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Abstract 

The recently introduced compressive sensing (CS) theory allows under certain 

assumptions to recover a signal sampled below the Nyquist sampling limit. 

Compressive sensing can be applied for two purposes. First, to decrease the number 

of samples needed to capture the information, thus allowing faster acquisitions. 

Second, to improve the reconstruction of images in fields where constraints on the 

physical acquisition setup yield very sparse data sets. This thesis focuses on medical 

ultrasound, with the following applications: The appearance of granular ‘noise’ 

referred to as speckle that inherently exists in ultrasound (US) imagery, which 

decreases the resolutions of US image. Here by using the fact that the image is highly 

compressible in the wavelet domain and leverage new results of compressed sensing 

(CS) theory to make an accurate estimate of the original high-resolution of US image. 

Unfortunately, direct use of a wavelet compression basis not applicable in traditional 

CS approaches because of the coherency between the point-samples from the 

subsampling process and the wavelet basis. To overcome this problem, we include the 

subsampling low-pass filter into our measurement matrix, which decreases coherency 

between the basis. To invert the subsampling process, we use the appropriate 

reconstructing algorithm such as greedy, matching pursuit algorithm and obtain the 

high-resolution US image. The result is a simple and efficient algorithm that can 

generate high-resolution, high quality US images without the use of data sets. The 

experimental results show the proposed method is very effective and can get better 

reconstruction performances. 
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Chapter 1 

 

Introduction 

 
1.1 Background 

The recently introduced compressed sensing (CS) theory allows – under certain assumptions to 

recover a signal sampled below the Nyquist sampling limit [1, 2, 3]. Compressed sensing (also 

known as compressive sensing or compressive sampling) can be applied for two main purposes: 

 It can lower the amount of data needed and thus allows to speed up acquisition. A typical 

example of such application is dynamic MRI [4]. 

 It can improve the reconstruction of signals/image in fields where constraints on the 

physical acquisition setup yield very sparse data sets. A typical example is seismic data 

recovery in geophysics [5]. 

 

1.2 Motivation 
 

This thesis focuses on medical ultrasound, In our work, we consider the problem of US Single 

image super resolution(SISR) and utilizes a novel algorithm for reconstructing the noiseless high 

resolution image based on the CS [1] [3]. CS brings the possibility of reconstructing a sparse image 

with fewer measurements than Nyquist sampling theory requires. The key idea is to obtain high 

resolution US image that will be sparse in a transform domain (e.g., wavelet) and using compressed 

sensing theory to solve the sparse coefficients from the low-resolution image. Furthermore, 

recovering an approximation of high-resolution image from the wavelet transform, we can 

compute the final result in the spatial domain. 
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1.3 Thesis Outline 
The thesis is organized as follows: chapter 2 is an introduction to medical ultrasonography. Chapter 

3 describes about super resolution. Chapter 4 presents the compressive sensing theory and the 

algorithms we use for CS signal recovery. Finally, Chapter 5 presents how the CS theory can be 

applied to ultrasound signal recovery in B-mode imaging and compares the performance obtained 

with different algorithms. 

 

Chapter 2 
 

Ultrasonography 
 
Sonography is a widespread medical imaging method whose principle is based on the propagation 

of ultrasonic waves in biological tissues. It allows real-time visualization of body structures by 

displaying their acoustic properties. Ultrasonography has the advantage of being non-invasive, 

non-ionizing, and relatively cheap compared to other imaging methods such as X ray imaging. 

In practice, a probe emits an ultrasonic wave, which is then diffused, reflected and attenuated by 

different tissue structures. Part of the wave travels back in the direction of the probe, which 

performs its acquisition and conversion to an electrical signal. 

 

2.1 Sonographic equipment 
 

2.1.1 Probe 
 
The ultrasound probe consists of a transducer comprising one or more piezoelectric elements, 

which can generate an ultrasound wave when excited by an electrical signal. With the ability of 

piezoelectric materials to convert electrical energy into acoustic energy and vice versa, the 

transducer are used for both transmission and reception of ultrasonic waves. Depending on the 

probe type, the ultrasound beam sweeps a rectangular or sectorial area (figure 1). Linear array 

transducers emits parallel beams and are used e.g. for thyroid and breast cancer detection. Convex 

probes cover a sectorial zone, which allows to scan deeper and wider structures. Phased array 
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 transducers are also sector probes, but the beam steering is done electronically. These transducers 

are thus much more compact, which is very useful to avoid obstacles such as ribs in 

echocardiography. The drawback is that the beam steering requires more complex electronics and 

creates secondary lobes. 

 

Figure 1: (a) Linear array transducer (b) Curved array transducer (c) Phased array transducer. 

 

2.1.2 Beamforming 

 
For better image resolution, the beam is formed by delaying the emission of each element so as to 

focus the emitted energy on the depth of interest. The principle is the same during reception: before 

being summed, the signals received by each element can be delayed to allow focusing. The time 

needed by an echo to travel back to the probe is roughly proportional to the depth of its source. 

Thus, by adjusting the delay of each element according to the echo depth — that is, according to 

the time elapsed since the pulse emission — it is possible to maintain a continuous focus or several 

focal zones during reception. In addition, the focusing of the system can be improved by weighting 

the contribution of each element. This is called apodization. The whole process is referred to as 

beamforming, and is illustrated in figure 2. Figure 3 and 4 show point spread functions for different 

set-up of transmit and receive focusing and apodization. The calculation of point spread functions 

is done by placing a point in front of the transducer and then sweeping the beam over the point. 

This gives the point spread function of the imaging system. The phantom used to calculate the 

PSFs shown in figure 3 and 4 consists of a number of point targets placed with a distance of 5mm 

starting at 15mm from the transducer surface. More information on the set-up can be found in [6]. 

3 



                                                                             

 

 

Figure 2: Principle of beamforming. The principle is the same in emission and reception 

 

In the case of phased array transducers, the pulse delaying also allows to steer the beam in the 

desired direction, as shown in figure 5 [7]. 
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Figure 3: Point spread function phantom imaged without apodization. 

 

 

 

Figure 4: Point spread function phantom imaged with apodization. 
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Figure 5: Electronic focusing and steering of an ultrasound beam. 

 

2.1.3 Image quality 
 

The quality of an ultrasound image depends strongly on the axial and lateral resolution of the 

acquisition system. 

Axial resolution 

 
The axial resolution refers to the resolution in the direction of the propagation, and depends mainly 

on the frequency of the ultrasound. Higher frequencies correspond to shorter wavelengths and thus 

give better axial resolution. The frequencies used in ultrasonography usually range from 1 to 20 

MHz. However, the attenuation of the sound wave is increased at higher frequencies, so in order 

to have better penetration of deeper tissues, a lower frequency (3-5 MHz) is used. At 3 Mhz, the 

axial resolution can be as low as 0.2 mm. More details about attenuation can be found in section 

2.2.1. 
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Lateral resolution 

 
The lateral resolution of the 2D image depends on the shape of the ultrasound beam, as thinner 

beams give more laterally resolved images. As explained in section 2.1.2, in modern scanners, the 

focusing can be adjusted by the operator so that the resolution is optimal in the region of interest. 

 

2.2 Interaction between tissues and ultrasound waves 
 

2.2.1 Wave propagation in an inhomogeneous medium 
 

In a homogeneous, non-absorbing medium, the direction and amplitude of a plane wave remains 

constant. This is not the case in biological tissues. Indeed, the wave intensity decreases as it travels 

deeper into the body, and the wave front does not remain plane. Several factors cause this 

ultrasound wave attenuation. 

Diffusion 

 
Diffusion, in the broadest sense, occur when a wave propagates in a non-uniform medium. Part of 

its energy is redirected and appears separately from the initial wave. For example, this happens 

when a wave hits a plane interface, thus giving birth to a reflected and refracted wave. However, 

the plane interface model is valid only when the encountered object is large compared to the 

wavelength. In the medical domain, such interfaces are uncommon, and discontinuities are very 

variable in shape, size, position and orientation. Diffusion occur when the dimension of the 

inhomogeneity is small compared to the wavelength of the incident wave. The inhomogeneity then 

behaves as a point source emitting the energy in all directions in the form of a spherical wave. 

Interferences 

 
The ultrasound wave encounters many obstacles that are very close to each other, such as the 

scatterers described above. Each of them behaves as a point source and emits a spherical wave. 

These waves are coherent, which causes their superposition to give birth to interferences. This 

results in the speckle pattern which is typical of ultrasound images. A speckle in an ultrasound 

image does not correspond to a real object, it only results from constructive interferences. 
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Diffraction 

 
When a wave encounters an obstacle whose dimension is close to the wavelength, its propagation 

direction is deflected by diffraction. 

 

Absorption 

 
The absorption phenomenon refers to the conversion of the incident ultrasound energy into heat. 

This can lead to significant loss of energy. 

 

Attenuation 

 
Attenuation refers to all the losses, that is to say the energy that is not transmitted through the 

medium and that would not reach a receptor facing the emitting probe. Reflection, refraction, 

diffusion, diffraction and absorption contribute thus to attenuation. Attenuation is a function of the 

distance z traveled by the wave and can be characterized by the coefficient  , which is generally 

given in 
1.dB cm
: 

 

                                                         
0

20
log zP

z P
    

 

This coefficient is proportional to the frequency. As a consequence, attenuation is a major issue at 

higher frequencies. In biological tissues, attenuation is about 1
1.dB cm
. 1MHz . To illustrate the 

effect of attenuation, let us consider a 3MHz probe and compare the amplitude of echoes coming 

from two identical targets located 10 cm apart — that is, 20 cm round-trip. In this setup, the 

attenuation is 1 × 20 × 3 = 60 dB, which means the amplitude ratio between the two echoes is 

1,000. Similarly, a 6MHz probe would give 120 dB attenuation that is a ratio of 1,000,000. This is 

why high frequencies are use only to scan organs that are close to the probe. Generally speaking, 

in ultrasonography, a compromise needs to be found between a high frequency, which is desirable 

to get a good resolution, and a low frequency to get a good penetration. 
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2.2.2 Ultrasounds in the body 
 

The body as an acoustic medium  
 

Table 1 summarizes the acoustic characteristics of human tissues (data from the compilation by 

Goss et al. [8, 9] and [10]. In reality, these values depend on the temperature of the medium and 

measuring conditions. In addition, several other less quantifiable factors can influence them, such 

as the age and the healthy or pathological state of the organs.  

   Several values are worth noticing: 

 The acoustic properties of air are very different from those of water or biological tissues. 

 All biological tissues — except lungs, since they contain air, and bones — have very close 

acoustic properties, and are referred to as soft tissues. Moreover, these values are similar 

to those of liquids such as water and blood. 

 Air, bones and lungs strongly attenuate ultrasounds. Therefore, these elements constitute 

obstacles to ultrasound examinations. 

Interfaces 

Table 2 give a few examples of amplitude and energy reflection coefficients corresponding to 

typical interfaces in ultrasound imaging. 

 
Table 1: Approximate densities, sound speeds, characteristic acoustic impedances and attenuation of human tissues. 
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Table 2: Reflection coefficients in the case of normal incidence. 

 

 The soft tissue - water interface is almost not reflective. This is why ultrasound examination 

of a body immersed in water yield give good images. 

 However, the soft tissue - air interface is very reflective. Air must be eliminated to get a 

decent ultrasound image. Scanning the lungs is impossible, except in certain cases where 

water presence is expected. 

 The skin - piezoelectric element interface is also very reflective. The protective layer in 

front of active elements is quarter-wave, which improves the transmission. The use of a 

liquid gel to make the transition between the probe and the skin avoids the formation of air 

bubbles. 

 The bone - fat interface is quite reflective compared to interfaces between soft tissues. 

Scanning bones results in hyperechogenic zones on the image, which correspond the the 

bone surface. Moreover, the bone transmits almost no energy, which results in no 

perceptible signal beyond the bone. 

2.3 Reconstructing the ultrasound signal 
 

In order to highlight the pertinent information and display it on an image, the signal coming out of 

the receiving transducer needs to be processed. The steps of the process are summarized in figure 

6 and described below. 
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Figure 6. RF signal processing 

 

Ultrasonic transmitter 
 

The role of the transmitter is to excite the transducer in order to generate a short pulse, for example, 

a unipolar pulse of -200V in 10 ns. 

Beamforming 
 

The electronic beam steering and focusing requires delay lines, that can be implemented in two 

different ways: 

 The delay lines are passive LC circuits with fixed values. Focusing is then performed at a 

fixed depth. 

 Dynamic focusing can be performed with programmable delay lines. 

 

Time gain compensation 
 

Due to attenuation, two identical reflectors located at different depths would not yield echoes of 

equal amplitude, because the path taken by the wave is different in both cases. This difference can 

be approximately corrected by time gain compensation, which consists in amplifying the signal 

with a gain that increases over time. The gain variation can reach 60 to 70 dB while maintaining a 

dynamic range of 40 db. The attenuation function of a given environment cannot be perfectly 

known, so the TGC function needs to be tweaked to adapt to the observed image. The 

compensation is therefore always approximate, and no quantitative data on acoustic properties can 

be extracted from an ultrasound image. 
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Logarithmic scaling 
 

In ultrasonography, we need to visualize very strong echoes coming from highly reflective 

obstacles, such as bones or air, and very weak echoes at the same time. The dynamic range of the 

RF signal is on the order of 100 dB, whereas the dynamic range that the human eye can perceive 

is only about 30 dB. By applying a logarithmic scaling to the signal, a wider range of gray is used 

to represent less echogenic zones, thus enhancing the image contrast in these areas. Highly 

echogenic zones have fewer gray levels, but this is not a problem since they only correspond to 

walls or organ boundaries. 

 

Envelope detection 
 

The ultrasound image construction only uses the amplitude of the received signal. The phase 

information is dismissed. The amplitude information is extracted from the RF signal by an 

envelope detector, which demodulates the signal by removing the high-frequency carrier wave, 

that is, oscillations of the same frequency as the transducer. 

Analog to digital conversion 
 

In order to be processed and stored, the signal is digitized. An 8-bit quantization is generally used. 

Scan conversion and display 
 

The data collected by the scanner correspond to a series of echoes coming from each line of 

exploration. These lines do not necessarily have the same orientation, especially in the case of 

sector scanning. A scan conversion needs to be done to convert polar coordinates into Cartesian 

coordinates, so that the image can be displayed on a monitor. 

2.4 Modes of sonography 
 

Three imaging modes are usually used in clinical routine: the M-mode, the B-mode and the 

Doppler mode. 

2.4.1 M-mode 

 
M stands for motion. The M-mode consists in continuously observing the echoes generated by an 

12 



                                                                             

ultrasound beam, whose spatial orientation is fixed. The echoes received by the probe vary 

according to the movement of organs crossed by the beam. An M-mode image is obtained by 

displaying the variation of echoes in position and intensity over time. As only one spatial 

dimension is covered, the time resolution with this method is much higher than in B-mode, which 

allows the observation of very fast movements. For instance, M-mode is often used in 

echocardiography to observe the movements of heart walls and valves. 

 

Figure 7: M-mode and B-mode images. (top) B-mode image representing a heart section. (bottom) M-mode 

representation of the dotted line (Source: http://de.wikipedia.org/wiki/Kardiomyopathie) 

 

2.4.2 B-mode 

 
B-mode is the most widespread mode in clinical routine. It consists in scanning a plane through 

the body and displaying the received echoes in a two-dimensional image. To do so, many 

emissions are done successively, each time with a different beam orientation. The position of an 

echo on the image is determined by its travel time and the corresponding beam orientation. The 

acquisition process is quite fast and generally allows a framerate of 20 to 30 images per second. 
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2.4.3 Doppler mode 

 
Medical ultrasound scanners can also be used for visualizing the blood flow dynamically in the 

body. The so-called Doppler systems can interrogate the flow at a single position in the body and 

find the velocity distribution over time. Measurements are performed by repeatedly pulsing in the 

same direction and then use the correlation from pulse to pulse to determine the velocity. 

 

Figure 8: RF sampling of single pulse moving away from the transducer. The left graph shows the different received 

RF lines, and the right graph is the sampled signal. The dotted line indicates the time when samples are acquired 

 

Measurements of flow signals 
 

The data for the velocity measurement are obtained by emitting a short ultrasound pulse with 4-8 

cycles at a frequency of 2-10MHz. The ultrasound is then scattered in all directions by primarily 

the blood cells and part of the scattered signal is received by the transducer and converted to a 

voltage signal. The blood velocity is found through the repeated measurement at a particular 

location. The blood cells will then pass through the measurement gate and give rise to a signal 

with a frequency proportional to velocity as [7] 
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                                                          0

2 z
p

v
f f

c
  

where 0f  is the emitted ultrasound frequency, zv  is the blood velocity along the ultrasound beam, 

and c is the average speed of sound in soft tissues. A simple model for the sampled signal r(i) 

emanating from a single moving scatterer as shown in figure 2.8 is 

                                    0

2
r(i)=g(i)sin 2 z

prf

v
f iT

c
 

 
 

 
 

where i is the number for the emitted pulse and   is a phase shift introduced by the propagation 

time in the tissue. 

The sampling time is prfiT  and the frequency of the received signal is scaled by the factor 2vz/c 

and is directly proportional to velocity. A higher velocity will make the pulse in Fig. 8 move faster 

past the sampling point and compress the pulse yielding a higher frequency and a lower velocity 

will lengthen the pulse and lower the frequency. The velocity can, thus, be estimated from the 

mean frequency in the received signal. 

The velocity can be both towards and away from the transducer, and this should also be included 

in the estimation of velocity. The sign can be found by using a pulse with a one-sided spectrum 

corresponding to a complex signal with a Hilbert transform relation between the imaginary and 

real part of the signal. The one sided spectrum is then scaled by 2vz/c and has a unique peak in the 

spectrum from which the velocity can be found. The complex signal can be made by Hilbert 

transforming the received signal and using this for the imaginary part of the signal. 

 

Spectral velocity estimation 

 

Using a number of pulse-echo lines and sampling at the depth of interest, thus, gives a digital signal 

with a frequency proportional to velocity. Having a movement of a collection of scatterers with 

different velocities then gives a superposition of the contribution from the individual scatterers and 

gives rise to a spectral density of the signal equal to the density of the velocities. Making a Fourier 

transform on the received signal will, thus, directly reveal the velocity distribution for a given time. 
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Chapter 3 
 

Super resolution 
 

3.1 Theory and Background 

 
In many imaging systems, however, the quality of image resolution is limited by physical 

constraints. The imaging systems yield aliased and under sampled images if their detector array is 

not sufficiently dense. So, digital image processing approaches have been investigated to 

reconstruct a high-resolution image from multiple degraded low-resolution images. Actually, by 

using super resolution algorithms, high resolution images can be reconstructed from a series of 

low resolution images and the idea behind this concept is to combine the information from a set of 

undersampled(aliased) low resolution images of the same scene and use it to construct a high 

resolution image or image sequence [11]. 

 

 
Figure 9: The creation of low-resolution image pixels. The low-resolution image on the right is created from the high-resolution 

image on the left one pixel at a time. The locations of each low-resolution pixel are mapped with sub-pixel accuracy into the 

high-resolution image frame to decide where the blur kernel (plotted as a blue Gaussian in the middle view) should be centered 

for each calculation. 

 

Each low-resolution pixel can be treated as the integral of the high-resolution image over a 

particular blur function, assuming the pixel locations in the high-resolution frame are known, along 

with the point-spread function that describes how the blur behaves. Since pixels are discrete, this  
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integral in the high-resolution frame is modelled as a weighted sum of high-resolution pixel values, 

with the point-spread function (PSF) kernel providing the weights. This image generation process 

is shown in Figure 1.4. Each low-resolution pixel provides us with a new constraint on the set of 

high-resolution pixel values. Given a set of low-resolution images with different sub-pixel 

registrations with respect to the high-resolution frame, or with different blurs, the set of constraints 

will be non-redundant. Each additional image like this will contribute something more to the 

estimate of the high-resolution image. 

 

 In addition to the model of Figure 9, however, real sensors also have associated noise in their 

measurements, and real images can vary in illumination as well as in their relative registrations. 

These factors must also be accounted for in a super resolution model, so the full picture of how a 

scene or high-resolution image generates a low-resolution image set looks more like that of Figure 

10. 

           

Figure 10: One high-resolution image generates a set of low-resolution images. Because the images are related by 

sub-pixel registrations, each observation gives us more additional constraints on the values of the high-resolution 

image pixel intensities. 
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Many reconstruction methods have been proposed over the years but, must super resolution  

reconstruction methods employ following steps: image registration, interpolation and optional 

restoration (deblurring, denoising). Some methods perform these tasks separately, while others 

combine two or more of them. 

3.2 Early super-resolution methods 

 
In following we would have a take a look at historical improvement of super resolution 

technique. 

 

3.2.1 Super resolution in frequency domain 
 

Tsai and Hung were the first to consider the problem attaining a high resolution image from mixing 

a set of low resolution images. Their data set had been achieved by Landset Satellite photographs. 

They modelled the images as aliased translationally displaced versions of a constant scene. They 

had been used from discrete time Fourier transform in their method. It can be said that their 

approach was based on the 3 following items: 

1. Shifting property of the Fourier Transformation. 

2. Aliasing relationship between continuous Fourier transform and high resolution image. 

3. Band limited high resolution image. Figure 11 represent aliasing relationship between low 

resolution image and high resolution image. 

 

Figure 11 :Aliasing relationship between LR and HR image. This figure is from [16] 
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But, they did not consider noise and optical blur in their method. Ozkan, Tekalp and Sezan by 

using noise and point spread function, extended Tsai and Haung formulation. Kim, Bose and 

Valenzuelan also used the model of Tsai and Haung but with consideration of noise and blur. The 

drawback with their technique was that because of presence of zeroes in the PSF, this method was 

ill-posedness. Moreover, the mention estimation was not considered in their method. 

 

3.2.2 Spatial domain methods 
 
Actually, most of research that has been done in super resolution field is in this class of 

reconstruction methods and the reason for that is firstly, the constraints are much easier to 

formulate and secondly, this technique include a great flexibility in in the motion model, motion 

blur, optical blur and the sampling process. 

 

3.2.3 Projection and interpolation 
 
If ideal sampling is considered, then our issue reduces essentially to projection a high resolution 

grid and interpolating of non uniformally spaced samples. Comparison between different 

interpolation methods with high resolution reconstruction results can be found in [12] and [13]. 

 

3.2.4 Probabilistic methods 
 
Modelling of images as probability distribution seems to be acceptable because super resolution 

has been relaying on the approximation of parameters and data that are unknown. Schultz and 

Stevensson [14] used Huber Markov random fields in Bayesian framework to clarify discontinuity 

preserving prior image density function. MAP estimation that relate on to independent motion is 

done by gradient projection algorithm is considered. Motion estimation error is also considered as 

probability density function. 

Hardie, Barnard and Armstrong also followed the Schultz and Stevensson but, they made a 

difference by estimating the high resolution image and motion parameters at the same time. In fact, 

their work had the advantage of of not estimating motion directly from low resolution images. 

Moreover, Tom and Katasggelesb [15] instead of MAP approach used ML method to reduce blur  
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and noise. By utilizing exception maximization technique they can obtain registration and 

restoration concurrently. 

 

3.2.5 Iterative method 
 
The iterative methods are the most important technique in spatial domain methods. The benefits 

of this technique is the possibility of dealing with vast range of data(images)sequence, easy 

inclusion of spatial domain and the capability of this technique to utilizing varying degradation. 

Actually, by the iteration technique first of all we make a rough guess and then try to achieve 

successfully more developed estimation. 

As a matter of fact, there are so many iterative techniques to solve super resolution reconstruction 

methods. 

Feuer and Elad use different approximation to the Kalman filter and estimate its performance by 

Recursive Least Square (RLS), Least Mean Square (LMS) and Steeped Descent (SD). Irani and 

Peleg introduced the Iterative Back Projection (IBP) algorithm oriented from computer aided 

tomography (CAT). 

To decrease the ill posedness and noise Stack et.al. Applied a set of theoretic algorithm projection 

on to convex sets (POCS). Peleg and Irani modify their method to deal with more complex motion 

types like local motion partial occlusion and transparency. Shah and Zakhor also followed the 

Peleg and Irani and proposed a novel approach for motion estimation. 

 

3.2.6 Projection on to convex sets 
 

This technique is an alternative iterative method to have a feature based on prior knowledge about 

possible solution into the reconstruction process. Actually this approach approximates the super 

resolution image based on finding solution for the problem of interpolation and restoration. 

This method was first introduced by Oskoui and stark[17].They used from convexity and closeness 

of the constraint sets to ensure convergence of iterativity projecting the images on to the sets; but 

their solution has some drawbacks. For example, it was dependence of initial guess and it was non-

unique. 

Takalp et.al. Then used from Oskoui and Stark formulation and make that more robust by 
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 considering the observation noise and the motion blur [18]. Based on the POCS method 

incorporating a priori knowledge into the solution can be represented as a limit to solution to be a 

member of a closed convex set ic  which can be expressed as a set of vectors that satisfy a specific 

property. If the limiting sets have a non-empty intersection, then a solution that belongs to the 

intersection set sc can be found by projections onto those convex sets. 

 

The advantage of POCS method is that it uses from strong spatial domain observation model. 

Moreover, its simplicity and and flexibility should not be ignored. Furthermore, some problems 

with this technique is having a high computational cost, slow convergence and non-uniqueness 

[1]. 

 

Peleg and Irani modify their method to deal with more complex motion types like local motion 

partial occlusion and transparency. Shah and Zakhor also followed the Peleg and Irani and 

proposed a novel approach for motion estimation. 

 

3.2.7 Edge-preservation method 
 
Milanfar et.al. Proposed using the 

1L  norm in the super resolution both for data fusion and for the 

image registration.
1L Norm has the capability of removing outlier efficiently. Moreover, it 

performs spatially well in facing with non-Gaussian noise. Furthermore, the results that achieved 

by 
1L  norm approach are less sensitive to the outlier in the super resolution images. 

3.3 Challenges 

 
Super-resolution algorithms face a number of challenges in parallel with their main super-

resolution task. In addition to being able to compute values for all the super resolution image pixels 

intensities given the low-resolution image pixel intensities, a super resolution system must also be 

able to handle: 

 

 Image registration – small image displacements are crucial for beating the sampling limit 

of the original camera, but the exact mappings between these images are unknown. To 
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achieve an accurate super-resolution result, they need to be found as accurately as possible. 

 

 Lighting variation – when the images are aligned geometrically, there may still be 

significant photometric variation, because of different lighting levels or camera exposure 

settings when the images were captured. 

 

 Blur identification – before the light from a scene reaches the film or camera CCD array, 

it passes through the camera optics. The blurs introduced in this stage are modelled by a 

point-spread function. Separating a blur kernel from an image is an extensively-studied and 

challenging problem known as Blind Image Deconvolution. This can be even more 

challenging if the blur varies spatially across the image. 

                            

                             

Figure 12: Three of the challenges facing a multi-frame super-resolution algorithm. Left column: the two instances of 

the “P” character have different alignments, which we must know accurately for super-resolution to be possible. 

Middle column: the eyechart in the images has different illumination between two frames, so the photometric 

registration between the images also has to be estimated. Right column: the image blur varies noticeably between 

these two input frames, and blur estimation is a difficult challenge. 

 

These three cases are illustrated for some low-resolution image patches in Figure 12. While the 

goal is to compute a high-resolution image, the efficacy of any super-resolution approach depends 

on its handling of these additional considerations as well. Given “good” low-resolution input 

images, the output from an otherwise successful super-resolution algorithm will still be poor if the 

registration and blur estimates are inaccurate. 
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Chapter 4 

 

Compressive Sensing 

 
4.1 Compressive Sensing Theory 
 

4.1.1 Background: The drawback of Nyquist sampling 
 

According to the Shannon/Nyquist sampling theorem, in order to reconstruct a bandlimited signal 

perfectly the sampling rate should be at least two times that of the signal bandwidth [19]. To be 

more specific, let x(t) represent a continuous-time signal and x(f) be the continuous Fourier 

transform of the signal x(t), we have: 

                                                          
2( ) ( ) i ftx f x t e dt







   

The signal x(t) is said to be bandlimited if there is a B, such that x(f)=0 for all f B . Figure 13 

shows an example of a bandlimited signal x(t). The quantity 2B is called the Nyquist rate. The 

sufficient condition for signal x(t) to be perfectly reconstructed from an infinite sequence of 

samples is the sample rate fs  should be larger than 2B. If fs is less than 2B, aliasing will be 

introduced after reconstruction. 

         

                            Figure 13: An example the Fourier transform of a bandlimited signal x(t) [3] 

23 



                                                                             

While in reality, this sampling rate is still so high that too many samples should be achieved. 

Especially in the medical imaging modality, we need to reduce the time of the patients’ exposure 

in the electromagnetic radiation. So it is desirable to take as few samples as possible without losing 

essential information. It is interesting to notice that most signals in reality are sparse. When they 

are represented in some domain (such as the wavelet domain), they contain many coefficients close 

to or equal to zero. Compressed sensing acquires and reconstructs a signal applying the prior 

knowledge that it is sparse. It can capture and represents compressible signals at a rate significantly 

lower than Nyquist rate. 

4.1.2 The sparsity of signals 

Using mathematics to illustrate, we have a discrete-time signal x in N  that can be represented in 

terms of an orthonormal basis of N X 1 vectors 1[ ]N

i  as follows: 

                                                       
1

N

i i

i

X s


                                                     (1) 

Where is  is the coefficient sequence of X. For simplification, we can write (1) in matrix form as 

X s  (where S is the N X 1 column vector  and is the matrix with i  as columns). Signal X 

has a K-sparse expansion if only K of the entries in S are non-zero and (N-K) are zero. Real signals 

are often compressible which means the sequence of coefficients decays quickly. It means the 

large fraction of small coefficients can be thrown away without much perceptual loss. 

4.1.3 The inefficiencies of conventional data transform 

In traditional data acquisition, the first step is to acquire the full N-sample signal; then compute 

the coefficients { }is  via Ts X   and only keep the K largest { }is while discarding the others. The 

values and locations of the K largest { }is  should be encoded. This traditional signal acquisition 

processing divides the sampling and compression into two separate processes which samples a lot 

of unnecessary information. This inefficiency is more obvious when the number of samples N is 

large compared to K. Compressed sensing is a method to skip the sampling step by directly 

acquiring the compressed signal representation to overcome these inefficiencies. 
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4.1.4 Motivation 

In many settings, the signals we are working with cover only a tiny fraction of the set of all possible 

signals. For example, consider the case of photography and imagine a 256 × 256 digital grayscale 

image whose pixels each obey a uniform distribution over [0,255] (Fig. 14, left). The probability 

of such an image being interpretable as a photograph is very close to zero. In a photograph (Fig 

14, right), one would expect to see shapes, lines and textures that can be interpreted as objects, and 

which are very unlikely to appear in a random image. 

 
Figure 14: Comparison of a random image (independent pixels obeying a uniform distribution over [0; 255], on the 

left) and the photograph of a natural scene (portrait of Lena, on the right). 

 

The latter observation applies to almost any type of signal: speech signal, music, MRI, seismic 

measurements, etc. It is also the foundation of efficient data compression. Indeed, the particular 

structure of a certain type of signal translates to the fact that it is possible to find a basis in which 

these signals have a sparse expansion, that is to say many zero coefficients. Pure sparsity is almost 

never attainable in practice, partly because of the presence noise, but signals are often 

compressible, that is to say that their coefficients in an appropriate basis decay rapidly. For 

example, it is now well known that most of the energy of a digitized natural image lies in very few 

of its wavelet coefficients. This is illustrated by Fig. 15, which compares the 512 × 512 pixels 

portrait of Lena and a version of this portrait where only the 2621 largest wavelet coefficients (i.e. 

1%) were kept and all the others set to zero. 
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In certain fields, data acquisition raise problems that can be difficult to get round. These difficulties 

can be caused by 

 Physical constraints on the acquisition device, e.g. in the case of seismic data acquisition 

[5], cable feathering in marine surveys can lead to missing traces, 

 The cost of each acquisition, 

 health risks, e.g. radiation exposure in certain fields of medical imaging 

 Time constraints, e.g. MRI acquisitions should be quick enough to avoid any movement of 

the patient, which would cause a blurred resulting image. 

 The alternation between several modes of acquisition that cannot be carried out 

simultaneously, 

 The sampling rate bound implied by the Nyquist-Shannon sampling theorem. 

 

 
                              (a)                                                                                    (b) 
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                              (c)                                                                                  (d) 
 

Figure 15: (a) Original 512 × 512 Lena image. (b) Image reconstructed from 1% of the wavelet coefficients of the 

original image. Only the largest coefficients were kept. The others were set to zero. (c) Sorted wavelet coefficients of 

the original image. (d) Sorted wavelet coefficients of the reconstructed image. 

 

The goal of compressive sensing [2] is to get round these problems by carrying out a limited 

number of measurements, from which the original signal can be reconstructed, using sparsity 

promoting algorithms. This method thus amounts to acquire a signal directly in a compressed form, 

hence the names of compressive sampling, compressive sensing or compressed sensing. 

4.1.5 The introduction of compressed sensing  
 
In order to measure all the N coefficients of x , we consider M X 1 (M<N) the column inner 

products y between x and collection of vectors 1{ }M

j j :  

                                               y x x Vx                                             (2) 

Where V   is an matrix M X N. is called an M X N measurement matrix with 
T

j  as rows. 

  is fixed and does not depend on the signal , so this process is non-adaptive. This is a great point 

since if we get a robust result from a measurement matrix , we can apply this measurement 

matrix   to any kinds of signals without worrying about the stability. Figure 16 illustrates the 

process of compressed sensing. 
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                                    Figure 16: A Pictorial representation of CS process [3] 

4. 2 Conditions for successful CS signal recovery 

Successful CS signal recovery is possible under two conditions. Firstly, the signal to be recovered 

has to be sparse, or at least compressible, in the domain described by . Secondly, the signal must 

be “mixed” sufficiently during the acquisition process. The mixing depends on the coherence 

between  and  on one hand, and on the randomness of the sampling scheme on the other hand. 

 

4.2.1 Restricted isometry property (RIP)  

The main task of encoding is to transform the N X 1 K-sparse signal x to the M X 1 measurement 

y by using a proper measurement matrix . The sampling matrix must map two different 

signals to two different sets of measurements, so all of the column submatrices (containing at   

most K columns) of should be well-conditioned.  

Candѐs and Tao proposed a condition for the sampling matrix  . For all K-sparse vector x, an M 

X N matrix  has the K-restricted isometry property if 

                                     
2 2 2

2 2 2
(1 ) (1 )k kX X X                                                          (3) 

When k  is less than 1, the inequalities (3) imply the all of the submatrices of with K columns 

are well-conditioned and close to an isometry. If k <<1, the sampling matrix  has a large 

probability to reconstruct the (K/2)-sparse signal X stably. 
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This condition is called Restricted Isometry Property (shorted for RIP). The connection between 

RIP and Compressed Sensing is if 2K  is sufficiently less than 1, all pairwise distances between 

K-Sparse signals must be well preserved in the measurement space which implies that

2 2

2 1 2 1 22 2
(1 )K X X X X       

2

2 1 2 2
(1 )K X X    holds for all K-sparse vectors 1X  and

2X . Because and are two different vectors and 
2

1 2 2
X X  are always larger than zero,

2

1 2 2
X X   will never equal to zero. It can be said that the sampling matrix   should map two 

different K-sparse signals to different samples. 

 

So as to invert the sampling process stably and get a K-sparse signal X, we need to get a small 

restricted isometry constant 2K . However, it is computational difficult to check whether a matrix 

  satisfies the inequality (3). Fortunately, many types of random matrices have a good restricted 

isometry behavior, and they satisfy the restricted isometry condition with high probability. One of 

the quintessential examples is Gaussian measurement matrix  that the entries j  of   are 

independent and identically distributed (i.i.d.) random variables from a Gaussian probability 

density function. An M X N i.i.d. Gaussian matrix has restricted isometry behavior with high 

probability if log( / )M c K N K   where is a constant [2] [4]. This also means K-spare or 

compressible signals with length N can be recovered with M random Gaussian measurements.  

 

4.2.2 The idea of Reconstruction 

In order to achieve an optimal recovery algorithm, there are several requirements that should be 

satisfied. The requirements are illustrated as below:  

(1) Stability. The algorithm should be stable. That means when the signals or the measurements 

are perturbed slightly by noise, recovery should still be approximately accurate.  

(2) Fast. The algorithm should be fast if we want to apply it into practice.  

(3) Uniform guarantees. When acquiring linear measurements by using a specific method, these 

linear measurements can apply to all sparse signals.  
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(4) Efficiency. The algorithm should require as few measurements as possible.  

Now we want to reconstruct a K-sparse signal nx  by the M X 1 measurement vector y x  . 

Since the measurement matrix MXN  and M<N, the system (2) is underdetermined. That 

means we have more unknowns than the equations. Theoretically, there are infinitely many x  that 

satisfy Eq. (2). However, in our case the additional assumption is that x is K-sparse, and then there 

is often a unique x  that will suffice to recover y. The best solution will be the sparsest vector that 

means it has the most zero coefficients. Consider the 0l norm that counts the number of non-zeros 

entries, the reconstruction problem turns to be: 

                                  0
argmin

x

x x , subject to y x                                                 (4) 

Unfortunately, the -minimization problem is NP-hard [29] [30]. It is computationally intractable 

to solve Eq. (4) for any matrix and vector. There are two families can be alternatively used to solve 

Eq. (4). One is the basic pursuit that is a convex relaxation leading to -norm minimization [25], 

the other is greedy pursuit [20] such as Orthogonal Matching Pursuit (OMP) [24], Stagewise 

Orthogonal Matching Pursuit (StOMP) [26], and Regularized Orthogonal Matching  Pursuit 

(ROMP) [27][28]. 

1l -minimization approach 

As we discussed in section 4.2.1(RIP), in most cases if the RIP holds, the 1l norm can exactly 

recover K-sparse signals and do a proper job to approximate the compressible signals with high 

probability using only ( log( / ))M O K N K   i.i.d. Gaussian measurements. Then the Eq. (4) will 

change to be:  

                          1
argmin

x

x x    , subject to y x                                                         (5) 

Eq. (5) is equivalent to the linear programming  

                       
2

1

min
N

j

j

v


 , subject to 0, ( , )V y V                                                (6) 

Where V  is a positive real number of size 2N. The signal X is obtained from the solution *V  of 

(6) via 
*( , )X I I V  . So the 1l norm minimization can be solved by linear programming problem.  
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Interior-point methods [21], projected gradient methods [22] and iterative thresholding [23] can 

be used to solve the Eq. (6).  

The 1l  minimization approach can provide stability and uniform guarantees. But it doesn’t have 

linear bound on the runtime, it is not optimally fast. The basic pursuit is well developed and I am  

not going to talk too much about it. Greedy pursuit is the target I will focus on. 

4.2.3 Greedy pursuit 

Greedy pursuit is another approach to reconstruct the signal. It is an iterative signal recovery 

algorithm to calculate the support of the signal and it makes the locally optimal choice at each time 

to build up an approximation and repeats until the criterion is fulfilled. When we get the support S 

of the signal, the signal x can be reconstructed by
†( )sx y  , where s  is the measurement matrix 

with entries indexed by S and 
†( )s  is the pseudoinverse of . The pseudoinverse of a full-

rank matrix  is defined by the formula
† * 1 *( )     .   

Greedy pursuit is extremely fast while it is not optimally stable and doesn’t have uniform 

guarantees. 

 

Chapter 5 
 

Implementation 
 

The theory of CS heavily depends on signal or image sparsity and can efficiently extract the most 

efficient information from a small number of measurements, i.e., to reduce the collection of 

inessential data [31] [3]. CS demonstrates that a small non-adaptive linear measurements of a 

compressive image have enough information to reconstruct it perfectly [31] [32]. If we represent our 

desired high-resolution image as an n-dimensional vector nx R where n is large. We want to 

estimate this high-resolution signal from the low-resolution input
my R , where m n .Let us 

consider that signal y has been acquired from the original through a linear down sampling 

measurement process, represented as 
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                                                       y x                                                                         (7) 

Where x is an n x 1 high-resolution image vector in spatial domain,  is a sampling matrix that 

performs the linear measurements on x . Our goal is to recover the high-resolution x  using only y as 

input. 

Initially, this seems like an impossible feat since the m samples of y yield a (n − m) dimensional 

subspace of possible solutions for the original x that would match our given observations. In order 

to know one of those possible solutions for our desired y we apply a key assumption of CS that 

transformed version of signal, x  is k -sparse under some basis  ,it means that at most k non-zero 

coefficients in that basis (e.g.,
0

x k , where 
0

.  denotes the 0l  quasi-norm). This is not an 

unreasonable assumption, since we know that the high-resolution image will be a real world image, 

and so it will be compressible in a transform domain, e.g., wavelet transform. We can now write our 

measurement process from Eq. (7) as: 

y x Vx  
                                                             (8) 

where V   is a general m×n measurement matrix. If we can have for x  given the measured y , 

to get our desired high resolution signal x  we could apply the inverse transform *x .Unfortunately, 

conventional techniques such as least square,inversion approach for solving for x do not work since 

Eq. (8) is severely under-determined. However, in paper[1] proof show that in CS if 2m k and V

meets certain properties of the restricted isometry property (RIP)[33],that is: 

2 2 2
(1 ) (1 )k kV        , (0 1)k                                (9)  

where  represents random k-sparse vector. In general, the RIP states that a measurement matrix 

will be valid if every possible set of Z-sparse vector columns of V forms an approximate orthogonal 

set. In effect, we want the sampling matrix   to be as incoherent to the compression basis   as  

32 



                                                                             

possible. Examples of matrices that have been proven to meet RIP include Gaussian matrices, partial 

Fourier matrices and Bernoulli matrices [34]. 

  Then Eq.(8) can be solved uniquely for  the sparest x  that satisfies the equations in 

paper[1].Therefore the sparse solution for Eq.(8) is found by solving the following 0l  norm 

minimization problem, 

                         0
min . .x s t y Vx                                                               (10) 

Where 
0

x  describes the 0l norm, the number of non-zero entries in x . The solution to the problem 

in Eq. (10) is combinatorial in nature with prohibitive computational load in practical applications. 

Convex relaxation of the 0l  problem to the following 1l  problem, 

                     1
min . .x s t y Vx                                                              (11) 

   The 1l  optimization of Eq. (11) will solve correctly for x  [41] as long as the number of samples 

( log )m O k n and the matrix V meets the RIP [33] with this parameters (2 , 2 1)k  .This can be 

done with methods such as linear programming [1] and basis pursuit [39]. 

     Greedy reconstruction algorithm: Orthogonal Matching Pursuit (OMP) was one of the first 

algorithms explored to solve Eq. (10) which is simple and fast [24] to overcome the large running 

time of 1l  since there is no known polynomial-time algorithm for linear programming [33] even its 

optimization is more efficient than the 0l .However, OMP has a major drawback because of its 

weaker guarantee of exact recovery than the 1l  methods. To bypass these limitations, a modification 

to OMP called Regularized Orthogonal Matching Pursuit (ROMP) was proposed which recovers 

multiple coefficients in each iteration, thereby accelerating the algorithm and making it more robust 

to meeting the RIP [33]. In this technique, we use the ROMP algorithm for signal reconstruction 

 

 

 

33 



                                                                             

 

5.1.1 Super Resolution Ultrasound Compressed sensing 

 

     In our methodology, we utilize wavelets as our compression basis   since they are good at 

representing images sparsely than non-localized bases for example Fourier. However, 

downsampling matrix  in SR process involves point-sampled measurements, which lead to 

measurement matrix V that does not meet the RIP conditions due to incoherency. Intuitively, we can 

see that the better a basis is at representing confined features (such as wavelet), the more coherent it 

will be to point sampling because it can represent small spatial features (e.g., point samples) with 

only a less coefficients, by definition. Therefore, we propose to modify Eq. (14) depends on the 

observation that is filtering the high resolution image before downsampling. In other words, we can 

write our desired high-resolution image as 
rx  (the sharp version), which is then filtered by matrix 

  to result in a blurred, high resolution version
b rx x .This blurred version is then downsampled 

by Eq. (13):  

                                                 b ry x x                                                                  (12) 

 In this approach, we choose a Gaussian filter  . Since it act as a multiplication by a Gaussian in 

the frequency domain we can define hf Gf  , which makes Eq. (12): 

                                                 
h

ry f Gfx                                                                              (13) 

where f is the Fourier transform matrix,
hf  is the inverse Fourier transform and G is a Gaussian 

matrix with values of the Gaussian function along its diagonal and zeros elsewhere. With this 

formulation in hand, we can now solve for rx  by posing it as a compressed sensing problem by 

assuming that its transform rx  is sparse in the wavelet domain: 

                                           0
min . . h

r rx s t y f Gf x                                           (14) 
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An approximate solution to this optimization problem can be achieved using greed methods. 

However, in order to solve q Vx , where *V  = TV with the assumption that TV VA A [33] 

greedy algorithms require having both the forward matrix V  and backward matrix *V .We have 

shown the forward MatrixV   ,where, the Gaussian matrix in  cannot be inverted through 

transpose, i.e., 1 TG G  ,we use the backwards matrix of the form * 1 1T T T h TV f G f      . 

      We note that 1G  is also a diagonal matrix that is supposed to have the inversion of the Gaussian 

function of G  along its diagonal. Whereas, we must be careful because of the well-known problem 

of noise amplification while inverting the Gaussian, we use a linear Weiner filter to invert the 

Gaussian function [35] to avoid noise, which means that our inverse matrix 1G  has diagonal 

elements of form
1 2

, , ,/ ( )i i i i i iG G G    . 

The increases of the incoherence between the measurement and compression basis must be verified 

for proposed algorithm by computing the coherence with and without the blurring filter  . 

The coherence can be found by taking the maximum inner product between any two basis elements 

scaled by √n [14]. When the Gaussian filter is introduced the coherence drops to 131.8.On the other 

hand, Without the Gaussian filter, the coherence is 243.6 for n = 380×600.It’s found that with 

Gaussian filter coherence reduction is enough to us apply the CS framework to this problem and get 

the high-quality results shown in the paper. With this formulation in place, we are now ready to solve 

the CS problem of Eq. (14).  

In Eq. (14), we have shown the solution for the wavelet transform of the sharp, high-resolution image

rx .We can take the inverse wavelet transform *

rx  once we solve for
rx , to get the high-resolution 

image
rx . We use the ROMP greedy algorithm which is preferable over non-linear methods like 

linear programming [1] or basispursuit [3]. The algorithm is faster and can handle large vectors and 

matrices, which is vital when in images because the size of the matrices involved are n × n. 

     The ROMP algorithm is similar to the OMP algorithm except the main difference is that instead 

of only selecting the largest coefficient, ROMP selects the continuous sub-group of coefficients with 

the largest energy, with the restriction that the largest coefficient in the group cannot be more than  
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twice as big as the smallest member. These coefficients are then added to a list of non-zero 

coefficients and a least-squares problem is then solved to find the best approximation for these non-

zero coefficients. The approximation error is then computed based on the measured results and the 

algorithm iterates again. In this work, we limit the number of coefficients added in each iteration to 

obtain the better results. 

4.1.2 Experiments on Ultrasound Images 

We applied the proposed method In vivo and phantom ultrasound images. The ultrasound images 

are obtained using COSMOS US diagnostic system. The parameters used to generate the phantom 

image: the lateral beam width was 1.5, the pulse width 1.2 and the center frequency was 5 MHz.The 

size of phantom image is 380 X 600 the images used in this experiments are shown in figures 1 

The proposed CS approach for SISR is compared with Nonlinear-diffusion (ND) [37], Bicubic [38]  

and Yang et al. [39], to estimate the quality of reconstructed US images, the peak signal to noise 

ratio (PSNR) used. The PSNR defined by: 

                                                 
max

1010log
N

PSNR
MSE

                                                      (15) 

where maxN :The maximum fluctuations in the input image, max (2 1)nN   , maxN =255,when the 

components of a pixel are encoded on 8 bits;MSE:denotes the mean square error, given by: 

                                                

2
^

1 1
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( , ) ( , )
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i j
MSE O i j R i j

MN
 

                                   (16) 

where ( , )O i j :the original image, ( , )R i j :the restored image. 
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Figure 17 shows us the comparison of PSNR used different reconstruction Algorithm as we can see 

from the curve, compared with the ND, bicubic and Yang.et.al, the performance of proposed 

algorithm is better. 

                                     

                     Figure 17: Comparison of PSNR for different reconstruction algorithm 

 

Figure 18 represents recovered images by different methods. The amplification of the local regions 

of the recovery images is also shown in the right. From the result we can see that there are remarkable 

block effect in Non-diffusion method, Bicubic method and yang.et.al (shown in Fig. 18(a), (b) and 

(c)) recovers too smooth, distorted image and our prosed method can achieve better result than other 
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                                    Figure 18(a-d): Reconstruction comparison of US images. 

 

methods (shown in Fig. 18(d)) on detail preservation. To test our technique for clear visual 

comparison and accuracy by computing the root square error (RSE), a measure of the Euclidean 

distance, of their output to the original US high resolution image. In Figure 19 we plot RSE error 

variations for different magnifications level for various approaches and it is noted that our technique 

more information is available as the magnifications decreases so, the error reduced. 
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Figure 19: Reconstruction error comparison as a function of magnification level for the US phantom image. 

 

The quantitative performance is measured with parameters like structural similarity (SSIM) [40] 

[41], mean structural similarity [42] and feature similarity (FSIM)[43] which compares the structure 

of two images by measuring the structural similarity, SSIM is related with the distortion of the visual 

sensing. The higher of SSIM and MSSIM are, much similar of the structure of the recovered image 

to the original image. Feature Similarity (FSIM) index is proposed based on the fact that human 

visual system (HVS) understands an image mainly according to its low level features [43]. It uses 

the phase congruency (PC) and gradient magnitude (GM) features of images as the evaluation index. 

Table 3 shows the SSIM, MSSIM and FSIM of the reconstructed images obtained by different 

methods. From this we can see that the image recovered by our method is higher than that of the 

images obtained from the conventional methods mentioned in [37] [38] [39]. 
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Methods FSIM SSIM MSSIM 

ND 0.7568 0.9543 0.6955 

Bicubic 0.8231 0.9772 0.7593 

Yang et al. 0.8467 0.9815 0.8067 

Our Method 0.8538 0.9878 0.8114 

Table 3: The numerical guidelines of the recovered images obtained from different methods. 

4.1.3 Discussion and Conclusions 

     Our work is relevant to the techniques that attempt to solve the ill-posed problem of SR 

through regularization methods such as TV [44], [45]. However, the main difference between our 

approach and previous methods is that by posing it within the compressed sensing algorithm and 

tackle the problems by accessing tools like greedy Regularized Orthogonal Matching Pursuit 

(ROMP) algorithm we used in this paper. 

     We note that Yang et al. [24] also uses sparsity to regularize the problem of super-resolution 

whereas they uses dictionary of images and we use wavelet basis to sparsify the image. Neelamani 

et al. [46] proposed to combine wavelet and Fourier transforms together to reconstruct the signal, 

it’s popularly known as, Fourier-Wavelet Regularized Deconvolution or ForWaRD. In our algorithm 

we use similar approach to reconstruct the image in the wavelet domain while same time inverse the 

signal in by using CS. This makes our algorithm to handle uncertainty due to down-sampling by 

assuming sparsity of the signal in the wavelet domain.     

In this work, we have demonstrated the single image super resolution problem within the 

compressive sensing framework and utilize greedy matching pursuit algorithm to solve for the high 

resolution image. The uniqueness of our approach is based on the fact that we are not using the 

dictionary data for training. As a consequence, we could significantly recover images and reconstruct 

it in high resolution than conventional methods commonly used for these applications. Experimental 

results show that our method not only gives better performance but also an effective reconstruction 

on ultrasound images. 
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