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Abstract 

 

    In this paper, we aim to propose a new radar electronic surveillance (ES) 
system with sub-Nyquist monitoring capacity and its calibration algorithm. The 
system acquires the radar signals from unknown sources by sampling the signals 
at a rate below the Nyquist rate. The modulated wideband converter (MWC) is 
well known for a sub-Nyquist sampling wideband receiver system, based on the 
compressed sensing (CS) theory. The radar ES system makes use of MWC for 
very wideband electronic surveillance. However, the previous MWC, for the 
radar signals, holds a high computational complexity in the post processing. The 
proposed radar ES system, including a preprocessing method for the following 
CS recovery algorithm reduces the computational complexities. Before designing 
the radar ES system, in this paper, we start with summarizing some wideband 
signal receivers and providing a probability analysis about signal acquiring 
performances of the sub-Nyquist receivers including the conventional Nyquist 
receiver, which is clear and straightforward analysis. In the latter of paper, to 
estimate practical system transfer of the MWC, we provide calibration algorithms, 
which should be conducted when the MWC is implemented in the real world. 
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I. Introduction 

 

 

The radar electronic surveillance (ES) system acquires priorly unknown wideband radar signals 

emitted from opponent radar system, as shown in Fig.1. The signal is generated from opponent radar 

system, which notifies subject by transmitting radar signal and receiving the its reflection from the 

subjects. The Fig.2. depicts the signal of interest, which laid in a wideband and exist as spectrally sparse 

signal. The radar ES system is useful for recognizing the intent of the treat in advance. 

 

                        
 

Fig. 1. The concept figure of radar electronic surveillance system. 

 

 

 
 
 

 
 

Fig. 2. An aggregation of wideband radar signals. 

 

 



The radar ES system makes use of a certain signal receiver including analog-to digital converter 

(ADC). The ADC generally becomes an obstacle to sample wideband signals. To avoid aliasing problem, 

the ADC should sample the signal at the Nyquist rate, which is double of the maximum frequency. 

However, although recent sampling rate [1] of ADC can cover the wideband range as number of Giga 

hertz, to arrange the Nyquist ADC is almost impractical. The high sampling rate of ADC yields high 

power supply and memory problem. 

The radar ES system can make use of a Nyquist receiver, such as the rapidly swept super-heterodyne 

receiver (RSSR) [2], [22] . The RSSR sampled subbands of the wideband region chronologically. 

However, the RSSR inevitably omitted the signals. For the wideband signals, sweeping period also was 

widened whereas signal existing time is short. As shown in Fig.3, although a signal exists in some 

subbands for a while, the RSSR just samples empty subbands while omitting the signal. The inevitable 

omission of the RSSR becomes a critical problem depending on application, e.g. detection missile or 

hostile aircraft. 

 

 
 

Fig. 3. Signal model and signal acquisition schemes of the RSSR and MWC respectively denoted as blue and red
colored integers. 

 

 



The theory of compressive sensing (CS) [3], [4] provides an alternative solution, sub-Nyquist receiver. 

The theory suggests that spectrally sparse signals, which contain a small amount of information across 

a wideband spectrum, can be sampled at a low rate far below the Nyquist rate, and then reconstructed 

from the samples without losses. Based on the CS, researchers in the past have developed sub-Nyquist 

receivers, including the modulated wideband converter (MWC) [5], [21], random demodulator[6], 

multi-coset sampler [7], [8], compressive multiplexer [9], multirate sampler[10], and random 

modulation pre-integration (RMPI) [11], [12]. 

Among the sub-Nyquist receivers, the RMPI [11], [12] was inappropriate to be employed to acquire 

radar signals, since it yielded excessively long computing time and only permitted a small number of 

signals. The dimension of their system matrix was too huge. The reason of huge system matrix is the 

system model of the RMPI densely discretized continuous spectrum. For the reconstruction by CS 

recovery algorithms, it needed excessively high computational complexity (CC), which enlarges 

computing time. What’s more, the sample vector had a large number of non-zero entries per a signal, 

i.e. the sparsity of the vector is high. The ability to recover the signals with a CS algorithm is restricted 

as a function of sparsity [13]. Hence, the RMPI took a long time to recover the signals with a CS 

algorithm or only a small number of radar signals could be acquired. 

The MWC [5], [21] overcomes the problems of the RMPI. After sub-Nyquist sampling in the analog 

part, the reconstruction process is concluded to digital signal processing (DSP) and a CS recovery 

algorithm. In the DSP, the number of the sample sequences, corresponding to the number of analog 

channels, is increased through digital filtering and convolutions. The increased number of sequences 

gives enlarged evidence to recover the signals with the post CS recovery algorithm. In the CS algorithm, 

the MWC requires low CC compared to the RMPI. For instant, size of the system matrix is the number 

of increased analog channels by subbands. For the same signal, the sparsity of the spectrum is also 

smaller than the RMPI. In addition, the MWC is one of realizable sub-Nyquist receivers. The hardware 

of MWC was realized by Eldar [5], and they demonstrated the success of acquiring the wideband signals. 

These pros make that the MWC is considered to be employed for the radar ES system. 



Although the MWC is regarded as one of most realizable and efficient sub-Nyquist receiver, the signal 

acquiring performance of the MWC was not analyzed. The benefit of sub-Nyquist MWC, in terms of 

the performance, even was not verified to the conventional Nyquist receiver with same amount of 

hardware cost. In addition, the signal acquisition performances of sub-Nyquist receivers were not 

compared through an analysis. To compare the performances, it may be considered to body out all the 

receivers and run hundred times. However, it is very inefficient and impractical method. Thus, a 

comparative analysis which can be used to verify the acquisition performance with a similar realization 

cost is needed. 

A high CC of the MWC yielded from long observing time is critical problem in many ways. Due to 

tactical purpose such as avoidance of reverse-trace by the enemy, the modern radar system switches 

their radar signal characteristics. To capture the radar signals, a long observation time is required. 

However, there are a lot of samples proportional to the observation time. From the convolution process 

in the DSP, the large number v  of samples rapidly increases CC as  2O v , explained at Section II-D. 

In addition, for a given Nyquist frequency and observation time, another factor increasing CC is 

unnecessarily large size matrices exploited in the post CS recovery algorithm. When the MWC observes 

and reconstructs signals simultaneously, the high CCs pose bottle-neck phenomenon. The bottle-neck 

phenomenon corresponds to failure in continuous signal acquisition, since the reconstruction process 

cannot be completed within the observation period. Thus, to avoid that, reducing CC in the 

reconstruction process is required. 

The theoretical studies on the MWC usually assume that the analog components are ideal and delays 

do not exist amongst analog components. However, when the MWC is implemented in real world, the 

assumptions are not valid. This invalid assumption causes model-mismatch problems leading to failure 

in the reconstruction of Nyquist samples. Thus, calibration techniques for remedying the problems are 

required for the successful reconstruction.  

For the calibration of MWC, researchers have proposed schemes sequentially injecting sinusoids 

[14]–[17]. In [14], the authors have considered non-linearity of mixer and non-ideal response of filters. 



In [15], the authors have considered perturbations of ADC. From an assumption the perfect 

synchronization between the mixer and the ADC, they derive useful information and exploit it to the 

calibration. However, the perfect synchronization requires additional electronic parts, which might be 

complex and highly costs to be implemented for fast ADC. In [16], they have considered the delays in 

analog paths and difference among channel gains. In [17], the authors have considered a problem of 

non-ideal LPF. Consequently, all the literatures of [14]–[17] solve their own problems by injecting 

arbitrarily generated sinusoids with assuming that the phases of the sinusoids are perfectly controllable. 

However, the phases may be unknown in practice due to the unknown transient between the sinusoid 

generator and the front-end of the MWC, and the unknown phases again result in the failure in the 

reconstruction. For the more precise calibration, we need to estimate the phases of sinusoids injected 

for the calibration. 

This paper is summarized as a signal acquisition analysis, radar ES system, and calibration methods 

for the MWC. The probability analysis to compare the signal acquisition performances of wideband 

signal receivers is firstly presented. Without implementing all the receivers and operating hundreds of 

times, we could compare the performances. The analysis demonstrated amount of benefit of the MWC 

compared to the conventional RSSR. In addition, the analysis could be applied to the other sub-Nyquist 

receivers based on the CS, and we adopt the RMPI as the example. In addition, the analysis could give 

a guide to design system parameters of the following radar ES system. Second, with the MWC, we 

propose a radar ES system to monitor radar signals with reduced CCs. To reduce CCs in the 

reconstruction process, we propose a time division scheme with a DSP method and a low complexity 

CS recovery algorithm. By dividing observation time into several timeslots and processing them 

separately through the DSP, we could reduce overall CC. However, synthesizing the timeslots to revert 

them as the original observation time caused increases of reconstruction error at borders of the time 

slots. To alleviate the problem, we provide a solution and verify the effect of it through simulations. 

After the DSP, we provide a preprocessing method for the following CS recovery algorithm. The method 

could extract essential measurement vectors without missing signal information to reduce CC of the 

following recovery algorithm while keeping similar reconstruction performance. Consequently, the 



radar ES system with the preprocessing method could relieve much burden of CCs. At last, we propose 

a calibration algorithm for the MWC sequentially injecting sinusoids with unknown phases. In addition 

to considering the implementation problems from the non-ideality of the analog parts, we consider that 

the phases of the sinusoids injected during the calibration are unknown and not consistent for every 

calibration. In the proposed algorithms, the unknown phases and the calibrated transfer function are 

estimated at the same time. The estimation of the unknown phases is fulfilled by simple multiplications 

and divisions, and it is easy to be implemented 

The outline of this paper is as follows. Section II briefly introduces the wideband signal receivers 

including RSSR, RMPI, and MWC, and there is an analysis about noise folding problem in the MWC. 

Section III provides a probability analysis of signal acquisition between the receivers. Section IV 

presents the sub-Nyquist radar ES system: the time division scheme, the DSP, and the synthetization 

process, and a low complexity algorithm based on the SOMP. Several calibration methods are given in 

section V. Section VI concludes this paper. 

  



II. Wideband Signal Receivers 

 

Throughout our study, our goal was to acquire successively incoming wideband radar signals for the 

ES. The input ( )x t  is an aggregation of radar signals generated from different radar systems. 

Specifically, the input is defined by 

   
1

,  0
N

ii
x t r t t


                               (1) 

where ( )ir t  is a radar signal from the i -th radar system and is widely located within 

 max max,NYQ f f   where maxf  is up to scores of Giga-Hertz. Including the carrier frequencies, the 

pulse description words (PDW) such as PRI, the time of arrivals (TOA), the time of departures (TOD), 

pulse widths, and the duty cycles are unknown a priori. For every  ir t , we model the carrier frequency 

ranges within  max0, f , and the bandwidth iB  is truncated to min maxiB B B  . For separable  ir t , 

we assume the spectra of  ir t  are disjoint with each other. In addition, the aggregation  x t  is 

sparse in the frequency domain, i.e., max max2NB f . Briefly, we acquire a successively incoming 

signal  x t , which is regarded as a spectrally sparse multiband signal [21] with unknown parameters. 

 

 

 

2.1. The Rapid Swept Super-heterodyne Receiver (RSSR) 

 

  In this section, we briefly introduce the RSSR [22]. The RSSR receives a multiband signal and divides 

the whole range of the spectrum into multiple segments, exploiting a bank of bandpass filters (BPFs), 

and then the segments are sampled by an analog-to digital converter (ADC). According to time-division 

multiplex [2], the RSSR acquires all the segments chronologically. In other words, the RSSR 

sequentially acquires the segments one by one, consuming a certain time per each segmented band. 

However, the RSSR inevitably omits some spectra of the incoming signals owing to the time-division 

multiplexing. While the RSSR acquires several segments, the spectra in the remaining bands disappear 



or are replaced by others. As the number of signals and/or the range of the input spectrum increases, the 

omission gets worse. In section III, we present an analysis of signal acquiring rate and verify the 

omission 

 

 

 

2.2. Random Modulated Pre-Integer (RMPI) 

 

  The RMPI [11] is one of channelized sub-Nyquist receiver, which acquires a multiband signal for 

an observation time oT . For a channel, the multiband signal is mixed with a pseudo random (PR) 

sequence and the mixed result is then integrated. An ADC after the integrating part samples the mixed 

result at a sub-Nyquist rate sf . By denoting m  as the number of channel, the channel-end sampling 

rate [12] bsf  is defined as 

 bs sf mf                                     (2) 

With the system matrix from the analog architecture, the RMPI reconstructs the multiband signal 

exploiting a CS algorithm. However, since the matrix is a form of block diagonal, the system matrix is 

too huge to deal with. For one block, the number of rows and columns respectively corresponds to the 

number of channels and /nyq sf f , and the each block is repeated for /nyq bsf f  times. The huge block 

diagonal matrix yields high CC and long reconstructing time, which is impractical for the ES. 

In addition, range of the sample sequence containing signal information is Nyquist frequency and it 

is digitized at interval of 1 / oT . Hence, for given N  signals and the minimum bandwidth minB , the 

number of non-zero entries in the sequence is more than min2 oNB T . The large number of non-zero 

entries aggravates success of acquiring the signals. 

  



2.3. The Modulated Wideband Converter (MWC) 

 

  To resolve the omission in the RSSR and suggest radar ES system, we exploit the MWC [21], 

which consists of analog and digital parts. In the analog part, the MWC takes samples that contain 

compressed information of  x t  at the sub-Nyquist rate. In the digital part, the post DSP and CS 

recovery algorithm reconstructs the compressed samples as the Nyquist sample of  x t . 

In the analog part as shown in Fig.2, the MWC consists of m  channels including series of mixer, 

low-pass filter, and ADC. For each channel, a multiband signal is mixed with the pT -periodic PR 

sequence ( )ip t . The spectrum of the sequence has 02 1M M   weighted impulses at intervals of 

1
p pf T  . The mixed signal passes an anti-aliasing low-pass filter (LPF) whose cutoff frequency is 

/ 2 / 2s pf qf , where 02 1 0q q    is an odd integer. Consequently, from the mixer and LPF, as 

presented in [21], the input frequency range max 0 max 0[ , ]p pf q f f q f    is divided into 02 1L L   

subbands at intervals of pf . The subbands are then compressed by multiplying by Fourier coefficients 

,i lc  of the PR sequence and projecting into  2, 2s sf f . Thereafter, the ADC samples the result of 

the compression at the rate of sf . For the i -th channel, as presented in [21], the discrete-time Fourier 

transform (DTFT) of the output of the ADC can be expressed by 

  0

0

2
, ( )s

Lj fT
i i l pl L

y e c f lf


  X


                           (3) 

for 2 2s sf f f   . The information of /s pq f f  subbands are piled in a single row of the X . 

Note that there are M L  unique Fourier coefficients of  ip t  and 1q L M    coefficients are 

the repetitions. The rest of the process reconstructs the Nyquist sample of  x t  from the compressed 

samples in the digital part of the MWC. 

In the DSP, by disjointing the correlation of the 1q   repeated Fourier coefficients, the channel 

expanding method [21] is applied to extend the number of the equation (3). The channel expanding 

method is represented by 
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where  0 0, ,k q q   . As shown in (4), for each k , [ ]iy n  is modulated with a different frequency 

pkf  and taken convolutions with q  LPFs [ ]Dh n  whose cutoff frequencies are / q , and then the 

sequence is decimated by q . As a result, the outcome of channel expanding is 

   0

0

2
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                       (5) 

for 2 2p pf f f   . Consequently, we can obtain mq  equations from the m  analog channels. 

With the continue to finite (CTF) block in [21], the DTFT  2 pj fT

i e Y


 becomes a finite sequence. For 

the m  channels, the equation (5) is expressed as 

 [ ] [ ]n nY CZ
 

                                  (6) 

where the measurement matrix mq vY

  corresponds to the output of MWC, mq MC


  is sensing 

matrix, M vZ

   contains signal information, v  is length of column in Y


 yielded from the CTF 

block, and 02 1M M  . The matrix equation (6) is exploited to reconstruct the input multiband signal 

trough a post CS algorithm, and the MWC successfully acquires the signal. 

 

 
 
 

 
 

Fig. 4. Analog structure of the MWC [19]. 



    2.3.1. Analysis for the noise folding problem 

 

 

This section provides an analysis about noise folding effect in the MWC. The MWC consequently 

divides the Nyquist range into several subbands and gathers into baseband. In this regard, the noise of 

all the subbands including vacant subbands is also gathered into the baseband, which might result in 

degradation of signal-to noise ratio (SNR). The degradation of SNR also leads to degradation of 

reconstruction performance. We verified effect of the noise folding by comparing reconstructed signal 

between a signal contaminated by colored noise and by white noise. Note that the colored noise is 

defined as noise only contaminates the actual subband, which contains signal information. 

  The Fig.5 respectively depicts input signal with white noise and colored noise. Through injecting the 

two types of signals, we verified reconstructed signals with SNRs, which is defined as 

  2 2

2 2
10 log /SNR x n                               (7) 

where x  and n  are respectively the input radar and noise vector. As shown in the Fig. 6, there are 

noise folding degradation when the SNR is -5dB, while the degradation can be negligible when the 

signal power is higher than the noise. 

 
 

 

(a) 



 

(b) 

Fig 5. Input signal with white noise (a), and signal with colored noise (b). 

 

 

(a) 

 

(b) 

Fig 6. Original and reconstructed signal with SNR=-5dB (a), and SNR=10dB (b). 
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III. Signal Acquisition Probability Analysis for the Wideband Signal 
Receivers 

 

This section is aimed to compare signal acquiring performances of the MWC, RMPI, and RSSR 

through a noble probability analysis. In case of acquiring a multiband radar signal whose bandwidths 

are B  in a range of nyqf , the analysis can give a guide to design system parameters such as, the number 

of channels m , sampling rate of ADC sf , a cycle of PR sequence 1
pf  . Instead of implementing all 

the systems and iterating hundreds of times for varying parameters, the acquisition performances of the 

receivers can be verified and compared fast and easily. 

In the perspective of sampling theorem, successful lossless sub-Nyquist sampling of the MWC for a 

given sampling rate proportionally depends on the sum of bandwidths of the occupied subbands. Hence, 

for a given number of input signals, we can expect the success of lossless acquisition once we have the 

number of occupied subbands. To calculate the probability of successful acquisition, we impose random 

variables representing the number of input signals, split spectra, and occupied subbands and derive their 

distributions. 

First, we derive a lower bound (LB) of acquisition probability of the MWC. Let X  denote the 

number of received signals in a time slot and Y  denote split signals. Then, the conditional probability 

mass function (PMF) of Y  given X  can be 

      | | 1
y x y

Y X s s

x
P y x p p

y
 

  
 

                       (8) 

where sp  is the probability that a signal is split by the grid of subbands. With assuming that the carrier 

frequency of the signal is drawn uniformly, we calculate sp  by 
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where pB f  is the bandwidth of each signal. With a focus on the positive subbands corresponding 



realness signals,   2K R Y Y R Y      is the number of occupants (split and un-split spectra). 

Note that the occupants are not overlapped. The conditional PMF of the occupants K  is 
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The moment generating function (MGF) of the occupants is derived as 
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With assuming that the MWC achieves the lossless sub-Nyquist sampling if and only if MWCK  , 

using the Chernoff bound, the LB of successful sampling is obtained by 
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where the MWC  is the maximum sparsity such that the CS problem can be perfectly solved. The MWC  

is determined in the equation [21] of 

  2 log /MWC MWCmq M      (13) 

As presented in [18], the parameters x  can be obtained by solving 
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      (14) 

By injecting MWC , the last of (9) and (11) to the (11), the LB of successful sampling can be denoted 

by system parameters, such as 
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Note that /p nyqf f M . 



Second, we derive an acquisition probability of the RMPI. From the architecture of the RMPI, the 

occupants correspond to digitized signal bands 1/ oB T   among digitized Nyquist range 1/nyq of T  . For 

the N  received signals, the signals occupies at least oN BT    occupants. Since the band is not always 

exactly fitted in the digitized graduation, the probability of one more extra occupants is exceeded 

portion of B  compared to the width of the minimum occupants 1
o oT BT     at one bin 1

oT  , i.e. 

  1 1
, /s RMPI o o o o op B T BT T BT BT                   (16) 

We then let the maximum recoverable sparsity of RMPI RMPI  as / 2 / 2RMPI nyq sm f f . In the 0l  

minimization problem, which is the optimal but mathematically intractable solver, the algorithm can 

estimate sparsity as half the number of equations [13]. If the RMPI fails to acquire signal with the higher 

RMPI  than MWC , the MWC demonstrates superiority. Like as (12), the RMPI can be considered to fail 

the sampling when the minimum occupants o RMPIN BT     and succeed when maximum occupants 

 1o RMPIN BT     . In the remaining cases, the probability of successful sampling is complement of 

failure, which is the number of occupant over  RMPI  with ,s RMPIp . Consequently, the successful 

sampling probability of RMPI is 

 
 
 

Fig. 7. The probability of signal acquisition among the MWC, RMPI, and RSSR 
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Last, we calculate the probability of the RSSR. By noting that only the information of signals whose 

spectrum is fully located in a band currently being observed by an activated filter bank is preserved in 

the output samples of the RSSR system, the probability of successful acquisition under an assumption 

of uniform occurrences of the signals in the frequency domain can be described by 

  P Successful Sampling
/ 2

x

BPF
RSSR

nyq

W B

f B

 
    

              (18) 

where BPFW  is the bandwidth of the filter banks. 

The Fig. 3 depicts that the MWC demonstrated the superiority in terms of the signal acquisition 

performances. To fairly compare, it was necessary to assign the same number of channels and sampling 

rate to all the receivers including the RSSR. The MWC and RMPI need at least a s pf qf  sampling 

rate for m  channels. In other words, a necessary requirement of the total sampling rate is pmqf . By 

noting that the RSSR uses a single ADC of the sampling rate BPFW , we can set it to BPF pW mqf . For 

the simulation, we set the condition as 4m  , 4nyqf Ghz , 220sf Mhz , 31.5pf Mhz , 1.11oT s , 

and 0.1 pB f or 0.6 pf . We acquired the empirical result of the MWC exploiting the simultaneous 

orthogonal matching pursuit (SOMP) [19]. In the simulation the split probability of many signals is 

lower than theoretical one due to avoid superposition when signal is generated. As shown in Fig. 3, 

compared to 4MWC  , although we apply the more successful sampling criteria as 9RMPI   to the 

RMPI, it could not acquire the signals of 0.6 pB f . For that signal bandwidth, there was high sparsity, 

which cannot be recovered by the given SOMP algorithm unlike the MWC. This superiority of the 

MWC is one reason that we adopt it as the radar ES system. In addition, as shown in (13), we can easily 

verify the signal acquisition performance through various system parameters, which contributes to 

design the following radar ES system. 



IV. A Radar Electronic Surveillance System Using the MWC 

 

 

4.1. Problem Formulation 

 

Although the MWC was proposed to acquire a multiband signal, it is difficult to directly implement 

the MWC for radar ES system. The radar ES meets a problem when the observation time for collecting 

the compressed samples is retained shorter than the post-processing time consumed for the 

reconstruction. In this case, continuously incoming signals are stacked and left. Meanwhile, the 

reconstruction contains complex computations in both of the DSP and CS recovery algorithm. In the 

DSP, for given v  length of sample sequence, CC of the equation (4) is denoted as  2O v , which is 

increased rapidly along the enlargement of /o sv T T . To reduce the CC, we can consider enlarging 

the sampling period sT  of the ADC and/or reducing the observation time oT  to reduce the length v . 

First, the enlarging sampling period is impractical since it reduces the channel expanding factor q  in 

(4). With the reduced q , the channel expanding method loses the meaning. Second, the reduced 

observation time cannot be adopted. Since opponent radar system changes their radar signal 

characteristics, the MWC should observe for a long time to capture them. Meanwhile, we can divide 

the long observation time into several time slots to reduce CC. However, the dividing scheme occurs 

another problem, called as time-aliasing [20]. When pieces of a long signal are individually processed 

and concatenated as the original long signal, there is time-aliasing occurring degradation in 

reconstruction performance at border of the pieces. When we resolve the time aliasing, we can much 

reduce CC with similar reconstruction performance. 

A number of samples, yielded from the long observation time, requires a high CC in the CS recovery 

algorithm. The problem of (6) in the MWC is called as multiple measurement vector (MMV) problem, 

CC of the algorithm is great influenced by the size of measurement matrix. By reducing measurement 

matrix without miss of signal information, a lower CC can be achieved for the radar ES system 

 



4.2. Radar Electronic Surveillance System 

 

The aim of this section is to propose a radar ES system to acquire wideband radar signals. As shown 

in Fig.4, the radar ES system is designed with the following steps: a signal division scheme, a 

straightforward channel expanding method with zero-padding in the DSP, and signal recovery with a 

CS algorithm and integration process in the reconstruction. To reduce CC in the DSP, we establish the 

signal division scheme by slicing an observation window as a series of time slots. Second, for a time 

slot, the relationship between the output of MWC and the sensing matrix of  (3)  is enlarged with a 

straightforward channel expanding method in the DSP. In addition, a zero-padding method is presented 

to alleviate the time aliasing, which is severe when the radar signals exist over the border of time slots. 

Thereafter, the radar ES system exploits a CS algorithm to recover the signal information. So far, the 

DSP and signal recovery with a CS algorithm are repeated for every time slots. In the integration process, 

the recovered signals are integrated with negligible time aliasing. Consequently, the designed system 

can surveil the radar signals by resolving time aliasing and high CC problem. 

 
 

4.2.1. Time-slot method 

 

After the analog part of the MWC samples an aggregated radar signals for a long observation time 

oT , the radar ES system establishes an uniform grid of the observation time at intervals of time slot 

subT . The aggregated radar signals in (1) are redefined as 

 
 

Fig. 8. Block diagram of the radar electronic surveillance system. 
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for 0 subt T  , where ( )jx t  corresponds to the sliced radar signals in the j -th time slot. The number 

of time slots G  is chosen to reduce CC optimally, discussed at the following sub-section. For the j -

th time slot, the MWC output (3) can be expressed as 

 ' '[ ] [ ]j jn nY CZ                                 (20) 

where measurement matrix is dm l
j

Y
 , m LC   is the sensing matrix, dL l

j
Z
  contains 

information of the aggregated radar signal, and 
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The relationship (20) is represented as matrix form by 
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The next step is to extent the number m  of channels in (20) through a straightforward method. 

 

 

    4.2.2. Digital Channel Expanding Method 

 

We present a straightforward channel expanding method to enlarge the rows of the measurement 

matrix jY  and the sensing matrix C  in (20), and the zero-padding method to alleviate time aliasing. 

Before expanding the channels, we add qk  zeros to the right side of the each row of jY  in (22), 

where dk l . Thereafter, we exploit that /s pq f f  subbands are piled in a single row of the jZ . In 

short, by disassembling the q  piled subbands, we expand the rows of jY  and C  through a Fast 

Fourier transform (FFT) and simple matrix reorganization. Meanwhile, if there are not zero-paddings 



before the FFT, there is severe time aliasing problem since the results from the FFT beyond dl  is lost 

whereas they should be remained for the next time slot. Thus, we can start with padding zeros, and 

taking the FFT to the right side of (22) to change the column indices of jY  as the frequency axis, i.e., 

'
, [ ]j iy n  becomes ', [ ]j i n

y f  for ' 1,2,...,
n d qf l k  . 

First, for the i -th row, by disjointing the q  piled subbands, we reorganize jY  to be a 

( )dqm l k   matrix such as 

 ' '

1

, ,0
[ ] ( )

q

j i v j i dn nv
y f y v l k f
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for ' 1,2,..., dn
f l k 


. In the sensing matrix C , by disjointing 1q   repeated ,i lc  such as 

0 0, , ( 1)i M s i M sc c     for 0 0[ 1, ]s q q   , C  is also expanded as 
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for 0,1,...,l M . Consequently, from the channel expanding methods, the relationship at (20) is 

transformed as 

 ' '[ ] [ ]j jn n
f fY CZ
  

                              (25) 

where ( )dmq l k
j

 Y


 , mq MC

 , and ( )dM l k

j
 Z


 . There is an equal effect of qm  enlarged 

equations which helps to recover the input signals [16]. Meanwhile, the input spectra can occupy up to 

4N  subbands when N  real-valued radar signals exist in the time slot because max pB f  and the 

conjugate symmetric property *
, ,j l j lz z . In other words, since the q  piled subbands are disjointed in 

(25), the input spectra are contained in the 4N  rows of jZ . 

Compared to the conventional convolution method of (4), CC is reduced by the proposed FFT 

expanding method. For an one channel, CC of the convolution method is  2
dO l  whereas the FFT 

method reduces it as  logd dl lO   . In addition, with the signal division scheme, the CC is much reduced 

as     log /d dl Gk l G kO    . Since the ES system samples the radar signals for a long time, the 



effect of additional k  zeros are negligible, dk l  . The number of time slot G  can be considered 

as 

    arg m /in logd
G

d kG l Gk l G


 


                          (26) 

For instance, when 256dl  , 2k  , 76G  , CCs of each of convolution expanding method, FFT 

method, and FFT method with signal division scheme are respectively 65536, 2048, and 685. The 

reduced CC of the last contributes to achieve fast computing 

 

 

    4.2.3. Synthetization and Reconstruction  

 

A CS algorithm recovers the signal information as '

4 ( )[ ] dN l k
j n

f  Z
    by solving the MMV 

problem of (25), and the [ ]j nZ
  is generated by taking IFFT. The procedures from the DSP to 

generation of [ ]j nZ
  are repeated for G  time slots, and the results from every time slots are 

integrated as 
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                 (27) 

where the matrix GZ  of last time slot decimates columns in [ 1, ]d dl l k  . As depicted in Fig. 4, the 

each jZ  are delayed for dl  using buffers and integrated such as the [ 1, ]d dl l k   columns of 

1jZ  are added to front k  columns of jZ . With zero-padding in the DSP and the integration process, 

we alleviate the time aliasing yielded from the radar signals being located at the border of time slots 

and show the improvement in section VI. The time-wise information including the PRI, TOA, and TOD 

can be found through the reconstructed radar waveform or the estimation method presented in [17]. The 

carrier frequencies can be estimated by exploiting pulse spectrum density (PSD) estimation [18]. 

The parameters of the proposed system are arranged in Table I. For a given analog system, PR 

sequence parameters, sampling rate of ADC, and the number of channels are the dependent parameters. 

While a long observation time   is adopted to capture radar signals, it rapidly increases CC in DSP 



unit. Note that the long observation time also improves frequency resolution.  However, the signal 

division scheme and the straightforward DSP method contributed to reduce the reconstructing time. 

Furthermore, the reconstructing time can be more reduced with a preprocessing method discussed at 

the next section. 

 
 
 
 
 

TABLE I. Parameters of the radar ES system 

Parameters (Symbol) Relationship Value 

Observation time ( oT )  o subT G T  0.1302 ms  

The number of time slots ( G ) - 100  

Nyquist frequency ( nyqf ) maxnyqf f  
4 GHz  

Bandwidth ( B ) min mB B B   31.49 MHz

 Channel expanding factor 

( q ) 

0   7 

 Period of PR sequences 

( pT ) 

1/p pT f  0.03176 ns  

Sampling rate of ADC ( sf ) s pf q f   220 MHz  

The number of PR pattern 

( M ) 

1M L q   127 

Physical channels ( m ) - 4 

Virtual channels ( m


) m mq  28 

The dependent parameters are denoted as   for a given hardware. 
 

  



4.3. Preprocessing of MMV algorithm 

 

This section aims to propose a sub-sampling method, which is a preprocessing to 

proportionally reduce CC of the following MMV recovery algorithm. As discussed at the 

previous section, the radar ES system could greatly reduce CC of the DSP by dividing the long 

observation time into time-slots. However, since the total CC of MMV recovery of (25) is still 

high due to the long observation time, the reconstructing time can exceed the observation time. 

As presented at (26), note that the long observation time enlarges the total number of 

measurement vectors as dGl . Since MMV recovery algorithm contains matrix multiplication 

and/or inversions, CC of the algorithm is rapidly increased along the number of measurement 

vectors. Thus, we propose the sub-sampling method, which is a preliminary work to reduce CC 

of the following MMV algorithm. This method strategically selects some measurement vectors 

without missing the support set. The support set indicates indices of nonzero sub-bands. The 

sub-sampling method is presented at the sub-Section A, and the benefit of CC and support 

recovery performance are presented at the sub-Section B. 

 

    4.3.1. Sub-Sampling Method 

 

By the linearity at (25), choosing columns of jY


 is equivalent to choosing columns of the signal 

matrix jZ


. We therefore choose the columns of jY


 based on the structure of the signal matrix jZ


. 

The rows of jZ


 contain spectrally orthogonal subbands of the discrete spectrum of  x t  at the 

intervals of pf . By the discrete Fourier transform, the column indices represents a frequency grid of  

intervals of 1/ subT . In the rows, every narrow band spectrum of  jx t  is contained. Some of the narrow 

band spectra may be split by the borderline of the subbands based on their center frequencies.  

In this scenario, we propose a sub-sampling method depicted at Fig.5. This method generates subsets 



by classifying columns of jY


 at intervals less than minimum signal bandwidth minB . For each subset, 

the method selects one column having a maximum energy. When the subset consists of columns less 

than minB , the method can avoid the worst situation that several signals exist in a subset and are not 

overlapped in the column axis. For that situation, one of the signals is selected and the others are omitted. 

On the other hand, a sub-sampled matrix rmq l
d

Y   , union of selected columns, contains components 

of all the signal while reducing the size of measurement matrix. The number of sub-sampled column is 

calculated as 

 min/r d subl l B T                                   (28) 

where min subB T    is the element number of the subset. The notation jZ


 also becomes rM l
d

Z  . 

Since this simple sub-sampling method works at once before the following iterative MMV recovery 

algorithm, CC yielded from sub-sampling method can be negligible. The reduced column rl  

proportionally reduces CC in the following MMV recovery algorithm, and we pick the SOMP [19] to 

 
 

Fig. 9. Selected columns of measurement matrix contain essential signal information to detect a support set while
reducing computational burden. 



verify the CC benefit and the support recovery performance. 

 

 

    4.3.2. Performance Analysis of the Algorithm 

 

To verify CC benefit of sub-sampling method, we adopt SOMP [19], which is a solver for the MMV 

problems. The SOMP is an iterative algorithm, where at each iteration the SOMP recovers an index of 

nonzero rows of a signal matrix dZ , i.e. supports set, in (25) by matching a MMV matrix dY  with 

bases of the sensing matrix  C


. 

The procedure of SOMP is adjust for the radar ES system to enhance the algorithm efficiency and 

reduce CC. The terminal condition is 

 
2

.d EPSY                                (29) 

Unless the condition is satisfied, the algorithm continues to estimate a support among a set   defined 

as row indices of dZ , which is 

 
2

arg max [ ]H
residueJ i


 C Y                          (30) 

where C  is a column of C


 and i  is iteration index. At first iteration, dY  replaces the residueY . 

From the conjugate symmetric property of real-valued radar signal, the selected and symmetric supports 

are stored in the iS , and iS  are gathered at S , i.e. { 1, 2,..., }i i N S S . After estimating the support 

set S  containing 2i  elements, the residual of dY  is generated by 

 †
residue d d  Y Y C C YS S                           (31) 

Note that N  real-valued radar signals can yields up to 4N  supports. The SOMP detects the support 

set   for upmost  2N  iterations. The signal information is reconstructed as 

 †[ ] [ ]j n j nf f Z C Y
      (32) 

where †
C  is a Moore-Penrose pseudoinverse of outcome by extracting the columns of   from C


 

in (25). The result of (32) can be used for the integration process explained at the Section IV-C.  



To verify CCs, we focus on the matrix multiplication and inverse parts (30) and (31) in the algorithm, 

which are main factors enlarging CC. For an observation time, the sizes of measurement and sensing 

matrix are respectively dm l  and m M , where m mq . In the equation (30), CC is ( )dO Mml


. In 

the equation (31), although the CCs are different for the each i -th iteration due to 2m iC


S , but we 

ignore the i  to verify easily, where i m  . Thus, the CC of (31) becomes 2( ( 2) 16 )dO m l m   . As a 

result, the total complexity for N  signals becomes 

    2 2 16dO N l m M m m    
          (33) 

Second, we compute CC with SS method. The CC becomes  

    2 2 16rO N l m M m m    
    (34) 

where r dl l  is the number of sub-sampled columns. In the result of (34), CC is reduced 

proportionally with the small  rl . 

The Fig.6 depicts the support recovery rate along the number of sub-sampled columns of the 

measurement matrix. The support recovery rate is defined: when the recovered support set is a subset 

of the original, the flag is one. We verified the support recovery rate along the number of subsets 

 
 

 

Fig. 10. Support recovery rate along the number of sub-sampled column of measurement matrix in the SOMP. 
  



corresponding to number of sub-sampled column compared to the original columns 35dl  . The 

minimum bandwidth of a signal was min 0.1 3.15pB f MHz  . From the (28), the calculated rl  is 12 , 

which has similar recovery performance to full columns. This implies that the sub-sampled MMV dY  

does not miss the signal information and includes all the essential parts of the original MMV jY


. In 

this scenario, the sub-sampling method can proportionally reduce CC as 1/3. Consequently, the sub-

sampling method proportionally reduces CC while keeping similar recovery performance. 

 

4.4. Simulation Result 

 

Through simulations, we verified that the radar ES acquires a multiband signal by alleviating the time 

aliasing. For the simulations, we generated 3 pulsed radar signals whose carrier frequencies existed 

randomly from min 0.5f GHz  to max 2f GHz . We inputted 5dB signals when SNR is not discussed. 

The signal to noise ratio (SNR) is defined as  2 2

2 2
10 log /x n , where x  and n  are respectively 

the input radar and noise vector. We considered a 4-channel MWC system, and the remained system 

parameters were shown at Table I. We set the number of time slots as 100G   time slots. To recover 

the multiband signal, we used the SOMP with SS method discussed at the previous section V. 

We first verified the improvement of time aliasing in the sense of mean square error (MSE) by using 

      
(a)                                     (b) 

 

Fig. 11. The zero padding method improves the reconstruction performance, and two zeros are used in the (b) 
  



the zero-padding method and integration process. The MSE is defined as 
2 2

2 2
/rx x x , where x  and 

rx  are respectively original and the recovered radar vector. As shown in Fig. 6a, the reconstruction 

error was improved along the number of zeros. Although the number of zero yields the additional 

number k  of columns in the channel expanded measurement matrix, compared to the original column 

number 35dl  , the result showed that small number of zeros even show the benefit. As shown in Fig. 

6b, with 2k   zeros, the MSEs were improved evidently. Last, by setting a shorten observation period 

1.29subGT s , we clearly verified the improvement of time aliasing among the border of time slots. 

In this simulation, the relative error was defined as 

 
2

2
_ [ ]: [ ] [ ]rrelative error i x i x i                         (35) 

where [ ]x i  is input radar value at the i -th time. As shown in Fig. 7, compared to just affixing time 

slot, the errors among the time slots are improved evidently, which means the radar ES system can 

acquire radar signals with similar reconstruction performance. 

 
 

Fig. 12. The relative errors among the timeslots are alleviated with the radar ES system. 
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IV. Calibration methods for the MWC 

 

 

5.1. Problem Formulation 

 

The MWC can reconstruct the Nyquist sample [ ]x n  from the compressed samples  iy n  by using 

the theoretical model of (39) when every analog component is ideally designed. However, the transfer 

matrix C  of (40) does not contain the practical analog characteristics including failure of clock 

synchronization between the PR sequence and the ADC, irregular channel gains, and the non-ideal 

responses of the LPF. Since the model mismatch by the non-ideal responses of the LPF can be easily 

eliminated by digital equalizing filters [17], we focus on the other non-idealities ensuring the linearity in  

(39) and the calibration using single tones with unknown phase information.. 

The non-idealities are usually posed when the MWC is implemented. For examples, there are 

asynchronization between the PR sequence and the ADC and irregularity among channel gains. In 

theory, the transfer model of (40) assumes perfect synchronization between the initial starting points 

of the PR sequence and the ADC.  However, the synchronization requires additional circuits, and 

unknown path delays on the channels may disturb the synchronization. We model the asynchronization 

as a time difference of the initial points between the ADC and the PR sequence, which is equivalent to 

giving an unknown delay i  to  ip t  in Fig. 1. Likewise, for the irregular channel gains, we give an 

unknown channel gain iw   to  ip t  .  By the definition, the elements of the transfer matrix C


distorted by the asynchronization and the irregular channel gains are derived as 
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The asynchronization and irregularity among channel gains respectively multiplies complex 



exponentials and magnitudes to every column and row of (4). Consequently, some non-idealities of 

analog components distort the transfer matrix C  while keeping the linearity. 

By noting that the columns of unknown C


 correspond to frequency response of the sampling system, 

we can estimate every frequency response by sequentially injecting single tone signals owing to the 

linearity of the distorted system. However, when the phases of the input single tone signals are unknown, 

which results in another complex exponentials in outputs, the estimated response is still untrustworthy. 

Such a case is impractical since the unknown path delays in analog channels make it hard to predict the 

phase of outputs even if the phase of input tone is elaborately controlled. Thus, it is needed to develop 

a calibration algorithm using tone signals with unknown phases for a practical implementation of the 

MWC 

 

  



5.2. Calibration with DC signals 

 

 

Before proposing a calibration method, some details about the MWC regarding calibration is 

summarized. By representing  ip t  as a form of the Fourier series expansion of bases 2 pj f lte   for 

, ,l    , the output of i -th channel [ ]iy n  is represented as 
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where {}LPF   is the low-pass filtering operator, and the infinite order of summation is reduced to a 

finite order of 02 1L L   since  x t  is bandlimited and the bandwidth of LPF out of the maximum 

frequency outputs zero. Note that the reduced order is calculated by 0 0 0L M q   [6]. Fourier series 

coefficients ,i lc  of  ip t  is defined by 
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For an observation time oT , the matrix form of  (37) is 

 Y CZ                                     (39) 

where [ ]iy n  and    2 p

s

j f lt

t nT
LPF x t e 


 respectively exist in the i -th row of dm lY   and the 

l -th row of dL lZ   for 0, , 1dn l  , and /d o sl T T . The transfer matrix m LC   is 
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where , ,i l i lc c    and ( )   is a complex conjugate operator. Thereafter, additional digital signal 



processing (DSP) and a CS recovery algorithm reconstruct the Nyquist sample [ ]x n  of the input  x t . 

 

5.2.1. Calibration Algorithm 

 

We provide a calibration algorithm using single tone signals with unknown phase information for 

estimation of linear system transfer of the MWC. In specific, we suppose that the system is distorted 

while keeping the linearity, and our goal is to calibrate a distorted system transfer C . The calibration 

algorithm consists of two steps; linear estimation and phase equalization. In the linear estimation step, 

we input sinusoids with unknown phases to the distorted MWC. Based on a mathematical relationship 

between the input tone signals and the output samples, we estimate the frequency responses of the system 

transfer. However, due to the unknown phases of the tone signals, the estimate still contains uncertain 

components. In the phase equalization step, we equalize the effect of the unknown phases by exploiting 

a structural characteristic in a matrix representation of the input-output relationship. The phase 

equalization step outputs the distorted system transfer of a single analog channel of the MWC. 

In the linear estimation step, for the i -th channel, we sequentially input tone signals of 

 ,2 ( )( ) p i kj f k ts t e                                 (41) 

for 00,1, ,k M  , where ,i k  are the priorly unknown phases, which are different among input 

frequencies and channels. From (37), the output , [ ]i ky n  is derived as 
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where .i lc  is elements of the distorted transfer matrix C  and  



 is represented as effects of unknown phases. The frequencies ( )pf l k  within the bandwidth of LPF 

sf  is remained in (42), and the order of summation 0L  is reduced to 0q  when  

 / 2l k q                                   (43) 

The inequality (43) is yielded from ( ) / 2p sf l k f   and s pf qf . From (43), the last of (42) is 

derived as 
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For 00,1, ,k M  , the last equation of (44) can be represented as a matrix form of 

 i i i HFY P A                                  (45) 
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The matrices 
i

Y   and HF   are already known, but 
i

P   and iA   are unknown. Meanwhile, iA  

contains elements of distorted system transfer C . Note that our aim is estimation of distorted system 



transfer. The matrix HF  is a form of discrete Fourier transform (DFT) matrix and become full rank 

matrix when dl q  . This condition can be achieved by injecting the signals for an observing time 

o sT qT  since /d o sl T T . By multiplying Moore-Penrose pseudoinverse †F  of HF   to the right 

side of (45), it turns into 

 †
i i iYF P A                                (47) 

We define †
i iB Y F  whose the  ,k l -th element equals to 
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As shown in the result of linear estimation (48), the elements ,i lc  of distorted transfer matrix are 

multiplied with elements of iP . Thus, to acquire the elements ,i lc  from iA , we should estimate or 

equalize the iP . 

In the phase equalization step, we exploit that iA  is a Hankel matrix, i.e. ( 1, 1)k l   element 

equals to ( , )k l   element for 1, 1k l   . We generate a matrix 
01 2 1{ , ,..., }i Mdiag g g g G   to 

equalize the unknown phase matrix iP  . All the elements of iG  are defined as 
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By the definition of (48), the elements kg  are equal to the inverse of the k -th elements of iP . In 

specific, 
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Hence, the multiplication i iG P


  becomes identity matrix I . Consequently, we can estimate the iA  

by multiplying iG  to (48), i.e.  

 
i iA G B                                  (51) 

The result of equalization iA  contains positive frequency elements ,i lc  for 00,1,...,l L  . The 

negative elements are acquired by using the conjugate symmetric property of transfer matrix , ,i l i lc c
   . 

Thus, by injecting calibration signals to the i  -th channel of MWC, we can estimate i  -th row of 

distorted transfer matrix C . For the m  channels, the linear estimation and phase equalization are 

repeated. The calibrated transfer matrix C  is acquired from the m  estimated rows. With the 

calibrated transfer matrix C , the unknown multiband signal can be reconstructed successfully. 

  



5.2.2. Simulation 

 

 

 

Fig. 13. Support recovery rates under various SNRs of unknown input signals. The system transfer matrix calibrated 
by the proposed algorithm and the theoretical matrix ignoring practical conditions are used. 
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Fig. 14. Relative errors of the calibrated and theoretical matrix compared to the actual system transfer. The
parameter dl  means time of injecting calibration signals. 
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In this section, the simulations were presented to verify the performance of proposed calibration 

algorithm. For the simulation, we generated an unknown multiband signal ( )x t , which consisted of 6 

disjoint bands with max 2f GHz . We used 4-channel MWC to sample ( )x t . There were 127M   

Fourier coefficients of PR sequence at intervals of 31.5pf MHz , and the sampling rate of ADC was 

220sf MHz , which induced 7q  . To construct a distorted environment, we set an asynchronization 

as a certain time difference of the initial points between the ADC and the PR sequence to 7 pT . To 

estimate the distorted transfer matrix C , we injected 30dB  tones as (41). The signal-to noise ratio 

(SNR) was defined as 
2 2

10 2 2
10 log ( / )SNR s n  , where s  and n  were respectively the calibration 

signal and noise vector. In addition, we also generated unknown input phases , [0, ]i k oT    randomly. 

We exploited the SOMP [19] to estimate supports of x  from the compressed outputs [ ]iy n . Note that 

the supports correspond to actual indices of signal spectra among subbands. 

We compared the recovery performances using the calibrated transfer matrix and theoretical transfer 

matrix without calibration. We also generated the actual transfer matrix aC  from the distorted 

environment. To verify success of recovery, we measured the supports recovery rate whose flag is 

denoted as one when the recovered supports were coincided to original supports. As shown in Fig.2, the 

theoretical transfer matrix failed to recover the original supports due to the distortion by the 

asynchronization between the ADC and the PR sequence. On the contrary, the calibrated transfer matrix 

successfully recovered them like the actual matrix. In addition, to verify the importance of the phase 

equalization step in calibration, we implemented the conventional calibration algorithms of [14]–[17]. 

The proposed phase equalizing calibration only succeeded to recover the supports when the unknown 

input phases exist. The algorithms of [15], [16] cannot cover the distortion of asynchronization. Above 

all, since the system transfer is distorted by the remained unknown phases again, their failures were 

unavoidable. Hence, the phase equalization should be executed for the successful calibration. 

We demonstrated the effects of the increased injecting time of calibration signals. By increasing the 

injecting time, the number of compressed samples dl  of (45) was enlarged, which contributed to 



estimate the actual transfer matrix more precisely. To verify it, we compared relative errors of the 

calibrated and theoretical matrix to the actual matrix aC  along the dl . The relative error was defined 

as 

 /a a FF
Relative error  C C C                       (52) 

where C  is calibrated or theoretical matrix, and 
F

   is Frobenius norm. As shown in Fig. 3, the 

calibrated sensing matrix was closed to the actual matrix unlike the theoretical matrix. The relative 

errors of theoretical matrix were a certain constant, because the asynchronization and the system transfer 

are unchanged. Consequently, the result demonstrated that calibration performance was enhanced along 

the dl . 

  



5.3. Calibration without DC signal 

 

Although the calibration method discussed at the previous section is intuitive and straightforward 

method, it is important to using DC signal to estimate initial information, while the remained estimation 

procedures are cascade. If the MWC restricts the frequency scope as min max~f f  , the DC signal is 

blocked and the calibration with DC method is invalid no more. In this scenario, cosine tones with an 

off-set frequency are injected in descending order such as, 0 0 0 0 0 min, 2 , 4 ,....,k M M q M q f    and 

we exploiting characteristic of MWC system transfer to calibrate the MWC system. 

For the calibration, we consider injecting cosine tones denoted as 

     ( ) 2 cos 2 k p kx t A k a f t                         (53) 

where 2A  is an amplitude, k  corresponds to unknown phase information at k -th injected signal, 

and 0 k pa f   is a known off-set frequency. Like as (42), the output of MWC is derived as 
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(54) 



The DTFT of last of upper equation is  

       2 ( )
, , . , .

p k k
j fTl k a k a

i k i k i l k k p i k i l k k pe A c f a f A c f a f      
         Y        (55) 

Denoted as (5), each column and row of    2
,

pj fTl
i k e Y   corresponds to output value at f   and 

expanded channel index. From the equation of (55), we can select two column corresponding 

,k p k pf a f a f    whose values are respectively  
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The algorithm is start with the first injection of pilot cosine tone of 0k M . To equalize the unknown 

phase information ,i k , by exploiting 
0. 1i Mc    and 

0.i Mc  has same value as presented at (24), the two 

elements of equation of (56) are selected as 

     0 0
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  Y                      (57) 

The another one is selected as 
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Consequently, by dividing the last of (58) into (57), the unknown phase information at 0k M  is 

estimated, such as 
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With the estimated phase information, we can estimate system transfer values of 
0 0.i M qc   to 

0 0.i M qc  . 

Secondly, by injecting 0 02k M q   cosine signal, there is a duplicated system value 
0 0.i M qc  , which 

is located at 
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  Y                  (60) 

Since we already estimated 
0 0.i M qc   at the first step, we can easily estimate the second unknown phase 

information 0 0 20 0

0 0

2

, 2
M qM q a

i M q  
 . These phase estimation and then acquiring practical system transfer values 

are iterate to acquire reach minf . 

To verify the success of calibration with proposed method, we artificially make 7 chips delays of PR 

sequence for the practical MWC implementation scenario, which is seriously distorted theoretical 

system transfer. For the calibration, we injected 30dB cosine signals. The Fig. 14 shows support 

recovery rate with 3 kinds of system transfer matrix as answer matrix, theoretical, and calibrated matrix. 

Note that the answer matrix is generated with the actual PR chip delay. As shown in the simulation 

result, the only calibrated system transfer succeed to approach to the performance of answer matrix, 

while the theoretical matrix failed.  



 

  

 

Fig. 15. The calibrated system transfer has similar recovery performance to the actual system transfer (answer 
matrix). 

 

 



VI. Conclusion 

 

In this paper, we could verify the signal acquisition performances among the RSSR, RMPI, 

and MWC with the probability analysis. In that analysis, the MWC showed the better 

performance than the others. In addition, the analysis might imply that it can be extended to 

compare with the other CS based sub-Nyquist receivers, which are not discussed. With the 

MWC, the proposed radar ES system could monitor incoming wideband signals. In the ES 

system, the zero padding method in the DSP part and integration processing resolved the time 

aliasing problem. In addition, the signal division scheme and straightforward channel 

expanding method in the DSP much reduced the computational complexity. Moreover, with the 

similar the support recovery rate, the low complexity SOMP with sub-sampling method also 

reduced the complexity. Hence, applying the ES system and the low complexity algorithm to a 

hardware system that currently developed, contributes to realization. In addition, the proposed 

calibration algorithms succeeded to simultaneously estimate the practical MWC system 

transfer and unknown phase information, where the previously unknown phase information 

should be removed in the calibration. The both of straightforward calibration algorithms once 

worked after operation of the system, and the estimated system transfer is re-used at every 

reconstruction. Consequently, through our paper, design of the sub-Nyquist radar receiving 

system and its before and after were researched. 
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