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 Multipath is investigated rather than a single path for a greedy type of search 

 In the final moment, the most promising path is chosen. 

 They propose “breadth-first search” and “depth-first search” for greedy algorithm. 

 They provide analysis for the performance of MMP with RIP 

 

I. Introduction 

CS 

 The sparse signals nx   can be reconstructed from the compressed measurements 
n y Φx   even when the system representation is underdetermined (m<n), as long as the 

signal to be recovered is sparse (i.e., number of nonzero elements in the vector is small). 

 

Reconstruction 
1. L0 mimimization 

 K-sparse signal x can be accurately reconstructed using m=2K  measurements in a 

noiseless scenario [2]. 

 

2. L1 minimization 

 Since ℓ0-minimization problem is NP-hard and hence not so practical, early works focused 

on the reconstruction of sparse signals using ℓ1-norm minimization technique (e.g., basis 

pursuit [2]). 

 

3. Greedy search 

 the greedy search approach is designed to further reduce the computational complexity of 
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the basis pursuit.  

 In a nutshell, greedy algorithms identify the support (index set of nonzero elements) of 

the sparse vector x in an iterative fashion, generating a series of locally optimal updates. 

 

OMP 

  In the orthogonal matching pursuit (OMP) algorithm, the index of column that maximizes 

the magnitude of correlation between columns of Φ and the modified measurements (often 

called residual) is chosen as a new support element in each iteration. 

 If at least one incorrect index is chosen in the middle of the search, the output of OMP 

will be simply incorrect. 

 

II. MMP algorithm 

L0 minimization 

0
min  subject to 

x
x Φx y . (1) 

 

OMP 

 OMP is simple to implement and also computationally efficient 

 Due to the choice of the single candidate it is very sensitive to the selection of index. 

 The output of OMP will be simply wrong if an incorrect index is chosen in the middle of the 

search. 

 

Multiple indices 

 StOMP algorithm identifying more than one indices in each iteration was proposed. In this 

approach, indices whose magnitude of correlation exceeds a deliberately designed threshold 

are chosen [9].  

 CoSaMP and SP algorithms maintaining K supports in each iteration were introduced. 

 In [12], generalized OMP (gOMP), was proposed. By choosing multiple indices 

corresponding to N (> 1) largest correlation in magnitude in each iteration, gOMP reduces 

the misdetection probability at the expense of increase in the false alarm probability. 
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 By success we mean that an index of the true support T is chosen in the iteration.  

 

RIP 

 A sensing matrix Φ  is said to satisfy the RIP of order K if there exists a constant (0,1)   

such that 

2 2 2

2 2 2
(1 ) (1 )    x Φx x  (2) 

 
for any K-sparse vector x. 

  The minimum of all constants   satisfying (2) is called the restricted isometry constant 

K  .  

 

Lemma 3.1 (Monotonicity of the restricted isometry constant [1]): If  the  sensing matrix Φ  

satisfies the RIP of both orders K1  and K2, then 
1 2K K   for any 1 2K K . 

 

Lemma 3.2 (Consequences of RIP [1]): For I   , if 1I   then for any Ix  , 

2 2 2
(1 ) ' (1 )I II I    x Φ Φ x x  (3) 

1

2 22

1 1
( ' )

1 1I I

I I 
 

 
x Φ Φ x x  (4) 

 

Lemma 3.3 (Lemma 2.1 in [19]): Let  1 2,I I   be  two  disjoint sets  ( 1 2I I  ).  If 

1 2
1I I   , then 

                                                            
1 2 1 2 22
'I I I I Φ Φ x x  (5) 

holds for any x . 

 

Lemma 3.4: For m×n matrix Φ , 
2

Φ  satisfies 

max min( , )2
( ' ) 1 m n   Φ Φ Φ  (6) 
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A. Success Condition in Initial Iteration

In the first iteration, MMP computes the correlation betweenmeasurementsy and each column

φi of Φ and then selectsL indices whose column has largest correlation in magnitude.Let Λ

be the set ofL indices chosen in the first iteration, then

‖Φ′

Λy‖2 = max
|I|=L

√∑

i∈I

|〈φi,y〉|
2. (7)

Following theorem provides a condition under which at leastone correct index belonging toT

is chosen in the first iteration.

Theorem 3.5:Supposex ∈ R
n is K-sparse signal, then amongL candidates at least one

contains the correct index in the first iteration of the MMP algorithm if the sensing matrixΦ

satisfies the RIP with

δK+L <

√
L

√
K +

√
L
. (8)

Proof: From (7), we have

1
√
L
‖Φ′

Λy‖2 =
1

√
L
max
|I|=L

√∑

i∈I

|〈φi,y〉|
2 (9)

= max
|I|=L

√
1

|I|

∑

i∈I

|〈φi,y〉|
2 (10)

≥

√
1

|T |

∑

i∈T

|〈φi,y〉|
2 (11)

=
1

√
K

‖Φ′

Ty‖2 (12)

where|T | = K. Sincey = ΦTxT , we further have

‖Φ′

Λy‖2 ≥

√
L

K
‖Φ′

TΦTxT‖2 (13)

≥

√
L

K
(1− δK) ‖x‖2 (14)

where (14) is due to Lemma 3.2.

On the other hand, when an incorrect index is chosen in the first iteration (i.e.,Λ ∩ T = ∅),

‖Φ′

Λy‖2 = ‖Φ′

ΛΦTxT‖2 ≤ δK+L ‖x‖2 , (15)
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where the inequality follows from Lemma 3.3. This inequality contradicts (14) if

δK+L ‖x‖2 <

√
L

K
(1− δK) ‖x‖2 . (16)

In other words, under (16) at least one correct index should be chosen in the first iteration

(T 1
i ∈ Λ). Further, sinceδK ≤ δK+N by Lemma 3.1, (16) holds true if

δK+L ‖x‖2 <

√
L

K
(1− δK+L) ‖x‖2 . (17)

Equivalently,

δK+L <

√
L

√
K +

√
L
. (18)

In summary, ifδK+L <
√

L
√

K+
√

L
, then amongL indices at least one belongs toT in the first

iteration of MMP.

B. Success Condition in Non-initial Iterations

Now we turn to the analysis of the success condition for non-initial iterations. In thek-th

iteration (k > 1), we focus on the candidatesk−1
i whose elements are exclusively from the true

supportT (see Fig. 3). In short, our key finding is that at least one ofL indices chosen bysk−1
i

is from T underδK+L <
√

L
√

K+3
√

L
. Formal description of our finding is as follows.

Theorem 3.6:Suppose a candidatesk−1
i includes indices only inT , then amongL children

generated fromsk−1
i at least one candidate chooses an index inT under

δK+L <

√
L

√
K + 3

√
L
. (19)

Before we proceed, we provide definitions and lemmas useful in our analysis. Letfi be

the i-th largest correlated index in magnitude betweenrk−1 and {φj}j∈TC . That is, fj =

arg max
j∈TC

\{f1,...,f(j−1)}

∣∣〈φj , r
k−1
〉∣∣. Let FL be the set of these indices (FL = {f1, f2, · · · , fL}).

Also, let αk
j be thej-th largest correlation in magnitude between the residualrk−1 associated

with sk−1
i and columns indexed by incorrect indices. That is,

αk
j =

∣∣〈φfj , r
k−1
〉∣∣ . (20)

Note thatαk
j are ordered in magnitude (αk

1 ≥ αk
2 ≥ · · · ). Finally, let βk

j be thej-th largest

correlation in magnitude betweenrk−1 and columns whose indices belong toT − T k−1
i (the set

of remaining true indices). That is,

βk
j =

∣∣〈φϕ(j), r
k−1
〉∣∣ (21)
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Fig. 3. Relationship between the candidates in(k − 1)-th iteration and those ink-th iteration. Candidates inside the gray box

contain elements of true supportT only.

whereϕ(j) = arg max
j∈(T−T k−1)\{ϕ(1),...,ϕ(j−1)}

∣∣〈φj , r
k−1
〉∣∣. Similar toαk

j , βk
j are ordered in magni-

tude (βk
1 ≥ βk

2 ≥ · · · ). In the following lemmas, we provide the upper bound ofαk
L and lower

bound ofβk
1 .

Lemma 3.7:αk
L satisfies

αk
L ≤

(
δL+K−k+1 +

δL+k−1δK
1− δk−1

)
∥∥∥xT−T k−1

j

∥∥∥
2√

L
. (22)

Proof: See Appendix A.

Lemma 3.8:βk
1 satisfies

βk
1 ≥

(
1− δK−k+1 −

√
1 + δK−k+1

√
1 + δk−1δK

1− δk−1

) ∥∥∥xT−T k−1

j

∥∥∥
2√

K − k + 1
. (23)

Proof: See Appendix B.

Proof of Theorem 3.6: From the definitions ofαk
j and βk

j , it is clear that a (sufficient)

condition under which at least one out ofL indices is true ink-th iteration of MMP is

αk
L < βk

1 (24)
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Fig. 4. Comparison betweenαk
N andβk

1 . If βk
1 > αk

N , then amongL indices chosen inK-iteration, at least one is from the

true supportT .

First, from Lemma 3.1 and 3.7, we have

αk
L ≤

(
δL+K−k+1 +

δL+k−1δK
1− δk−1

)
∥∥∥xT−sk−1

j

∥∥∥
2√

L
(25)

≤

(
δL+K +

δL+KδL+K

1− δL+K

)
∥∥∥xT−sk−1

j

∥∥∥
2√

L
(26)

=
δL+K

1− δL+K

∥∥∥xT−sk−1

j

∥∥∥
2√

L
. (27)

Also, from Lemma 3.1 and 3.8, we have

βk
1 ≥

(
1− δK−k+1 −

√
1 + δK−k+1

√
1 + δk−1δK

1− δk−1

) ∥∥∥xT−sk−1

j

∥∥∥
2√

K − k + 1
(28)

≥

(
1− δL+K −

(1 + δL+K) δL+K

(1− δL+K)

)
∥∥∥xT−sk−1

j

∥∥∥
2√

K − k + 1
(29)

=
1− 3δL+K

1− δL+K

∥∥∥xT−sk−1

j

∥∥∥
2√

K − k + 1
. (30)

Using (24), (27), and (30), we can obtain the sufficient condition of (24) as

1− 3δL+K

1− δL+K

∥∥∥xT−sk−1

j

∥∥∥
2√

K − k + 1
>

δL+K

1− δL+K

∥∥∥xT−sk−1

j

∥∥∥
2√

L
. (31)

From (31), we further have

δL+K <

√
L

√
K − k + 1 + 3

√
L
. (32)

Since
√
K − k + 1 <

√
K for k > 1, (32) holds underδL+K <

√

L
√

K+3
√

L
, which completes the

proof.

August 26, 2013 DRAFT
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APPENDIX A

PROOF OFLEMMA 3.7

Proof: The ℓ2-norm of the correlationΦ′

FL
rk−1 is expressed as

∥∥Φ′

FL
rk−1

∥∥
2

=
∥∥∥Φ′

FL
P⊥

sk−1

j

Φ
T−T k−1

j
x
T−T k−1

j

∥∥∥
2

(102)

=
∥∥∥Φ′

FL
Φ

T−T k−1

j
x
T−sk−1

j
−Φ′

FL
P

T k−1

j
Φ

T−T k−1

j
x
T−T k−1

j

∥∥∥
2

(103)

≤
∥∥∥Φ′

FL
ΦT−sk−1

j
xT−T k−1

j

∥∥∥
2
+
∥∥∥Φ′

FL
PT k−1

j
ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2
. (104)

SinceFL andT − sk−1
j are disjoint (FL ∩ (T − sk−1

j ) = ∅) and also noting that the number of

correct indices inskj is k by the hypothesis,

|FL|+ |T − sk−1
j | = L+K − (k − 1). (105)

Using this together with Lemma 3.3,
∥∥∥Φ′

FL
ΦT−T k−1

j
xT−sk−1

j

∥∥∥
2
≤ δL+K−k+1

∥∥∥xT−T k−1

j

∥∥∥
2
. (106)

Similarly, noting thatFL ∩ T k−1
j = ∅ and |FL|+ |sk−1

j | = L+ k − 1, we have
∥∥∥Φ′

FL
PT k−1

j
ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2
≤ δL+k−1

∥∥∥∥Φ
†

T k−1

j

ΦT−T k−1

j
xT−T k−1

j

∥∥∥∥
2

(107)

where
∥∥∥∥Φ

†

T k−1

j

ΦT−T k−1

j
xT−T k−1

j

∥∥∥∥
2

=

∥∥∥∥
(
Φ′

T k−1

j

ΦT k−1

j

)
−1

Φ′

T k−1

j

ΦT−T k−1

j
xT−T k−1

j

∥∥∥∥
2

(108)

≤
1

1− δk−1

∥∥∥Φ′

T k−1

j

ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2

(109)

≤
δ(k−1)+K−(k−1)

1− δk−1

∥∥∥xT−T k−1

j

∥∥∥
2

(110)

=
δK

1− δk−1

∥∥∥xT−T k−1

j

∥∥∥
2

(111)

where (109) and (110) follow from Lemma 3.2 and 3.3, respectively. SinceT k−1
j andT − T k−1

j

are disjoint, if the number of correct indices inT k−1
j is k − 1, then

∣∣T k−1
j ∪

(
T − T k−1

j

)∣∣ = (k − 1) +K − (k − 1). (112)
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Using (104), (106), (107), and (111), we have

∥∥Φ′

FL
rk−1

∥∥
2
≤

(
δL+K−k+1 +

δL+k−1δK
1− δk−1

)∥∥∥xT−T k−1

j

∥∥∥
2
. (113)

Using the norm inequality
(
‖z‖1 ≤

√
‖z‖0 ‖z‖2

)
, we further have

∥∥Φ′

FL
rk−1

∥∥
2

≥
1

√
L

L∑

i=1

αk
i (114)

≥
∥∥Φ′

FL
rk−1

∥∥
2

(115)

≥
1

√
L
Lαk

L =
√
Lαk

L (116)

whereαk
j is

∣∣〈φfj , r
k−1
〉∣∣ 5 andαk

1 ≥ αk
2 ≥ · · · ≥ αk

L. Combining (113) and (116), we have
(
δL+K−k+1 +

δL+k−1δK
1− δk−1

)∥∥∥xT−T k−1

j

∥∥∥
2
≥

√
Lαk

L, (117)

and hence

αk
L ≤

(
δL+K−k+1 +

δL+k−1δK
1− δk−1

)
∥∥∥xT−T k−1

j

∥∥∥
2√

L
. (118)

APPENDIX B

PROOF OFLEMMA 3.8

Proof: Since βk
1 is the largest correlation in magnitude betweenrk−1 and {φj}j∈T−T k−1

j(∣∣〈φϕ(j), r
k−1
〉∣∣)6, it is clear that

βk
1 ≥

∣∣〈φj, r
k−1
〉∣∣ (119)

for all j ∈ T − T k−1
j , and hence

βk
1 ≥

1√
K − (k − 1)

∥∥∥Φ′

T−T k−1

j

rk−1
∥∥∥ (120)

=
1

√
K − k + 1

∥∥∥Φ′

T−T k−1

j

P⊥

T k−1

j

Φx

∥∥∥ (121)

5fj = arg max
j∈TC

\{f1,...,f(j−1)}

∣

∣

〈

φj , r
k−1

〉∣

∣

6ϕ(j) = arg max
j∈(T−Tk−1)\{ϕ(1),...,ϕ(j−1)}

∣

∣

〈

φj , r
k−1

〉∣

∣
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where (121) follows fromrk−1 = y−ΦT k−1

j
Φ

†

T k−1

j

y = P⊥

T k−1

j

y. Using the triangle inequality,

βk
1 ≥

1
√
K − k + 1

∥∥∥Φ′

T−T k−1

j

P⊥

T k−1

j

ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2

(122)

≥

∥∥∥∥Φ′

T−T k−1

j

ΦT−T k−1

j
xT−T k−1

j

∥∥∥∥
2

−

∥∥∥∥Φ′

T−T k−1

j

PT k−1

j
ΦT−T k−1

j
xT−T k−1

j

∥∥∥∥
2√

K − k + 1
. (123)

Since
∣∣T − T k−1

j

∣∣ = K − (k − 1),
∥∥∥Φ′

T−T k−1

j

ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2
≥ (1− δK−k+1)

∥∥∥xT−T k−1

j

∥∥∥ (124)

and also
∥∥∥Φ′

T−T k−1

j

PT k−1

j
ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2

≤
∥∥∥Φ′

T−T k−1

j

∥∥∥
2

∥∥∥PT k−1

j
ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2

(125)

≤
√

1 + δK−k+1

∥∥∥PT k−1

j
ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2

(126)

where (126) follows from Lemma 3.4. Further, we have
∥∥∥PT k−1

j
ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2

(127)

=

∥∥∥∥ΦT k−1

j

(
Φ′

T k−1

j

ΦT k−1

j

)
−1

Φ′

T k−1

j

ΦT−T k−1

j
xT−T k−1

j

∥∥∥∥
2

(128)

≤
√
1 + δk−1

∥∥∥∥
(
Φ′

T k−1

j

ΦT k−1

j

)
−1

Φ′

T k−1

j

ΦT−T k−1

j
xT−T k−1

j

∥∥∥∥
2

(129)

≤

√
1 + δk−1

1− δk−1

∥∥∥Φ′

T k−1

j

ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2

(130)

≤
δ(k−1)+K−(k−1)

√
1 + δk−1

1− δk−1

∥∥∥xT−T k−1

j

∥∥∥
2

(131)

where (129) and (130) are from the definition of RIP and Lemma 3.2. (131) follows from Lemma

3.3 and
∣∣T k−1

j ∪
(
T − T k−1

j

)∣∣ = (k − 1) +K − (k − 1) sinceT k−1
j andT − T k−1

j are disjoint

sets. Using (126) and (131), we obtain
∥∥∥Φ′

T−T k−1

j

PT k−1

j
ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2
≤

√
1 + δK−k+1

√
1 + δk−1δK

1− δk−1

∥∥∥xT−T k−1

j

∥∥∥
2
. (132)

Finally, by combining (123), (124) and (132), we have

βk
1 ≥

(
1− δK−k+1 −

√
1 + δK−k+1

√
1 + δk−1δK

1− δk−1

) ∥∥∥xT−T k−1

j

∥∥∥
2√

K − k + 1
. (133)
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