
INFONET • Research

School of Electrical Engineering and Computer Science

Biomedical Image Processing and Analysis

- Ph.D. Dissertation Proposal -

Author : Pavel Ni

Supervisor : Prof. Heung-No Lee

May 16, 2018



1/40

Pavel Ni, Ph.D. Dissertation, May 16, 2018.

• Introduction
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• Introduction

• Computational Medical Imaging is a major area of interest because of its 
impact on quality of human life

Today, medical imaging research includes many different directions:

• Super-resolution

• Improved diagnostics using clinically meaningful information

• Multi‐modal image fusion

• New algorithms for image analysis

Clinical analysis and medical intervention:

• Lesion detection

• Cancer therapy

• Activity estimation
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1. High-Resolution Sonography using Wave Interference

2. Compressive Sensing Reconstruction of Photoacoustic Images

3. Biomedical Image Processing and Analysis using Deep Neural 

Networks 
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• Introduction

• Ultrasound is a sound with a frequency
between 1-20 MHz.

• Ultrasound imaging works according to the
pulse-echo principle: a pulse is emitted by an
array, the wave propagates and portion of its
energy backscattered from the tissue.

• Ultrasound waves reflect at the borders
between materials with different impedance.

• Received ultrasound signals are processed
and displayed as a grayscale image.

• In conventional sonography, spatial
resolution is achieved through focusing and
steering of an ultrasound beam (delay-and-
sum beamforming).

Fig. 1. Sonography
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• Introduction

• Ultrasound is leading imaging modality worldwide

• Provides real-time images of anatomy and
dynamic movement of organs

• Ultrasound can be used in diagnostic, therapy and
surgical purposes.

• Cheap and portable

• Has many specific clinical applications:

Fig. 2. Ultrasound applications

o Cardiac

o Vascular

o Musculoskeletal

o Transorbital

o Intraoperative

o Oblation
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• Background

• Conventional ultrasound imaging methods are based on delay-and-sum
beamforming.

• Beamforming is the process that used in array imaging, during which the received
ultrasound signals are delayed and summed coherently.

• 2D Ultrasound images are obtained by using multiple focused pulse-echo
transmissions.

• Spatial resolution in conventional ultrasound is limited due to acoustic diffraction.

Fig. 3. Sonography



Fig. 4. Interference of waves
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1. High-Resolution Sonography using Wave 
Interference

• Interference of ultrasound waves

• We propose a method wherein the array elements are excited with randomly
generated sequences, which yields a transmit ultrasound wavefront with a
complex interference pattern

• Random interference patterns can be used to improve the resolution in
ultrasound systems.
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1. High-Resolution Sonography using Wave 
Interference

• Sequence design
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• Random interference patterns can be generated
electronically by using random excitation signals

• We generate a binary random sequence of
length 8, where each element of the sequence is
drawn from a set {-1, 1} following the uniform
distribution.

• Every element of the sequence convolved with
the half cycle of a sine wave at a nominal
frequency of 3 MHz.

• We can define random excitation sequences as

(1)

• For example, for is

and
1 (1, 1,  1, 1,  1,  1, 1,-1)   w

Fig. 5. a) and b) random excitation signals,

c) Simulated impulse response of point targets

when 2 array elements activated in transmission,

d) Simulated impulse response when 128 array

elements activated

jw 1,2j 

2 ( 1, 1, 1, 1, 1,  1, 1,  1)     w
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• Proposed method

Fig. 6. Sonography
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• We can model the received ultrasound signal as

or in matrix and vector notation

where is a column vector representation
of a raw ultrasound signal,

is a vector representation of an ultrasound
image,

the matrix is the transmission matrix.

Here, is the number of measurements and is
the total number of point scatterers.
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Ultrasound image can be reconstructed by

finding the solution to the system of linear

equations as follows

if
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• Proposed method

Fig. 7. Sonography
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1. High-Resolution Sonography using Wave 
Interference

• Simulation Results
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• A Shepp-Logan 
phantom is used to 
evaluate the 
reconstruction 
performance of the 
proposed method.

• In Fig. 9(e) we shown 
the intensity profiles of 
original scatterer map, 
image obtained using 
focused b-mode and 
the proposed method

Fig. 8. Simulation results

• The proposed method can reconstruct 

location and intensity of scatterers much 

better then the conventional method.

• We achieved resolution of 0.25 mm which 

represents a four-fold improvement over 

conventional methods

(a) (b)

(d)

(c)
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1. High-Resolution Sonography using Wave 
Interference

• Experimental Results
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• In order to verify our proposed 
method, we developed a research 
ultrasound system that is capable of 
generating a transmit ultrasound 
wavefront with spatially randomized 
interference patterns.

• The custom research setup is 
equipped with an arbitrary wave 
generator that has 128-cell memory 
for each transmit channel. 

• The memory is used to store 
random excitation sequences of 
length 2048 of 8-bit data. 

• The system features a linear 
transducer array with 128 piezo-
electric crystals of 4.5-mm height 
and 0.3-mm width, which are 
separated by 0.03 mm from each 
other.

Fig. 9. Experimental setup
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1. High-Resolution Sonography using Wave 
Interference

• Experimental Results
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Fig. 10. Experimental results. (a) an ultrasound image reconstructed

using the conventional B-mode method with 256 scanlines (b) an image 

reconstructed using the proposed method

(a) (b)

• In Fig. 10(a) the region of 
interest includes two nylon 
wires 100 µm in diameter 
located at depths of 40 mm 
and 50 mm from the 
transducer. A high-speckle 
region surrounds the nylon 
wires. Fig. 10(b) shows an 
ultrasound image 
reconstructed using the 
proposed interference 
based method, in which the 
two nylon wires can be 
clearly observed without 
any sidelobes or speckle 
noise.
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1. High-Resolution Sonography using Wave 
Interference

• Results
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1. High-Resolution Sonography using Wave 
Interference

• Summary
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• We eliminated the need to focus and steer an ultrasound pulse, therefore, 
removed imposed resolution limit.

• Ultrasound image can be reconstructed using a single pulse-echo transmission 
which yields high-frame rate.

• When evaluated at the central frequency of 3 MHz, the proposed method results 
in a spatial resolution of 0.25 mm. Implying a four-fold improvement over the 
conventional methods.
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1. High-Resolution Sonography using Wave 
Interference

• Future work
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Fig. 11. Future experimental setup using hydrophone

(a) (b) (c)

Transducer

Hydrophone

• In order to successfully use the proposed method to screen human patients a 

more accurate transmission matrix is required.

• Transmission matrix can be designed using measurements from hydrophone 

and 3D scanning stage.
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1. High-Resolution Sonography using Wave 
Interference

• Future work

18/40Fig. 12. Spatial impulse responses measured using hydrophone.

(a)

(b)
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• Introduction

• Photoacoustic (PA) effect is the formation of
ultrasound waves following absorption of short laser
pulses.

• PA is a rapidly growing research area of hybrid
imaging modalities.

• PA imaging combines penetration depth of acoustic
waves and high optical resolution.

Fig. 1. Photoacoustic microscopy

(a) (b)
(c)

Laser
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2. Compressive Sensing Reconstruction of 
Photoacoustic images

• Proposed method
• The PA signal originates within an area defined by the

width of the laser beam.

• Therefore, the actual signal detected by the ultrasound
transducer includes multiple PA signals.

• In conventional methods, PA signals are overaged by the
focusing lens.

• We propose to use imperfect lens that produces a very
complex but deterministic mixing of the input PA signals to
the output signal.

• The system of linear equations of PA imaging is given by

𝒑 = 𝐇𝝆, (1)

where 𝒑 ∈ ℝ𝑀 is the output signal, 𝝆 ∈ ℝ𝑁 input PA signal, 𝐻
transmission matrix which characterizes effect of imperfect
lens on PA signal. Fig. 2. Photoacoustic microscopy

Laser

Appendix B.



(c)(a) (b)

Fig. 3. Simulation results. (a) shows a simulation of the PA signal when conventional concave lens is used. 

(b) simulation of the PA signal acquired using the proposed imperfect lens. (c) PA signal using conventional lens 

in black color. And PA signal using imperfect lens is shown in red color.
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2. Compressive Sensing Reconstruction of 
Photoacoustic images

• Simulation

• Conventional PA systems use ideal convex lens to focus acoustic waves in order to achieve
perfect PA signal

• In real experiment, due to laser beam width and multiple PA source objects achieving perfect
focusing conditions is impossible.
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Laser

Probe
Stage

Object

2. Compressive Sensing Reconstruction of 
Photoacoustic images

• Research setup

(a)

(b)

(c)

Fig. 4. Photoacoustic microscopy
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2. Compressive Sensing Reconstruction of 
Photoacoustic images

• Results

Fig. 5. Photoacoustic experiment. (a) PA signal acquired using focused lens

(in blue color), PA signal acquired using proposed imperfect lens (in red 

color). (b) image of PA setup (c) proposed lens with imperfect surface made 

by fast curing adhesive

(a)

(b)

(c)

• Modified acoustic lens disturbs the acoustic path of PA signal.

• The received at transducer signal includes multiple PA signals
spread in time.

• The acquired PA signal is a function of original PA signal
convolved with function of modified acoustic lens
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2. Compressive Sensing Reconstruction of 
Photoacoustic images

• Summary

• We propose to intentionally disturb PA signal with imperfect acoustic lens.

• We can create imperfections on lens surface by exposing it to high intensity
laser.

• Imperfect lenses can help to improve image resolution of PA systems.

• The transmission matrix of such lenses can be obtained using thorough
scanning.
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3. Biomedical Image Processing and Analysis using 
Deep Neural Networks

• Introduction

• Deep Learning (DL) or Deep Neural Networks (DNN) allows to significantly 
improve image reconstruction and image analysis.

• Recently, there is rapidly growing interest in DL methods for biomedical image 
reconstruction and analysis.

• DNN inspired by the biological neural networks and can be trained to perform 
different tasks with high accuracy and performance.

• It was already proved in some applications that well trained DL algorithms 
outperform any previous state of the art methods.

• Today, DL algorithms are mostly used in face/object recognition problems due to 
availability of large data sets.
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3. Biomedical Image Processing and Analysis using 
Deep Neural Networks

• Introduction

Fig. 1. Brainstem image

MRI PET

PET-MRI FUSION

MRI

In past

SUPER-RESOLUTION

21st century

The Future



30/40

Pavel Ni, Ph.D. Dissertation, May 16, 2018.

3. Biomedical Image Processing and Analysis using 
Deep Neural Networks

• Proposed method

Subsampling
Convolutions

Subsampling

Convolutions

Output imageInput image

Fig. 2. Proposed DNN for image visualization
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• We propose to use DNN to extraction clinically important
features from biomedical images

• The proposed DNN will be trained entirely on synthetic data
from the simulation software.

• We expect that the proposed DNN will perform with high
accuracy on human patients data even if it is trained only on
synthetic data.

• Analytical and simulation results will be used to evaluate the
advantages or issues of training DNN’s on synthetic data
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3. Biomedical Image Processing and Analysis using 
Deep Neural Networks

• Proposed method

Max pooling

Kernel

Ref. LeCun, 2015 & Krizhevsky 2012

(a)

(b)

Fig. 3. DNN with application to image recognition

• Similar to the DNN in image recognition we can train
neural networks to extract meaningful features from
biomedical images.

• Backpropagation: at each layer we compute the error with
respect to the output class. When the error is known we
can adjust network weights (training).
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3. Biomedical Image Processing and Analysis using 
Deep Neural Networks

• Proposed method

Fig. 4 neuron

• Neuron is a math function that
takes several inputs.

𝑓 𝑥1, 𝑥2 = max(0,𝑤1𝑥1+ 𝑤2𝑥2)

here 𝑥𝑘 are inputs, for each input
neuron assigns weights w𝑘,

• The weights are tuned during
training session

• The NN is a large number of
neurons connected together

• Loss function is a benchmark of how good NN is for
a certain task

𝐿(𝑦, ො𝑦) =
1

𝑚


𝑖=1

𝑚

𝑦𝑖 − ො𝑦𝑖
2

where 𝑦 is the desired return number from the
network, ො𝑦 is the actual number network has returned,
i is the index of training example.

• In the beginning, NN initialized with random weights.

• During training, we improve Network by changing
its weights and minimizing loss function.

• Stochastic Gradient Descent algorithm can be used
to optimize function

𝛻𝐿 ≈ 𝜕
𝐿

𝜕𝑥𝑖
𝛻𝑥𝑖

• Weights are updated on each step of Gradient
function

𝑤𝑗 = 𝑤𝑗 − 𝐼𝑟𝜕
𝐿

𝜕𝑥𝑖
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3. Biomedical Image Processing and Analysis using 
Deep Neural Networks

• Summary

• We propose DNN architecture for biomedical image analysis. The proposed
DNN will be train strictly on the synthetic data.

• Also, in this research, we aim to create a open database of synthetic data that
can be used by other researches.

• Numerical simulation software such as Field II (ultrasound), k-Wave
(photoacoustic), and MRiLab (MRI) will be used to generate large set of labeled
data.
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Conclusion & Future Work

• The already developed Ultrasound Imaging System needs to be fine tuned with the
proposed hydrophone experimental setup.

• The proposed compressive sensing Photoacoustic method will be further extended
to use random-scattering lenses.

• In the “Image Processing and Analysis using Deep Neural Networks” a final version
of network architecture needs to be carefully designed.

Planned manuscript submissions

1. Pavel Ni, Heung-No Lee, “High-Resolution Sonography using Wave Interference”,
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

2. Pavel Ni, Hwi Don Lee, Tae Joong Eom, Heung-No Lee, “Photoacoustic Image
Reconstruction using Compressive Sensing”, IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control

3. Pavel Ni, Heung-No Lee, “Biomedical Image Processing and Analysis using Deep
Neural Networks”, Sci Rep
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• We can model the received ultrasound signal as

(5)

where        is the pulse-echo transducer oscillation

(6)

is the inhomogeneity of the medium

(7)

is the pulse-echo spatial impulse 
response

(8)

Then the received ultrasound signal is
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Fig. 7. Sonography
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• Modeling PA waves. The equation of motion
(conservation of momentum)

𝜕

𝜕𝑡
𝒖 𝐱, 𝑡 = −

1

𝜌0 𝒙
𝛻𝑝 𝐱, 𝑡 , (1)

• The equation of continuity (conservation of mass)

𝜕

𝜕𝑡
𝜌 𝐱, 𝑡 = −𝜌0 𝐱 𝛻 ∙ 𝒖 𝐱, 𝑡 , (2)

• The adiabatic equation of state

𝑝 𝒙, 𝑡 = 𝑐0 𝒙
𝟐𝜌(𝒙, 𝑡), (3)
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Fig. Photoacoustic simulation

Back >

• Where 𝑝 𝐱, 𝑡 is the acoustic pressure at time 𝑡 ∈ ℝ
+

and position 𝐱 ∈ Ω ⊂ ℝ𝑛

inside the imaging region Ω , 𝒖 𝐱, 𝑡 is acoustic particle velocity, 𝑐0 𝒙 is the 
sound speed, and 𝜌 𝒙, 𝑡 is acoustic density.

𝑝 𝐱, 𝑡 = 𝑐0 𝐱
𝟐 1 + 𝜏 𝐱

𝜕

𝜕𝑡
−𝛻2

𝑦

2
−1 + 𝜂(𝐱) −𝛻2

𝑦+1

2
−1 𝜌(𝐱, 𝑡), (4)

• Then 𝑝𝑚 𝐱S, 𝑡 is the signal of pressure 𝜌(𝐱, 𝑡) recorded at arbitrary surface 𝐱S ∈
𝑆 for time 𝑡 = (0,…𝑇)

• The goal is to find estimate of 𝜌(𝐱, 𝑡)

𝒑 = 𝐇𝝆, (5)
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