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Short summary: This letter derives sufficient conditions for the OMP to recover the support set 

of a sparse vector from noise corrupted measurements. In particular, the conditions are given in 

terms of the minimum absolute values of the signal amplitudes.  That is, if the minimum values 

of the non-zero coefficient of the signal satisfy certain bound then OMP guarantees exact support 

recovery. 

 

I. SYSTEM MODEL AND BACKGROUND  

 Consider a model A y x e , 젨m m nR A R  y  with m n and x  is a K-sparse 

signal.  

 Let iA be the ith column of A and assume that 2 1, ? ,2, ,iA i n ‖ ‖ .  

 Let ( ) { | 0}isupp x i x    and   | ( ) |s u p p x K . 

 The goal of OMP is to estimate the support of x  iteratively.  

 At each iteration, OMP selects a column of A that is most correlated with the current 

residual. OMP then updates the residual by projecting y  onto a linear space spanned 

by the selected columns. The algorithm iterates until certain stopping rule is satisfied. 

 

A. The OMP algorithm 

Notations: For two sets  and , let \ { | , }i i i      and {1,2, , } \c n   . 

Let A  denotes a sub-matrix whose column indices are elements of the set  and x  

denotes the elements of x  whose indices are specified by    and 1( )T TA A A A 

     

represents the pseudo-inverse of A.  

 

The Exact Support Recovery of Sparse Signals with 

Noise via Orthogonal Matching Pursuit  



 

 

2 

1. Initialize: Given A and y , set the initial residual vector 
0

r y (that is 0 0x ), the 

initial index set as empty, 
0  and the iteration counter t=1. 

2. Find  the index min | , |t i t
i

i A r  and update the support set estimate  

1t t ti    

3. Estimate: 
tt A

x y and update the residual 
tt tA r y x  

4. Halt if some stopping rule is satisfied. Otherwise, set t=t+1 and return to step 2.  

 

Stopping rule design for the OMP depends on noise. In noiseless case, (when 0e ) the 

stopping rule can simply be 0t r . This letter considers two types of bounded noises, 

namely, 2l bounded noise, 2 1e‖ ‖ and l  bounded noise, *

2A e‖ ‖ . The stopping 

rules for these two noises in terms of residuals are 2 1t r‖ ‖ and *

2tA r‖ ‖ , respectively. 

This paper also considers the case when ie  follows 2(0, ) .  

II. RIP AND A FEW ASSOCIATED LEMMAS 

Two features of a sensing matrix are often used to analyze and derive the recovery 

performance guarantee of OMP. One is the Mutual Incoherence Property (MIP) [1] defined as

max | , |i j
i j

A A


 . And, the other one is restricted isometry property (RIP).  

 A matrix A satisfies RIP of order  K with parameter  K  if it is the smallest constant 

such that 

 
2 2 2

2 2 2(1 ) (1 )K Kx Ax x    ‖ ‖ ‖ ‖ ‖ ‖   (1) 

 

holds for any K-sparse vector .x    

 Lemma 1:  Suppose that a matrix A satisfies RIP of order K. Let  be an index set 

with | | K  . Then all singular values of sub-matrix A , which are denoted by ( )i A  , 

satisfy 

 1 ( ) 1K i KA        (2) 

 Remark 1:  For any given matrix *

2 2,m nB R B B ‖ ‖ ‖ ‖ . Let | | K  , then  

 
*

2 2 max젨 ( ) 1i K
i

B B B      ‖ ‖ ‖ ‖   (3) 
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 Lemma 2: Suppose that a matrix A satisfies RIP of order K. Let  be an index set with

| | K  . Then all eigenvalues of  matrix *A A 
, which are denoted by *( )i A A  

, 

satisfy 

 
*1 ( ) 1K i KA A         (4) 

 Lemma 3: Suppose that a matrix A satisfies RIP of order K. Let  and   be two 

disjoint sets with | ( ) ( ) |supp supp K    . Then for any vector x  with 

( )supp x , it holds that  

 
* *

2 2 2( ) ( ) KA A A A     x x x‖ ‖ ‖ ‖ ‖ ‖   (5) 

 

 

Recovery conditions of OMP algorithm 

MIP RIP 

Noiseless 

case 

Noisy case Noiseless case Noisy case 

1
2 1K




   

[3] 

2 2(1 ) log
| |

1 (2 1)
min

N
x

K

 






 
 

[2] 

1
1 1K K

  
  

[4, 5] 

1
2 1K




  and 

12
| |

1 (2 1)
minx

K






 
   [6] 

 

1
1 3K K

  
  and 

1 1

2

1 1

2(1 )
| |

(1 ) (1 )

K
min

K K

x
K



 



 




  

[7] 

 

III. EXACT SUPPORT SET RECOVERY OF SPARSE SIGNALS 

Condition 

 

Let  be an original support set of the signal x . Let 1tr  is the residual at the tth iteration,

1,2 ,t K . The condition for OMP to select a correct index at tth iteration is 

 
* *

1 1c t tA A    
r r‖ ‖ ‖ ‖   (6) 
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A. 2l  bounded noise 

Theorem 1: Suppose that 
2 1e‖ ‖  and the matrix A satisfies condition 1

1 1K K
  

 . Then OMP 

with stopping rule 
2 1t r‖ ‖  will exactly recover the support   of K-sparse signal x , if the 

minimum magnitude of nonzero elements of x  satisfies 

 
1 1

1

( 1 1)
min | |

1 ( 1)

K

i
i

KK










 


 
x   (7) 

Proof 

 

 Suppose that OMP selects only correct indexes at the first t-1 iterations, then 1t   

and the support of the solution 1tx  obtained at t-1th iteration is 1( )tsupp  x  and   

1| ( ) | 1tsupp t K   x . 

 We can write the residual 1tr as 

 
11 1 1( )

tt t tA A
        r y x x x e   (8) 

 

 Our goal is to find the RHS and LHS of the condition * *

1 1c t tA A    
r r‖ ‖ ‖ ‖  

 

 Let us start with the LHS, that is, *

1c tA  
r‖ ‖  

 

* * *

1 1

* *

1

1

( )

( )

max | , ( ) | max | , |

c c c

c c

c c

t t

t

i t i
i i

A A A A

A A A

A A A

      

    

 
 

  

  

  

r x x e

x x e

x x e

‖ ‖ ‖ ‖

‖ ‖ ‖ ‖   (9) 

 Now from Lemma 3 it holds for any ci  

 1 1 1 2| , ( ) | ( )i t K tA A      x x x x‖ ‖  

 Also, since 1 2 1iand A e‖ ‖ ‖ ‖ , we have  

 2 2 1| , |i iA A e e‖ ‖ ‖ ‖  

 Now, the LHS becomes 

 
*

1 1 1 2 1( )c t K tA    
  r x x‖ ‖ ‖ ‖  (10) 
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 Let us find the RHS, that is, *

1tA  r‖ ‖ . Let us recall that the residual 1tr  is orthogonal to 

the columns of
1t

A
 , that is,

1

*

1 0
t tA
  r . Then 

 
1 1

1

* *
\ \ 1*

1 1*

t t

t

t

t t

A A
A

A

 



    

  



   
    

     

r
r r

0
 

 Thus, *

1tA r has only 1| \ | ( 1)t K t      non-zero elements. By using the relation 

2

n


x
x

‖ ‖
‖ ‖ , we have 

 

*
* 1 2

1
( 1)

t
t

A
A

K t

 
  

 

r
r

‖ ‖
‖ ‖  

 Now, 

 

* * *

1 2 1 2

* *

1 2 2

(

)(

)t t

t

A A A A

A A A

     

   

  

  

r x x e

x x e

‖ ‖ ‖ ‖

‖ ‖ ‖ ‖
 

 *

1 2 1 2 1 1 2( (1 ) ( (1 ) () ) )t K t K tA A             x x x x x x‖ ‖ ‖ ‖ ‖ ‖  (Consequence of RIP) 

 * *

2 2 2 1 1 11 1K KA A        e e‖ ‖ ‖ ‖ ‖ ‖  

 Therefore, the RHS is lower bounded by 

       * 11
1 1 2 1

1( 1 )
(

( 1 ) ( 1 )
) KK

t tA
K t K t

 
   


  

   
r x x‖ ‖ ‖ ‖             (11) 

 1 2( ( 1) mi | |) nt i
i

K t


   x x x‖ ‖                        (12) 

  

 Using Eqns. (10), (11), and (12), we can find that for the condition (6) to be satisfied , the 

following inequality must hold true 

1 1

1

( 1 1)
min | |

1 ( 1)

K

i
i

KK










 


 
x  

which is stated in Theorem 1. 

 

 After all the K indexes in   have been identified, we find a new estimator via K Ax y . 

Then, the residual Kr  obeys 

 2 2 2 2 1K KA A      r y x y x e‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖  
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 Therefore, OMP stops after K iterations during which the stopping rule is satisfied. 

 

B. l bounded noise: 

Theorem 2: Suppose that *

2A e‖ ‖  and the matrix A satisfies condition 1
1 1K K

  
 . Then 

OMP with stopping rule *

2tA r‖ ‖ will exactly recover the support   of K-sparse signal x , 

if the minimum magnitude of nonzero elements of x  satisfies 

 
1 2

1

( 1 1)
min | |

1 ( 1)

K

i
i

K

K

K










 


 
x  

C. Gaussian noise case 

 

It is well known that when the noise in the model A y x e  follows iid Gaussian distribution 

with zero-mean and variance 2 , then 

  2

1
2 log 1P m m m

m
   e‖ ‖  

 

Theorem 3: Suppose that each element of the noise vector follows Gaussian with zero mean 

and variance 2  and the matrix A satisfies condition 1
1 1K K

  
 . Then, OMP with stopping 

rule 2 2 logt m m m r‖ ‖ will exactly recover the support   of K-sparse signal x with 

probability at least 1-(1/m), if the minimum magnitude of nonzero elements of x  satisfies 

 
1

1

( 1 1) 2 log
min | |

1 ( 1)

K

i
i

K

m m m

K

 








  


 
x  

 

Remarks: 

 

 In 2l bounded noise case, the minimum magnitude of the K-sparse signal needs to be 

in the same order of the noise level.  

 In l bounded noise case, the minimum magnitude needs to be about K times the 

noise level  
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 In the Gaussian case, the minimum magnitude depends on the size “m” of the matrix. 

Thus, m must be chosen to satisfy 1
1 1K K

  
  (for example say 2m K ), then the 

minimum magnitude need to be about K times of . 
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Short summary:  

They present an approach to designing capacity approaching high-girth low-density 

parity-check (LDPC) codes that are friendly to hardware implementation, and compatible with 

some desired input code structure defined using a protograph. The approach is based on a 

mapping of any class of codes defined using a protograph into a family of hierarchical quasi- 

cyclic (HQC) LDPC codes. Next, they present a girth-maximizing algorithm that optimizes the 

degrees of freedom within the family of codes to yield a high-girth HQC LDPC code, subject to 

bounds imposed by the fact that HQC codes are still quasi-cyclic. Finally, they discuss how 

certain characteristics of a code protograph will lead to inevitable short cycles and show that 

these short cycles can be eliminated using a “squashing” procedure that results in a high-girth 

QC LDPC code. 

(The “girth” of a code is the length of the shortest cycle in the code graph) 

I. INTRODUCTION 

 

1. The construction of LDPC codes 

 

 Highly random graph construction 

 Algebraic construction 

 

1) Highly random graph construction 

 It can produce LDPC codes that closely approach the Shannon capacity 

 Not easy to implement in hardware as the irregular connections imply wiring complexity. 

 

Hierarchical and High-Girth QC LDPC codes 
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2) Algebraic construction 

 In actual implementations, more structured constructions have been strongly preferred 

 Quasi- cyclic LDPC (QC LDPC) codes are a particularly practical and widely used class of 

structured LDPC codes. 

 In view of the practicality, they focus in this paper on the design of QC LDPC codes 

that have good decoding performance 

 

2. Optimizing the decoding performance 

 

 Water-fall 

 Error floor 

 

1) Water-fall  

 “Water-fall” is a regime where the signal-to-noise (SNR) is relatively low. 

 The standard way to do that for irregular random constructions is to use “density-evolution” 

or “EXIT chart” techniques to obtain the degree distribution that optimizes the code threshold 

in the asymptotic limit of long block lengths 

 

2) Error floor 

 An “error floor” in the performance curve means that the decoding failure rate does not 

continue to decrease rapidly as the SNR increases. 
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In this paper, they focus on how to take a code structure, such as a particular 

spatial-coupling structure, that has been designed to perform near the Shannon limit in the 

waterfall regime, and constructing a QC LDPC code with that structure that also 

empirically has excellent error floor performance. 

 

II. QC LDPC CODES 

 

 Review of Standard QC LDPC codes 

 

QC LDPC codes are defined in terms of circulant permutation matrices. Let ,i pI  denote 

the circulant permutation matrix, or “cyclic shift matrix,” obtained by cyclically left-shifting a 

p p  identity matrix by i positions, where 0 1i p   ; 0, pI  is thus the p p  identity 

matrix. We often suppress the dependence on p, writing iI  instead of ,i pI . As an example, if 

4p  , then 

1

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

I

 
 
 
 
 
 

. 

An important special case of QC LDPC codes is “weight-I (J, L) regular” QC LDPC code. The 

parity check matrix of such a code consists of J rows and L columns of p p  cyclic shift 

submatrices. The submatrix in the jth row and lth column is   ,

, 1

j l

j l

i

iI I  and the code has 

blocklength N pL . They abstractly represent the  ,j l th submatrix as a power of dummy 

variable x  as ,j li
x . 

More generally, a QC LDPC code is represented by a polynomial parity check matrix  H x  

whose entries are polynomials in x: 
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 

     

     

     

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

L

L

J J J L

h x h x h x

h x h x h x
H x

h x h x h x

 
 
 
 
 
  

 

where    
1

, 0
,

p s

j l ss
h x c j l x




  for 1 ,1j J l L    ,    , 0,1sc j l  . 

Example 1: Let C be a length-9 QC LDPC code described by 

 

 
 

For this code, 2, 3J L  , and 3p  , and H can equivalently be written as 

 
 

The polynomial version of the parity check matrix is 

 

 
 

For the maximum weight M among all polynomial entries  ,j lh x  in  H x , they call such a 

code a weight-M QC-LDPC code. 

The code in Example 1 is a weight-II QC LDPC code. 
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III. GRAPHICAL REPRESENTATIONS OF QC LDPC CODES 

 

 

A “protograph,” as introduced by Thorpe in [30], is a template that can be used to derive a 

class of Tanner graphs. Each node in a protograph represents a “type” of node in a Tanner 

graph. The nodes will all be duplicated p times in the Tanner graph derived from the protograph. 

 

 

 

Fig. 2 shows two Tanner graphs derived from the protograph of Fig.1, with 3p  . Note that 

there are many possible Tanner graphs that one can construct, which correspond to a particular 

protograph, and they need not necessarily have a quasi-cyclic structure. The Tanner graph shown 

in Fig. 2(a) is not quasi- cyclic. But it is always easy to construct a quasi-cyclic version of any 

protograph. 

Protographs can equivalently be described by an “incidence” matrix. An incidence matrix 

has a number of rows equal to the number of types of checks in the protograph and a number of 
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columns equal to the number of types of variables. Each entry in the incidence matrix tells you 

how many edges there are connecting a type of check node to a type of variable node in the 

protograph. For example, the incidence matrix P for the protograph in Fig.1 would be 

1 1 1

0 1 2
P

 
  
 

. 

 

 Lifting procedure (used to maximizes the girth of the code) 

The lifting procedure is simply to replace each entry in the incidence matrix with a polynomial 

of weight equal to the entry. 

For example, the protograph in Fig. 1, which has the incidence matrix P, can be lifted into a 

QC LDPC code with parity check matrix 

 
0

a b c

d e f

x x x
H x

x x x

 
  

 
, 

where , , , , ,a b c d e  and f  are integer exponents between 0 and 1p  , with e f . These 

integer exponents parameterize an ensemble of QC LDPC codes all of which are liftings of 

(and which cover) the original protograph. In our algorithms, they will optimize over the choice 

of these exponents to find a lifting that maximizes the girth of the resulting code. 

 

IV. CYCLES IN QC LDPC CODES 

 How to identify cycles in QC LDPC codes from their parity check matrix 

 For weight-I QC LDPC codes  For higher weight QC LDPC codes 

 Review of an obstacle in constructing QC LDPC codes with good girth (The higher 

weight QC LDPC codes with certain characteristics are inevitable to have short 

cycles) 

 HQC LDPC codes overcome the obstacle 

 Applying a lifting transformation into HQC codes to obtain high-girth QC codes. 
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A. Finding Cycles in Weight-I QC LDPC codes 

 

 Cycle 

A cycle is a path through nodes in the Tanner graph of a code. It alternates between check and 

variable nodes, and starts and ends at the same node. 

 

 

 Condition of the cycles for weight-I QC LDPC codes 

They specify the conditions on the  , , ,a b c d  developed in [33] that result in a cycle. 

Calculate an alternating sum of the shift indices associated with neighboring permutation 

matrices along a given path (every odd shift index is subtracted rather than added). For 

example, consider the left-hand path of Fig. 3. The sum is a b c d    .                        

Only if the differences sum to zero (mod-p) at the end of the path will the path return to the same 

variable node in the starting permutation matrix, thereby forming a cycle. For the example of Fig. 

3, the condition for a length-four cycle to exist is: 

  mod  0,a b c d p      

which is satisfied for 0, 2, 1, 2a b c d    , but is not satisfied by 0, 2a b c d    . 
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B. Finding Cycles in Higher Weight QC LDPC codes 

  

Let us take the matrix  H x  of Exmple 1,  

 
0 0 0

0 1 2
.

0

x x x
H x

x x x

 
  

 
 

 Now, consider the following ordered series: 

            1,2 , 2,2 , 2,3 , 2,3 , 2,3 , 1,3O   

where each pair  ,j l  in O  satisfies 1 2j J    and 1 3l L   . This ordered series 

specifies a sequence of rectilinear moves through  H x . 

To specify a candidate cycle through the Tanner graph, we associate a coefficient index s  

with each pair  ,j l   in O , such that  , 0sc j l  . They denote this series of coefficient indices 

by S . The candidate cycle will be a cycle if the alternating sum of coefficient indices in S 

modulo p equals zero. 

In their example, consider the two following choices for the respective (ordered) sets of 

coefficient indices: 

 

 

0,0,1,2,1,0

0,0,2,1,2,0 .

a

b

S

S




 

Each of these choices corresponds to a cycle of length-6 through the Tanner graph of the code. 

The alternating sums modulo-3 can be verified to be equal to zero. Respectively, these sums are 

 

 

0 0 1 2 1 0 mod  3 =0

0 0 2 1 2 0 mod  3 =0.

     

     
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C. Invertible Cycles in Higher Weight QC LDPC codes 

An important theorem proven by Smarandache and Vontobel [35] states that any weight-III 

QC LDPC code will inevitably contain cycles of length six. Suppose that, without loss of 

generality, the polynomial  ,j lh x  is weight-III and has the form a b cx x x  . To see that a 

cycle must exist using thier notation, choose the length-six ordered series 

            , , , , , , , , , , ,O j l j l j l j l j l j l , 

and choose  , , , , ,S a b c a b c . We find that  

 a b c a b c       mod 0p  ,  

for any value of p. 

One can also prove (see [35, Th. 17] or [27, Example 3.3]) that a parity check matrix            

of a weight-II QC LDPC code that contains two weight-2 polynomials in the same row or the 

same column will inevitably have eight-cycles. To see this, suppose the two weight-2 

polynomials are in the same row j , but in two different columns 1 2l l . Let 
1,

a b

j lh x x   and 

2,

c d

j lh x x  . Consider the length-eight ordered series 

                1 1 2 2 1 1 2 2, , , , , , , , , , , , , , ,O j l j l j l j l j l j l j l j l  

and choose 

 , , , , , , ,S a b c d b a d c . 

We again find that 

 a b c d b a d c         mod 0p  , 

regardless of the value of p. 

These inevitable six-cycles and eight-cycles appear to put serious limitations on what 

protographs can be converted into quasi-cyclic codes with high girth. 
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V. HQC LDPC CODES 

 

 To solve the problem of invertible short cycles, they introduce HQC LDPC codes. 

 An HQC LDPC code is formed from “levels” that each has a quasi-cyclic structure. 

The structure can be specified in two forms: 

1) Polynomial parity check matrices 

2) Tree structure 

 They connect the hierarchical structure to a particular sequence of liftings of a base 

graph. 

 

A. Parity Check Matrices of HQC LDPC Codes 

 

Example 2: Consider the polynomial parity check matrix specified in (18) with 8p  . 

Because the highest weight of any of the polynomial entries is 2, and because there are 12 

columns in the matrix, this is a length-96 weight-II QC LDPC code 

 

 

Each of the three contractions  of the parity check matrix of this code into the polynomial 

parity check matrices represented by (18), (19), and (20), corresponds to a “level” in the 

hierarchy of this three-level HQC LDPC code. 
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We now present a formal definition of the family of K-level HQC LDPC codes which 

generalizes our example. 

Definition 1: An HQC LDPC code with K levels is defined by a 
   k k

J L  multivariate 

polynomial parity check matrix  H   in K variables. The entry in the jth row and lth column of 

 H  ,  1
k

j J  ,  1
k

l L   is a K-variate polynomial  , , ,j lh    over the K variables 

   1
, ,

k
x x . With these definitions, we defined the code by the    k k

J L  polynomials  

. 

 

Example) We can rewrite the term  1,1 , ,h x y z  of (20) as 

 

 

where all coefficients  1, 2, 3 1,1s s sc  are zero except for 

           6,0,0 1,1,0 7,1,0 0,1,1 2,1,1 1,2,11,1 1,1 1,1 1,1 1,1 1,1 1.c c c c c c       

 

B. Tree Structure of HQC LDPC Codes 
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Remained contests  

 

 Finding cycles in HQC LDPC codes 

 Inevitable cycles in HQC LDPC codes 

 

 Proposing girth maximization using hill climbing 

 

 Design of restricted two-level HQC LDPC codes (The additional “restriction” is 

that the weight of the first(lowest) level must be one) 

The restricted two-level HQC LDPC codes can considered weight-I QC LDPC 

codes 

 Squaring sets of trees to eliminate inevitable cycles  

 

 Design of high-girth codes 
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Numerical Result 

In Figs. 9, 10, and 11, they plot the respective error rate performance of the three codes for the 

binary symmetric channel (BSC). For purposes of comparison, they plot analogous results for 

some randomly generated girth-6 QC LDPC codes. These codes have the same length, same rate, 

and same nonzero positions in the base matrix (i.e., same protograph structure) as the girth-10 

and girth-8 codes to which they are compared. 
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Short summary:  

In this paper, they have introduced two novel ultra-wideband (UWB) channel estimation 

approaches based on compressive sensing (CS).  

The proposed approach relies on the fact that transmitting an ultra-short pulse through a 

multipath UWB channel leads to a received UWB signal that can be approximated by a linear 

combination of a few atoms from a pre-defined dictionary which means sparse representation of 

the received signal.  

The key in the proposed approach is in the design of a dictionary of parameterized 

waveforms (atoms) that closely matches the information-carrying pulse shape leading thus to 

higher energy compaction and sparse representation, and, therefore higher probability for CS 

reconstruction.  

In the first approach, the CS reconstruction capabilities are exploited to recover the composite 

pulse-multipath channel from a reduced set of random projections. This reconstructed signal is 

subsequently used as a referent template in a correlator-based detector.  

In the second approach, from a set of random projections of the received pilot signal, the 

Matching Pursuit algorithm is used to identify the strongest atoms in the projected signal that are 

related to the strongest propagation paths that composite the multipath UWB channel.  

 

I. INTRODUCTION 

1. Ultra-wideband (UWB) communications 

- High bandwidth, lower-power consumption, shared spectrum resources, ranging from 

short-distance high-data-rate application to long-distance low-data-rate application. 

Ultra-Wideband Compressed Sensing : Channel 

Estimation 
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- An ultra-short duration pulse is used as the elementary pulse-shaping to carry information 

  simplicity in the transmitter (carry-less signal), little impact on other narrowband radio 

system, rich in multipath diversity. 

- Interference cancellation, antenna design, timing synchronization, and channel estimation. 

  requirement of high-speed ADC converters. : Such formiable sampling rates are not feasible 

with state of the art ADC technology. 

- This paper focuses on this goal by casting the problem of USB channel estimation and 

detection into the emerging framework of CS. 

 

2. Compressed sensing  

- The remarkable result of CS reveals that with high probability, a signal, f , with a large 

number of data points that is M -sparse in some dictionary   of basis functions, can be 

exactly reconstructed using only a few number of random projections of the signal onto a 

random basis   that is incoherent with  . 

- The number of projections is much smaller than the number of samples in the original signal 

leading to a reduced sampling rate and to a reduced use of ADCs resources. 

 

3. Basic assumption 

- When the short duration pulses propagate through multipath channels, the received signals 

remain sparse in some domain and thus CS is applicable. 

-  
Fig. 1.  Effect of UWB channel (indoor propagation in residential environments) on the transmitted pulse for two different propagation scenarios: 
(a) line-of-sight (LOS); (b) non-line-of-sight (NLOS); (c) zoom-in of (a); and (d) zoom-in of (b). Transmitted pulse (–.–) is also shown in (c) and 
(d). 

- Gaussian monocycle( 0.65ns), IEEE 802.15.4a channel model 1 and 2(CM1, CM2). 
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- As depicted in above figure, the received UWB signal is composed of set of spaced clusters 

of the transmitted pulse which captures the statistical characteristics of multipath arivals in a 

UWB channel.  

- It can be seen relatively long time intervals between clusters and rays where the signal takes 

on zero or negligible values. It is precisely this signal sparsity of the received UWB signals that is 

exploited in this work. 

 

II. ULTRA-WIDEBAND COMPRESSIVE SENSING. 

- The sparsity of the signal can be in any domain and the number of random measurements is 

much smaller than the number of samples in the original signal leading to a reduced sampling 

rate and reduced use of ADCs resources. 

 

1. Compressive sensing overview. 

- f  : N-point discrete-time representation of signal. 

- y  : a set of K measurements y f  

-   : K N  measurement matrix, rows are basis vectors of the space 
NR  

- If f  is sparse, f  can be written as a superposition of a small number of vector taken from 

a dictionary 1[ ,...., ]Z  
 of basis 

1
i i

M

l l

i

f  


  
 (1) 

- K N , and measurement matrix   is incoherent with the dictionary  . 

- 1[ ,..., ]T

Z  
 is a vector that contains M nonzeros coefficients where Z is the number of 

elements (atoms) in the dictionary  . 

- The signal f can be recovered from the solution of convex, nonquadratic optimization 

problem known as basis pursuit.  

- But solving the optimization problem is computationally expensive and is not suitable for 

real-time application. So, there are more efficient recovery algorithms such as matching pursuit, 

orthogonal matching pursuit, and tree-based matching pursuit. 
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TABLE I : MATCHING  PURSUIT  ALGORITHM 

 
-  

- MP  is  a  computationally  simple  iterative greedy algorithm that tries to recover the 

signal by finding(in the measurement signal) the strongest component (atom of dictionary), 

removing it from the signal, and searching again the dictionary for the strongest atom that is 

presented in the residual signal.   

- This  procedure is iteratively repeated until the residual signal contains just insignificant 

information.  

- Signal reconstruction is then achieved by linearly combining the set of atoms found in the 

measurements.  

- 1[ ,..., ]ZV v v  , 0T  : maximum # of algorithm iterations,   : the minimum energy 

that is left in the residual error signal. 

 

2. Processing UWB signals Using CS. 

- The received UWB signal model 

1

0

( ) ( )* ( ) ( )
L

l l

l

g t p t h t p t 




    (3) 

- ( )p t  : transmitting pulse, ( )h t  : noiseless UWB channel. 

- We call it as composite pulse-multipath channel. 

- Typically, a Gaussian pulse or its derivatives are used as ( )p t .  

- 

2

22( ) ( )

t

np t p t e 


 , ( )np t  is a polynomial of degree n that depends on the order of the 

derivative used. 

- ( )h t  is the impulse response of the UWB channel 
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1

0

( ) ( )
L

l l

l

h t t  




   (4) 

- l  : gain factor, l  : delay factor, L : # of propagation paths. 

- In our analysis, the set of delays and gains are generated according to the models proposed by 

the IEEE 802.15.4a working group in [15] . But we restrict our analysis to real-valued UWB 

channel models where there is not pulse distortion. 

 

 
 

Fig. 2.  (a) Received UWB signal for a realization of an indoor residential channel with LOS propagation (CM1). (b) CS reconstruction using 
time-sparsity model, with 500 random projections. (c) CS reconstruction using multipath diversity, with 500 random projections. (d) CS 
reconstruction using multipath diversity, with 250 random projections. 

 

1) UWB signal reconstruction Using Time Sparsity Models :  

- A first approach is assuming that the signal is sparse in the time domain.  

- This signal model is adequate for the UWB channel in industrial environments with LOS 

propagation. 

- [ (0), ( ),..., (( 1) )]Tg g g T g N T    

- T : sampling period, N # of samples 

- ~ (0,1)N , K*N random matrix with entries i.i.d. 

- Since we are assuming sparsity in the time domain, the dictionary I    

- Running the MP algorithm with the V   and the random projection y g  yields the 

results show in fig.2. 
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- Fig. 2(a) : the 2048-point channel for a realization of an indoor residential channel with LOS 

propagation obtained from [15]. This is the signal targeted for reconstruction from a reduced set 

of random projections.  

- Fig. 2(b) : the reconstructed signal obtained using 500 random measurements. Note that it 

fails to recover many of the signal details yielding a poor performance.  

- Increasing the # of random projection means that higher sampling rate and demanding ADC 

resources. 

- Appealing approach : to design a dictionary of parameterized waveforms where the received 

UWB signal can be compactly represented, increasing thus the sparsity of the underlying signal.  

- This approach is motivated by the fact that the received UWB signal given by (3) can be 

thought of as a linear combination of the signal contributions of the various propagation paths 

that compose the UWB multipath channel. 

 

2) UWB signal Reconstruction Using Multipath Diversity. 

- Since CS theory relies on the fact that the underlying signal is sparse in some dictionary of 

basis or tight-frames, it is important to define a suitable dictionary to represent the underlying 

UWB signal. 

- Alternatively, we can generate a new dictionary just inspecting the characteristic of the 

received UWB waveform. 

- Since the received UWB signal is formed by scaled and delayed versions of the transmitted 

pulse and since the dictionary should contain elements (atoms) that can fully represent the signal 

of interest, it is natural to think that the elementary function to generate the atoms of the dictionary 

should be closely related to the pulse waveform used to covey information, i.e., the Gaussian pulse 

or its derivatives. 

- Therefore, the dictionary is generated by shifting with minimum step   the generating 

function, ( )p t , leading to a set of parameterized waveforms given by 

2

2

( )

2( ) ( ) ( ) 0,1,2,...

t j

j nd t p t j p t j e j

 


        (5) 

- Dictionary 0 1{ ( ), ( ),.....}D d t d t  : delayed versions of the UWB transmitted pulse. 

- The other definitions are same with Time Sparsity Model cases. 
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- [ (0), ( ),..., (( 1) )]Tg g g T g N T  , T : sampling period, N # of samples, ~ (0,1)N , K*N 

random matrix with entries i.i.d. 

- The MP algorithm is then applied on the random projected signal, y, and the dictionary   

-   is the discrete time dictionary defined by uniformly sampling the atoms of the dictionary 

D. 

- Fig. 2(c) and (d) show the reconstructed signal using 500 and 250 random measurements, 

respectively. As it can be seen from Fig. 2(c) and (d), CS successfully recovers the desired signal 

from random projections  

- Furthermore, comparing Fig. 2(b) and (c), it can be seen that reconstruction using multipath 

diversity outperforms reconstruction using time sparsity model  

- Therefore, by building a dictionary that is closely matched to the underlying waveform, a 

notable performance gain is achieved in the reconstruction 

 
 
Fig. 3.  Probability of success reconstruction for UWB signal for two different propagation scenarios: LOS - - - and NLOS —. 

 

 

3. UWB Channel Estimation Using CS 

- Consider the composite pulse-multipath channel, given by (3), where the channel parameters 

1{ , }L

i i i    related to the various propagation paths have to be estimated. 

- The number of multipath components in (4) that form the UWB channel can be quite large, 

leading to a large time dispersion of the transmitted pulse [3]. 

- But only some paths have the amount of original energy. (e.g. 1160   70) Therefore, we 

limit ourselves to estimate the cL
 most significant paths that composes the UWB channel 

impulse response 
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- Furthermore, the reconstruction step in the MP algorithm can be thought of as a weighted 

sum of the elements in the dictionary, that is 1

( )
Z

i i

i

d t



. 

- Since each element in the dictionary is a shifted version of the transmitted pulse, it turns out 

that i  is an estimate of the path gain related to the i th propagation path. 

- Furthermore, the path delay is directly determined by observing the time-location of the i th 

atom found in the received UWB signal. 

- Let 1 2[ , ,..., ]T

Z   
 and let let ( )k

 for 1,2,...,k Z  be sorted elements of the set 

1{| |,...,| |}Z 
. Also let ( )kl

 be the index in the sparse vector of the kth sorted element. For 

1,2,..., Ci L
 :  

( )

( )

ii l

i il

 





 
  (6) 

 

III. ULTRAWIDEBAND DETECTION BASED ON COMPRESSIVE SENSING 

- Until now, we have the assumption of noiseless conditions. But we have to consider the 

noise and interferences. 

 

1. UWB Signal Models. 

 

Figure. Placement of pilot waveforms for PWAM, TR, and preamble ( 3fN  , 3pN  , 18N  ). 

- Consider a peer-to-peer UWB communication system where the k th binary information 

symbol is transmitted by sending fN ultra-short pulses in the symbol interval sT , that is [22] 

1

0

( ) ( ) ( )
fN

f s

k j

s t b k p t jT kT





     (7) 

- /f s fT T N  : frame time ; time interval between two consecutive pulses. 
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- ( ) { 1,1}b k    : binary information symbol that modulated the amplitude of the pulse stream. 

- pT  : pulse duration ; p fT T .  

- fN  nonoverlapped pulses are transmitted for each information symbol. 

- The channel is static during a burst of 
sN  consecutive symbols. ( ( )h t  is fixed during the 

burst of sN  symbols). 

- Let 1f L pT T    : there is no inperpulse interference. 1L   : max delay spread of multi 

path channel. 

- The received waveform during the first frame of the kth transmitted information symbol  

1

0

( ) ( ) ( ) ( )
L

f l s l

l

r t b k p t kT t  




     (8) 

- ( )t  : zero mean AWGN that models thermal noise and other interference like multi user 

interference. 

- Since 1f L pT T    and the UWB channel is fixed, the received signal during the kth 

information symbol can be represented by periodically repeating the noiseless part of ( )fr t  

every sT  seconds. 

1

0

( ) ( ) ( )
fN

f f

j

r t r t jT t




    (9) 

- Two common approaches in detection problem : correlator based detector and Rake receiver. 

- In the UWB correlator-based detector, it is assumed that the channel impulse response is 

completely known at the receiver to define the reference template that is used in the demodulation 

stage.  

- Likewise, for the RAKE-based receiver the channel taps 1{ , }| r

i i

L

l l i    related to the most 

significant propagation paths are assumed to be known a priori to define the set of templates for 

the bank of correlators and the weights for MRC [28].  

- In either case, the need for UWB channel estimation arises. 

- The problem of UWB channel estimation using CS under the data-aided framework. : We 

use pN
known pilots symbols in each packet to estimate the channel impulse response. Based on 

these pilots, the channel is estimated either by CS template reconstruction (Section II-B2) or CS 
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channel tap estimation (Section II-C). The remaining ( )s pN N  symbols that convey 

information are decoded based on the acquired channel characteristics.  

- Under this setting, the received UWB signal (9) can be conveniently rewritten as shown in 

(10) 

1

0 1

( ) 1

1

( ) ( ) ( ) 0

( )

( ) ( ) ( )

w

p f

w

N L

p l f l w

k lf

N N N L

i l f w l w s f w

k N lf

k
b p t kT t for t T

N
r t

k
b p t kT T t forT t N N T

N

  

  



 

 

 

  
      

   
 

 
      

  

 

 
 (10) 

- w p fN N N
, wT

 : time turation of the pilot waveforms.  

- The received UWB signal is observed over nonoverlapped time intervals ( 1)f fkT t k T    

for 0,1,..., 1.wk N   the received pilot waveform in a frame time is : 

1

( ) ( ) ( ) ( )
L

p l f l

lf

k
r t b p t kT t

N
  



 
    

  
  (11) 

 

2. CS correlator based detertor 

- A first approach exploits the CS reconstruction is a correlator-based detector.  

- By observing the received UWB signal in a frame-long interval and random projecting the 

observed signal, a noisy template can be recovered using MP algorithm. Since wN  pilot 

waveforms are used for channel estimation, the estimate composite pulse-multipath channel is 

formed by averaging over  noisy templates. This approach is computationally demanding as a 

noisy template is recovered for each received pilot waveform.  

- Alternatively, the random projected signals corresponding to the received pilot waveforms can 

be averaged and input to the MP algorithm for template reconstruction. This latter approach 

requires less computation since the MP algorithm is performed just once. Furthermore, by 

ensemble averaging the random projected signals, the effect of AWG noise is mitigated. 

- Thus, CS template reconstruction is achieved by random projecting the frame-long received 

signals, ensemble averaging the random projected signals, and using MP algorithm to recover an 

estimate of the composite pulse-multipath channel. 
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- Once the template has been estimated, it can be used as correlator template to enable 

integrate-and-dump demodulation at frame-rate sampling.  

-  Since each symbol is present in fN  frames, the decision statistics for the th symbol is 

formed by adding up the fN  correlator output samples related to the transmitted symbol.  

1
( 1)

0

( ) ( ) ( )
f

f s

f s

N
j T kT

cs f s
jT kT

j

z k r t g t jT kT dt


 




      (12) 

- ( )csg t  is the CS estimate of the composite pulse-multipath channel. 

- It can be extended to symbol-rate directly. 

 

3. CS rake receiver 

- Rake-based detectors relies on the assumption that the UWB channel parameters, path delays 

and path gains, related to the most significant propagation paths are known at the receiver [4], 

[21]. 

- Consider the received pilot waveform given by (11) for 
1,2,..., wk N

, where l  and l  

are the UWB channel taps to be estimated. 

- To reduce the effect of AWGN on the estimation of the UWB channel parameters, the CS 

projected pilot signals are averaged to obtain a reduced-noise projected signal that is used in the 

MP algorithm to estimate the channel parameters as described in Section II-C. 

- Thus, CS channel estimation is performed using the ensemble average of the random 

projections leading to a reduced computational cost and minimizing the noise effect. 

- After the estimation of parameters, the CS Rake Receiver is followed. 

- Let 1{ , }| cL

l l l    be the channel parameters related to the strongest paths obtained using CS 

channel estimation.  

- The received signal, ( )r t , is fed to a bank of cL
 correlators with templates given by the 

atoms 
( )lp t 

 for 
1,2,..., cl L

.  

- The outputs of these correlators contain the energy captured by the strongest paths and are 

combined via maximum ratio combining (MRC) [29] to obtain sufficient statistic for detecting 

the th bit transmitted during the th frame. 
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1

( , ) ( ) ( )
c

s f l p

s f l

L
kT jT T

R l s f l
kT jT

l

z k j r t p t kT jT dt



 

  

 


    
  (13) 

- Recalling that fN
 pulses are used to transmit an information symbol, the decision statistic 

for symbol detection is formed by summing up the MRC outputs for fN
 consecutive frames. 

1

0

( ) sgn( ( , ))
fN

R

j

b k z k j





 
  (14) 

 

IV. SIMULATION RESULTS 

- The Proposed CS-based detectors are compared to that of correlator detectors used in [16], 

[22]. : 

1

0

1
( ) ( )

wN

k

kw

g t r t
N





 
 and tradition correlator (i.e. analog-template estimation followed by 

correlator based detector.). 

- 10000N   symbols are transmitted. 

 

1. BER Performance for Different Propagation Scenarios :  

 
Fig. 4.  Indoor residential BER performance for CS-Correlator, CS-Rake, and traditional correlator with / 0.36K N  . 

- The CS-Correlator outperforms the traditional correlator for all range of SNR.  

- This shows that the reconstructed template using CS framework, ( )csg t , is more reliable for 

symbol detection than the one obtained by averaging the received pilot signal, .  

- This performance is expected since a denoising operation is inherently applied on the 

recovered signal yielding a template that is a linear combination of the transmitted pulses. 



 

 

13 

- The performance of CS-correlator for LOS channel is better than that for NLOS channel.  

- This is also expected since NLOS channel introduces more multipath components than LOS 

channel, yielding thus a received UWB signal with less sparsity.  

- CS-Rake outperforms the correlator-based detectors for LOS channel and yields competitive 

performance to that yielded by the traditional correlator for NLOS channel.  

- As can be seen, CS-Rake degrades its performance for dense multipath channel since the CS 

channel estimation is unable to resolve the strongest paths among the multiple closely spaced 

propagation paths.  

 

2. BER Performance for Different Number of Pilot Symbols :  

 

Fig. 5.  BER performance for different number of pilot symbols, with / 0.36K N   

- Increasing the number of pilot waveforms, improvement in the channel estimation is 

achieved, leading to a performance gain on all the methods.  
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3. BER Performance for Different Number of Projections :  

 
 

Fig. 6.  BER performance for different number of projections. 

 

- As expected, the CS-correlator’s performance improves as the number of projections 

increases.  

- More interestingly, by sampling the random projected signal at 30% of the signal’s sampling 

rate, the CS-Correlator achieves the same performance as that yielded by the traditional 

correlator. 

- Thus, with reduced ADC resources, the CS framework is able to reconstruct a template as 

good as the one obtained sampling the received UWB signal at a much higher sampling rate. 

 

V. DISCUSSION 

- What is the relation between estimated parameters and CS? 

Because of the UWB property, and the equation (3) we can use the result of MP for 

estimate the parameters. 

- What is the value of dictionary? (form time domain to discrete domain) 

  From the uniformly sampled D , we can generate the dictionary   as shifted version of 

pulse signal. 

- How to reduce the # of samples? 

  If we think about one frame, in tradition method, we need all sample point of frame (e.g. 

2048) but, by using CS, form only 250 samples, we can reconstruct the original signals. 


