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 Multipath is investigated rather than a single path for a greedy type of search 

 In the final moment, the most promising path is chosen. 

 They propose “breadth-first search” and “depth-first search” for greedy algorithm. 

 They provide analysis for the performance of MMP with RIP 

 

I. Introduction 

CS 

 The sparse signals nx   can be reconstructed from the compressed measurements 
n y Φx   even when the system representation is underdetermined (m<n), as long as the 

signal to be recovered is sparse (i.e., number of nonzero elements in the vector is small). 

 

Reconstruction 
1. L0 mimimization 

 K-sparse signal x can be accurately reconstructed using m=2K  measurements in a 

noiseless scenario [2]. 

 

2. L1 minimization 

 Since ℓ0-minimization problem is NP-hard and hence not so practical, early works focused 

on the reconstruction of sparse signals using ℓ1-norm minimization technique (e.g., basis 

pursuit [2]). 

 

3. Greedy search 

 the greedy search approach is designed to further reduce the computational complexity of 
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the basis pursuit.  

 In a nutshell, greedy algorithms identify the support (index set of nonzero elements) of 

the sparse vector x in an iterative fashion, generating a series of locally optimal updates. 

 

OMP 

  In the orthogonal matching pursuit (OMP) algorithm, the index of column that maximizes 

the magnitude of correlation between columns of Φ and the modified measurements (often 

called residual) is chosen as a new support element in each iteration. 

 If at least one incorrect index is chosen in the middle of the search, the output of OMP 

will be simply incorrect. 

 

II. MMP algorithm 

L0 minimization 

0
min  subject to 

x
x Φx y . (1) 

 

OMP 

 OMP is simple to implement and also computationally efficient 

 Due to the choice of the single candidate it is very sensitive to the selection of index. 

 The output of OMP will be simply wrong if an incorrect index is chosen in the middle of the 

search. 

 

Multiple indices 

 StOMP algorithm identifying more than one indices in each iteration was proposed. In this 

approach, indices whose magnitude of correlation exceeds a deliberately designed threshold 

are chosen [9].  

 CoSaMP and SP algorithms maintaining K supports in each iteration were introduced. 

 In [12], generalized OMP (gOMP), was proposed. By choosing multiple indices 

corresponding to N (> 1) largest correlation in magnitude in each iteration, gOMP reduces 

the misdetection probability at the expense of increase in the false alarm probability. 

 



 

MMP 

 The 

minim

 Due 

impro

 The e

candi

greed

 MMP

 

 

 

 A r

nois

 two

 

 

MMP alg

mizing the r

to the inv

oves the ch

effect of the

idate, and 

dy algorithm

P is effectiv

III.

recovery co

seless scena

o parts:  

A condition

A condition

gorithm sea

residual in t

vestigation o

hance of sel

e random no

more impo

ms.  

ve in noisy s

. Perfec

ondition und

ario. 

n ensuring t

n guarantee

arches mul

the final mom

of multiple

ecting the t

oise vector c

ortantly, inc

scenario.  

ct Reco

der which

the successf

eing the succ

ltiple prom

ment.  

 full-blown

true support

cannot be ac

correct deci

very C

MMP can

ful recovery

cess in the n

mising cand

n candidates

t.  

ccurately jud

ision affect

onditio

accurately

 in the initia

non-initial it

didates and

s instead o

dged by just

ts subseque

on for M

recover K-

al iteration (

teration (k >

d then cho

of partial on

t looking at 

ent decision

MMP 

-sparse sign

(k = 1).  

>1). 

3

ooses one

nes, MMP

the partial

n in many

nals in the

 



4 

 By success we mean that an index of the true support T is chosen in the iteration.  

 

RIP 

 A sensing matrix Φ  is said to satisfy the RIP of order K if there exists a constant (0,1)   

such that 

2 2 2

2 2 2
(1 ) (1 )    x Φx x  (2) 

 
for any K-sparse vector x. 

  The minimum of all constants   satisfying (2) is called the restricted isometry constant 

K  .  

 

Lemma 3.1 (Monotonicity of the restricted isometry constant [1]): If  the  sensing matrix Φ  

satisfies the RIP of both orders K1  and K2, then 
1 2K K   for any 1 2K K . 

 

Lemma 3.2 (Consequences of RIP [1]): For I   , if 1I   then for any Ix  , 

2 2 2
(1 ) ' (1 )I II I    x Φ Φ x x  (3) 

1

2 22

1 1
( ' )

1 1I I

I I 
 

 
x Φ Φ x x  (4) 

 

Lemma 3.3 (Lemma 2.1 in [19]): Let  1 2,I I   be  two  disjoint sets  ( 1 2I I  ).  If 

1 2
1I I   , then 

                                                            
1 2 1 2 22
'I I I I Φ Φ x x  (5) 

holds for any x . 

 

Lemma 3.4: For m×n matrix Φ , 
2

Φ  satisfies 

max min( , )2
( ' ) 1 m n   Φ Φ Φ  (6) 

 

 
  



9

A. Success Condition in Initial Iteration

In the first iteration, MMP computes the correlation betweenmeasurementsy and each column

φi of Φ and then selectsL indices whose column has largest correlation in magnitude.Let Λ

be the set ofL indices chosen in the first iteration, then

‖Φ′

Λy‖2 = max
|I|=L

√∑

i∈I

|〈φi,y〉|
2. (7)

Following theorem provides a condition under which at leastone correct index belonging toT

is chosen in the first iteration.

Theorem 3.5:Supposex ∈ R
n is K-sparse signal, then amongL candidates at least one

contains the correct index in the first iteration of the MMP algorithm if the sensing matrixΦ

satisfies the RIP with

δK+L <

√
L

√
K +

√
L
. (8)

Proof: From (7), we have

1
√
L
‖Φ′

Λy‖2 =
1

√
L
max
|I|=L

√∑

i∈I

|〈φi,y〉|
2 (9)

= max
|I|=L

√
1

|I|

∑

i∈I

|〈φi,y〉|
2 (10)

≥

√
1

|T |

∑

i∈T

|〈φi,y〉|
2 (11)

=
1

√
K

‖Φ′

Ty‖2 (12)

where|T | = K. Sincey = ΦTxT , we further have

‖Φ′

Λy‖2 ≥

√
L

K
‖Φ′

TΦTxT‖2 (13)

≥

√
L

K
(1− δK) ‖x‖2 (14)

where (14) is due to Lemma 3.2.

On the other hand, when an incorrect index is chosen in the first iteration (i.e.,Λ ∩ T = ∅),

‖Φ′

Λy‖2 = ‖Φ′

ΛΦTxT‖2 ≤ δK+L ‖x‖2 , (15)
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where the inequality follows from Lemma 3.3. This inequality contradicts (14) if

δK+L ‖x‖2 <

√
L

K
(1− δK) ‖x‖2 . (16)

In other words, under (16) at least one correct index should be chosen in the first iteration

(T 1
i ∈ Λ). Further, sinceδK ≤ δK+N by Lemma 3.1, (16) holds true if

δK+L ‖x‖2 <

√
L

K
(1− δK+L) ‖x‖2 . (17)

Equivalently,

δK+L <

√
L

√
K +

√
L
. (18)

In summary, ifδK+L <
√

L
√

K+
√

L
, then amongL indices at least one belongs toT in the first

iteration of MMP.

B. Success Condition in Non-initial Iterations

Now we turn to the analysis of the success condition for non-initial iterations. In thek-th

iteration (k > 1), we focus on the candidatesk−1
i whose elements are exclusively from the true

supportT (see Fig. 3). In short, our key finding is that at least one ofL indices chosen bysk−1
i

is from T underδK+L <
√

L
√

K+3
√

L
. Formal description of our finding is as follows.

Theorem 3.6:Suppose a candidatesk−1
i includes indices only inT , then amongL children

generated fromsk−1
i at least one candidate chooses an index inT under

δK+L <

√
L

√
K + 3

√
L
. (19)

Before we proceed, we provide definitions and lemmas useful in our analysis. Letfi be

the i-th largest correlated index in magnitude betweenrk−1 and {φj}j∈TC . That is, fj =

arg max
j∈TC

\{f1,...,f(j−1)}

∣∣〈φj , r
k−1
〉∣∣. Let FL be the set of these indices (FL = {f1, f2, · · · , fL}).

Also, let αk
j be thej-th largest correlation in magnitude between the residualrk−1 associated

with sk−1
i and columns indexed by incorrect indices. That is,

αk
j =

∣∣〈φfj , r
k−1
〉∣∣ . (20)

Note thatαk
j are ordered in magnitude (αk

1 ≥ αk
2 ≥ · · · ). Finally, let βk

j be thej-th largest

correlation in magnitude betweenrk−1 and columns whose indices belong toT − T k−1
i (the set

of remaining true indices). That is,

βk
j =

∣∣〈φϕ(j), r
k−1
〉∣∣ (21)

August 26, 2013 DRAFT
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Fig. 3. Relationship between the candidates in(k − 1)-th iteration and those ink-th iteration. Candidates inside the gray box

contain elements of true supportT only.

whereϕ(j) = arg max
j∈(T−T k−1)\{ϕ(1),...,ϕ(j−1)}

∣∣〈φj , r
k−1
〉∣∣. Similar toαk

j , βk
j are ordered in magni-

tude (βk
1 ≥ βk

2 ≥ · · · ). In the following lemmas, we provide the upper bound ofαk
L and lower

bound ofβk
1 .

Lemma 3.7:αk
L satisfies

αk
L ≤

(
δL+K−k+1 +

δL+k−1δK
1− δk−1

)
∥∥∥xT−T k−1

j

∥∥∥
2√

L
. (22)

Proof: See Appendix A.

Lemma 3.8:βk
1 satisfies

βk
1 ≥

(
1− δK−k+1 −

√
1 + δK−k+1

√
1 + δk−1δK

1− δk−1

) ∥∥∥xT−T k−1

j

∥∥∥
2√

K − k + 1
. (23)

Proof: See Appendix B.

Proof of Theorem 3.6: From the definitions ofαk
j and βk

j , it is clear that a (sufficient)

condition under which at least one out ofL indices is true ink-th iteration of MMP is

αk
L < βk

1 (24)
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Fig. 4. Comparison betweenαk
N andβk

1 . If βk
1 > αk

N , then amongL indices chosen inK-iteration, at least one is from the

true supportT .

First, from Lemma 3.1 and 3.7, we have

αk
L ≤

(
δL+K−k+1 +

δL+k−1δK
1− δk−1

)
∥∥∥xT−sk−1

j

∥∥∥
2√

L
(25)

≤

(
δL+K +

δL+KδL+K

1− δL+K

)
∥∥∥xT−sk−1

j

∥∥∥
2√

L
(26)

=
δL+K

1− δL+K

∥∥∥xT−sk−1

j

∥∥∥
2√

L
. (27)

Also, from Lemma 3.1 and 3.8, we have

βk
1 ≥

(
1− δK−k+1 −

√
1 + δK−k+1

√
1 + δk−1δK

1− δk−1

) ∥∥∥xT−sk−1

j

∥∥∥
2√

K − k + 1
(28)

≥

(
1− δL+K −

(1 + δL+K) δL+K

(1− δL+K)

)
∥∥∥xT−sk−1

j

∥∥∥
2√

K − k + 1
(29)

=
1− 3δL+K

1− δL+K

∥∥∥xT−sk−1

j

∥∥∥
2√

K − k + 1
. (30)

Using (24), (27), and (30), we can obtain the sufficient condition of (24) as

1− 3δL+K

1− δL+K

∥∥∥xT−sk−1

j

∥∥∥
2√

K − k + 1
>

δL+K

1− δL+K

∥∥∥xT−sk−1

j

∥∥∥
2√

L
. (31)

From (31), we further have

δL+K <

√
L

√
K − k + 1 + 3

√
L
. (32)

Since
√
K − k + 1 <

√
K for k > 1, (32) holds underδL+K <

√

L
√

K+3
√

L
, which completes the

proof.

August 26, 2013 DRAFT
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APPENDIX A

PROOF OFLEMMA 3.7

Proof: The ℓ2-norm of the correlationΦ′

FL
rk−1 is expressed as

∥∥Φ′

FL
rk−1

∥∥
2

=
∥∥∥Φ′

FL
P⊥

sk−1

j

Φ
T−T k−1

j
x
T−T k−1

j

∥∥∥
2

(102)

=
∥∥∥Φ′

FL
Φ

T−T k−1

j
x
T−sk−1

j
−Φ′

FL
P

T k−1

j
Φ

T−T k−1

j
x
T−T k−1

j

∥∥∥
2

(103)

≤
∥∥∥Φ′

FL
ΦT−sk−1

j
xT−T k−1

j

∥∥∥
2
+
∥∥∥Φ′

FL
PT k−1

j
ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2
. (104)

SinceFL andT − sk−1
j are disjoint (FL ∩ (T − sk−1

j ) = ∅) and also noting that the number of

correct indices inskj is k by the hypothesis,

|FL|+ |T − sk−1
j | = L+K − (k − 1). (105)

Using this together with Lemma 3.3,
∥∥∥Φ′

FL
ΦT−T k−1

j
xT−sk−1

j

∥∥∥
2
≤ δL+K−k+1

∥∥∥xT−T k−1

j

∥∥∥
2
. (106)

Similarly, noting thatFL ∩ T k−1
j = ∅ and |FL|+ |sk−1

j | = L+ k − 1, we have
∥∥∥Φ′

FL
PT k−1

j
ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2
≤ δL+k−1

∥∥∥∥Φ
†

T k−1

j

ΦT−T k−1

j
xT−T k−1

j

∥∥∥∥
2

(107)

where
∥∥∥∥Φ

†

T k−1

j

ΦT−T k−1

j
xT−T k−1

j

∥∥∥∥
2

=

∥∥∥∥
(
Φ′

T k−1

j

ΦT k−1

j

)
−1

Φ′

T k−1

j

ΦT−T k−1

j
xT−T k−1

j

∥∥∥∥
2

(108)

≤
1

1− δk−1

∥∥∥Φ′

T k−1

j

ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2

(109)

≤
δ(k−1)+K−(k−1)

1− δk−1

∥∥∥xT−T k−1

j

∥∥∥
2

(110)

=
δK

1− δk−1

∥∥∥xT−T k−1

j

∥∥∥
2

(111)

where (109) and (110) follow from Lemma 3.2 and 3.3, respectively. SinceT k−1
j andT − T k−1

j

are disjoint, if the number of correct indices inT k−1
j is k − 1, then

∣∣T k−1
j ∪

(
T − T k−1

j

)∣∣ = (k − 1) +K − (k − 1). (112)
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Using (104), (106), (107), and (111), we have

∥∥Φ′

FL
rk−1

∥∥
2
≤

(
δL+K−k+1 +

δL+k−1δK
1− δk−1

)∥∥∥xT−T k−1

j

∥∥∥
2
. (113)

Using the norm inequality
(
‖z‖1 ≤

√
‖z‖0 ‖z‖2

)
, we further have

∥∥Φ′

FL
rk−1

∥∥
2

≥
1

√
L

L∑

i=1

αk
i (114)

≥
∥∥Φ′

FL
rk−1

∥∥
2

(115)

≥
1

√
L
Lαk

L =
√
Lαk

L (116)

whereαk
j is

∣∣〈φfj , r
k−1
〉∣∣ 5 andαk

1 ≥ αk
2 ≥ · · · ≥ αk

L. Combining (113) and (116), we have
(
δL+K−k+1 +

δL+k−1δK
1− δk−1

)∥∥∥xT−T k−1

j

∥∥∥
2
≥

√
Lαk

L, (117)

and hence

αk
L ≤

(
δL+K−k+1 +

δL+k−1δK
1− δk−1

)
∥∥∥xT−T k−1

j

∥∥∥
2√

L
. (118)

APPENDIX B

PROOF OFLEMMA 3.8

Proof: Since βk
1 is the largest correlation in magnitude betweenrk−1 and {φj}j∈T−T k−1

j(∣∣〈φϕ(j), r
k−1
〉∣∣)6, it is clear that

βk
1 ≥

∣∣〈φj, r
k−1
〉∣∣ (119)

for all j ∈ T − T k−1
j , and hence

βk
1 ≥

1√
K − (k − 1)

∥∥∥Φ′

T−T k−1

j

rk−1
∥∥∥ (120)

=
1

√
K − k + 1

∥∥∥Φ′

T−T k−1

j

P⊥

T k−1

j

Φx

∥∥∥ (121)

5fj = arg max
j∈TC

\{f1,...,f(j−1)}

∣

∣

〈

φj , r
k−1

〉∣

∣

6ϕ(j) = arg max
j∈(T−Tk−1)\{ϕ(1),...,ϕ(j−1)}

∣

∣

〈

φj , r
k−1

〉∣

∣
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where (121) follows fromrk−1 = y−ΦT k−1

j
Φ

†

T k−1

j

y = P⊥

T k−1

j

y. Using the triangle inequality,

βk
1 ≥

1
√
K − k + 1

∥∥∥Φ′

T−T k−1

j

P⊥

T k−1

j

ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2

(122)

≥

∥∥∥∥Φ′

T−T k−1

j

ΦT−T k−1

j
xT−T k−1

j

∥∥∥∥
2

−

∥∥∥∥Φ′

T−T k−1

j

PT k−1

j
ΦT−T k−1

j
xT−T k−1

j

∥∥∥∥
2√

K − k + 1
. (123)

Since
∣∣T − T k−1

j

∣∣ = K − (k − 1),
∥∥∥Φ′

T−T k−1

j

ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2
≥ (1− δK−k+1)

∥∥∥xT−T k−1

j

∥∥∥ (124)

and also
∥∥∥Φ′

T−T k−1

j

PT k−1

j
ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2

≤
∥∥∥Φ′

T−T k−1

j

∥∥∥
2

∥∥∥PT k−1

j
ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2

(125)

≤
√

1 + δK−k+1

∥∥∥PT k−1

j
ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2

(126)

where (126) follows from Lemma 3.4. Further, we have
∥∥∥PT k−1

j
ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2

(127)

=

∥∥∥∥ΦT k−1

j

(
Φ′

T k−1

j

ΦT k−1

j

)
−1

Φ′

T k−1

j

ΦT−T k−1

j
xT−T k−1

j

∥∥∥∥
2

(128)

≤
√
1 + δk−1

∥∥∥∥
(
Φ′

T k−1

j

ΦT k−1

j

)
−1

Φ′

T k−1

j

ΦT−T k−1

j
xT−T k−1

j

∥∥∥∥
2

(129)

≤

√
1 + δk−1

1− δk−1

∥∥∥Φ′

T k−1

j

ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2

(130)

≤
δ(k−1)+K−(k−1)

√
1 + δk−1

1− δk−1

∥∥∥xT−T k−1

j

∥∥∥
2

(131)

where (129) and (130) are from the definition of RIP and Lemma 3.2. (131) follows from Lemma

3.3 and
∣∣T k−1

j ∪
(
T − T k−1

j

)∣∣ = (k − 1) +K − (k − 1) sinceT k−1
j andT − T k−1

j are disjoint

sets. Using (126) and (131), we obtain
∥∥∥Φ′

T−T k−1

j

PT k−1

j
ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2
≤

√
1 + δK−k+1

√
1 + δk−1δK

1− δk−1

∥∥∥xT−T k−1

j

∥∥∥
2
. (132)

Finally, by combining (123), (124) and (132), we have

βk
1 ≥

(
1− δK−k+1 −

√
1 + δK−k+1

√
1 + δk−1δK

1− δk−1

) ∥∥∥xT−T k−1

j

∥∥∥
2√

K − k + 1
. (133)
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