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Abstract: In this report, we implement the digital simulation system using MATLAB to illustrate the 

Quadrature Amplitude Modulation (QAM). QAM is a modulation scheme to convey two digital bit 

streams which can be converted to symbol signals by modulating the amplitudes and the phase of two 

carrier waves. First, we transmit a signal composed of two different 1024 bit streams and modulate 

them using QAM. Next, at the receiver, we demodulate them using an orthogornality of two carriers 

and matched filters. We also conduct the error analysis of two sampled signals in order to observe how 

the probability of making bit errors changes depending on the inverse of Power Spectral Density (PSD) 

of Additive White Gaussian Noise (AWGN). Finally, we compare the error analysis in simulation with 

theoretical analysis.    

 

1. Introduction 

Modulation of signals has been playing an important role in the field of communication 

engineering. In order to create desired signals which work for the communication system that 

we want to use and transmit multiple signals simultaneously over a single channel, the 

modulation of signals is in high demand. Basically, there are three types of modulating in 

practice: 1. Analog modulation 2. Digital modulation, and 3. Spread modulation. Amongst a 

wide variety of modulation methods, the QAM is practically important in the point that it can 

be utilized for Amplitude Modulation (AM) and Frequency Modulation (FM) and it has an 

advantage on communicating signals within the limited frequency spectrum.  

   In QAM, two orthogonal carriers, commonly referred as to in-phase and quadrature, can 

modulate their amplitude and frequency. Suppose that you send signals 𝑟1(𝑡)and 𝑟2(𝑡) 

which are converted from bit signals in each channel. Then, the signal at the end of receiver 

s(t) before transmitting to the receiver, based on QAM can be expressed as follows. 

        s(t) = Re{(𝑟1(𝑡) + 𝑟2(𝑡)) ∗ 𝑔 (
𝑡

𝑇
) exp(𝑗2𝜋𝑓𝑐𝑡)} − (1) 

where g(t/T) is a transmit filter to shape the symbol signals, * is convolution operator and 𝑓𝑐 

is a modulation frequency. 

More concisely, s(t) = 𝑟1(𝑡) cos(2𝜋𝑓𝑐𝑡) + 𝑟2𝑠𝑖𝑛(2𝜋𝑓𝑐𝑡) − (2).  

This signal at the end of the receiver and as the signal we aim to transmit is expressed using 

two orthogonal basis (in-phase and quadrature) as you can see equation (2). By doing so, we 

can simply express signals and at the receiver, we can retrieve 𝑟1(𝑡) and 𝑟2(𝑡) using 



orthogonality of sinusoidal carriers and the matched filter at the receiver. Generally, even 

with extremely low SNR, we can always retrieve the original information in the ideal system. 

However, in negative SNR, we observe the error that input bits and output bits are 

mismatched. 

2. Design of QAM Digital Simulation System  

   2.1 System Schematics of the System  

Basically, we can categorize the QAM system in this project into “three major blocks” 

: 1. Modulation, 2. Addition of Additive White Gaussian Noise (AWGN) and 3. 

Demodulation. In the figure 1, the left part illustrates the modulation part and the signals with 

sinusoidal carriers are drawn in the middle which AWGN is added to (AWGN part is not 

described in the figure 1.) Then, the right part describes the demodulation part. 

  

 

 

 

 

 

Figure 1: The QAM system is illustrated above. This figure illustrates how two signals of bit stream is 

modulated and demodulated at the transmitter and receiver, respectively. (Reuse of figure 1 from the lecture 

notes) 

   To make a better understanding, I would like to explain each part in the QAM system in 

step by step fashion from the following sections 

2.2 Modulation part 

A. Bit streams to Symbols 

First, we convert signals of bit streams (1 or 0) into symbol signals. In this project, one –

bit is exactly expressed as one symbol. For example, “bit 1” corresponds to the symbol level 

1 and “bit 0” corresponds to the symbol level -1. In this project, 1024 random bits are 

generated for the experiment. 

 

 

 



 

As an example, I will use 4 bit- signal transmission case. This explains how bit stream is 

converted into symbol signals. (0101) at the left-top corresponds to the (-1 1 -1 1) at the right-

top. 

B. Symbol signals to pulse shaped signals  

In order to multiply the signals with sinusoidal carriers, we pass the signals through the 

rectangular shape filter. After passing through the filter, the symbol signals are pulse shaped 

signals as you can see the below figure.  

 

 

 

 

 

 

In order to keep the energy of the filter to be equal to sqrt(2) with filter width in time domain, 

T= 1msec,  

                                           ∫ 𝐴21𝑚𝑠𝑒𝑐

0
𝑑𝑡 = √2  =>   A=21/4103/2 

The pulse shaped signal at the right= 𝑟(𝑡) ∗ 𝑔 (
𝑡

𝑇
) (𝑔 (

𝑡

𝑇
)  𝑖𝑠 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑓𝑖𝑙𝑡𝑒𝑟) 

C. Multiplication with carriers and sum of two modulated signals 

The essential part of QAM is to use two independent basis carriers. Depending on the signal 

level (whether it is 1 or -1) the phase of sinusoidal is differently shaped in the each pulse. 

 

 

 

 

 

 

 

Sinusoidal function is inverted in level -1 pulse and same in level 1 pulse. 



At this point, two signals in two channels are summed up before transmitting to the receiver. 

Transmitted signal 𝑆(𝑡) =  𝑟1(𝑡) cos(2𝜋𝑓𝑐𝑡) + 𝑟2(𝑡)𝑠𝑖𝑛(2𝜋𝑓𝑐𝑡). 

   

 

 

2.3  

     𝑟1(𝑡) cos(2𝜋𝑓𝑐𝑡)    +           𝑟2(𝑡)𝑠𝑖𝑛(2𝜋𝑓𝑐𝑡)      =                          𝑆(𝑡) 

Also, modulation frequency should be 20 times larger than the baud according to the 

specification from the book. So, f𝑐 should be larger than 2 ∗ 104Hz. I pick fc of 4 ∗ 104Hz 

throughout this project. This means that 40 sinusoidal functions exist within one-rectangular 

pulse. 

2.3 Adding AWGN 

AWGN N(t) is added in to the transmitted signal S(t)in this step. Hence, the received 

signal R(t) is following as.  

R(t) = S(t) + N(t) 

And Signal-to-Noise Ratio determines the level of AWGN, which influences on the signal.  

SNR =
Eb ∗ R

𝑊 ∗ 𝑁𝑜
=

∫ 𝐴2(cos(2𝜋𝑓𝑐𝑡) + 𝑠𝑖𝑛(2𝜋𝑓𝑐𝑡))2𝑑𝑡
1𝑚

0
∗

2bit
10−3𝑠𝑒𝑐

(
1
2) ∗ 103𝐻𝑧

∗ (
1

𝑁𝑜
) 

= 4√2 (
1

𝑁𝑜
) – (3) 

Where Eb is energy per bit, R is a bit rate, W is a bandwidth of the overall system, and 

𝑁𝑜 is PSD of AWGN. 

Thus, SNR is directly proportional to (
1

𝑁𝑜
), which states that PSD determines SNR and may 

eventually influence on the probability errors. We will discuss about it on later section. 

  

    

 

 

S(t)                              R(t)=S(t)+N(t) 

2.4 Demodulation part 

A. Multiplication with sinusoidal and use of filter 



Demodulation of QAM signals can be easily achieved by multiplying carrier again and 

passing them into identical filter that we used in modulation part (Matched filter) 

In other words, two retrieved signals, I(t) and Q(t) are 

I(t) = (R(𝑡)𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡)) ∗ 𝑔 (
t

T
) 

Q(t) = (R(t)𝑠𝑖𝑛(2𝜋𝑓𝑐𝑡)) ∗ 𝑔(
𝑡

𝑇
) 

Figure 2: These correspond to I(t) and Q(t), 

respectively. Upper one is I(t) and lower one if 

Q(t). At this point, we can guess that the peak 

value above at the 0 indicates “level 1” and the 

peak value below at the 0 indicates “level -1. 

 

 

 

B. Sampling of demodulated function and conversion to the bit stream 

As I explained about the threshold of signals, the function value above 0 will be level 1 

and the function value below 0 will be level 0. At every T sec (which is the width of 

rectangular shape filter), the function values are determined based on the aforementioned 

standard. Thus, figure 2 can be converted into symbol level and finally converted into the bit 

stream as follows. 

  

 

 

 

 

 

Finally, the bit streams are retrieved. And this is exactly same with the input original bit 

streams even if AWGN is added during the transmission. 

 

3. Results with randomly generated 1024 bits and error analysis 

In the previous section, we go through whole procedure of QAM modulation and 

demodulation step by step with the example of 4 bit stream for better visualization and 



understanding. And we confirm that bit streams are successfully retrieved even with AWGN. 

 

   In this part, since the 1024 bit information is hard to be visualized, we would like to 

analyze the probability of making bit errors as a function of (
1

𝑁𝑜
). We also would like to note 

that all of parameters used in the following except the change of number of bits (bit number: 

1024) are identical to the previously discussed experiment. From the equation (3), SNR is 

directly related to (
1

𝑁𝑜
) term. That is, the PSD of AWGN changes SNR and accordingly 

changed SNR may or may not influence on the probability of making bit errors P(e) (P(e) is 

defined as the number of bit decision errors/the total number of bits) 

In positive SNR, even with significantly low SNR, P(e) is always zero. By contrast, In 

negative SNR, there may exist the probability of making errors. Hence, we somewhat expect 

that in negative(
1

𝑁𝑜
), there will be, to certain degree, errors whereas P(e) is zero in positive 

(
1

𝑁𝑜
). 

I set the range of (
1

𝑁𝑜
) from -1000dB to 100dB and plot the corresponding P(e) as follows.  

Figure 3: P(e) is the probability of making errors as a function of (
1

𝑁𝑜
). x-axis is (

1

𝑁𝑜
) in 

dB scale and y-axis is P(e). Red graph indicates P(e) for the “I- bits stream” and Blue graph 

indicates P(e) for the “Q-bits stream”. In both case, for the positive region, P(e) is completely 

zero. As the (
1

𝑁𝑜
) goes to the negative realm, P(e) goes up. Finally, it seems that P(e) below 

certain value it rapidly fluctuates within a small range at the center of 0.5. 

We can argue that if SNR is too low, it is difficult for us to distinguish noise and signal. Thus, 

the point that the probability of making error P(e) approaches to 0.5 seems reasonable.  



Theoretically, the way we can calculate the P(e) is to obtain the ratio of (1/2)* overlapped 

area of two Gaussian functions representing each noise distribution on each bit to the total 

area of one Gaussian function.  

 P(e) = Q(√
𝐸𝑑

2𝑁0
). This equation tells us that as (

1

𝑁𝑜
) negatively decreases in dB scale, the 

overlapped portion of two distributions of s1 and s2 in the below figure increases. Eventually, 

the overlapped region becomes approximately half of the total region.  

P(e)~0.5. We can confirm that theoretical result and experimental result for P(e) show high 

consistency. 

 

 

 


