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Multipath is investigated rather than a single path for a greedy type of search
In the final moment, the most promising path is chosen.

They propose “breadth-first search” and “depth-first search” for greedy algorithm.
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They provide analysis for the performance of MMP with RIP

I. Introduction
CS

» The sparse signals xeR" can be reconstructed from the compressed measurements
y =®x e R" even when the system representation is underdetermined (m<n), as long as the

signal to be recovered is sparse (i.e., number of nonzero elements in the vector is small).

Reconstruction
1. Lo mimimization
» K-sparse signal x can be accurately reconstructed using m=2K measurements in a

noiseless scenario [2].

2. L1 minimization
» Since £y-minimization problem is NP-hard and hence not so practical, early works focused
on the reconstruction of sparse signals using {;-norm minimization technique (e.g., basis

pursuit [2]).

3. Greedy search

» the greedy search approach is designed to further reduce the computational complexity of



the basis pursuit.

» In a nutshell, greedy algorithms identify the support (index set of nonzero elements) of

the sparse vector x in an iterative fashion, generating a series of locally optimal updates.

OMP

» In the orthogonal matching pursuit (OMP) algorithm, the index of column that maximizes

the magnitude of correlation between columns of ® and the modified measurements (often
called residual) is chosen as a new support element in each iteration.
If at least one incorrect index is chosen in the middle of the search, the output of OMP

will be simply incorrect.

II. MMP algorithm

L0 minimization

min”x”0 subject to @x =y. (1)

OMP

OMP is simple to implement and also computationally efficient
Due to the choice of the single candidate it is very sensitive to the selection of index.
The output of OMP will be simply wrong if an incorrect index is chosen in the middle of the

search.

Multiple indices

>

StOMP algorithm identifying more than one indices in each iteration was proposed. In this
approach, indices whose magnitude of correlation exceeds a deliberately designed threshold
are chosen [9].

CoSaMP and SP algorithms maintaining K supports in each iteration were introduced.

In [12], generalized OMP (gOMP), was proposed. By choosing multiple indices
corresponding to N (> 1) largest correlation in magnitude in each iteration, gOMP reduces

the misdetection probability at the expense of increase in the false alarm probability.



MMP

» The MMP algorithm searches multiple promising candidates and then chooses one
minimizing the residual in the final moment.

» Due to the investigation of multiple full-blown candidates instead of partial ones, MMP
improves the chance of selecting the true support.

» The effect of the random noise vector cannot be accurately judged by just looking at the partial
candidate, and more importantly, incorrect decision affects subsequent decision in many
greedy algorithms.

» MMP is effective in noisy scenario.

0 ¢
'._-.l_.. ,---A_-‘
Istiteration ! {2} 1! ol 1_gay 1 &1
l 1= 1 ={2] 52:‘4‘ :S

2d jteration

s N . ¥ " . « L
3 iteration {2.14}1 lsf=:3.1.4: s3={2,1,5} 53 ={2.,5.4) s3 ={4.1,3} si={4.5.3) 15

(a) OMP (b) MMP

Fig. 1. Comparison between the OMP and the MMP algorithm (L = 2 and K = 3).

III. Perfect Recovery Condition for MMP

» A recovery condition under which MMP can accurately recover K-sparse signals in the
noiseless scenario.

» two parts:
B A condition ensuring the successful recovery in the initial iteration (k = 1).

B A condition guaranteeing the success in the non-initial iteration (k >1).



B By success we mean that an index of the true support T is chosen in the iteration.

RIP

> A sensing matrix @ is said to satisfy the RIP of order K if there exists a constant ¢ € (0,1)

such that
(1-0)|x]; <[ox|; <1 +o)|x[; @

for any K-sparse vector x.

» The minimum of all constants ¢ satisfying (2) is called the restricted isometry constant

Sy .

Lemma 3.1 (Monotonicity of the restricted isometry constant [1]): If the sensing matrix ®

satisfies the RIP of both orders K; and K,, then 6, <o, for any K, <K,.

Lemma 3.2 (Consequences of RIP [1]): For | cQ, if ‘SM <1 then for any xeR"

1=8)[x], <[@, '@ x|, <1+5)]x], 3)
1 1
1+§M 1—5‘,‘

Il <@, @), < 7=Ix], @

Lemma 3.3 (Lemma 2.1 in [19]): Let I,,1,cQ be two disjoint sets (I,NIl,=). If
o <1, then

[ty +]1]

ch,] ‘o, x|,

<
AN

xl, )
holds for any x.

Lemma 3.4: For mxn matrix @,

(I)||2 satisfies

||(I)||2 = \/ﬂmax ((I) '(I)) < \/1 + 5min(m,n) (6)



A. Success Condition in Initial Iteration

In the first iteration, MMP computes the correlation betwaerasurementg and each column
¢; of ® and then selecté indices whose column has largest correlation in magnitudée A

be the set of_. indices chosen in the first iteration, then

| @hyll, = max [> 160y W)
el

Following theorem provides a condition under which at least correct index belonging t6
is chosen in the first iteration.

Theorem 3.5:Supposex € R" is K-sparse signal, then among candidates at least one
contains the correct index in the first iteration of the MMBalthm if the sensing matrixp
satisfies the RIP with

VL
) < . 8
K+L \/E—‘—\/Z ( )
Proof: From (1), we have
1 1 )
— || = ——max i 9
1 2
- gy iy 10
g}gg\/|l|;|<¢ vl (10)
1
>\ > eyl (11)
€T
1 /
= Uk @7y, (12)
where|T'| = K. Sincey = ®,x7, we further have
!/ L /
[@4yl, = /% 125 @rxall, (13)
L
>\ (1= 0x) [x, (14)

where [1%) is due to Lemnia 3.2.

On the other hand, when an incorrect index is chosen in theitirstion (i.e.,ANT = (),

1LYl = 1®4 Prxrlly < Orcir X[l (15)
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where the inequality follows from Lemma 8.3. This inequatibntradicts[(14) if

L

oL |x|ly < Ve (1—0g) [Ix]], - (16)

In other words, under_(16) at least one correct index shoeldthnsen in the first iteration
(T} € A). Further, sincelx < dx,n by Lemma3.1L,[(16) holds true if

L

Orr %[, < 174 (1 —=6xsr) x5 (17)

Equivalently,

0 <L
S TRAVE

In summary, iféx,, < % then amongL indices at least one belongs 70 in the first

iteration of MMP. [ |

(18)

B. Success Condition in Non-initial Iterations

Now we turn to the analysis of the success condition for mitnal iterations. In thek-th
iteration ¢ > 1), we focus on the candidaté—' whose elements are exclusively from the true
supportT (see Fig[B). In short, our key finding is that at least ond. ahdices chosen by

is from T underig ., < Formal description of our finding is as follows.

VL
VE+3VL®
Theorem 3.6:Suppose a candidaté~" includes indices only irf", then amongL children

generated frons*~! at least one candidate chooses an inde¥ innder

4] < VL
B> VK + 3V
Before we proceed, we provide definitions and lemmas usefubur analysis. Letf; be

(19)

the i-th largest correlated index in magnitude betwaén' and {¢;}crc. That is, f; =

arg max [(¢;,x*1)|. Let F|, be the set of these indices'( = {f1, fo, -+, fL}).
JETN{f1, s f(5—1)}

Also, let of be thej-th largest correlation in magnitude between the residtial associated

with s¥~' and columns indexed by incorrect indices. That is,

of = | (gt ). (20)

Note thato’ are ordered in magnitudex{ > o5 > ---). Finally, let 3} be thej-th largest

correlation in magnitude betweati~' and columns whose indices belongZo- T/*~! (the set

of remaining true indices). That is,
B = e T )] (21)
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Fig. 3. Relationship between the candidategin- 1)-th iteration and those ik-th iteration. Candidates inside the gray box

contain elements of true suppdftonly.

wherey(j) = arg max |(¢;,x*71)|. Similar toa¥, ¥ are ordered in magni-
FE(T=TF1\{p(1),....0(i—1)}
tude 3* > g% > ...). In the following lemmas, we provide the upper boundnéfand lower

bound of 5}.

Lemma 3.7:a% satisfies

Spaerdic Koo
k L+k—1VK
aj < <5L+K—k+1 + :

1 — 01 VL
Proof: See AppendiXx_A. u
Lemma 3.8:4F satisfies

2. (22)

1 B 1 B X 1@71

35 (1 gy - VIOV OO L (23)
1— 0,1 vK —k+1

Proof: See AppendiXB. [

Proof of Theorem 3.6 From the definitions ohf and 3%, it is clear that a (sufficient)

condition under which at least one out bfindices is true ink-th iteration of MMP is

af, < i (24)
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Fig. 4. Comparison between?, and f. If BF > o%;, then amongL indices chosen irk-iteration, at least one is from the

true supportT'.

First, from Lemma 3]1 and 3.7, we have

o < (o 1 Orko1dx HXT_S?J 2 (25)
L = LKkl T NG
5L+K5L+K) HXT_STI 2
< ) + 26
< (0 e ) 2 29)
5L+K HXT_S;?71 2. (27)
1—6x VL

Also, from Lemmd_ 3.1 and 3.8, we have

14+ 0x_ 1+ 0p_10 Xp_gh=1
B 2 (1 g - YOV DO rsl, (28)
1 — 01 VK —k+1
(1+dr+k) 5L+K) HXT_S?A 2
> |1-96 — 29
> ( o — el ) Foin (29)
=50 e (30)
1—0p4x VK —k+1
Using (24), [2V), and_(30), we can obtain the sufficient cbodiof (24) as
1 -3k HXT‘S?A 2 Or+ K HXT‘SQM 2 (31)
1=0pix VK—k+1 " 1-dx VL
From (31), we further have
VL (32)

4] < )

M VR —k+1+3VE
SincevK —k+1 < VK for k > 1, (32) holds undep,, ; < ﬁ which completes the
proof. [ |
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APPENDIX A

PROOF OFLEMMA 3.7

Proof: The /,-norm of the correlationb), r*~! is expressed as

L P R e (102)
j J J 2
= (I);;L (I.T—Tf_le—sf_l - (I)%LPT]@A @T_T;c—IXT_T;c—l ) (103)
< @;«1 P g1 Xp_pr-r ||+ HCI)%LPTE*ICI)T—T?“*XT_TE*I (104)
J J 2 J J J 2

SinceF, andT — sf‘l are disjoint ¢, N (T — sf‘l) = ()) and also noting that the number of
correct indices insjf is k& by the hypothesis,
|F|+ T — s =L+ K—(k—1). (105)

Using this together with Lemma 3.3,

‘)‘I’%L‘I’T_rf—le_sf—l , <OLyK-—ki1 Xk, (106)
Similarly, noting thatF;, N7/ = and|Fy| + |s5~'| = L + k — 1, we have
H‘I’;?LPTJEA‘E’Tfo*lXTfo*l ) < Op4k-1 ‘I’TT;CA ‘E’TfT]k*lXTfo*l , (107)
where
HCI)TTk—l(I)T—Tf—le—Tf—l %’ (cI)/TE*ICI)T?"‘l) B P P i1 X (108)
’ ? ! J ’ 7o le
S _15k1 CI)/T;“*I(I)T—T]@_le—Tf_l ) (109)
< P e, a0
e oy

where (109) and (110) follow from Lemma 3.2 and 3.3, respectively. Siifcé and7 — 7}~
are disjoint, if the number of correct indij::;sjgtl is k — 1, then

T U (T —TF )| =k -1+ K—(k—1). (112)
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Using (104), [(106),[(107), and (111), we have

_ 5L k—léK
H@};er 1H2 < <5L+K—k+1 + 14_—751%1) HXT—Tf’l 5 (113)
Using the norm inequality||z||, < /||z], ||z,), we further have
1 L
|@p ", = —=D o (114)
L 2 \/Z —
> [|@, ", (115)
1
> ﬁmﬁ =V Lok (116)
whereok is | (¢, r*1)| H andao¥ > o > ... > ok. Combining [1IB) and (116), we have
Op+k-10
Sppr 1 + 1K HXT_TlH > Lok, (117)
1— 5k—1 J 2
and hence
Opar10 HXT_T%H
= L+K—k+1 1 — 5k—1 \/Z ( )
|
APPENDIX B
PROOF OFLEMMA [3.8
Proof: Since 5F is the largest correlation in magnitude betweén! and {9} jer_pi
([{Bp(), 1)) H it is clear that
BY > (s, r* )] (119)
forall j € T'— T/, and hence
1
k k—1
R (= |2 | (120)
I S (rY PL. @ 121
T UK halltrr P (120)
5fj -, TC\{fl 77777 f(] 1) }|<¢j7rk71>|
*p(j) = arg max {65,771

FE(T=TF= 1)\ {e(1),...s0(G—1)}
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where [121) follows fromr*~! =y — @kali';k,ly = P,y Using the triangle inequality,
J J J

1
ﬁf B —W HQ;_Tfﬂpfi&lQT—T]@*XT—T;“* ) (122)
H T_ Tk 1 T_ Tf’lXT—Tf” H‘I’; Tk 1PTf’1(I)T—Tf*1XT—Tf“’1
2. (123)
K—-k+1

Since|T - T/ ' =K — (k- 1),

H‘I)ér_Tkal‘I)T—Tffle_Tffl ) > (1= Ok—k+1) HXT—Tf’l (124)
and also

H(I)/T—Tf”PTf’l(I)T—Tf*XT—Tf’l ) S H‘I’T Tk 1 ) PTFA‘I’T_TJRAXT_TJEA ) (125)

(126)

< VIt O0r-kh HPTJE*HI)T—T;“”XT—T]E* ,

where [(126) follows from Lemm@a_3.4. Further, we have

[Py @y iy i (127)
j J J 2
—1
= HQ)Tfl (‘I’&wk,l‘I)qu) q)gr?ffl(I)T—kale—kal (128)
J J 7 J J 9
-1
< VT (P @) @ @y iy g (129)
j J j J J 9
/14051
~ 1—76]6_1 ‘b/T]kfl (I)T_T]{cleT_T]{cfl ) (130)
) 1+ 05—
< (k—1)+K—(k—1) + Ok—1 . (131)
1— 5k—1 J 2
where [129) and_ (130) are from the definition of RIP and Lernm@a@31) follows from Lemma
BIand|T/ ' u(T—-T/")|=(k-1)+ K —(k—1) sinceT/ " andT — T/~ are disjoint
sets. Using[(126) and (181), we obtain
140k 1+ 0g_10
@) s Py | < VEFICEVIEO s
Finally, by combining [(123),[(124) and (132), we have
1+ 5K—k 1\/1 + 5k—15K HXT—TI“*1
b> (1 -0k _V i L2 133
51_< K—k+1 T S (133)
|
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