 받을 수 있었을 뿐만 아니라, 제 랩실의 삶이 즐거울 수 있었습니다. 함

께 했던 아름다운 추억들과 경험들, 잊지 않겠습니다. 

 제가 힘들 때나 즐거울 때나, 뒤에서 늘 한결같이 저를 응원해주시고 기도해주시며 사랑을 

아낌없이 주신 엄마, 아빠, 누나에게 정말 감사하다는 말 전하고 싶습니다. 가족들이 있었기에, 제

가 대학원을 끝까지 잘 마칠 수 있었습니다. 그리고 매일 따뜻한 위로와 응원으로 저에게 항상 

긍정적인 마인드를 잃지 않게 도와준 기쁨아, 정말 고마워. 또한, 뒤에서 저를 위해 기도해주신 

과기원 교회 식구들, 정말 감사합니다. 

마지막으로, 이 모든 길을 인도해주셨고 앞으로도 인도해 주실 하나님께 모든 영광과 감사를 

드립니다.  


