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Abstract— The appearance of granular ‘noise’ referred to as 

speckle that inherently exists in Ultrasound (US) imagery, which 

decreases the resolution of US image. Therefore, it is difficult to 

directly use common image processing methods in US imagery. 

Here by using the fact that the image is highly compressible in the 

wavelet domain and leverage new results of compressed sensing 

(CS) theory to make an accurate estimate of the original high-

resolution of US image. Unfortunately, direct use of a wavelet 

compression basis not applicable in traditional CS approaches 

because of the coherency between the point-samples from the 

subsampling process and the wavelet basis. To overcome this 

problem, we include the subsampling low-pass filter into our 

measurement matrix, which decreases coherency between the 

basis. To invert the subsampling process, we use the appropriate 

reconstructing algorithm such as greedy, matching pursuit 

algorithm and obtain the high-resolution US image. The result is a 

simple and efficient algorithm that can generate high-resolution, 

high quality US images without the use of data sets. The 

experimental results show the proposed method is very effective 

and can get better reconstruction performances. 
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I.  INTRODUCTION 

In the last few decades, medical imaging has been rapidly 
gaining prominence in diagnostic radiology techniques such as 
CT scan, SPECT, magnetic resonance imaging (MRI), 
Ultrasound (US), digital radiography and others. Among these 
imaging techniques, ultrasound imaging is popular noninvasive 
and low cost method to observe the dynamical behavior of 
organs. It uses a transducer to produce ultrasound waves which 
travel through body tissues. The return sound waves vibrate the 
transducer which turns into electrical pulses that travel to the 
ultrasonic image scanner where signals processed and 
transformed into a digital image [1].Higher frequencies 
generates better resolution of the image but this limits the depth 
of the penetration.  However, the presence of noise is imminent 
due to the loss of proper contact or air gap between the 
transducer probe and body [2]. Particularly, speckle noise 
degrades the edges definitions and fine details, and limits the 
contrast by making it a low resolution image. The challenge is 
to design methods which can selectively reduce noise and 
recover high frequency information that was lost during the 
image processing in US system. To overcome these challenges 
we use super resolution (SR) algorithm. The main goal of the 
SR algorithm is to recover lost information and recover the 
original high-resolution image as closely as possible. 

Conventional approaches to generate a SR image require set 
of low-resolution US images, typically aligned with sub-pixel 
accuracy to solve for the missing high-frequency information 
[3]. However, at present, there has been growing interest in an 
area of research also known as image upsampling [4] or 
hallucination [5] which recovers the information from a single, 
low-resolution image. The single image super resolution (SISR) 
problem is particularly important for US imaging since only 
single, low-resolution image generated and the upsampling 
must be incorporated as a post process. 

In our work, we consider the problem of US SISR and 
utilizes a novel algorithm for reconstructing the noiseless high 
resolution image based on the CS [6] [7]. CS brings the 
possibility of reconstructing a sparse image with fewer 
measurements than Nyquist sampling theory requires. The key 
idea is to obtain high resolution US image that will be sparse in 
a transform domain (e.g., wavelet) and using compressed 
sensing theory to solve the sparse coefficients from the low-
resolution image. Furthermore, recovering an approximation of 
high-resolution image from the wavelet transform, we can 
compute the final result in the spatial domain. 

In this paper, we first focus on SR problem within the 
algorithm of CS, which allows us to reconstruct the high 
resolution image using a simple greedy algorithm such as 
Regularized Orthogonal Matching pursuit (ROMP) [8]. Second, 
we implement a unique way of using wavelet basis for image 
compression in our algorithm by incorporating Gaussian noise 
from down sampling process into our technique. This allows us 
to improve the incoherence between the compression and 
sampling basis and yields better results than current approaches. 

This paper organized as follows: Section 2 describes the 
compressed sensing theory. Section 3 discuss about US image 
super resolution via CS. Experimental results are discussed in 
section 4 and section 5 concludes the paper. 

II. COMPRESSED SENSING  THEORY 

     The theory of CS heavily depends on signal or image 

sparsity and can efficiently extract the most efficient 

information from a small number of measurements, i.e., to 

reduce the collection of inessential data [6] [7]. CS 

demonstrates that a small non-adaptive linear measurements of 

a compressive image have enough information to reconstruct it 

perfectly [6] [8]. If we represent our desired high-resolution 

image as a n-dimensional vector 
nx R where n is large. We 

want to estimate this high-resolution signal from the low-



resolution input
my R , where m n .Let us consider that 

signal y has been acquired from the original through a linear 

down sampling measurement process, represented as: 

                                   

                              y x                                                     (1) 

 
where x is an n x 1 high-resolution image vector in spatial 

domain,  is a sampling matrix that performs the linear 

measurements on x . Our goal is to recover the high-resolution 

x  using only y as input 

Initially, this seems like an impossible feat since the m 
samples of y yield a (n − m) dimensional subspace of possible 

solutions for the original x that would match our given 

observations. In order to know one of those possible solutions 
for our desired y we apply a key assumption of CS that 

transformed version of signal, x  is k -sparse under some basis 

 ,it means that at most k non-zero coefficients in that basis 

(e.g.,
0

x k , where 
0

.  denotes the 0l  quasi-norm). This is 

not an unreasonable assumption, since we know that the high-
resolution image will be a real world image, and so it will be 
compressible in a transform domain, e.g., wavelet transform. 
We can now write our measurement process from Eq. (1) as: 

           

y x Vx                                                    (2) 

 

where V   is a general m×n measurement matrix. If we 

can have for x  given the measured y , to get our desired high 

resolution signal x  we could apply the inverse transform 
*x .Unfortunately, conventional techniques such as least 

square,inversion approach for solving for x do not work since 

Eq. (2) is severely under-determined. However, in paper[9] 

proof show that in CS if 2m k and V meets certain 

properties of the restricted isometry property (RIP)[10],that is: 

 

2 2 2
(1 ) (1 )k kV        , (0 1)k        (3)  

 

where  represents random k-sparse vector. In general, the RIP 

states that a measurement matrix will be valid if every possible 

set of Z-sparse vector columns of V forms an approximate 

orthogonal set. In effect, we want the sampling matrix   to be 

as incoherent to the compression basis   as possible. 

Examples of matrices that have been proven to meet RIP 

include Gaussian matrices, partial Fourier matrices and 

Bernoulli matrices [11]. 

  Then Eq.(2) can be solved uniquely for  the sparest x  that 

satisfies the equations in paper[9].Therefore the sparse solution 

for Eq.(2) is found by solving the following 0l norm 

minimization problem, 

                      
0

min . .x s t y Vx                                       (4) 

where 
0

x  describes the 
0l norm, the number of non-zero 

entries in x . The solution to the problem in Eq. (4) is 

combinatorial in nature with prohibitive computational load in 

practical applications. Convex relaxation of the 0l  problem to 

the following 1l  problem, 

                  
1

min . .x s t y Vx                                    (5) 

   The 1l  optimization of Eq. (5) will solve correctly for x  

[19] as long as the number of samples ( log )m O k n and 

the matrix V meets the RIP [10] with this parameters 

(2 , 2 1)k  .This can be done with methods such as linear 

programming [9] and basis pursuit [7]. 

     Greedy reconstruction algorithm: Orthogonal Matching 
Pursuit (OMP) was one of the first algorithms explored to solve 
Eq. (4) which is simple and fast [12] to overcome the large 

running time of 1l  since there is no known polynomial-time 

algorithm for linear programming [10] even its optimization is 

more efficient than the 0l .However, OMP has a major 

drawback because of its weaker guarantee of exact recovery 

than the 1l  methods. To bypass these limitations, a modification 

to OMP called Regularized Orthogonal Matching Pursuit 
(ROMP) was proposed which recovers multiple coefficients in 
each iteration, thereby accelerating the algorithm and making it 
more robust to meeting the RIP [10]. In this technique, we use 
the ROMP algorithm for signal reconstruction. 

III. SUPER RESOLUTION ULTRASOUND COMPRESSED SENSING 

     In our methodology, we utilize wavelets as our compression 

basis   since they are good at representing images sparsely 
than non-localized bases for example Fourier. However, 

downsampling matrix  in SR process involves point-sampled 

measurements, which lead to measurement matrix V that does 

not meet the RIP conditions due to incoherency. Intuitively, we 
can see that the better a basis is at representing confined features 
(such as wavelet), the more coherent it will be to point sampling 
because it can represent small spatial features (e.g., point 
samples) with only a less coefficients, by definition. Therefore, 
we propose to modify Eq. (2) depends on the observation that is 
filtering the high resolution image before downsampling. In 
other words, we can write our desired high-resolution image as 

rx  (the sharp version), which is then filtered by matrix   to 

result in a blurred, high resolution version b rx x .This 

blurred version is then downsampled by Eq. (1):  

                     b ry x x                                     (6) 

 In this approach, we choose a Gaussian filter  . Since it act 

as a multiplication by a Gaussian in the frequency domain we 

can define hf Gf  , which makes Eq. (6): 



                          
h

ry f Gfx                                        (7) 

where f is the Fourier transform matrix,
hf  is the inverse 

fourier transform and G is a Gaussian matrix with values of the 
Gaussian function along its diagonal and zeros elsewhere. With 

this formulation in hand, we can now solve for rx  by posing it 

as a compressed sensing problem by assuming that its transform 

rx  is sparse in the wavelet domain: 

           
0

min . . h

r rx s t y f Gf x                           (8) 

 An approximate solution to this optimization problem can 
be achieved using greed methods. However, in order to 

solve q Vx , where 
*V  = 

TV with the assumption that 

TV VA A [10] greedy algorithms require having both the 

forward matrix V  and backward matrix 
*V .We have shown 

the forward MatrixV   ,where, the Gaussian matrix in 

 cannot be inverted through transpose, i.e.,
1 TG G  ,we use 

the backwards matrix of the form * 1 1T T T h TV f G f      . 

      We note that 
1G 

is also a diagonal matrix that is supposed 

to have the inversion of the Gaussian function of G  along its 

diagonal. Whereas, we must be careful because of the well-
known problem of noise amplification while inverting the 
Gaussian, we use a linear Weiner filter to invert the Gaussian 
function [13] to avoid noise, which means that our inverse 

matrix 
1G 

has diagonal elements  of 

form
1 2

, , ,/ ( )i i i i i iG G G    . 

The increases of the incoherence between the measurement 
and compression basis must be verified for proposed algorithm 
by computing the coherence with and without the blurring 

filter  . The coherence can be found by taking the maximum 

inner product between any two basis elements scaled by √n 
[14]. When the Gaussian filter is introduced the coherence drops 
to 131.8.On the other hand, Without the Gaussian filter, the 
coherence is 243.6 for n = 380×600.It’s found that with 
Gaussian filter coherence reduction is enough to us apply the 
CS framework to this problem and get the high-quality results 
shown in the paper. With this formulation in place, we are now 
ready to solve the CS problem of Eq. (8).  

   In Eq. (8), we have shown the solution for the wavelet 

transform of the sharp, high-resolution image rx .We can take 

the inverse wavelet transform *

rx  once we solve for rx , to 

get the high-resolution image rx . We use the ROMP greedy 

algorithm which is preferable over non-linear methods like 
linear programming [9] or basispursuit [7]. The algorithm is 
faster and can handle large vectors and matrices, which is vital 
when in images because the size of the matrices involved are n 
× n. 

     The ROMP algorithm is similar to the OMP algorithm 

except the main difference is that instead of only selecting the 

largest coefficient, ROMP selects the continuous sub-group of 

coefficients with the largest energy, with the restriction that the 

largest coefficient in the group cannot be more than twice as big 

as the smallest member. These coefficients are then added to a 

list of non-zero coefficients and a least-squares problem is then 

solved to find the best approximation for these non-zero 

coefficients. The approximation error is then computed based 

on the measured results and the algorithm iterates again. In this 

work, we limit the number of coefficients added in each 

iteration to obtain the better results. 
 

                                     

              (a)       (b)                          (c) 

Figure 1: (a) Original image (380×600) (b) Down sampled image (190×300) and 
(c) Reconstructed image (380×600) obtained by using compressive sensing. 

IV. EXPERIMENTAL RESULTS 

 We applied the proposed method In vivo and phantom 
ultrasound images. The ultrasound images are obtained using 
COSMOS US diagnostic system. The parameters used to 
generate the phantom image: the lateral beam width was 1.5, the 
pulse width 1.2 and the center frequency was 5 MHz.The size of 
phantom image is 380 X 600 the images used in this 
experiments are shown in figures 1 

The proposed CS approach for SISR is compared with 
Nonlinear-diffusion(ND) [15], Bicubic [16] and Yang et al. 
[17], to estimate the quality of reconstructed US images, the 
peak signal to noise ratio (PSNR) used. The PSNR defined by: 

          
max

1010log
N

PSNR
MSE

                                        (9) 

where maxN :The maximum fluctuations in the input image, 

max (2 1)nN   , maxN =255,when the components of a pixel 

are encoded on 8 bits;MSE:denotes the mean square error, 
given by: 

 

2
^

1 1

1
( , ) ( , )

MN

i j
MSE O i j R i j

MN
 

                   (10) 

where ( , )O i j :the original image, ( , )R i j :the restored image. 

     Figure 2 shows us the comparison of PSNR used different 
reconstruction Algorithm as we can see from the curve, 



compared with the ND, bicubic and Yang.et.al, the performance 
of proposed algorithm is better. 

 

Figure 2: Comparison of PSNR for different reconstruction algorithm 

Figure 3 represents recovered images by different methods. 
The amplification of the local regions of the recovery images is 
also shown in the right. From the result we can see that there are 
remarkable block effect in Non-diffusion method, Bicubic 
method and yang.et.al (shown in Fig. 3(a), (b) and (c)) recovers 
too smooth, distorted image and our prosed method can achieve 

    

 

Figure 3(a-d): Reconstruction comparison of US images. 

better result than other methods (shown in Fig. 3(d)) on detail 
preservation. To test our technique for clear visual comparison 
and accuracy by computing the root square error (RSE), a 
measure of the Euclidean distance, of their output to the original 
US high resolution image. In Figure 4 we plot RSE error 
variations for different magnifications level for various 
approaches and it is noted that our technique more information 
is available as the magnifications decreases so, the error 
reduced. 

 

Figure 4: Reconstruction error comparison as a function of magnification level 

for the US phantom image. 
 

The quantitative performance is measured with parameters like 
structural similarity (SSIM) [18] [19], mean structural similarity 
[20] and feature similarity (FSIM)[21] which compares the 
structure of two images by measuring the structural similarity, 
SSIM is related with the distortion of the visual sensing. The 
higher of SSIM and MSSIM are, much similar of the structure 
of the recovered image to the original image. Feature Similarity 
(FSIM) index is proposed based on the fact that human visual 
system (HVS) understands an image mainly according to its low 
level features [21]. It uses the phase congruency (PC) and 
gradient magnitude (GM) features of images as the evaluation 
index. 

     Table 1 shows the SSIM, MSSIM and FSIM of the 
reconstructed images obtained by different methods. From this 
we can see that the image recovered by our method is higher 
than that of the images obtained from the conventional methods 
mentioned in [15] [16] [17]. 

Methods FSIM SSIM MSSIM 

ND 0.7568 0.9543 0.6955 

Bicubic 0.8231 0.9772 0.7593 

Yang et al. 0.8467 0.9815 0.8067 

Our Method 0.8538 0.9878 0.8114 
Table 1: The numerical guidelines of the recovered images obtained from 

different methods. 

V.CONCLUSIONS 

    In this work, we have demonstrated the single image 
super resolution problem within the compressive sensing 
framework and utilize greedy matching pursuit algorithm to 
solve for the high resolution image. The uniqueness of our 
approach is based on the fact that we are not using the 
dictionary data for training. As a consequence, we could 
significantly recover images and reconstruct it in high resolution 
than conventional methods commonly used for these 
applications. Experimental results show that our method not 
only gives better performance but also an effective 
reconstruction on ultrasound images. 
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