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ABSTRACT 

Compressed sensing (CS) has attracted a lot of interest and established as a new paradigm of signal 

acquisition that allows sampling and reconstructing signals below the Nyquist rate. CS theory states 

that if a signal is sparsely represented in a certain domain, the signal can be compressively sampled 

via linear projection, and reliably reconstructed from fewer measurements than required by the 

Nyquist rate. Therefore, CS enables simultaneous signal acquisition and compression that are 

efficient in terms of fast acquisition time, data reduction, and energy savings. In the early years, CS 

as its name indicates mainly focuses on a compression point of view, i.e., how small number of 

measurements can compressively acquire the signals and reconstruct them correctly. In a different 

viewpoint, however, when the system has inherently limited measurements, CS can be considered to 

improve system resolution by exploiting high dimensional signal reconstruction from the fixed low 

dimensional measurements.  

This dissertation focuses on two applications of compressed sensing for resolution improvements, 

i.e., 1) compound eye imaging systems and 2) filter-based miniature spectrometers. In order to 

improve resolutions, conventional method is simply to increase the number of sampling (or imaging) 

units. However, in the compound eye imaging system, an ommatidium, a basic imaging unit is 

diffraction-limited and thus the size of ommatidium cannot be reduced unlimitedly. As a result, the 

number of ommatidia to be accommodated in a static volume of compound eye is limited. In the 

filter-based miniature spectrometers, the resolution is limited with respect to the number of optical 
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filters and their filtering performances. Miniaturizing the optical filters with maintaining the required 

filtering performance is very difficult and cost-inefficient. Instead of just increasing the number of 

ommatidia in the compound eye imaging systems and the number of filters in the miniature 

spectrometers, we propose entirely new designs of ommatidia and filters that aid in resolution 

improvements when combined with a digital signal processing (DSP) algorithm. 

Traditional systems are designed to minimize the distortions or interferences because the 

interferences are considered unwanted noise. Thus, in the compound eye imaging system, the 

acceptance angles of ommatidia are designed small to prevent overlapping field of views of 

ommatidia. In spectrometers, the optical filters are designed to transmit the designated wavelengths 

and filter out the rest. In this work, we propose a COMPUtational compound Eye (COMPU-EYE) 

that has ommatidia with large acceptance angles and a compressive spectrometer equipped with 

filters having random transmittances. In both systems, each measurement is compressively spatially 

and spectrally encoded in the spatial domain in COMPU-EYE and in the spectral domain in the 

compressive spectrometer, respectively. We use DSP techniques for high-resolution signal 

reconstruction from the encoded low-dimensional measurements. We demonstrate that the resolution 

improvements are achieved in both systems. Furthermore, depth estimation in COMPU-EYE and 

incident angle estimation in compressive spectrometers are realized by exploiting uniqueness of 

measurement matrices and sparse representation-based classifications.  
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국문요약 

압축센싱은 전통적인 Nyquist sampling rate 보다 적은 수의 샘플로 압축하여 

취득하여도, 다시 정교하게 복원 가능하다는 새로운 신호 취득 및 복원 방법이다. 

압축센싱 이론에 의하면, 희소한 특징을 갖는 신호, 즉, 적은 수의 non-zero 값을 

갖고, 대부분이 0의 값을 갖는 신호는 적은 수의 선형측정으로 원래의 신호를 정확히 

복원할 수 있다. 압축센싱은 그 이름처럼 주로 신호를 얼마나 압축해서 취득을 하면 

신호를 정확하게 복원할 수 있는지에 대해 연구가 되어왔다. 하지만, 시스템의 크기 

성능, 또는 제작 비용 등의 이유로 제한된 선형측정의 수를 가지고 있는 시스템에서는, 

정해진 선형측정의 수로부터 얼마나 많은 신호를 복원할 수 있는지 해상도 향상의 

관점에서 접근할 수 있다. 본 연구에서는, 압축센싱의 신호 획득 및 고해상도 신호 

복구 기술을 1) 곤충눈 시스템과 2) 소형 분광 시스템에 적용하였다. 전통적인 

곤충눈 시스템에서는 각 홑눈 사이의 간섭을 최소화하기 위해서, 각각의 홑눈의 

시야영역을 겹치지 않도록 수용각을 작게 설계한다. 전통적인 광학필터기반 분광 

시스템에서도 각 필터 사이의 간섭을 최소화하기 위해서, 각 필터의 투과영역을 

겹치지 않도록 필터를 설계한다. 반면에, 본 연구에서는, 각 홑눈 사이의 시야영역을 

고의로 겹치도록 수용각을 크게 설계하고, 각 필터 사이의 투과영역을 고의로 

겹치도록 필터를 설계한다. 이는 정보 취득 관점에서, 각 홑눈과 필터가 더 많은 

정보를 취득한다고 볼 수 있다. 이러한 설계 방식으로 인해 왜곡된 선형측정 값들은 
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l1놈 기반의 디지털 신호 처리 방법을 통해 고해상도의 원래 신호로 높은 정확도로 

복구된다. 또한, 제안하는 압축센싱 기반의 곤충눈 시스템에서 거리 추정 기법과 

분광기 시스템에서 각도 추정 기법도 연구한다.  
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1 INTRODUCTION 

 

The recent trend in optics is to merge an optical system hardware with digital signal processing 

(DSP) algorithms. These algorithms process the output of the system to remove hardware artifacts 

and thereby improve resolution. Single pixel cameras, lens-free cameras and compressive sensing 

microscopes are such innovative imaging through computation systems. They are recognized as 

prominent emerging technologies (e.g. MIT Tech. Reviews 2007, 2013) enabled by super-

resolution algorithms evolved from the compressed sensing (CS) and sparse representation (SR) 

framework.  

The use of CS and SR estimation algorithms are already proven to revolutionize imaging 

systems in many applications including compressive imaging architectures, medical imaging, 

remote surveillance, and spectroscopy [1]. For example, in single pixel cameras it has been shown 

that high resolution imaging is possible with the use of a single photo sensor [2]. There the 

researchers have utilized digital micro-mirror device (DMD) or spatial light modulators (SLM) 

to transform a scene in to compressed digital samples [3]. These digital samples are used for high 

resolution imaging through computation. However, DMD or SLM is expensive optical equipment 

and requires additional space.  
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In this dissertation, we study the resolution improvements in CS and apply the CS framework 

into two applications: 1) Compound eye imaging systems and 2) Filter-based miniature 

spectrometers. For reliable signal reconstruction with high resolution, we propose 

- to design new analog hardware (ommatidia / optical filters) with holistic sampling 

capability 

- to use DSP algorithms to reconstruct the desired input signal from the compressed 

measurements. 

 

1.1 Outline of the dissertation 

This dissertation is organized as follows: the compressed sensing theory is introduced in 

Chapter 2. In Chapter 3, we propose a computational compound eye (COMPU-EYE), which were 

published in [4, 5]. 

[4] W.-B. Lee, H. Jang, S. Park, Y. M. Song, and H.-N. Lee, "COMPU-EYE: a high resolution 

computational compound eye," Optics Express, vol. 24, no. 3, pp. 2013-2026, 2016/02/08 

2016. 

[5] W.-B. Lee and H.-N. Lee, Depth-estimation-enabled compound eyes. 2018, pp. 178-185. 

 

In Chapter 4, we propose a compressive spectrometer in the CS framework, some part of which 

were published in [6-10] . 
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[6] J. Oliver, W. Lee, S. Park, and H.-N. Lee, "Improving resolution of miniature 

spectrometers by exploiting sparse nature of signals," Optics Express, vol. 20, no. 3, pp. 

2613-2625, 2012/01/30 2012. 

[7] J. Oliver, W.-B. Lee, and H.-N. Lee, "Filters with random transmittance for improving 

resolution in filter-array-based spectrometers," Optics Express, vol. 21, no. 4, pp. 3969-

3989, 2013/02/25 2013. 

[8] W.-B. Lee, O. James, S.-C. Kim, and H.-N. Lee, "Random optical scatter filters for 

spectrometers: Implementation and Estimation," in Imaging and Applied Optics, Arlington, 

Virginia, 2013, p. JTu4A.33: Optical Society of America. 

[9] W.-B. Lee, C. Kim, G. W. Ju, Y. T. Lee, and H.-N. Lee, "Design of thin-film filters for 

resolution improvements in filter-array based spectrometers using DSP," in SPIE 

Commercial + Scientific Sensing and Imaging, 2016, vol. 9855, p. 6: SPIE. 

[10] C. Kim, W.-B. Lee, et al., "A method of incident angle estimation for high resolution 

spectral recovery in filter-array-based spectrometers," in SPIE OPTO, 2017, vol. 10117, p. 

6: SPIE. 

 

In Chapter 5, we conclude this work. 
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2 RESOLUTION IMPROVEMENTS IN COMPRESSED SENSING 

 

Compressed sensing (CS) is a data acquisition framework which has received great interests in 

electrical engineering, signal processing, and computer science [1]. Since its initial advent in 2006, 

a lot of studies and developments have been established as a successful paradigm of signal 

acquisition to date. In this chapter, we introduce the basic CS theory, its resolution improvement 

perspective, and two applications of the CS framework for resolution improvements. 

 

2.1 Compressed sensing 

 

Compressed sensing (a.k.a. compressive sensing or compressive sampling) is a new signal 

acquisition framework that requires far fewer measurements than traditionally assumed Nyquist 

sampling rate [1]. Since the seminal work of D. Donoho [11] and E. J. Candès [12] in 2006, CS 

has attracted considerable attention in the areas of applied mathematics, computer science, and 

electrical engineering [1].  

In the traditional signal acquisition (or sampling) system, the signal is measured by uniformly 

acquiring (or sampling) the signal. In contrast, in the CS framework, the sampling and 
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compression is integrated into one step, by measuring few samples. In CS, each measurement (y) 

is modeled as a linear projection of the input signal (x) via measurement matrix ( ) that contains 

the encoding coefficients. In mathematical expression, M linear measurements My   can be 

obtained by  

 y x + n   (1) 

where Nx  is an input signal, M N  is an M N  measurement matrix and Mn  

is a noise vector. The number of measurements M is smaller than N, i.e., M < N.  

The CS theory asserts that if the signal x is sparse, or compressible, and the signal acquisition 

protocol ( ) is well-designed, it is possible to reconstruct x from far fewer measurements y by 

convex programming [13].  

 

2.1.1 Sparsity 

Any natural signal or a vector x in (1) can be directly sparse or represented as sparse in a 

certain basis, i.e.,  x s . The basis   is an N N  matrix called sparsifying basis and the 

signal s is K-sparse, i.e., only K components of s are non-zero and the remaining N K  

components are zero. Therefore, the natural signal is a linear combination of only K columns of 
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the matrix  . We note that when I  , the identity matrix, x s ; such a signal x is called a 

directly sparse signal, i.e., it is inherently sparse [14]. 

Now, using the sparse representation of  x s , (1) can be rewritten as 

   y x s s   (2) 

where     is an M N  matrix. We note that the dimension of y is 1M   ,   is M N  

and s is 1N  .  

In an underdetermined system, the solution can be found by solving the l0 minimization 

problem 

 
0 2

ˆ arg min subject to .   
s

s s s y    (3) 

where 
0

s  denotes the number of non-zero components in s and   is a small positive constant. 

However, the optimization problem in (3) is combinatorial and computationally intractable [14]. 

Alternatively, the l1 norm minimization provides unique and sparse solutions for underdetermined 

systems by solving [15] 

 
1 2

ˆ argmin subject to .,   
s

s s s y    (4) 

where Ψ  is the sparsifying basis in which the signal x can be approximated with just a small 

number of nonzero elements, *( )  denotes the conjugate transpose of a matrix, and 
1

   

denotes the l1 norm, that is, the sum of the absolute values of the vector elements. 
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2.1.2 Incoherence 

In CS, the measurement matrix   is chosen such that it captures enough information for the 

unique identification of the signal s with as few samples  y s  (the compressed 

measurements) as possible. In order to quantify the ability of the measurement matrix to acquire 

enough information about the signal in a minimum number of raw samples, the mutual coherence 

metric,  , is used [1]. The mutual coherence of the matrix     is defined as follows: 

 
2 2

,
max , , 1, ,

i j

i j
i j

i j N
a a

 



     (5) 

where i  is the ith column of  . The   is a measure of the maximum possible correlation 

among pairs of columns of  . The smaller   is, the smaller the correlation among the columns 

of   is. Thus, in CS, it is desirable to design the measurement matrix  , such that the matrix 

    has low coherence.  

It is well known in CS that sensing matrices  , the entries of which are drawn from i.i.d. 

samples of a random variable, exhibit low coherence. Such matrices are called random 

measurement matrices. These matrices are capable of capturing enough information about the 

signals s to perform reconstruction from a small number of samples of y [15, 16]. In the literature, 

it is shown that the number of measurement is  log( / )M O K N K  to successfully recover K-
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spars signal with the masurement matrix with Gaussian entries [14]. According to the CS-based 

applications, structured measurement matrices are constructed in a deterministic manner with 

well-known Fourier, Hadamard, noiselet, and Toeplitz matrices [17, 18] . 

 

2.2 Compressed sensing for resolution improvement 

 

As we have mentioned briefly, CS also exploits the sparse nature of signals by means of sparse 

representation. The purpose of CS as the name indicates is to compress a given signal of a fixed 

ambient dimension. The quality of the signal degrades with aggressive compression. In [2, 19], 

compressive sensing examples are introduced in optical systems. Reversely, however, the quality 

(resolution) of the recovered signal can be improved given a fixed number of observations of the 

signal by utilizing the prior information about the signal. The signal dimension is increased (by 

increasing N) purposely.  

 

2.3 Research motivation 
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In this work, we apply the CS framework to the compound eye imaging systems and filter-

based miniature spectrometers in order to improve resolutions. Both systems have a similar 

structure of signal acquisition. That is, the compound eye imaging system consists of a set of 

ommatidia, each of which is a basic sampling unit in the spatial domain and is conventionally 

designed to have independent receptive field of view of object with each other. In the filter-based 

miniature spectrometer, each filter plays a role as the basic sampling unit in the spectral domain 

and is conventionally designed to have independent transmittance function with each other. 

Resolutions in both systems are determined by the number of ommatidia and the number of filters, 

respectively, when they have ideal sampling capabilities, i.e., perfect isolation in the ommatidial 

receptive fields and filters’ transmittance functions. To improve the resolutions, more number of 

ideal ommatidia or filters are needed. But, practically, the number of ommatidia or filters with 

ideal sampling capabilities is limited by up to date on the latest developments of fabricating the 

ommatidia or optical filters. 

When the number of sampling units is limited in such cases of the compound eye imaging 

systems and filter-based miniature spectrometers, we exploit the CS framework for the resolution 

improvements beyond the conventional limit that ideal sampling units can achieve. For applying 

CS framework, two conditions need to be satisfied: sparse representation of the signal and 

incoherent measurement matrix. For sparse representation, image signals in the compound eye 
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imaging systems are sparsely represented in the wavelet transform domain and spectral signals in 

the spectrometers are sparsely represented with Gaussian basis. For incoherent measurement 

matrix, we propose to design measurement matrices customized for both systems in the context 

of CS. The motivations behind designing custom measurement matrices are based on the 

following observations: 

1) Holistic sampling. In the traditional signal acquisition (or sampling) system, when no DSP 

is used, unintentional capturing of information from out of assigned range is considered as 

distortions or interferences to be avoided and thus the sampling units are designed to have 

the ideal sampling capabilities. However, in a completely different point of view, the 

unwanted interferences in the non-ideal sampling can be regarded as an additional source 

from which useful information can be extracted. In the CS framework, fewer number of 

samples contain enough information for reconstruction. Namely, because of compressive 

sampling (encoding and compression), each sample contains extra information about the 

entire signal rather than the only about a particular part of the signal as an ideal sampling 

does. That is, each measurement collects information from the entire signal and encodes it 

into a single sample. Since the encoding pattern of one measurement is different from that 

of all other measurements, we can obtain many such independent holistic information of 
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the entire signal. Thus, it is natural to determine the pattern of linear projection for more 

holistic and independent information about the input signal. 

2) Designable measurement matrix. The l1-norm minimization-based DSP algorithms 

reconstruct the input signal reliably from fewer measurements. For the signal 

reconstruction, the sparsifying matrix   is determined with respect to the signal that is 

dealt with. However, the measurement matrix   can be determined from the design and 

implementation of the system such as acceptance angles in compound eye imaging system 

   

 

  

3) Analog device. The measurement matrix is usually designed in the digital domain by digital 

micro-mirror-device (DMD) or spatial light modulators (SLM) with encoding coefficients 

of Fourier, Walsh-Hadamard, or noiselet transform matrix [2]. But, such devices require 

additional space and cost. Instead of using such devices, we propose to modify the existing 

system just adjusting for CS sampling.  

 

and optical filters in spectrometers. Hence, we conclude that a good design for the

measurement matrix is important in order for the DSP algorithm to reconstruct the input

signal from fewer measurements.
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In summary, we present to design the measurement matrices of the compound eye imaging 

systems and filter-based miniature spectrometers in the context of CS for resolution 

improvements.  
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3 COMPU-EYE: COMPUTATIONAL COMPOUND EYES 

 

In nature, compound eyes of arthropods have been evolved towards a wide field of view (FOV), 

an infinite depth of field (DOF) and fast motion detection. However, the compound eyes have 

inferior resolution compared to single-lens eyes of vertebrates owing to inherent structural 

constraints such as optical performance of ommatidia and interommatidial angles. Here, for 

resolution improvement of the compound eye, we propose a COMPutational compound EYE 

(COMPU-EYE). COMPU-EYE contains a new design concept which is to increase the angle of 

acceptance of ommatidia and a modern digital signal processing technique. The increase in the 

angle of acceptance enables a single ommatidium to observe multiple pieces of information all at 

once. Since the multiple information is superposed at a single photodetector in the ommatidium, 

each ommatidium is unable to resolve them and the observed image is highly distorted. Contrarily, 

the increased acceptance angle enables each piece of information to be observed multiple times 

with different perspectives by multiple ommatidia. By exploiting this, when we use a modern 

DSP technique for resolving the unfavorable interferences, we can achieve resolution 

improvements. Furthermore, we propose a depth estimation algorithm to enable COMPU-EYE 

to estimate object distances by exploiting disparities between the ommatidial receptive fields, and 

sparse representation.  
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3.1 Compound Eyes 

 

There are two kinds of vision systems in nature. One is single-lens eye that is easily found in 

humans and another is compound eye that can be found mostly in insects. Each visual system has 

been evolved with respect to environments of living things. For example, the single-lens eyes are 

specialized in resolution and the compound eyes are specialized in motion detection. By imitating 

the structure of single-lens eyes of humans, cameras were developed in the past. Nowadays the 

compound eyes of arthropods such as ants, flies and bugs have attracted extensive research 

interest due to their unique features such as wide field-of-view (FOV), high sensitivity to motion 

and infinite depth of field [20-22]. Compound eye consists of integrated optical units called 

ommatidia, each of which, called ommatidium, includes a light diffracting facet lens, crystalline 

cone, wave guiding rhabdom and photoreceptor cell [23-25]. Each ommatidium arranged along a 

spherical surface senses incident light within a small range of angular acceptance. 

Implementations of optical devices inspired by natural compound eyes exhibit great potential in 

various fields such as surveillance cameras on micro aerial vehicles, high-speed motion detection, 

endoscopic medical tools, and image guided surgery [26, 27]. 
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For years, there have been many attempts to develop artificial compound eyes based on 

microlenses and photodetectors to imitate imaging organs of a natural ommatidium. Because most 

optoelectronics technologies developed earlier were intrinsically based on a planar substrate, both 

microlenses and photodetectors were implemented on a plane [28-30]. Planar compound eyes had 

low design and fabrication complexity, but they incurred a limited FOV. Later, curved microlens 

arrays were developed and interfaced with conventional planar sensors [31-36], but these suffered 

from off-axis aberrations, crosstalk between adjacent ommatidia, or restricted FOV [37]. They 

also required optical relay devices for beam-steering, which are complicated to fabricate [34-36]. 

In recent years, with the advance of flexible optoelectronics [38], curvilinear structured compound 

eyes, which provide larger FOVs, have been developed [27, 37, 39, 40]. A hemispherical omni-

directional optical sensor was implemented by a circular central board and multiple modular 

sensor boards [39]. A cylindrical compound eye was introduced by bending the planar ommatidial 

array along a concave substrate [37]. In [40], a set of pinhole cameras are implemented on the 

hemisphere. Song. et al. implemented a hemispherical compound eye by reformulating 

stretchable planar ommatidia into hemispherical ommatidia [27]. We note that the 

hemispherically structured compound eye developed in [27], which is most comparable to a 

natural compound eye is mainly considered in this work. 
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3.1.1 Resolution limit in compound eyes 

It is well known that the vision of insects is far inferior to that of humans because of inherent 

structural constraints [41-43]. Generally, the resolution of any eye depends not only on its optical 

resolution but also on the number of the receptors. First, if the optics are free of defects, the 

resolution of any optical imaging system is determined by its diffraction limit. The resolution of 

a diffraction-limited imaging system is proportional to the size of its lens and inversely 

proportional to the wavelength of the observed light. Second, in apposition-type compound eyes, 

the basic sampling units are ommatidia rather than photoreceptors. In a diffraction-limited 

compound eye, in order to accommodate many separate ommatidia without crosstalk, the number 

of ommatidia is much smaller than that of photoreceptors in the retina of a human eye. In nature, 

the density of the photoreceptors in the human eye is about 25 times higher than the ommatidial 

density of the compound eye [44]. For a compound eye to achieve a resolution similar to that of 

Figure 3.1 Artificial compound eyes (a) [37], (b) [35], (c) [25], (d) [38] 
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a human eye, it requires a radius of about 6 m and millions of ommatidia with facet lenses as large 

as a pupil, which is impractical [41]. 

Artificial compound eyes that mimic the structure of natural compound eyes are also limited 

on their image resolutions. In the design of the compound eyes, the spatial resolution that the 

compound eye can resolve depends on the relation between the acceptance angle (Δφ) of the 

ommatidia and the interommatidial angle (Δ) between the optical axes of the neighboring 

ommatidia [41, 45]. In nature, for most light-adapted diurnal animals, the acceptance angles of 

ommatidia approach the interommatidial angle, i.e., Δφ  Δ [41], which achieves high spatial 

resolution by minimizing aliasing among neighboring ommatidia. For example, Tenodera has 

angles Δφ = 0.7° and Δ = 0.6°, and Calliphora has angles Δφ = 1.02° and Δ = 1.5°. Analogous 

to natural compound eyes, artificially developed compound eyes have been designed to have 

similar acceptance and interommatidial angles [27, 37]. The acceptance and interommatidial 

angles have been chosen to be Δφ = 9.7° and Δ = 11°, and Δφ = 4.2° and Δ = ~4.2° in the 

literature [27, 37]. Compared to the human eye, the artificial compound eyes are fundamentally 

limited on the resolution and thus they are inappropriate for object recognition. 

For improving the quality of the observed image, a scanning method was introduced by 

capturing the object image repeatedly with different angle of rotations in [27, 46]. As a result, an 

image of 160 × 160 pixels was obtained only with 16 × 16 ommatidia by scanning the compound-
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eye camera and thus the actual resolution of the observed image was improved by 100 times [27]. 

However, the repeated image capturing with fine mechanical angle controls makes the scanning 

method inefficient. In [47], a compact imaging system called TOMBO (thin observation module 

by bound optics) was introduced, which consists of a multi-aperture imaging system and a post-

signal processing. The TOMBO reconstructs the object image with high resolution from multiple 

low-resolution subimages by exploiting the relation between the object and the captured signals. 

Afterward, many techniques were proposed to improve the reconstruction performance of the 

TOMBO system [47, 48]. However, the FOVs are limited because they are planar compound eyes. 

 

3.1.1.1 Related works of resolution improvements 

For a classical resolution improvement technique, a microscan technique requires to capture 

multiple frames of a target with slightly displaced locations [48]. The sequences of frames are 

then integrated to form a high-resolution image. In contrast, COMPU-EYE provides a high-

resolution image reconstruction with a single frame of the target with less number of samples. 

The high-resolution reconstruction is achieved by solving an underdetermined linear system of 

equations as will be introduced in (6). As a fast-emerging area in DSP, CS provides a sparse 

solution to the underdetermined system. Recently, there are other papers who studied CS with the 



 

 - 19 - 

intension of improving resolution in various areas such as spectroscopy [7], optical imaging [49], 

and direction of arrival estimation [50]. In this paper, we propose to design a compound eye with 

large ommatidial acceptance angles, which is appropriate for the framework of the CS-based 

super-resolution, and to reconstruct the object with high resolution using the DSP technique. 

 

3.1.2 Depth estimation in compound eyes 

Visual methods for depth estimation can be grouped into two main categories based on whether 

they use binocular or monocular cues [51]. Binocular cues are obtained from the minor disparities 

between the views of two eyes when the eyes are located close to one another and have 

overlapping views. These slightly different images of the same scene are sent to the brain and 

integrated into a single image containing depth information [52]. By contrast, monocular cues are 

obtained from two-dimensional images captured by a single eye; these cues include interposition, 

motion parallax, relative size and clarity, texture gradient, linear perspective, and light and 

shadow [51]. 

Some insects, such as praying mantids, that have binocular vision systems in the fronts of their 

heads use binocular cues to estimate target distances [52, 53]. However, unlike humans’ camera-

like eyes that can focus on objects by changing the shapes or positions of their lenses, insects’ 

compound eyes are inherently immobile and unable to focus owing to their structural limitations 
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[51]. Thus, the binocular cues used for depth estimation in compound eyes are much less efficient, 

yielding images with low spatial resolutions and limited effective depth estimation ranges [54, 

55]. 

Insects can also estimate object distances using monocular cues. The motion parallax of objects 

in a visual scene that is caused by the relative motion between the observer and the objects yields 

information about object distances [51, 56]. Specifically, nearby objects produce more apparent 

motion than distant ones. Insects’ visual systems can easily detect the depths of objects that move 

independently of their surroundings by using motion parallax. For example, grasshoppers judge 

depths accurately by using the motion parallax generated by peering movements, that is, by 

moving their head from side to side [52], and bees measure distances by monitoring the apparent 

motion of an object relative to its surroundings [57]. 

Recently, artificial compound eyes that mimic natural compound eyes have been proposed. In 

these eyes, each ommatidium (individual imaging unit) has a limited acceptance angle, thus 

avoiding optical crosstalk among neighboring ommatidia [40, 56, 58, 59]. In [56, 58], object 

depths were estimated using monocular cues from optic flows (i.e., pattern of apparent motion) 

based on the phenomenon in which a closer object appears to move faster than a farther one. 

However, this method requires rotation or movement of the compound eye. 
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3.1.2.1 Related works of depth estimation 

Depth estimation using the disparities between multiple subimages has been studied in 

multicamera systems such as integral imaging [60]. Integral imaging is a three-dimensional 

imaging and sensing system that uses an array of optical units. Each optical unit consists of a 

microlens and an array of photosensors, and it produces an elemental image. From multiple 

elemental images, a three-dimensional image is reconstructed optically or computationally [61]. 

In [62], an iterative reconstruction algorithm was proposed for improving image quality given 

distance information. A stereo matching method that used the spatial variations of parallax shifts 

in elemental images was proposed for depth estimation [63, 64]. We note that multicamera setups 

are essentially different from our work. First, our structure can be considered a degraded integral 

imaging system with a single photosensor in each elemental image; this imitates the structure of 

apposition compound eyes found in nature. The number of sensors is thus reduced dramatically, 

and the sensors can be implemented in a fully hemispherical structure that provides a large FOV 

[59]. Some studies on integral imaging considered curved surfaces for realizing a large FOV [65]. 

However, with planar sensors, they require additional optical components like random phase 

masks; otherwise, mismatch occurs [65]. Second, three-dimensional information is highly 

compressed using a single photosensor per lens. Thus, more sophisticated reconstruction 

algorithms are required for imaging and depth estimation. 
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3.1.3 Contributions of this chapter 

In this section, instead of enhancing the size and number of the ommatidia for improving the 

resolution, we propose a totally different imaging system, called COMPU-EYE, using a modern 

DSP technique. Conventional compound eyes are designed to have limited ommatidial acceptance 

angles to avoid aliasing. Thus, each ommatidium of the conventional compound eye observes an 

independent section of the object image. In contrast, the ommatidium of COMPU-EYE has larger 

acceptance angles. This increase in acceptance angle allows a single ommatidium to observe 

multiple pieces of information simultaneously. Because the multiple pieces of information in each 

observation interfere with each other, the observed image is distorted. We employ a DSP 

technique in COMPU-EYE to recover the object image from these observations. In the DSP, by 

utilizing the fact that one piece of information is observed by multiple ommatidia with different 

perspectives, COMPU-EYE improves the resolution of the object image. 

In addition, we also propose a method for estimating object depths in a monocular compound 

eye imaging system based on the computational compound eye (COMPU-EYE) framework 

described in [66]. In COMPU-EYE, each ommatidium has a larger acceptance angle than its 

interommatidial angle, causing the ommatidial receptive fields to overlap significantly. As in 

binocular depth estimation methods, depth estimation in COMPU-EYE involves processing the 
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multiple and slightly differing views received by the ommatidia by using a proposed digital signal 

processing (DSP) technique. Depth information can be estimated by using the dependences of the 

disparities between the ommatidial observations on object distance. We perform a numerical 

experiment to verify the effectiveness of the proposed method. In our experiment, we demonstrate 

that the proposed depth estimation technique can not only estimate the distances of multiple 

objects but also reconstruct object images with high resolution. 

 

3.2 System model of compound eye imaging 

 

 

 

Figure 3.2 (a) Illustration of the hemispherical compound eye. (b) Structure of conventional 

compound eye with key parameters: the acceptance angle (  ) and focal length (f) for each 

ommatidium, the interommatidial angle (  ), the diameter of a photodiode (p) and the radius 

of curvature of the compound eye (R) and of an individual microlens (r). (c) Compound eye 

imaging system. 
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We consider the biologically inspired compound eyes of a hemispherical structure as seen in 

Figure 3.2 (a). Details of the optical design of the hemispherical compound eye is referred from 

[27]. Each ommatidium, a basic imaging unit can be implemented by a set of microlens, 

supporting posts connected to a base membrane and a photodetector. An array of microlenses and 

photodiodes are integrated in the planar layout and are transformed into a full hemispherical shape. 

Note that the ommatidium is based on a circular lattice because the microlens is hemispherical 

shape compared to the hexagonal lattice in compound eyes in nature [41]. Each ommatidium 

receives incident light within its acceptance angle defined by Δφ and is separated by an 

interommatidial angle Δ from each other. We note that the optical transfer function of an 

ommatidium can be modeled as a Gaussian function. For simplicity, we assumed that the optical 

transfer function is simplified by neglecting light whose relative light intensities are smaller than 

a certain value. Thus, each ommatidium is modeled to collect averaged optical signal from light 

incident within its acceptance angle, Δφ, as seen in Figure 3.2 (b). With the compound eye of the 

hemispherical structure, we now consider an imaging system with M ommatidia as seen in Figure 

3.2 (c). The imaging system observes an object image on the plane size of U × V mm, which is 

located d mm away from the compound eye. According to the acceptance angle and object image 

distance, the receptive field (i.e., visible area at the object plane) of a single ommatidium is 

determined. Each observation contributes to a single pixel that contains the intensity of the light 
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collected from its corresponding receptive field. The final image is reconstructed by a set of these 

pixels. 

Let iy  denote an output sample at the thi  ommatidium for  1,2, ,i M  . We assume that 

the image to be reconstructed consists of NU by NV pixels, each having uniform light intensity. 

The size of each pixel is U/NU × V/NV mm. The object image forms an N × 1 vector 

 1 2, , ,
T

Nx x xx  , where N = NUNV. On the basis of ray tracing analysis, the sample iy  can be 

obtained from i iy  xa , where ia  is an 1 N  vector whose elements represent the visibility of 

the thi  ommatidium at each of the N pixels. For the thi  ommatidium, if the thj  pixel for 

 1,2, ,j N   is outside the receptive field, which represents the thj  pixel is invisible to the 

thi  ommatidium, then the thj  component ija  in ia  becomes zero, i.e., 0ija  . If the thj  pixel 

is inside the receptive field, which represents the thj  pixel is fully observed by the thi  

ommatidium, then 1ija  . Otherwise, if the thj  pixel is on the boundary of the receptive field, 

which represents the thj  pixel is partially observed by the thi  ommatidium, then 0 1ija  , 

which is proportional to the intersection area of the receptive field and pixel. This process can be 

summarized as follows:  

th th

th th

th th

0 , pixel is invisible to ommatidium

1 , pixel is fully observed by ommatidium .

0 1, pixel is partially observed by ommatidium
ij

ij

j i

a j i

a j i


 
  

      

       

         

 

When collecting M samples, the ommatidial observations can be modeled as a system of linear 
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equations as follows: 

 . y Ax n   (6) 

where  1, ,
T

My yy   is a set of M output samples and n M×1 contains unexpected noise. 

Let 1 2 
TT T T

M   A a a a M×N denote a measurement matrix the thi  row of which is ia . 

Given the measurement matrix A and the observation y, we aim to solve the system of linear 

equations in (6) for the object image reconstruction. 

In this paper, since we are considering resolution improvements in the compound eye imaging 

system, the number of estimated pixels is set to be greater than the number of ommatidia. i.e., N 

> M. Thereby, we note that (6) becomes an underdetermined system of linear equations. This 

underdetermined system can be solved by a convex optimization if the object is represented as a 

sparse signal in the proper domain [11, 67, 68]. A sparse signal is often represented as a vector 

which has a small number of non-zero components. We note that any natural image can be 

sparsely represented in a certain domain such as wavelets, the discrete cosine transform (DCT), 

or the discrete Fourier transform [12, 69]. That is, Tx W s  and Wx s , where s is a sparse 

1N   vector and W is an N N  sparsifying matrix. By exploiting the sparse representation of 

x, (6) can be expressed as  

 .T y AW s n   (7) 
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In an underdetermined system, the solution can be found by solving the l1 minimization 

problem 

 
1 2

ˆ arg min subject to .T   
x

s s AW s y    (8) 

From ŝ , the object image can be reconstructed by solving Tx W s . 

We note that the l1 norm minimization guarantees stability, which means that it can reliably 

reconstruct the signal without amplifying the observation errors in the process of l1 norm 

minimization [70, 71]. The l1 norm minimization reconstructs a signal with explicit sparsity 

constraints while removing non-sparse random noise components from a corrupted signal. Due 

to its property of noise suppression, the l1 norm minimization has been used as an image denoising 

tool [72]. Recently, many algorithms [73-75] have been proposed to solve (8). In this study, we 

use the alternating direction method [75], which is known to be fast and efficient for the problem 

in (8). If an object image of N pixels is reconstructed, where N > M, the resolution of COMPU-

EYE is improved by a factor of N/M. 

In the following section, we propose a COMPU-EYE imaging system, which is more 

appropriate to resolve (8) and thus to reconstruct the object image with high resolution. 
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3.3 COMPU-EYE for image acquisition and reconstruction with high 

resolution 

 

In this section, we introduce COMPU-EYE. In COMPU-EYE, we propose to increase the 

acceptance angles of ommatidia larger than the interommatidial angle to recover the object image 

with computations. We first compare COMPU-EYE with the conventional compound eye 

imaging system in terms of resolution limit. We then explain how COMPU-EYE improves the 

resolution by investigating the influence of larger acceptance angles on the measurement matrix 

of the image capturing system. 

  

3.3.1 Overview and comparison of compound eyes 
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The imaging system of a conventional compound eye is depicted in Figure 3.3 (a). It has a 

hemispherical structure with a radius (R) of 6.9216 mm, and consists of 8 × 8 ommatidia, each of 

which has a height (f) of 1.35 mm. Because each ommatidium provides a single sample, the 

compound eye has M = 64 samples. An 8 × 8 mm object image is located at a distance of 30 mm 

from the compound eye. The receptive field of a single ommatidium is shown as an ellipse, and 

 

Figure 3.3 Imaging systems of a conventional compound eye and the proposed COMPU-EYE. 

(a) The conventional compound eye consists of 8 × 8 ommatidia with   = 1.5° and Δφ = 

1.5°. (b) COMPU-EYE consists of 8 × 8 ommatidia with  = 1.5° and Δφ = 8° as well as a 

DSP algorithm. 
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a set of these receptive fields forms the ommatidial receptive fields near the left in Figure 3.3 (a). 

In the conventional compound eye, the acceptance angles of the ommatidia are typically 

designed to be similar to the interommatidial angle (i.e., Δφ = Δ = 1.5°) in order to maximize 

the spatial resolution as well as to avoid overlapping ommatidial receptive fields. Accordingly, 

the ommatidial receptive fields are totally isolated, and each ommatidium observes an 

independent part of the object image. Each observation forms a single pixel in the reconstructed 

image. Note that no signal processing technique is needed to reconstruct the image. 

To demonstrate the resolution limit of the conventional compound eye, we consider an object 

image comprising two parts as seen in Figure 3.3 (a): 1) four different patterns with the same light 

intensity, each of which is included in the receptive field of an ommatidium; and 2) a cross pattern 

that lies over several receptive fields. 

Because every pattern in Case 1 is included within a receptive field, every observation appears 

to have a single image pixel with the same intensity of light. As a result, finer details within a 

receptive field cannot be resolved and the four different patterns in Case 1 cannot be distinguished 

by a conventional compound eye. Moreover, because its ommatidial receptive fields are totally 

isolated, the fields contain undetectable areas, i.e., areas that are invisible to the compound eye. 

The undetectable areas deteriorate the image quality by decreasing the intensity of light 

observations as seen in right side of Figure 3.3 (a). This example shows that the conventional 
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compound eye roughly recognizes object patterns but has undetectable areas. As a result, such 

compound eyes suffer from limited resolution and poor image quality. 

In contrast, consider the proposed COMPU-EYE imaging system in Figure 3.3 (b). COMPU-

EYE consists of an 8 × 8 hemispherical array of ommatidia with acceptance angles that are larger 

than the interommatidial angle, i.e., Δφ = 8° > Δ = 1.5°. It is also equipped with a DSP technique. 

Because of the increased acceptance angles, the receptive field of each ommatidium is increased 

to at least 28 times that of Δφ = 1.5°. Thus, the ommatidial receptive fields widely overlap, 

severely distorting the observations as seen in the third frame from left in Figure 3.3 (b). We then 

apply DSP to recover a high-resolution object image from these highly distorted observations. 

In Figure 3.3 (b), the proposed COMPU-EYE recovers an object image of 256 pixels from 64 

observations. The resolution is improved by a factor of four. In recovered image x̂ , finer details 

that were perceived as a single point in Figure 3.3 (a) can be resolved, and different patterns in 

Case 1 are distinguished by COMPU-EYE. Moreover, COMPU-EYE compensates for 

undetectable areas and hence prevents the deterioration of the recovered image quality in Case 2. 

As a result, COMPU-EYE provides a higher-resolution image of better quality than the 

conventional compound eye. 
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3.3.2 Effects of large acceptance angles and resolution improvements 

We now focus on how larger acceptance angles along with the DSP technique improve 

resolution with respect to measurement matrix characteristics of the conventional compound eye 

and COMPU-EYE. 

 

 

 

Figure 3.4 (a) shows how the object image of a 16 × 16 array of pixels is projected onto the 8 

 

Figure 3.4 Effects of acceptance angles for the conventional compound eye (top row) and 

COMPU-EYE (bottom row) (a)(d) Ommatidial receptive fields overlapped with the object 

image. (b)(e) Number of observing ommatidia corresponding to pixels in the 8th row. (c)(f) 

Graphical representations of the measurement matrices. 
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× 8 ommatidial receptive fields of the conventional compound eye, where Δφ = Δ = 1.5°. The 

measurement matrix of the conventional compound eye M NA   in (6) can be obtained from 

the ommatidial receptive fields and pixels of the object image in Figure 3.4 (a). This measurement 

matrix is displayed graphically in Figure 3.4 (c). Every element in the measurement matrix 

indicates the visibility of the corresponding row of an ommatidium in the corresponding column 

of a pixel. Because the receptive fields of the ommatidia are small and isolated, the measurement 

matrix has few nonzero components. In Figure 3.4 (a), each ommatidium separately observes four 

corresponding pixels, and each pixel is observed by a single ommatidium. The values of the four 

pixels in one receptive field are considered to be of a single light intensity. Thus, each observation 

and its observed pixels are in a one-to-many correspondence relation. Because the information of 

one pixel is contained in one ommatidium as seen in Figure 3.4 (b), there is no additional 

information regarding that pixel in other observations. Therefore, in such relationships, finer 

details within the receptive field cannot be resolved and the resolution of the conventional 

compound eye is limited by M measurements. We note that the coefficients in Figure 3.4 (c) are 

smaller than one because the pixel cannot be entirely observed by ommatidia owing to the 

undetectable areas. 

In contrast, COMPU-EYE has a larger acceptance angle of Δφ = 8°. Figure 3.4 (d) shows how 

the object image is superimposed on the ommatidial receptive fields of COMPU-EYE. The size 
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of each receptive field is considerably larger; a single ommatidium covers up to 76 pixels, which 

is considerably greater than the four pixels of the conventional compound eye. Whereas each 

receptive field in the conventional compound eye is small and separated, each receptive field in 

COMPU-EYE is large and highly overlapped. Hence, undetectable areas do not exist in the 

receptive fields of COMPU-EYE. As a result, the number of nonzero components increases 

correspondingly in the measurement matrix of COMPU-EYE in Figure 3.4 (f). 

The measurement matrix of COMPU-EYE is appropriate for image acquisition and 

reconstruction rather than that of the conventional compound eye because the object elements, x 

in (6) is more likely to be aligned with the nonzero elements of the matrix [76]. As shown in 

Figure 3.4 (e), each pixel of the object image is observed multiple times with different ommatidia. 

In the context of information acquisition, the total quantity of information for a pixel is increased. 

Each observation is not redundant to the others for it has different receptive field. Accordingly, 

each column in the measurement matrix has multiple nonzero elements with different coefficients 

in Figure 3.4 (f). The observation of a pixel sufficiently differs from its other observations and 

this provides additional information about the pixel. In the literature, it is shown that such 

additional information is useful for reliable signal recovery, even if the number of measurements 

is smaller than the dimension of the original signal [12, 15, 49, 76, 77]. Thus, the large acceptance 

angle of ommatidia with the use of DSP allows COMPU-EYE to resolve finer details of the object 
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beyond the resolution limit of M measurements. 

 

 

 

We now investigate the reconstruction performance of the DSP technique in accordance with 

the acceptance angle in the example of Figure 3.3. A randomly located sparse signal with 10 

nonzero components is generated with uniform distribution between 0 and 1. As a measure of the 

reconstruction performance evaluation, let us define the normalized mean squared error (NMSE) 

as NMSE = 
2 2

2 2
ˆ /x x x . As seen in Figure 3.5, when the acceptance angle is small, the object 

is unable to be reconstructed with low errors. Specifically, when Δ = 2° which corresponds to 

 

Figure 3.5 NMSE against acceptance angle where M = 8 × 8 ommatidia with  = 1.5° and N 

= 16 × 16 pixels. 
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the conventional compound eye in the example of Figure 3.3 (a), the 16 × 16 pixels cannot be 

recovered from 8 × 8 ommatidia. Associated with the measurement matrix in Figure 3.4 (c), each 

observation and its corresponding observed pixels are one-to-many correspondence. Thus, each 

ommatidium is unable to resolve fine details of its observation. As the acceptance angle increases, 

each pixel is observed multiple times by different ommatidia. The DSP technique reconstructs 

each pixel with low errors by solving (8). As a result, the NMSE decreases. When Δ > 8°, it is 

seen that the NMSE gradually increases because each observation becomes redundant with 

neighboring observations. We note that the acceptance angle can be easily increased in many 

possible ways in an artificial compound eye. The acceptance angle within an ommatidium can be 

represented as    2 2
/ /o p f D    , where D is the lens diameter,   is the light 

wavelength, p is the photosensor diameter, and f is the focal length of the ommatidial optics [41]. 

According to Snell’s law, the acceptance angle Δφ outside the ommatidium can be obtained by 

    1
0 1 02sin / sin / 2n n    , where the refractive indices of the lens material and air are 

defined as 0n  and 1n , respectively. Thus, the acceptance angle Δφ can be increased by using a 

material of higher refractive index for the ommatidia, decreasing the focal length f, or increasing 

the diameter p of the photodetector. Note that increasing the diameter of the photodetector may 

lead to increase the size of the ommatidia and the size of the compound eye. On the other hand, 

decreasing the radius of the curvature of the microlens for reducing the focal length can increase 
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the acceptance angle without increasing the size of the ommatidia. 

 

3.4 Depth-estimation-enabled compound eyes 

 

Most animals that have compound eyes determine object distances by using monocular cues, 

especially motion parallax. In artificial compound eye imaging systems inspired by natural 

compound eyes, object depths are typically estimated by measuring optic flow; however, this 

requires mechanical movement of the compound eyes or additional acquisition time. In this paper, 

we propose a method for estimating object depths in a monocular compound eye imaging system 

based on the computational compound eye (COMPU-EYE) framework. In the COMPU-EYE 

system, acceptance angles are considerably larger than interommatidial angles, causing overlap 

between the ommatidial receptive fields. In the proposed depth estimation technique, the 

disparities between these receptive fields are used to determine object distances. We demonstrate 

that the proposed depth estimation technique can estimate the distances of multiple objects. 

 

3.4.1 Depth estimation model 

Given the structure of the compound eye, specifically, the acceptance angles, interommatidial 
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angles, and sizes of the compound eye and ommatidia, the receptive fields of ommatidia at a 

distance of d are determined. Thus, the measurement matrix in (7) can be characterized by the 

distance of the object. Let us denote M N
d

A   as a measurement matrix corresponding to a 

distance of d. The data acquisition model for M ommatidial observations can be expressed as a 

system of linear equations as follows: 

 .d y A x n   (9) 

 

3.4.1.1 Distance and measurement matrix 

The measurement matrix strongly depends on the object’s properties, such as its distance. In 

previous section, the object distance was assumed to be fixed and known, and the measurement 

matrix corresponding to this distance was given to the DSP system. However, assuming prior 

knowledge about object distances is impractical in reality. The reconstruction process works well 

only if the measurement matrix is correct; if an inappropriate measurement matrix is used, then 

the reconstructed image is severely distorted. 
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In the framework of COMPU-EYE imaging, we propose a new depth estimation method. In 

conventional compound eyes, Δφ is designed to be smaller than or equal to Δϕ to avoid aliasing 

[27, 37, 40]. As shown in Figure 3.6 (a), each ommatidium observes an independent section within 

Δφ. Consider two objects, P1 and P2, that are located at different distances from a compound eye. 

If the objects are observed by a single ommatidium in Figure 3.6 (a), their distances cannot be 

inferred. In contrast, the COMPU-EYE system has enlarged, overlapping ommatidial receptive 

fields, because Δφ is much larger than Δϕ, as seen in Figure 3.6 (b). We note that a large 

acceptance angle can be realized by increasing the diameter of the photodetector, decreasing the 

focal length of the microlens, or using a material of higher refractive index for the microlens 

described in section 3.3.2. This configuration is shown in Figure 3.6 (b), in which object P2 is 

observed by two ommatidia; thus, the compound eye can deduce that object P2 is farther away 

 

Figure 3.6 Structures and fields of view of (a) conventional compound eye with 1     and 

(b) proposed COMPU-EYE system with 2    . 
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than object P1. When many ommatidia are present, the number of ommatidia viewing the object 

and the area of the object that is visible by the ommatidia depend upon the object distance. The 

variation of these quantities with object distance is used for depth estimation in the proposed 

method. 

 

 

 

Here, we give an example of the variation for different object distances. In Figure 3.7, the 

 

Figure 3.7 (a) Measurement matrices and (b) their number of nonzero elements per column for 

d1 = 2 mm, d2 = 20 mm, and d3 = 40 mm, where M = 5 × 5, N = 12 × 12, Δϕ = 12°, and Δφ = 

30°. 
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measurement matrices and corresponding number of nonzero elements per column are shown, in 

which a compound eye consists of 5 × 5 ommatidia with a radius of 6.92 mm, focal length of 

micro lens of 1.35 mm, Δϕ = 12°, and Δφ = 30°. Three objects are located at d1 = 2 mm, d2 = 20 

mm, and d3 = 40 mm from the compound eye. The object plane is composed of 12 × 12 pixels 

with a uniform distribution. As the object moves away from the compound eye, the areas of the 

ommatidial receptive fields and the overlap between them both increase. Accordingly, as shown 

in Figure 3.7 (a), the number of nonzero elements in the measurement matrix increases with object 

distance. In Figure 3.7 (b), the number of nonzero elements per column in the measurement 

matrices varies with respect to the object distances, implying that each pixel is uniquely observed 

by a different set of ommatidia with different perspectives. Thus, a unique measurement matrix 

is generated with respect to object distance. By using the relationship between the unique 

measurement matrix and the object distance, we propose the following method for estimating 

object distances. 

 

3.4.1.2 System model for depth estimation 

First, we set the range of interest  ,min maxR d d , where mind  and maxd  are the minimum and 

maximum distances, respectively. The range of interest can be application-specific; for example, 
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it can be 10–25 mm for endoscopic applications [78]. For DSP, we assume that the object distance 

can be sampled as a set of discrete distances  1 2, , ,  Ld d dd   within the range of interest, 

where L is the number of distance elements. In this paper, we consider uniform discrete distances 

within the range of interest. The depth resolution   /max mind d d L    depends on the number 

of distance elements and depth range of interest. According to the predetermined d , a 

measurement matrix 
ldA  for  1,2, ,l L   can be obtained from the structure of the 

compound eye and the object located a distance ld  away from the compound eye. By 

concatenating L measurement matrices, a dictionary matrix  M L N D   can be formed as 

1 2
   

Ld d d   D A A A . Then, the linear representation of y in (9) can be rewritten in terms of 

all possible measurement matrices as 

 
1

,
i

L

d i
i

 y A x Du   (10) 

where   1
1 1,1 1, ,1 ,, , , , ,   , , ,

T T L NT T
L N L L Nx x x x         u x x     . When an object is located at 

a certain distance in the set d , a valid observation y can be sufficiently represented by a linear 

combination of the columns from the corresponding measurement matrix. For example, when the 

object distance matches the lth measurement matrix, the linear equation becomes 

 0 ,y Du   (11) 

where 0 ,1 ,0, ,0, , ,0, ,0
T

l l Nx x   u     is a sparse coefficient vector whose entries are zero 
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except for those associated with the lth measurement matrix. x can be sparsely represented as 

Tx W s . Similarly, u can be sparsely represented as Tu B v . Here, v is an L∙N × 1 sparse 

vector and B  is a block diagonal matrix containing L instances of W, that is, 

   ( ,..., ) L N L N

L

diag    B W W  , where  diag   represents a diagonal matrix. By using v, (10) 

becomes 

 ,Ty DB v   (12) 

where   1
1 1,1 1, ,1 ,, , , , , , ,

T T L NT T
L N L L Ns s s s         v s s     . As does (8), l1 norm 

minimization provides a sparse vector v̂ : 

 
1

ˆ argmin   subject to ,T   
v

v v y DB v   (13) 

where   is a small constant. 

 

3.4.2 Depth estimation method 

After v̂  has been obtained from (13), the problem of estimating object distances can be 

reformulated as a classification problem whose objective is to find the distances at which the 

object has the highest probability of being located. Because the compound eye imaging system 

can be sparsely represented in (12) and the measurement matrices are uniquely generated with 

respect to object distances, sparse-representation-based classification (SRC) can be used to 
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estimate object locations. SRC has been widely studied, and its accuracy has been demonstrated 

in many applications including face recognition [79] and brain computer interface systems [80]. 

SRC usually finds the most compact representation of a test sample, where the representation is 

expressed as a linear combination of columns in an overcomplete dictionary matrix, and then, it 

determines a class that contributes most to represent the test sample [81]. In this paper, we use 

SRC to estimate the depths of multiple objects. Unlike conventional SRC, the observed signal in 

this depth estimation framework is superposed with respect to the number of objects. Therefore, 

our problem is defined as a multiclass classification problem. We first describe an SRC-based 

depth estimation algorithm in the compound eye imaging system; we then propose an iterative 

depth estimation method that updates dictionaries in a coarse-to-fine manner. 

We first specify a classification rule by using sparse signal reconstruction. As l1 norm 

minimization provides a sparse solution for (7), most of the nonzero components in Ŝ  reside in 

the class in which the object exists with high probability. One of the classification rules is to use 

the residuals [82]. For each class, we define its characteristic function : L N L N
l

    that 

selects the coefficients of v̂  associated with the lth class while nullifying the coefficients of other 

classes. Thus, for ˆ L Nv  ,  ˆ L N v   is obtained by including the elements corresponding 

to the lth class and nulling all elements of v̂  from other classes. By using the characteristic 

function, we denote the regularized residuals as 
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    2 2
ˆ ˆ: / .T

l l lr   y DB v v   (14) 

If the object is located at ld , the lr  value is smaller than those at other distances. We denote 

eI  as a set of the indices of estimated distances at which the objects are expected to be located. 

With lr  for 1, ,l L  , the classification rule is given by 

  : | ,e lI l r     (15) 

where   is an arbitrary constant. A set of distances d̂  where the object is expected to be located 

can be determined by 

  ˆ | .l ed l I d   (16) 

Then, the images that only correspond to the estimated distances are reconstructed by solving 

ˆˆ T
l lx W s  for el I . The SRC-based depth estimation algorithm is summarized in Table 1. 

 

Table 1 SRC-based depth estimation algorithm 

Initialization:  1 2, , , , , , ,Ld d d  y d w  

Step 1: Set 
1 2
   

Ld d d
   D A A A  and ( ,..., )

L

diagB W W  . 

Step 2: Solve (7) from y given D and B , and obtain v̂ . 
Step 3: Calculate the regularized residuals: 

   2 2
ˆ ˆ: /T

l l lr   y DB v v  for 1, ,l L  . 

Step 4: Obtain the class of existence  |e lI l r    and the estimated 

distance of the object  ˆ |l ed l I d . 
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Thus far, depth estimates have been obtained by finding locations in a dictionary, where the 

signals have small residuals. To improve the depth accuracy, the number of distance elements L 

must be increased in the form of the dictionary. However, the dictionary cannot include infinitely 

many possible distances owing to computational complexity and memory storage. To solve (13), 

O(M∙N∙L) computations for every iteration and O(M∙N∙L) storage are required; these are 

proportional to the number of distance elements [75]. We note that the l1 norm minimization in 

(13) finds a sparse solution whose nonzero elements are most closely associated with the most 

correlated measurement matrix. By using the fact that the measurement matrices of neighboring 

distances are relatively more correlated than those of farther distances in dictionary matrix D, we 

propose an iterative depth estimation method that is more efficient in terms of computational 

complexity and memory storage. Instead of universally searching for the object distances at once, 

we iteratively refine the set of distances in a coarse-to-fine manner [83]. The distances are 

investigated in detail only around regions where objects are expected to be present. 

For iteration index i, we first choose a set of coarse distances within the range of interest  iR  

as 
 i
ld  for 1,2, , il L  , at which the objects can potentially be located. The depth interval is 

     
1

i i i
l ld d d   . Accordingly,  iD  and  iB  can be generated from the structure of the 

compound eye imaging system. The sparse signal v̂  is reconstructed by solving (13), and the 
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estimate of distances 
 i

d  can be obtained by solving (14)-(16). Then, the set of distances is 

updated by refining the range of interest and the depth interval. The range of interest is refined 

around the estimated distances, that is,            1 / 2,   / 2
i ii i i
j jR d d d d        

 for 

  1,...,
i

j  d , where     represents the cardinality. The depth interval is refined as 

   1 /i id d K    for a positive real number 1K  . Then, the updated set of finer distances is 

   1( 1)
,

ˆ ii
j kd  d   (17) 

where           1 1
,

ˆ ˆ / 2 1i i i i
j k jd d d k d        for   1,...,

i
j  d  and 1, ,k K    . We repeat 

this process until the depth interval is sufficiently fine. The iterative coarse-to-fine depth 

estimation algorithm is summarized in Table 2. 



 

 - 48 - 

Table 2. Iterative depth estimation algorithm 

Initialization:    
1

1 (1) (1) (1) (1)
1 2, , , , , , , ,LR d d d  y d W , I = 1 

Step 1: Set ( ) ( )
1

( )  i i
Li

i

d d
    

D A A  and   ( ,..., )
i

i

L

diagB W W . 

Step 2: Solve (13) from y given ( )iA  and B , and obtain v̂ . 
Step 3: Calculate the regularized residuals: 

   2 2
ˆ ˆ: /T

l l lr   y DB v v  for 1, , il L  . 

Step 4: Obtain the set of indices of estimated distances  ( ) |i
e l iI l r   . 

Step 5: Update 
           1 / 2,   / 2

i ii i i
j jR d d d d        

 for   1,...,
i

j  d , 

   1 /i id d K    for 1K  ,   1( 1)
,

ˆ ii
j kd  d  and  1

1
i

iL 
  d , 

where           1 1
,

ˆ ˆ / 2 1i i i i
j k jd d d k d        

for   1,...,
i

j  d  and 1, ,k K    . 

Step 6: Set i = i+1 and repeat from Step 1 until the depth resolution is sufficiently fine. 

 

3.5 Simulation results 

 

3.5.1 Simulation setups 

 

To evaluate the performance of our design, we consider a hemispherical compound eye with a 

radius of R = 6.9216 mm, where each ommatidium has a height of f = 1.35 mm in Figure 3.2 (b). 

The compound eye consists of a varying number M of ommatidia of uniform spacing with the 

interommatidial angle Δ = 180/ °M . The object image to be reconstructed is composed of N = 
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160 × 160 pixels. As a sparsity measure of the image, we use the sparsity ratio defined as a ratio 

of the number of nonzero elements to the total length of the signal. For the sparsifying basis w, 

we use a db2 wavelet transform and a level of two. To solve (7), we use the fast and efficient 

alternating direction method [84]. 

 

3.5.2 Simulation results on resolution improvements 

 

We demonstrate the performance of COMPU-EYE with an image in the presence of noise. The 

object image is a line-art illustration of a tiger, which consists of 160 × 160 pixels each of which 

contains an 8-bit quantized light intensity. The sparsity ratio of the tiger image is SR = 0.2335. 

The conventional compound eye consists of M = 80 × 80 ommatidia with Δ = Δφ = 2.25°. On 

the other hand, COMPU-EYE consists of M = 80 × 80 ommatidia of much larger acceptance 

angles, Δφ = 60° than Δ = 2.25°. The object image size of 60 × 60 mm is at a distance of 10mm 

from the compound eyes. An additive observation noise in (7) is assumed to be Gaussian with 

zero mean and covariance matrix 2
M I  where 2 0.1  . 
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Figure 3.8 (a) shows the output image of the conventional compound eye. The output image is 

corrupted by noise. Because of the resolution limit determined by M and undetectable areas in the 

ommatidial receptive fields, the observed image of the conventional compound eye is poor quality. 

Figure 3.8 (b) shows the image recovered by COMPU-EYE equipped with the DSP technique. 

 

Figure 3.8 For M = 80 × 80 and Δ  = 2.25°, (a) Output image of the conventional compound 

eye with Δφ = 2.25° (b) Image recovered by COMPU-EYE with Δφ = 60°. For M = 120 × 120 

and Δ  = 1.5°. (c) Output image of the conventional compound eye with Δφ = 1.5° (d) Image 

recovered by COMPU-EYE with Δφ = 60°. 
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Compared to the Figure 3.8 (a), COMPU-EYE provides a higher resolution imaging as well as 

denoising effects. Due to the stability of the l1 norm minimization, the unexpected noise is 

efficiently removed in the reconstructed image without any denoising algorithm. When the 

number of ommatidia is increased to M = 120 × 120 with Δ = 1.5°, the output image of the 

conventional compound eye and the recovered image of COMPU-EYE are shown in Figure 3.8 

(c) and (d), respectively. As we increase the number of ommatidia, the object image is more 

clearly seen. For a measure of the resolution improvement, we define a pixel resolution as the 

total number of pixels to be reconstructed with NMSE < δ, where δ > 0 is a user-defined positive 

number. Since the number of pixels to be recovered is increased from 802 to 1602 in Figure 3.8 

(b) and from 1202 to 1602 in Figure 3.8 (d), the gain in the pixel resolution is 4 and 1.78, 

respectively. We note that the size of the observed image in a conventional compound eye is 

smaller than that of the recovered image of the proposed eye; this is because the ommatidia on 

the edge of a conventional compound eye are unable to detect the object image owing to their 

small range of acceptance angle. 
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We now investigate the performance of COMPU-EYE with a non-sparse phantom image which 

is used in image processing [85]. The phantom image in Figure 3.9 (a) consists of 160 × 160 

pixels, each of which contains an 8-bit intensity of light. SR of the phantom image is 0.4928. The 

number of ommatidia is set to be 120 × 120 with Δφ = 1.5° and Δ = 1.5° for the conventional 

compound eye and Δφ = 60° and Δ = 1.5° for COMPU-EYE. The object image size of 60 × 60 

mm is at a distance of 10 mm from the compound eyes. In the reconstruction of the image, DCT 

is used for a sparsifying basis. As seen in Figure 3.9 (b), the direct observation of the conventional 

compound eye provides poor resolution and the object is distorted. Figure 3.9 (c) shows the 

reconstructed image by COMPU-EYE. The resolution is improved by a factor of N/M = 1.78. We 

note that the distortion comes from a discrepancy in receptive fields of ommatidia, i.e., as an 

Figure 3.9 For the compound eyes, M = 120 × 120 and Δ  = 1.5°. (a) Object image of 8-bit 

grayscale image with 160 × 160 pixels (b) Output image of the conventional compound eye 

with Δφ = 1.5° and. (c) Image recovered by COMPU-EYE with Δφ = 60°. 
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ommatidium is closely located to the edge of the compound eye, its corresponding receptive field 

becomes larger. In contrast, the reconstructed image of COMPU-EYE in Figure 3.9 (c) is not 

distorted because COMPU-EYE recovers the designated pixel values x in the object. As a result, 

COMPU-EYE can also reconstruct the non-sparse object image with a high resolution. 

 

 

 

Figure 3.10 illustrates optical resolution tests of the conventional compound eye and COMPU-

EYE. The 60 × 60 mm object image at a distance of 10 mm is composed of 160 × 160 pixels. The 

object image is a target image similar to the US Air Force (USAF) test, where the minimum 

spacing of gratings is a single pixel, i.e., 0.375 mm. The lines of the row labeled “1” have single 

pixel spacing, those of the row labeled “2” have two-pixel spacing, and so on. Both compound 

 

Figure 3.10 Resolution test: (a) Conventional compound eye consisting of 80 × 80 ommatidia 

with Δφ = Δ = 2.25°. (b) COMPU-EYE consisting of 80 × 80 ommatidia with Δφ = 60° and Δ

 = 2.25°. 
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eyes are composed of 80 × 80 ommatidia with Δ = 2.25° and Δφ = 2.25° for the conventional 

compound eye and with Δ = 2.25° and Δφ = 60° for COMPU-EYE. Because the achievable 

optical resolution of the conventional 80 × 80 compound eye with Δφ = Δ = 2.25° is 0.7179 × 

0.7179 mm, which is obtained from the distance of resolvable gratings in the object plane, it 

cannot distinguish the smallest grating as shown in Figure 3.10 (a). However, COMPU-EYE can 

sharply resolve the smallest grating because the resolvable resolution is the unit of a single pixel. 

Thus, the achievable minimum optical resolution of COMPU-EYE is 0.375 × 0.375 mm, an 

improvement in resolution of about 3.66 times. We note that the observation at the center of the 

conventional compound eye in Figure 3.10 (a) suffers from lack of incoming light due to the 

relatively small sized receptive fields and its resulting undetectable area. 

 

 

 

Figure 3.11 Depth test: Image recovered by COMPU-EYE consisting of 100 × 100 ommatidia 

with Δφ = 60° and Δ = 1.8°, where the dimension of the final object image is (a) 30 × 30 mm 

at 5 mm, (b) 60 × 60 mm at 10 mm, (c) 90 × 90 mm at 15 mm. The actual tiger picture is 30 × 

30 mm. 
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Figure 3.11 shows the image recovered by the proposed COMPU-EYE at various object image 

distances. The size of the visible area of the compound eye is proportional to the distance of the 

object image, and the measurement matrices are generated according to the distances of the object 

image. Given the measurement matrices at distances of 5, 10, and 15 mm, the image can be 

reconstructed from y. As seen in Figure 3.11, the recovered images are still clear and focus is 

maintained as the object image moves away from the compound eye. 

 

3.5.3 Simulation results on depth estimation 

 

First, we determine the depth estimation accuracy for the proposed compound eye. Because the 

measurement matrices corresponding to neighboring distances are more correlated with each 

other, we set a distance of 108 mm from the compound eye as the reference distance and compare 

with other distances by increasing the depth intervals. To evaluate the depth estimation accuracy 

with respect to the depth interval, we consider a sparse signal as an input, that is, W = I, where I 

represents an identity matrix. In each assessment, a sparse signal dimension of 10000 × 1 with 

5%, 7.5%, and 10% of randomly located nonzero elements is used. The distance of the input 

signal is randomly chosen between the reference distance and the comparison distance. The 
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tolerance   in (15) is set to be 0.1. This assessment is repeated 100 times. As seen in Figure 

3.12, as the object distances increase, the accuracy of the proposed depth estimation increases. 

For signals with 5% sparsity, if the depth intervals are larger than 0.3 mm, the proposed depth 

estimation works with more than 97% accuracy. For the l1 norm minimization in (13), the 

reconstruction performance depends on the sparsity of the input signal, that is, low accuracy for 

the input signal with large sparsity. Thus, as the sparsity increases, the performance of the 

proposed depth estimation deteriorates as well. 

 

 

 

Figure 3.12 Depth estimation accuracy (%) with respect to depth interval. 
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The proposed COMPU-EYE imaging system used for evaluating the image reconstruction is 

shown in Figure 3.13. The hemispherical compound eye observes an object consisting of four 

characters: G, i, S, and T. The characters are located at three different distances from the 

compound eye. G is 108 mm away from the compound eye, i and S are 109 mm away, and T is 

112 mm away, as shown in Figure 3.13 (b). As shown in Figure 3.13 (c), the characters overlap 

 

Figure 3.13 Proposed COMPU-EYE imaging system: (a) three-dimensional, (b) top, and (c) 

front views. 
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one another, preventing the distance information from being inferred. The DSP technique 

introduced in Section 3 can be used to decompose each letter given its distance. 

We demonstrate the performance of the proposed depth estimation method when the object 

distances are included in the set of potential distances in the dictionary. We assume that the depth 

range of interest is from 108 mm to 112 mm and the target depth resolution is 1 mm. Within the 

range of interest, the distances are uniformly sampled with 1-mm resolution, that is, 

 108,109,110,111,112d . For depth estimation and object reconstruction, we construct a 

dictionary matrix  108 109 110 111 112D A A A A A  in accordance with the potential distances. 

Given A, we can solve (13) to obtain Ŝ  from y. Then, û  can be obtained by calculating 

ˆ ˆTu W v . The reconstructed v̂  and û  are shown in Figure 3.14 (a) and Figure 3.14 (b), 

respectively. Owing to the sparse signal reconstruction, most of the nonzero signals in Figure 3.14 

(a) are concentrated in the set of indices corresponding to distances of 108 mm, 109 mm, and 112 

mm. We note that the reconstruction errors in Figure 3.14 (a) and Figure 3.14 (b) for 110 mm and 

111 mm are caused by coherence among neighboring measurement matrices. As indicated in 

Figure 3.14 (c), the regularized residuals of the set of indices corresponding to distances of 108 

mm, 109 mm, and 112 mm are smaller than those corresponding to the other distances. As a result, 

the index set of the estimated distances and the estimated distances of the objects are determined 

as  1,2,5eI   and   108,109,112d , respectively. In Figure 3.14 (d), the reconstructed 
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signals ˆˆ T
l lx W s  for  1,2,5l  are represented as images. Note that the observation is highly 

distorted owing to the overlap among the ommatidial receptive fields. The reconstructed 

characters at 108, 109, and 112 mm are clearly visible. This result indicates that COMPU-EYE 

achieves 1-mm depth resolution. We note that the reconstruction resolution is also improved by 

1.56 times because 100 × 100-pixel images are reconstructed from 80 × 80-pixel ommatidial 

observations. 

 

 

 

Figure 3.14 (a) Reconstruction of v̂ , (b) reconstruction of û , (c) normalized regularized 

residuals, and (d) ommatidial observations and reconstructed images with respect to estimated 

distances. 
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We now investigate the performance of the iterative depth estimation for the object shown in 

Figure 3.15. We assume that the potential object locations are unknown and that the range of 

interest is from 100 mm to 120 mm, that is,    1 100 mm,120 mmR  . For the SRC-based depth 

estimation method in Table 1 to achieve a depth resolution of 1 mm, the dictionary requires 21 

concatenated measurement matrices with dimensions of 6400 × 210000. The computational 

complexity of this task necessitates the use of the iterative depth estimation method described in 

Table 2. We first formulate a set of coarse distances    1 100,  110,  120d  and 

 100 110 120D A A A  correspondingly. The result of iterative depth estimation is shown in 

Figure 3.15. At the 1st iteration, because the objects are located at around 110 mm, the residual 

value at 110 mm is the smallest. Thus, the object distance is estimated as 110 mm for   = 0.3 at 

the 1st iteration. For detailed depth estimation, we further set a dictionary with finer distances at 

around 110 mm. The range of interest is refined as    2 105,115R   and the depth interval, as 

 2 3d   for K = 3.33. Then, the set of distances is updated as    2 105,108,111,114d . At the 

2nd iteration, the residual values at distances of 108 mm and 111 mm are smaller than those at 

other distances. Thus, we estimate that the objects are located at around 108 mm and 111 mm for 

 = 0.2. The range of interest is refined as      3 107,109 110,112R    and the depth interval, 

as  3 1d   for K = 3. Then, the set of distances is updated as    3 107,108,109,110,111,112d . 

At the 3rd iteration, the object distances are estimated as 108 mm, 109 mm, and 112 mm from the 
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compound eye for  = 0.1. As a result, the objects are efficiently reconstructed by using the 

proposed iterative depth estimation method. 

 

 

 

Now, we aim to demonstrate depth estimation for an object with continuous depths. As a target, 

we consider a plane object that is slanted at 23° toward the compound eye and located 108 mm 

away from the compound eye. When the range of interest is from 108 mm to 111 mm, the object 

 

Figure 3.15 An example of the iterative depth estimation method. 
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distance can be uniformly sampled as  108, 109, 110, 111d  in Figure 3.16 (b). The proposed 

depth estimation method provides a depth map of the object with 1-mm depth resolution, as shown 

in Figure 3.16 (d). Consequently, an object with continuous depths can be well reconstructed by 

using the estimated distances, as seen in Figure 3.16 (c). In this manner, continuous depths can 

be estimated. We note that if we densely sample the range of distance, the depth map will be more 

accurate; however, there is a limit to the depth resolution, as seen in Figure 3.12. 

 

 

 

 

Figure 3.16 Depth estimation and object reconstruction for a slanted object. 
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3.6 Summary 

 

We proposed the COMPU-EYE imaging system to improve the resolution of compound eyes. 

COMPU-EYE uses ommatidia with acceptance angles that are larger than the interommatidial 

angle as well as a DSP technique. By increasing the acceptance angles, each ommatidium covers 

wider areas, and each observation is different from the others because of its receptive field. Finer 

details can be resolved by the DSP technique. As a result, the proposed COMPU-EYE provides 

at least a four-fold improvement in resolution. 

Natural compound eyes have the ability to detect high-speed motion owing to the simple 

ON/OFF detection structure of the ommatidium. In contrast, COMPU-EYE views the object only 

through computation and it necessarily requires certain computation time and cost for imaging. 

The computation requires solving a convex optimization problem; this problem can be solved in 

polynomial time by many state-of-the-art algorithms including YALL1 [75], FISTA [73], and CP 

[74]. Thus, the additional computation time required for the compound eyes is practically feasible 

with modern DSP devices. For example, when we measure the computation time using MATLAB 

with a 3.6-GHz Intel i7 processor, it takes 47 ms to recover N = 256 pixels from M = 64, as shown 

in Figure 3.10 (b). We note that the computation time can be reduced by using a multicore 
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processor or graphic processing unit because the algorithms [73-75] conduct matrix 

multiplications and additions, and these operations can be computed in parallel [86]. 

Generally, the acceptance angles are proportional to the light sensitivity of ommatidia. But, the 

large acceptance angles cause overlapping among neighboring ommatidia and necessarily result 

in low spatial resolution. By resolving the aliasing caused by the overlapping using a DSP 

technique, COMPU-EYE is expected to have high sensitivity with high resolution. Moreover, the 

technique for resolution improvements used in COMPU-EYE can be applied to other designs of 

artificial compound eyes. It would be interesting to compare resolution of Curvace design in [37] 

consisting of more ommatidia and the hemispherical compound eye in [27] consisting of less 

ommatidia but equipped with the DSP technique.  

In this study, we have focused on the apposition compound eye. But, we note that the concept 

of COMPU-EYE can also be applied to other types of compound eyes, i.e., superposition 

compound eyes. For example, in the neural superposition compound eyes which are specialized 

for light sensitivity, each object point is imaged by multiple photoreceptors from different 

ommatidia and the related signals are combined to form an image with high sensitivity and high 

resolution [41]. By applying the design concept of larger acceptance angles and the DSP technique, 

the neural superposition compound eyes can improve the resolution and sensitivity.  
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In the real implementation of compound eye devices, COMPU-EYE is more efficient in terms 

of multiple observations. If some ommatidia are disjointed or damaged, the conventional 

compound eye could lose vision in the corresponding area. However, in COMPU-EYE, each area 

is observed by multiple ommatidia. Thus, even though some ommatidia are lost, they do not have 

a significant influence on the overall observation. 

We have also proposed a depth estimation method based on the COMPU-EYE imaging system. 

Due to the large acceptance angles, the ommatidial receptive fields overlap, and the disparities 

the between ommatidial observations vary with object distance. As a result, the uniqueness of the 

generated measurement matrix depends upon the object distance. In the proposed technique, the 

dependences of the disparities between the ommatidial observations and the measurement matrix 

uniqueness on object distance are used to estimate the depth. This work helps not only to estimate 

object distances but also to reconstruct objects with high resolution, and it is therefore essential 

for future development of the COMPU-EYE system. 

Generally, disparity-based depth estimation methods have limitations for very distant objects 

because the disparities decrease [87]. By varying the acceptance angles of the ommatidia or 

arranging the ommatidia irregularly, the range of depth estimation can be extended adaptively, 

that is, large acceptance angles for small distances and small acceptance angles for large distances 

[88].  
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The analysis of the measurement matrix remains as an open problem. The measurement matrix 

depends on the acceptance angles of ommatidia, object distances, and structure of the compound 

eyes. From the analysis, we may answer those questions: ‘What is the achievable spatial or depth 

resolution given design parameters such as the acceptance angles and the structure of the 

compound eye?’, ‘What is the optimal design parameters in order to achieve certain spatial or 

depth resolution?’, ‘What is the relationship between the design parameters and the range of depth 

estimation?’, or ‘Is irregularity of acceptance angles or deployment of ommatidia helpful?’. For 

the analysis, techniques used in the analysis of the regular and irregular low-density parity check 

(LDPC) codes might be used. Furthermore, the l0-norm based minimization can be used to solve 

(7). This has been shown to provide better reconstruction performance than the l1-norm 

minimization [89]. 
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4 COMPRESSIVE SPECTROMETERS 

 

A spectrometer is an optical instrument that breaks light scattered from an object into various 

colors (wavelengths) and record them as a function of wavelength. Since the light from the object 

contains its spectral signature, the composition of the object can be figured out by the spectral 

analysis. The spectrometers, which are commonly huge and heavy, are miniaturized using nano 

optics/materials technology and are available for the commercial use but with a limited resolution. 

By employing the CS framework, we propose a compressive spectrometer integrated with analog 

compressive samplers and a DSP algorithm to improve spectral resolution. Conventional filter-

based spectrometers uniformly sample the incoming light in the spectral domain by bandpass 

filters that only pass the light only within the designated spectral band. In contrast, the 

compressive spectrometer compressively samples the holistic information of the light. The design 

of analog samplers is based on the thin-film filter technology. Compressive sampling is achieved 

by making the transmittance of the filters as random. The resolution improvement is achieved by 

using the DSP algorithm developed for the spectrometers. Furthermore, in the compressive 

spectrometer, we propose an incident angle estimation algorithm to resolve the measurement 

matrix mismatch problem caused by the variation of the incident angle.  
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4.1 Introduction 

 

Spectrometers are key instruments used to separate and measure spectral components of light 

reflected from or transmitted through the object. The spectrum is then analyzed to provide fine 

details about the objects. These instruments are usually huge, heavy in weight, expensive 

machines that are often owned by institutions and require training to use. But, thanks to the recent 

nano-optics technology, spectrometers are being miniaturized that brings portability and cost-

effectiveness [90]. Miniature spectrometers are favored for everyday consumer applications such 

as bio-medical, chemical and environmental engineering [91, 92]. 

To find the spectrum of the light, the spectrometers break light into various colors (wavelengths) 

and record them. According to the underlying operation principle, spectrometers can be classified 

as grating-based, Fourier-transform-based, and filter-based spectrometers [90]. The splitting is 

typically done by diffraction gratings in Figure 4.1 (a). While grating-based spectrometers offer 

high resolution capability, they require not only complex and precise optical arrangements to 

focus and process the light, but also long focal length for high resolution. When one tries to 

downsize the spectrometer for portability, the resolution is remarkably decreased. Despite these 

demerits, grating-based spectrometers remain popular for laboratory and research purposes. 

Recently, a lot of attempts is to use an optical filter array instead of gratings in Figure 4.1 (b). 
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Each filter in the array is carefully designed to transmit only a certain color and block the other 

colors, a typical brick-wall design. With the introduction of filters, the optical focusing units are 

eliminated and the challenge moves to a mini filter design via optical-nano materials and 

fabrication technology. 

 

 

 

4.1.1 Resolution limits of the filter-based miniature spectrometers 

 

In the filter-array-based spectrometers, resolution which represents the ability how closely 

resolve two neighboring spectra, is determined by the number of filters and their transmittance 

functions [6].  

 

 

Figure 4.1 (a) Grating-based spectrometer, (b) filter-array-based spectrometer. 
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The transmittance function (TF) of an optical filter represents a function of the fraction of input 

light that the filter transmits with respect to wavelengths. For conventional bandpass filters, the 

TFs are designed to have an ideal shape, i.e., a sharp brick wall as shown in Figure 4.2 (a). The 

ideal filters allow the input light to be transmitted only for desired wavelengths, called the 

passband, and completely stop the remaining wavelengths, called the stopband.  

For the filter-based spectrometers, each filter is desired to have an ideal bandpass TF for a 

passband, and the passbands of the filters do not overlap with each other. Each sample is obtained 

by a projection of the input signal spectrum for the passband. Then, the raw spectrum is formed 

by a collection of samples from the filter-array. The raw spectrum can be used as a direct estimate 

of the signal spectrum. In the ideal filter array, any two spectral components of the input signal 

spectrum that are more than one passband spacing apart are distinguishable in the raw spectrum. 

 

Figure 4.2 Transmittance functions of (a) ideal filters and (b) non-ideal filters. 
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But, any two spectral components separated by less than one passband cannot be resolved. In 

order to resolve such spectral components, the passband width of each filter should be decreased 

and inevitably the number of filters increases to cover the entire bandwidth. Thus, the resolution 

of the filter-array-based spectrometers with ideal TFs is limited by the number of filters. 

However, filters with ideal TFs are not easy to realize in practice, especially in a small size [6, 

93]. Therefore, non-ideal TF are inevitable in miniature spectrometers. The shapes of the practical 

non-ideal TFs employed in a typical filter-array spectrometer are shown in Figure 4.2 (b). These 

TFs are not purposely designed in such shapes but are instead accidentally obtained in the 

microlevel processing of implementing the ideal filters. Unlike the ideal TFs, the shapes of non-

ideal TFs are smooth, and the passband of each filter overlap with each other. Each sample of the 

raw spectrum now contains information about the spectral components not only from its own 

band but also from the neighboring filters’ bands, viz. interferences. These interferences cause 

severe distortion in the raw spectrum. Therefore, for the spectrometers with non-ideal TFs, post-

processing of the raw spectrum using DSP algorithms is required. 

As a development of modern DSP, the state-of-the-art filter-array based spectrometers are 

equipped with DSP algorithms not only to alleviate distortions due to unexpected noise or 

interferences among filters but also accurately reconstruct the original signal spectrum [93, 94]. 

 



 

 - 72 - 

4.1.2 Incident angle mismatch 

 

 

 

In the filter-based spectrometers, the incident angle can be varied according to environments 

and applications. The TFs of filters depend on the incident angle because the optical path 

difference depends on the incident angle of light. Figure 4.3 (a) shows an example of TFs of a 

filter with respect to the incident angles where the filter consists of multiple layers of SiO2 and 

SiNx with different thicknesses. As the incident angle increases, the TFs tend to shift from long 

wavelength to short wavelength. We note that the amount of the wavelength-shift is non-linear as 

seen in Figure 4.3 (b). 

In the proposed compressive spectrometers using DSP, the reconstruction is based on the exact 

knowledge on the TFs of the filters with respect to the incoming light. If incorrect TFs are used 

Figure 4.3 TFs with various incident angles, (b) the amount of wavelength-shift with respect to 

the incident angle. 
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in the DSP, the reconstructed results will be highly distorted. Thus, it is essential to estimate the 

incident angle and to use correct TFs in the DSP for accurate spectrum reconstruction.  

In the hardware perspective, a collimator can be used [95], which makes the incoming light 

perpendicular to the filter-array, but in a miniature spectrometer, it is difficult to include a 

collimator of good performance due to the size and cost. Thus, we propose an incident angle 

estimation method to solve the mismatch problem between the real TFs and predetermined TFs. 

 

4.1.3 Related works 

 

In [6], we proposed to improve resolution of the spectrometer in the CS framework, where non-

ideal TFs in Figure 4.2 (b) were used and high-resolution spectrum reconstruction was achieved 

than the conventional resolution limit determined by the number of filters. Since then, many 

researchers have studied implementations of the CS-based spectrometers [95-99]. In the CS-based 

applications, the sensing of signals and their subsequent recovery is accomplished with a 

measurement matrix. The measurement matrix is usually designed in the digital domain with 

coefficients of Fourier, Walsh-Hadamard, or noiselet transform matrix [2]. In [98], a grating-

based spectrometer with a DMD and a single pixel detector was proposed, which is similar to the 
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single pixel camera [2]. A Hadamard matrix is used as the measurement matrix. But, such devices 

require additional space and cost. 

Rather than designing the measurement matrix in the digital domain by DMD or SLM, there 

has been much interest in designing the inherent analog device that is efficient for the CS-based 

signal acquisition and reconstruction [7, 95-97, 99]. In [7], we proposed to design optical 

multilayered filters with random transmittances by varying thicknesses of layers of filters. In [96], 

the random linear projection was realized by liquid crystal. Different spectral responses are 

obtained by changing the electrical potential over the liquid crystal cell. In [97], different 

nanophotonic structures such as photonic crystal slabs were proposed. An etalon array 

reconstructive spectrometer was proposed in [95], where different transmission functions with 

multiple peaks are obtained by varying the thickness of cavity between two reflectors. Similarly, 

Fabry-Perot resonator is proposed in [99], where different transmission functions are obtained by 

controlling the distance between Fabry-Perot mirrors. 

 

4.1.4 Contributions of this chapter 

 

We propose a compressive spectrometer where the holistic spectral information is 

compressively sampled by optical filters with random transmittance functions and high-resolution 
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spectral signal is reconstructed from the compressively sampled measurements by the proposed 

DSP algorithm. Based on the thin-film technology, the optical filter is designed to have random 

TFs and the filter-array is implemented in two ways: one-by-one fabrication and 2D array 

fabrication. In the experiments, we demonstrate that the proposed compressive spectrometer can 

achieve the resolution improvements. In addition, we also propose a method for the incident angle 

estimation in the compressive spectrometer. We perform a numerical experiment to verify the 

effectiveness of the proposed method. In our experiment, we demonstrate that the proposed 

incident angle estimation method can not only estimate the incident angle of incoming light but 

also reconstruct the spectrum with high resolution.  

 

4.2 System model of filter-based spectrometers 

 

 

 

Figure 4.4 Schematic of the filter-array based spectrometer with DSP. 
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We consider a filter-array-based spectrometer in Figure 4.4. The filter-array consists of M 

filters each of which is fabricated by depositing multiple layers of dielectric materials on a 

substrate. According to the refractive indices of the materials and thicknesses of the layers, each 

filter has a specific TF, which represents the amount of light that the filter allows to be transmitted 

at a given wavelength  . Let  if   denotes the TF of ith filter for  1,2, ,i M  . Each filter is 

attached to one or multiple CCD (or CMOS) elements, and a set of a filter and its corresponding 

CCD (or CMOS) elements forms a spectral detector. The output of the ith spectral detector is then 

given by 

     ,
b

i i ia
y f x d n      (18) 

where  x   is an object signal spectrum and in  is the observation noise. Then, the output of 

the spectral detector is sampled in analog-to-digital converter and fed into a DSP unit to estimate 

the spectrum. 

By collecting M samples, the data model for the output measurements, 1M y   can be 

represented as a system of linear equations: 

  y Fx n   (19) 



 

 - 77 - 

where x contains an 1N   vector of input spectrum sampled at wavelengths 1 2, , , N    and n 

is an 1M   noise vector. Let F denote an M N  filter transmission function matrix, which is 

obtained by uniformly sampling the TFs,  if  , at wavelengths 1 2, , , N   . Each row of F 

represents a sampled TF of a filter. 

We note that the number of spectral components of x is generally greater than the number of 

filters, i.e., N M . Then, (19) becomes underdetermined and thus has infinite many solutions. 

If the input spectrum is represented by a sparse signal which contains a small number of non-zero 

components, the underdetermined system of (19) can be solved uniquely by modern DSP 

algorithms [11, 14]. For a sparse representation of the input spectrum, we model the input spectrum 

x in (19) as a linear combination of basis functions, i.e., x Gs  where 1Ns   is a K-sparse 

spectrum with K N  non-zero components.  

In this work, we choose Gaussian kernels as basis functions since the Gaussian shape can 

preserve the smooth features of the spectra and requires only two parameters: the central location 

and width [6, 93]. In Figure 4.5 (a), a Gaussian curve is shown with the central location of 800 nm 

and the full-width at half-maximum (FWHM) of 40 nm. In Figure 4.5 (b), a smooth spectrum can 

be expressed as a linear combination of three Gaussian curves with FWHM of 40 nm and central 

locations of 800, 860 and 900 nm. The kernel matrix N NG   is a set of the Gaussian curves 

each of which forms a column of G. According to the nature of TFs of the filter-array and the 



 

 - 78 - 

nature of the object spectrum for a particular application, the number, locations, and FWHMs of 

Gaussian curves can be determined. For example, Gaussian curves with large FWHM can be used 

for broadband signal, Gaussian curves with small FWHM for narrowband signal, or Gaussian 

curves with a composite of large and small FWHMs for complex signal. 

 

 

 

Now, using the sparse representation of the input spectrum, x Gs , (19) can be rewritten as 

 
   
 

F FG

A

y x n s n

s n
  (20) 

where A FG  represents an M N  matrix. The undetermined linear system of (20) can be 

solved by l1 norm minimization. Since the spectrum always has non-negative values, we use l1 

norm minimization algorithm with a non-negative constraint: 

 

Figure 4.5 (a) A Gaussian kernel with FWHM of 40 nm and center location of 800 nm (b) an 

example of sparse representation of object spectrum with K = 3. 
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1 2

ˆ min subject to , 0   A y
s

s s s s   (21) 

where   is a small positive constant. From the estimate of the sparse spectrum ŝ , the input 

spectrum can be reconstructed by ˆ ˆGx s . If the input spectrum is reliably reconstructed with 

P M , the spectrometer can achieve resolution improvements. 

 

4.3 Compressive spectrometers 

 

In this chapter, we propose a compressive spectrometer. For the compressive spectrometer, we 

first propose a nonnegative l1 norm minimization (NNLM) algorithm to solve (21). Then, we 

propose how to design TFs of filter-array for efficient signal acquisition and reconstruction. Last, 

we explain how to implement the proposed filters.  

 

4.3.1 Nonnegative l1 norm minimization (NNLM) algorithm 

By exploiting the nonnegativity of the spectral signal, the l1 minimization problem in (21) can 

be recast as  

  2

2
min such that ,T

x
   1 x 0x x - y x  (22) 
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In order to solve (22), we employ Primal-Dual Interior Point Method. The Primal-Dual Method 

is to seek the point  ,x s  which satisfies Karush-Kuhn-Tucker (KKT) conditions by root finding 

method. 

The Primal-Dual Interior Point Method Algorithm is to find  

Minimize Tc x  subject to 
2
2 , 0Ax b x    

, , ,M N N M NA x b s        

Lagrangian function can be defined as below 

   2

2
, , :

2
T TL x s c x Ax b s x

      (23) 

Let *x  be a solution of (2) with the fixed nonnegative lambda  . Then, the minimizer *x  can 

be obtained by solving the following differential equations. They are 

  , 0x L x s
     (24) 

and 

  , 0.sL x s    (25) 

Solving,  
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   

   

   
 

 

2

2

2

2

2

2

2

T

T T

T T T T

T T T T

T T T

T

Ax b Ax b Ax b

Ax b Ax b

Ax Ax Ax b b Ax b b

x A Ax b Ax b b

Ax b A Ax A Ax A b
x

A Ax b

   

  

   

  


   


 

 

can be rewritten as 

   , , T
xL x s c A Ax b s       

It can be interpreted as finding the Karush-Kuhn-Tucker (KKT) conditions of  ,L x s  . The 

KKT conditions of  ,L x s   are  

 
2

2

0

, 0

0, 0

T

T

c A Ax b s

Ax b x

s x s





   

  

 

 

From the KKT conditions, I can define a mapping   2 2, : n nF x s R R   

     , 0, , 0
TA Ax b s c

F x s x s
XSe


   

   
 

, 

where      1 2 1 2, , , , , , , , 1,1, ,1
TN N N N N

n nX diag x x x S diag s s s e             

Primal-Dual method is seeking  , 0F x s   by Newton’s method to find the root of the 

equation. Newton’s method uses the first order approximation of  ,F x s . Taylor expansion 

around the point  ,x s  gives 

      , , ,
x

F x x s s F x s J x s
s


      

 
        

 (26) 
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where  ,J x s   is the Jacobian of  ,F x s , and  Tx s   is the direction vector. By letting 

 ,F x x s s     in (26) be zero,  

    , ,
T

J x s x s F x s        

where  ,
TA A I

J x s
S X


 

  
 

 

We can obtain the direction vector to solve below equation. 

 T TxA A I A Ax b s c

sS X XSe
          

         
 

In order to find a step length, I used backtracking search which does not violate  , 0x s   

_ _ _step length step length step ratio   

At the end of each iteration,  1 1,k kx s   is updated by 

     1 1, , ,k k k kx s x s x s       
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Table 3. Nonnegative l1 norm minimization (NNLM) algorithm 

Step 1: Choose  0,1   and 0  ; Set k=0,  0
Ns 1 ,  0

Nr x 1 , 0  , 

0   , and 0r  , where r is a large integer   

Step 2: Compute         
11

k k k kT
N 

         
x X S A A c 1   and 

        k k k kT
N     s A A x c s 1  . 

Step 3: Compute 
  

   

,

1
: 0
min /

k
i

k k
i i

i i x
x x




  

    and 
  

   
2

: 0
min /

k
i

k k
i i

i i x
s s

  
  . 

Step 4: Set the step size  k  to be the first number in the sequence    
0 0, ,k k      

that satisfies                  2 2

2 2
, ,k k k k k k k k     F x s F x x s s   with 

      0k k k  x x  and       0k k k  s s , where    0 1 20.99 min ,k    .  

Step 5: Update both the primal and dual variables as        1k k k k
     x x x  and 

       1k k k k   s s s , and set     

Step 6: If the duality gap is small, i.e.,  T  s x , then terminate. Otherwise, update 

1k k   and go to Step 2 

 

 

4.3.2 Design of TFs of filter-array 

 

In this work, we aim to present a new approach to further enhance the resolution of the 

spectrometers by designing TFs. We note that in the filter-based spectrometer, we acquire the 

spectral data or signal spectrum using spectral filters. That is, the measurement of the signal 

spectrum is performed via linear projection in (20) by the optical filters. In Chapter 2.3, it is 

noted that the additional information helps in signal reconstruction in CS. In the filter-based 

spectrometer, the amount of additional information acquired in each sample of the raw spectrum 
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is solely proportional to the shape of the TFs. By shaping the TFs through a proposer design 

procedure, it is possible to extract much information about the input signal spectrum. Therefore, 

the TF matrix F in (20) that senses the maximum amount of information about the signal 

spectrum appears to be the best choice for the spectrometer case, and hence, it is our design goal. 

It is well known in CS that measurement matrix F, the entries of which are drawn from i.i.d. 

samples of a random variable, exhibit low coherence in (5). We call such matrices as random 

measurement matrices. These matrices are capable of capturing enough information about the 

signal s to perform reconstruction from a small number of samples of y. Therefore, random 

measurement matrices are widely employed in CS-based applications. 

It appears that the goal of designing a measurement matrix in CS resembles that of TF matrix 

design. That is, both the TF and the measurement matrix should be designed to capture sufficient 

information to permit the faithful reconstruction of the signal. Since both of these goals are met 

by random matrices, in this work, we consider a random matrix as the TF matrix rather than using 

the non-ideal TF matrix as in [100]. Since each row of the TF matrix denotes a transmittance 

function of a filter, a row of the random TF matrix is termed a random transmittance function. 

That is, a filter with a transmittance that exhibits random fluctuations as opposed to possessing a 

pre-designed transmittance shape is termed a random transmittance function. Thus, our goal of 

improving resolution reduces to the design of a set of M filters with random TFs. A set of TFs is 
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 iT   is referred to as random when holistic sampling in the entire range of interest, low 

correlation among wavelengths, and low coherence among each filter. The filters with random 

transmittances can be implemented by thin-film technology.  

 

4.3.2.1 Transmission of multiple layers of thin-film filters 

 

In this chapter, we first briefly discuss the generic design of thin-film filters to generate band-

pass-like transmittances. We then motivate and show how to design random transmissions using 

the same thin-film structure by varying only the thicknesses of the layers. Let us consider a thin-

film filter with m dielectric layers between the input medium (air) and the output medium 

(substrate).  

The transmittance T of a single thin-film layer (a dielectric medium) can be obtained by 

calculating its reflectance R and its absorption A which obeys the following relations: 

 1.T R A     (27) 

For a lossless dielectric film, 0A   and hence, 1T R  . Reflectance of a thin-film layer 

depends on the polarization of the light. For unpolarized light, the reflectance is the average of 

the transverse-magnetic (TM) and transverse-electric (TE) polarized waves given by  
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  TE TM

1

2
R R R  .  (28) 

Then, the transmittance is  

  TE TM

1
1

2
T R R   .  (29) 

We now aim to calculate the reflectance for both polarization assuming oblique incidence with 

is occurs in practical cases. Reflectance is the magnitude square of complex reflection coefficient. 

If   is the reflection coefficient, then *R  . The amplitude reflection coefficient is related 

to the (oblique) optical admittance mediumN  of a thin-film layer as the light travels from medium 

1 to medium 2, as 1 2

1 2

,medium medium

medium medium

N N

N N






 where  

 

cos
for TE or s-polarization

for TM or p-polarization
cos

medium r

medium medium

r

n

N n






 




   (30) 

where 0

0

32.654 10 S


    is the admittance of free space and r  is the angle of 

refraction of wave from medium 1 to medium 2. The angle of refraction can be calculated using 

the Snell’s law, that is  

  1sin sini

r

n
r in    (31) 

When we have multiple-layers, the reflectance and transmittance occur due to the constructive 

and destructive interference of light. To calculate the reflectance in that case, it is necessary to 

calculate the admittance of each film. The admittance can be easily calculated via the transfer 
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matrix analysis. Transfer matrix relates the net electric and magnetic fields at one boundary, say 

a, with those at the boundary, say b as 

 
1

1

sin
1

1 1 1

cos

sin cos
medium

i
a bN

a bmedium

E E

B BiN



 

    
     

     
  (32) 

where the transfer matrix of a single film is  

 
1

1

sin
1

1

1 1 1

cos

sin cos
medium

i
N

medium

M
iN



 

 
  
  

  (33) 

where 1  represents the phase difference between the fields that travel through the film and is 

given by  

    
0

2
1 1 1 1cos rn d

    (34) 

where 1n  is the refractive index of the film, 1d  is the thickness of the film, 0  is the 

wavelength of light at the incident medium, and 1r  is the angle of refraction at the medium. 

The oblique optical admittance of a thin-film layer is then 

 a

a

B
N

E
   (35) 

For P numbers of such layers, the net electric and magnetic fields at the boundaries are related as  

 

1 2
substrate

sin

1 substrate

1

cos 1

sin cos

p

mediump

a
P

a

i
P

p N

p medium p p p

E
M M M

B N

NiN



 

   
   

   
               




  (36) 
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The overall transfer matrix, 1 2T PM M M M  , should be in the order in which the light 

encounters them with 1M  represents the matrix associated with matrix 1, and so on. The total 

admittance of P such layers is then given by   

 a
tot

a

B
N

E
   (37) 

That is, we replace the multilayer assembly with a single layer which presents an admittance of 

totN . 

From the total admittance, the reflectance R of the assembly of thin-film layers is  

 
*

* air tot air tot

air tot air tot

N N N N
R

N N N N


   
       

  (38) 

from which the corresponding transmittance can be calculated. We summarize the procedure in 

Table 4.  
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Table 4. Transmittance of multi-layer thin film  

1. Number of thin-film layers, excluding the incident air and the final substrate, 
is P. 

2. The transmittance at the output is  TE TE

1
1

2
T R R   , where *

TE TE TER  

and *
TM TM TMR   . 

3. Now, air tot

air tot

N N

N N






, where totN  is the admittance of a layer that represents 

the layers from 1 to P (excluding the substrate). Thus, we are calculating the 
transmittance into the substrate and not through the substrate.  

4. Starting from the layer on the top of the substrate, layer P, we can calculate 
the representative admittance as follows: 

1

1

cos sin
2,

cos sin

p p p p
p

p
p p

p

N iN
Y p P

N
i

N

 

 






 

 
   

 

  

where    
0

2 cosp p p pn d
   and  11

1sin sinp

p

n

p pn 
 . The admittance of the 

pth thin-film layer is  
cos

for TE or s-polarization

for TM or p-polarization
cos

p p

pp

p

n

nN






 





 . 

 

 

 

4.3.2.2 Design of the random transmittance 

A thin film is a layer of dielectric material with thickness in the micrometer to nanometer range. 

Light strike at the surface of a film is either transmitted (transmission film) or reflected (reflection 

films). We use transmission films in the proposed spectrometer as we use the films as a light 

filtering device at the front end of the spectrometer. Stacking many film layers creates a multilayer 

thin-film assembly, which can be designed as filters with desired transmittance characteristics. 

The transmittance of the filters depends on the thickness of each layer and the refractive index of 
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the materials used. In the conventional brick-wall design, the thicknesses of the layers are fixed 

to quarter-wavelength to create constructive interference and hence the ideal brick-wall filters. In 

the proposed design, we use arbitrary thickness to generate filters with randomized transmittance 

patterns. Armed with the thin-film theory, we design filters in various operational mode of light 

such as TE/TM and oblique/normal incidence of light on the thin-film assembly.  

A thin-film optical filter consists of multiple layers of high- and low-refractive index materials 

(dielectrics) deposited on a substrate [101]. Each layer has thickness usually of one quarter-

wavelength for bandpass filtering. Thin-film filters work based on the interference of light 

transmitted or reflected at the boundaries between the layers. This interference is wavelength-

dependent; that is, depending on the number of layers, the index of refraction, and the thicknesses 

of the layers, the transmission (or reflection) of light trough the filter changes with wavelength, 

and hence the overall transmittance changes. By controlling the thickness of each layer and the 

number of layers, optical engineers design various filter transmittances such as band-pass filters. 

In this chapter, we show how varying the thickness of each layer generates random transmittances 

using the design methodology in [102]. 

In the framework of spectrum reconstruction in (20), it is important to design a good TF matrix 

F for the reconstruction of the sparse spectrum with high accuracy. Designing a good TF matrix 

F resembles designing a good measurement matrix in compressed sensing (CS). The mutual 
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coherence,   in (5) represents the maximum possible correlation of among pairs of columns of 

A. The smaller   means the smaller the correlation among the columns of A is. The smaller the 

correlation is, the better reconstruction accuracy of s from y. In CS, it is desirable to design the 

TF matrix F, such that the matrix A FG  has low coherence. 

It is well known in CS that measurement matrices A, the entries of which are drawn from i.i.d. 

samples of a random variable, exhibit low coherence. Such matrices are called random 

measurement matrices. These matrices are capable of capturing enough information about the 

signal s to perform reconstruction from a small number of samples of y. Therefore, random 

measurement matrices are widely employed in CS-based applications. In [7], random TF filters 

were introduced in order to enhance the resolution of the spectrometers. In the deposition of the 

optical thin-film, however, the thickness and the refractive index of each filter are limited in 

practice, and thus such random TF filters are impractical and non-reproducible due to large 

tolerance of fabrication. We, thus, propose a realistically implementable design of filters which 

have a low coherence for resolution improvements. 

 

4.3.3 Implementation of thin-film filters 
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We propose a design of a thin-film optical filter consisting of multiple layers of high- and low-

refractive index materials deposited on a substrate. The transmittance spectra of multilayered 

dielectric filters were calculated by transfer matrix method [103]. For achieving incoherence 

among columns of A, the difference between the high- and low-refractive indices should be high 

and the number of pairs should be large. 

 

4.3.3.1 One by one fabrication 

In this work, SiNx is used for a high-refractive index material and SiO2 for a low-refractive index 

material. As shown in Figure 4.6 (a) M = 64 filters are considered, each of which is composed of 

eight pairs of SiNx and SiO2. Note that increasing the number of pairs of layers leads to broadening 

the range of transmission of the filter. In order to reduce coherence among columns of A, each 

filter is designed to have different thicknesses of layers and the concept of the Fabry-Perot filter is 

applied by changing the order of materials as shown in Figure 4.6 (a). The resultant thicknesses of 

layers in each filter are given in Table 5. An example of the transmittance spectra designed by the 

proposed method is shown in Figure 4.6 (b). Filter 4 and filter 36 have the same thicknesses of 

layers, but the filter 36 is the Fabry-Perot filter of the filter 4. Thus, they have a completely different 

transmission rate and highly uncorrelated at 700 nm.  
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Table 5. Thicknesses of dielectric filters 

Filter index 1, 33 2, 34 3, 35 4, 36 

… 

32, 64 

tL (mm) 80 90 180 100 520 

tH (mm) 80 180 540 100 130 

 

 

 

Figure 4.6 (a) Design structures of dielectric filters, (b) transmission spectra of filter 5 and 24.

 

Figure 4.7 Implemented a 4  16 filter array. 
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4.3.3.2 2D filter-array fabrication 

 

 

 

Figure 4.9 shows the process in which a thin-film filter-array is fabricated. This comprises two 

main parts: one is SiO2 film deposition and the other is SiNx film deposition according to the 

specified thicknesses determined in Chapter 4.3.3. Prior to depositing an SiO2 film, a 6 x 6 

germanium (Ge) grid with elements of size 300 um and spacing 100 um was formed on the glass 

using an e-beam evaporator to separate the filters. Then, selective deposition is done as follows: 

An intentionally thick SiO2 film is deposited on the glass patterned with the Ge grid using plasma-

enhanced chemical vapor deposition (PECVD). The regions where the film should not be 

deposited were then removed by conventional photolithography, namely CF4/O2 reactive ion 

etching. The process pressure and radio-frequency power were maintained at 50 mTorr and 50 W, 

 

Figure 4.8 Design structures of dielectric filters. 

Reference FilterReference Filter

Filter #1 Filter #2 Filter #3 Filter #4 Filter #5 Filter #6

SiO
2

SiN
x

Glass

24 layers …
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respectively. The SiNx film deposition process was performed in the same manner as for SiO2. 

Finally, these two main steps, SiO2 and SiNx film deposition, were repeated 12 times each to lay 

down 24 layers. Figure 4.9 (b) and (c) show a photograph of a fabricated thin-film filter-array and 

a monochrome image of the filter-array, respectively. Each filter is composed of a different 

number of layers each with different thicknesses; therefore, each one has unique color due to its 

different TF, as shown in Figure 4.9 (b). 

 

 

 

Figure 4.9 (a) Filter-array fabrication procedure, (b) a fabricated thin-film filter-array, (c) 

Monochrome image of the thin-film filter-array at a wavelength of 700 nm. 
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4.4 Incident angle estimation of filter-based spectrometers 

 

Estimation algorithm runs with a DSP algorithm that aims to reproduce a high-resolution signal 

spectrum from the raw spectrum obtained from the spectrometer. The DSP algorithm is performed 

with previously known measurement matrix F in (20). In the filter-based spectrometers, F 

depends on the incident angle in (34). The incident angle is used to be assumed to be fixed. But, 

if the incident angle of incoming light does not match the predetermined measurement matrix, it 

may cause the severe performance degradation. Without DSP, it may occur minor distortions. 

 

4.4.1 System model for incident angle estimation 

 

We consider a spectrometer system with maximum incident angle of max  and the range of 

incident angel is  max0,  . For DSP, we assume that the incident angle can be sampled as a set 

of discrete angles  1 2, , , L  θ   within the range of interest, where L is the number of 

incident angle elements. In this work, we consider uniform incident angles within the range of 

interest, i.e., max / L   . 

According to the possible incident angle set θ , a measurement matrix 
l

F  for 

 1,2, ,l L   can be obtained from the thin-film theory in Table 4. By concatenating L 
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measurement matrices, a dictionary matrix  M L N D   can be formed as 
1 2
   

L     D F F F . 

Then, the linear representation of y in (19) can be represented as  

 
1

,
i

L

i
i




 y F x Du   (39) 

where   1
1 1,1 1, ,1 ,, , , , ,   , , ,

T T L NT T
L N L L Nx x x x         u x x     . When incoming light is 

incident on the filter array with a certain angle in the set θ , a valid observation y can be 

sufficiently represented by a linear combination of the columns from the corresponding 

measurement matrix. For example, when the incident angle of incoming light matches lth 

measurement matrix, the linear equation becomes  

 0y Du   (40) 

where 0 ,1 ,0, ,0, , ,0, ,0
T

l l Nx x   u     is a sparse coefficient vector whose entries are zero 

except for those associated with the lth measurement matrix. The vector, x can be sparsely 

represented as x Gs . Similarly, u can be sparsely represented as u Bv . Here, v is an L∙N × 1 

sparse vector and B  is a block diagonal matrix containing L instances of G, that is, 

   ( ,..., ) L N L N

L

diag    B G G  , where  diag   represents a diagonal matrix. By using v, (39) 

becomes  

 y DBv   (41) 
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where   1
1 1,1 1, ,1 ,, , , , , , ,

T T L NT T
L N L L Ns s s s         v s s     . As does (21), l1 norm 

minimization provides a sparse vector v̂ : 

 
1

ˆ arg min   subject to ,  
v

v v y DBv   (42) 

where   is a small constant. 

 

4.4.2 Incident angle estimation method 

After Ŝ  has obtained from (42), the problem of estimating the incident angle can be 

reformulated as a classification problem whose objective is to find the angle at which the 

incoming light is incident with the highest probability. Because the light spectrum can be sparsely 

represented in (20) and the measurement matrices are uniquely generated with respect to the 

incident angles, sparse-representation-based classification (SRC) can be used to estimate the 

incident angle of incoming light. 

We first specify a classification rule by using sparse signal reconstruction. As l1 norm 

minimization provides a spars solution to (42), most of nonzero components in Ŝ  reside in the 

class in which the incoming light exists with high probability. Similar to Chapter 3.4.2, we also 

use the residuals.  

    2 2
ˆ ˆ: / .l l lr   y DB v v   (43) 
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where  ˆ L N v   is obtained by including the elements corresponding to the lth class and 

nulling all elements of v̂  from other classes. We denote eI  as a set of the indices of estimated 

distances at which the objects are expected to be located. With lr  for 1, ,l L  , the 

classification rule is given by 

  arg mine l
l

I r   (44) 

where   is an arbitrary constant. A set of distances ̂  where the object is expected to be located 

can be determined by 

 ˆ
eI    (45) 

Then, the spectrum that only corresponds to the estimated incident angle is reconstructed by 

solving ˆˆ
e eI Ix Gs . The SRC-based incident angle estimation is summarized in Table 6. 

 

Table 6 SRC-based incident angle estimation algorithm 

Initialization:  1 2, , , , , , ,L    y θ G  

Step 1: Set 
1 2
   

Ld d d   D A A A  and ( ,..., )
L

diagB G G  . 

Step 2: Solve (7) from y given D and B , and obtain v̂ . 
Step 3: Calculate the regularized residuals: 

   2 2
ˆ ˆ: /l l lr   y DB v v  for 1, ,l L  . 

Step 4: Obtain the class of existence  arg mine l
l

I r  and the estimated 

incident angle of incoming light ˆ
eI  . 
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4.5 Results and discussions 

 

4.5.1 Measure transmittance functions 

 

 

 

The filter-arrays introduced in Chapter 4.3.3, are placed onto a CMOS image camera (E0-1312, 

Edmund Optics). Because the CMOS array has quantum efficiency which represents the 

sensitivity with respect to the wavelengths, it is essential to measure the transmittance functions 

of the spectral detectors (an element consisting of a filter and detector).  

For a wavelength of  , the transmittance function of mth spectral detector is obtained by 

 
( , ) ( , )

( , )
( , ) ( , )

F D

NF D

T m T m
TF m

T m T m

 
 





  (46) 

Figure 4.10 Setup for measuring the TFs 
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where FT , NFT , and DT  represent transmittances with filter-array, without filter-array, and 

without source light, respectively. As seen in Figure 4.10, to generate a monochromatic light 

source that has large intensity only at a specific wavelength, we use a halogen lamp (KLS-150H-

LS-150D, Kwangwoo) as a broadband light source and a monochromator (Mmac-200, Mi Optics). 

The monochromator can transmit the incoming light at a wavelength with FWHM of 1 nm and 

stop the rest of wavelengths. Then, we perform this procedure repeatedly from 500 to 1000 nm 

with 1 nm apart. In Figure 4.11, the measured TFs are shown. 

 

 

 

Figure 4.11 Measured transmittance functions. 
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4.5.2 Results of resolution improvements 

 

 

 

The experimental results for monochromatic lights are shown in Figure 4.12. In our experiment, 

we use four different monochromatic spectra, with spectral peaks located at 745, 750, and 900 

nm, respectively. The refence spectra are measured using an optical spectrum analyzer (AQ-

6315B, Ando) which indicate actual spectral peak locations at 739.5, 750.2, and 760.8 nm, 

respectively. Using the 2D filter-array compressive spectrometer with the DSP algorithm, the 

 

Figure 4.12 Spectral reconstructions of monochromatic light sources. 
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spectral peak locations are reconstructed at 740, 750, and 760 nm, respectively. The mean FWHM 

of the reference spectra is approximately 1 nm, and the mean FWHM for the reconstructed spectra 

is approximately 1.4 nm. Figure 4.13 shows the spectral resolution of green (527 nm) and red 

(635 nm) LEDs. For reference spectra, we measure the LEDs using a grating spectrometer 

(QE65000, Ocean Optics). The spectral peak locations for the reference LEDs are 527.6 nm 

(green LED) and 634.9 nm (red LED), and 633 nm (red LED). The peak signal-to-noise ratios are 

28.3 dB (green LED) and 31.7 dB (red LED). The reconstruction results for the proposed 

compressive spectrometers are similar to those of the grating spectrometer, but the number of 

modulated signals is significantly small (M = 36) and the size of the proposed spectrometer is 

very small.  

 

 
Figure 4.13 Spectral reconstructions of (a) green LED and (b) red LED sources. 
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4.5.3 Results of incident angle estimation 

 

 

 

We now illustrate the performance of the proposed incident angle estimation via simulation. 

We consider a filter array of M = 64 in Table 5, each of which consists of 16 layers of alternate 

SiO2 and SiNx with different thicknesses. The range of interest is from 500 nm to 1000 nm with 

1 nm step. The TFs of the filters are calculated by Table 4. For the incident angle estimation, we 

consider 4 possible incident angles of light such as 90°, 85°, 80°, and 75°. Then, the dictionary 

matrix is formed by  90 85 80 75   D F F F F . As an input light source, a synthetic spectrum having 
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Figure 4.14 Residuals at different incident angles. 
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two neighboring peaks at 600 nm and 605 nm is used to evaluate the reconstruction performance. 

The Gaussian kernels with FWHM of 2.5 nm are used as a sparsifying basis. When the input light 

is incident on the filter-array with 80°. The measurements (y) are acquired by (19).  

 

 

Given D and y, the incident angle estimation algorithm in Table 6 is performed. The normalized 

residue with respect to the incident angle is shown in Figure 4.14. The normalized residue has the 

minimum when the incident angle is matched to the angle of 80   . By finding the minimum 

residue, we can estimate the incident angle as ˆ 80   . From the estimated incident angle ̂ , we 

can choose the measurement matrix, 80F . Then, DSP recovers the spectrum of input light source 

 

Figure 4.15 Reconstruction performance when (a) incident angle is 10 degree and (b) 30 

degree. 
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x̂  using the measurement matrix, 80F  and the measurement vector y. The reconstruction results 

are shown in Figure 4.15. While the resolution limit of 64 filters with the ideal TF is 500/64

500 / 64 7.8125  nm, two neighboring peaks located in 5 nm apart are resolved by the DSP 

 

reconstruction is distorted.  

 

 

  

algorithm in Table 3. We note that if incorrect measurement matrix is used in the DSP, then the
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4.6 Summary 

 

We propose the compressive spectrometer by applying the CS framework into the filter-based 

spectrometer where the number of optical filters is limited. The compressive spectrometer is 

integrated with the compressive sampler and DSP algorithm. The compressive sampling is 

realized by the optical filters with random transmittances, which compressively sample the 

holistic spectral information. The optical filters are designed and implemented based on the thin-

film technology. We experimentally show that the proposed compressive spectrometer 

incorporated with the DSP algorithm is able to improve resolutions. We also propose the incident 

angle estimation method, which provides a stable reconstruction performance regardless of 

incident angle mismatch.  

The concept of the compressive spectrometer can be applied to the hyperspectral imaging (HSI) 

that has 2D spatial image with 1D spectrum for each pixel in the image of a scene. In HSI, only 

spectral sampling can be performed by the proposed filters with random transmittances or the 

spatial and spectral sampling can be performed sequentially by the integration with COMPU-

EYE and compressive spectrometers. The shift of TFs occurs from the incident angle of light or 

from the temperature [104]. Thus, the proposed incident angle estimation method can be used for 

calibrations due to the incident angle and the temperature.  
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In order to find a minute incident angle, a dictionary need to have measurement matrices of 

finer incident angles. But, this detailed formulation increases the size of the dictionary and 

inevitably computation time and cost, which is inefficient. To resolve this, as the iterative depth 

estimation method in Table 2, the incident angle can be iteratively estimated by modifying the 

proposed incident angle estimation method. For example, the coarse incident angle is estimated 

first and then fine incident angle is searched around the coarsely estimated incident angle. 

Otherwise, a joint sparse recovery estimation [105] can be used for the fine estimation of incident 

angle. To apply the joint sparse recovery method, the measurement matrix mismatch needs to be 

modelled as a linear expression. For a small range of incident angle variation, the amount of 

wavelength shift can be regarded as a linear shift. Thus, the joint sparse recovery method can be 

used in the fine estimation of the incident angle after coarse estimation is performed.  
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5 CONCLUSIONS 

In this dissertation, we have proposed to apply the CS framework to the compound eye imaging 

system and the miniature spectrometer for resolution improvements. By exploiting the reliable 

signal reconstruction from the distorted low-dimensional measurements, we focus on resolution 

improvements rather than compression. For the reliable signal reconstruction in the CS 

framework, sparse representation of the input signal and incoherence of the measurement matrix 

should be guaranteed. First, the image and spectrum signals can be sparsely represented by 

wavelet transforms and Gaussian kernels, respectively. Second, for incoherence of the 

measurement matrix, we propose to design ommatidia with larger acceptance angles than the 

interommatidial angle, and filters with random transmittance functions. The ommatidia with large 

acceptance angles can be implemented by increasing the refractive index of the lens or increasing 

the size of photodetector. The filters with random TFs can be implemented by multi-layered thin 

films, implemented by depositing high- and low- refractive indexed dielectric materials, 

alternatively. The l1-norm based DSP algorithms are used to reconstruct the input signal from the 

low dimensional measurements. As a result, we have achieved significant resolution 

improvements in both systems. In order to resolve the measurement matrix mismatch due to 

various object distances in COMPU-EYE and incident angle of the incoming light in compressive 

spectrometer, we propose depth estimation method in COMPU-EYE and incident angle 
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estimation method in compressive spectrometers. Theses mismatch calibration provides more 

stable signal reconstructions.  
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