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EEG based BCIs 
Brain Computer Interface system (BCIs)  

 

 

 

 

 

 

 

 

– In the BCIs, classification is needed to transform the extracted feature of a 
user’s intention into a computer command to control the external device. 

– EEG signals are very noisy and non-stationary. Therefore, powerful signal 
processing methods are needed.  
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Motor imagery based BCIs 
In this study, we focus on the MI based BCI application 
– When subject imagine left or right hand movement, amplitude 

attenuation of mu rhythm appears at the contralateral area of 
cortex                      . 

– The mu(8-12Hz) and/or Beta(15~30Hz) rhythms originate above 
the sensory-motor cortex area. 
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INFONET BCI experiment 

1-D cursor control experiment 

Performance evaluation: 

  

 

 

 

 

 

 

Run  Trial  Hit  Miss  Accuracy  

1 20 18 2 90% 

2 20 18 2 90% 

3 20 15 5 75% 

4 20 19 1 95% 

5 20 19 1 95% 

Experiment done on 2010/7/27 

Motor imagery based BCIs 
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Sparse Representation (SR) 
Sparse Representation has received a lot of attention in recent years. 

The problem of the SR is to find the most compact representation of a 
signal in terms of linear combination of atoms in an over-complete 
dictionary [Huang 2006]. 

The problem of SR is to find the coefficient                   :  

 

     where,                 is known over-complete dictionary   

                                 is  measured signal 

         denotes the L0 norm. Solving this minimization is NP hard. 

Recently developed Compressive Sensing theory [Donoho 2006] 
reveals that if solution is sparse enough, L1 norm solution is 
equivalent to the L0 norm solution.  
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Motivation and Purpose 
For development of commercial BCIs, important issue is stable 
performance, viz. classification accuracy.  

Recently, Sparse Representation based Classification (SRC) method 
was studied in Face Recognition [Wright 09], and Speech Recognition 
area [Gemmeke 11]. 

This SRC method has shown superior classification performance. 

In this study, we apply the SRC method to the motor imagery based 
Brain Computer Interface application. 

In addition, we compare the classification accuracy of SRC with that of  
conventional LDA and SVM classification methods. 

The LDA and SVM are most widely used classification methods. 

 

Introduction 
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EEG data acquisition 
Methods 

PZ3 Amplifier 

RZ5 Workstation 
Desktop 

Experiment  

EEG signal 

Collection of two class motor imagery data 

  : Left and Right hand imaginary movement  
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Proposed SRC scheme 
Methods 
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For the SRC method, dictionary design is very important.  

We designed dictionary A using CSP filtering.  

To use a mu rhythm as a BCI feature, we compute the power of mu band.   

To find coefficient vector x, we use the L1 minimization tool for test signal y. 
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CSP(Common Spatial Pattern) filtering 
CSP filtering is a powerful signal processing technique suitable for EEG-
based BCIs [Blankertz 2008]. 

CSP filters maximize the variance of the spatially filtered signal for one 
class while minimizing it for the other class. 

In our method, the CSP filtering was used to produce high incoherence 
between the two group of columns in the dictionary. 

Using the CSP filter, we form maximally uncorrelated feature vectors 
between the two classes  

10 
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Incoherent Dictionary 
 

 

 

 

 

We use the CSP filtering to design a incoherent dictionary. 

When a dictionary is incoherent, a test signal from one particular class can 
be predominantly represented by the columns of the same class. 

Therefore, the incoherent dictionary promotes the sparse representation of 
the test signal under the L1 minimization.  

Sparsely represented a test signal helps in boosting the classification 
accuracy of the proposed method. 
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Dictionary Design and Sparse Representation 
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Methods 

 

 

 

 

 

 

 

 

The sparse representation can be solved by L1 minimization [Candès 2006]. 

For example, a test signal y of right class can be sparsely represented as 
the training signals of right class. 

However, EEG signals are very noisy, nonzero coefficients may appear in 
the indices corresponding to the left class.  

We use a minimum residual classification rule.  
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Linear discriminant analysis (LDA) 
The LDA (also known as Fisher’s LDA) approach aims to find the optimal 
direction, w1, to project data upon and maximize the Fisher ratio: 

                                                                  where, 

 

The maximization of mean distances and minimization of class scatters. 
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Methods 
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Support vector machine (SVM) 
The idea of SVM is proposed by Vapnik aimed to find decision hyperplane 
with maximum margin which is the distance between the hyperplane and 
the nearest training feature vectors (support vectors).  

 

 

 

 

 

 

 

 

In the BCI field, SVM has shown the robust classification performance in 
many experiments. 
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Performance evaluation 
To evaluate the classification accuracy for each subject, we use the 
leave-one-out (LOO) cross-validation.  

LOO is useful for increasing the number of independent 
classification tests with a given limited data trials.  

Each time, one of the    subsets is used as the test set and the other            
 subsets are the training set.  

This method is repeated    times with different subsets.  

 

 

 

 

The classification accuracy is calculated as : 

 correct test trialsAccuracy(%) 100
total test trials

= ×
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Sparse representation results 
Results and Discussions 
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EEG Sparse representation 
– Sparse representation example of real EEG signals for one subject. 
– X-axis represents the number of total training trials (the number of 

columns of dictionary A).  
– Y-axis represents the recovered coefficients x in             . 
– The class of the test trial is the right hand imaginary 
– The test signal of right class sparsely represented with some training 

signals of right class 
 

 

=y Ax
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Classification results 
Results and Discussions 
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Subject SRC 
Accuracy [%] 

LDA 
Accuracy [%] 

al 98.93 96.43 
ay 100 97.14 
aw 95.71 95.36 
aa 97.86 94.64 
av 91.79 87.86 

Mean (SD) 96.85 (3.25) 94.29 (3.72) 

BCI competition dataset (Data set IVa)  
– 5 subjects, 128 EEG channels 
– Right hand, and Right foot of motor imagery movements  
– 140 trial signals for each class 
– We use 16 CSP filters 
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Classification results 
Results and Discussions 
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BCI competition dataset (Data set IVa) 
– We examine classification accuracies of SRC and LDA as a function of 

the number of CSP filters (feature dimensions) for each subject.  
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Classification results 
Results and Discussions 
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Our own experimental dataset  
– 8 subjects, 64 EEG channels 
– Right hand, and Left hand of motor imagery movements  
– 100 trial signals for each class 
 

 
 

 

Subject 
Average accuracy (%) Max accuracy (%) 

LDA SVM SRC LDA SVM SRC 

A 91.25 93.47 93.06 95.5 95.5 96 
B 76.78 79.17 84.39 81 84.5 90 
C 94.09 95.34 95.81 96.5 98 98 
D 80.95 82.58 85.40 87.5 87 93.5 
E 82.36 86.72 89.84 87.5 90.5 95.5 
F 89.73 90.38 92.92 93 93.5 97.5 
G 91.36 93.97 96.03 95 96.5 98 
H 80.55 81.17 85.42 85 85.5 91 

Mean 85.88 87.85 90.36 90.13 91.38 94.94 
Std. 6.43 6.33 4.79 5.67 5.26 3.13 

p-value 0.0007 0.0063   0.0027 0.0053   
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Classification results 
Results and Discussions 
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Our own experimental dataset  
– We examine average classification accuracy for all subjects when the 

number of CSP filters is varied from 1 to 64.  
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Conclusions 

We propose a sparse representation based classification (SRC) 

method for the motor imagery based BCI system. 

The SRC method needs a well-designed dictionary matrix made of a 

given set of training data.  

We use the CSP filtering to make dictionary uncorrelated for two 

different classes. 

We have compared with most widely used classification methods, 

LDA and SVM.  

The SRC method is shown to provide the best classification 

accuracy regardless of the number of CSP filters. 

Conclusions 
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Appendix 

CSP(Common Spatial Pattern) 
Find vectors w satisfying the following optimization problems (Second order statistics) 
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Appendix 

LDA(Linear Discriminant Analysis) 
Find the optimal direction w to project data upon so that between-class variance 
is maximized and within-class variance is minimized.  
Let’s define linear projection : 
 
Define sample average: 
 
And after projection average:   
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Then we can define Between class scatter:  

Also, We can define Within class scatter: 

Then we can define objective function:  
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Appendix 

Recovery algorithm 

=y Ax

0
ˆ min subject to= =

x
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x
x x y Ax

2
ˆ min subject to= =

x
x x y Ax

- The ell-0 norm is equivalent to the number of nonzero 
components in the vector x. This involves combinatorial search ;  

- The ell-2 norm solution is                       . 
- This obtained by Least-square method  

N
K

 
 
 

1( )T T −=x A AA y

- If solution is sparse enough, ell-1 norm 
solution is equivalent to the ell-0 norm solution. 
- This problem can be solved by standard linear 
programming in polynomial time. 
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