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Abstract

In this paper, the authors present a source localization method based on sparse representation of sensor
measurements. In particular, they use SVD of the data matrix obtained from the sensors to summarize
the multiple measurements. The SVD summarized data is then sparsely represented in order to detect
the sources. The authors also proposed grid refinement in order to mitigate the effects of limiting
estimates to a grid of spatial locations. They demonstrate the superior resolution ability with limited
time samples of their method over the existing methods via various experiments.

Introduction and Background

• Source localization methods deal with finding the closely spaced sources in presence of considerable
noise.

• Many advanced techniques for the localization of sources achieve super-resolution by exploiting
the presence of a small number of sources. For example, the key component of the MUSIC method
is the assumption of a low-dimensional signal subspace.

• Estimating the spatial locations (or directions) is a well-known problem in array signal processing.

• Three major source estimation techniques are 1. Classical methods (beamformer, MVDR) 2.
Subspace methods (MUSIC, ESPRIT) 3. ML-based methods (deterministic and stochastic).

• Beamforming is simple but its resolution is limited. Subspace methods achieve super resolution,
provided SNR is moderately high and sources are not strongly correlated and the number of
snapshots (measurement vectors) are sufficient. ML techniques are superior than the subspace
methods but require accurate initialization for global convergence.

• By turning to the sparse signal representation framework, the authors are able to achieve super-
resolution without the need for a good initialization, without a large number of time samples, and
with lower sensitivity to SNR and to correlation of the sources.

• The authors have developed the method for narrowband case and discussed in brief how it can be
used for wideband source localization.

• Prior research has established sparse signal representation as a valuable tool for signal processing,
but its application to source localization has been developed only for very limited scenarios.
For example, [1, 2] is concerned with source localization in the beam-space domain, under the
assumption that the sources are uncorrelated, and that a large number of time samples is available.
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• In its most basic form, the problem of sparse signal representation in overcomplete bases asks
to find the sparsest signal x to satisfy y = Ax, where A ∈ CM×N is an overcomplete basis, i.e.,
M < N .Without the sparsity prior on x, the problem y = Ax is ill-posed and has infinitely many
solutions. Additional information that x should be sufficiently sparse allows one to get rid of the
ill-posedness.

Source localization framework

• The goal of the source localization is to find locations of sources of wavefields that impinge on an
array of sensors that are seperated by a distance less than or equal to λ/2

• Consider K narrowband signals uk(t), k ∈ {1, 2, · · · , K}, arriving at an array of M sensors, after
being corrupted by additive noise nm(t) , resulting in sensor outputs ym(t),m ∈ {1, 2, · · · ,M}.
After demodulation, the vector form of the received signal is

y(t) = A(θ)u(t) + n(t), t ∈ {t1, · · · , tT} (1)

• A(θ) is array manifold matrix. The (m, k)th element A contains the delay and gain information
from the kth source (at location θk) to the mth sensor. The column, a(θk), of A are called steering

vectors and is given by a(θk) =
[
ej

2π
λ
1 sin θk , ej

2π
λ
2 sin θk , · · · , ej 2π

λ
M sin θk

]T
• Any source localization method aims to find the unknown locations of the sources θk,∀k, given
y(t) and A.

• We note that finding θ is a non-linear estimation problem.

Sparse representation for a single time sample, that is, T = 1

• To cast a sparse representation problem, the authors introduce an overcomplete representation of
A in terms of all possible source locations.

• Let {θ̃1, θ̃2, · · · , θ̃N} be a sampling grid of all source locations of interest.

• The number of potential sources N will typically be much greater than the number of actual
sources K and the number of sensors M .
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• A matrix composed of steering vectors corresponding to each potential source location as its

columns constitute an over-complete dictionary, that is, A =
[
a(θ̃1), a(θ̃2), · · · , a(θ̃N)

]
. We note

that A is known and does not depend on the actual source locations.

• The signal vector is s(t) with the nth element sn(t) = uk(t) if the source k comes from θn for some
k and zero otherwise. For T = 1, then the source localization problem reduces to

y = As+ n (2)

• In effect, this overcomplete representation allows us to exchange the problem of parameter esti-
mation of θ for the problem of sparse spectrum estimation of s.

• With the key assumption that the source numbers are less, the underlying spatial spectrum is
sparse (i.e., has only a few nonzero elements), and hence we can solve this inverse problem via l1
methodology, min∥y −As∥22 + λ∥s∥1

• The data for the model is complex-valued; hence, neither linear nor quadratic programming can
be used for numerical optimization. Instead, the authors adopt an SOC programming framework
and find s. Once s is found, the estimates of the source locations correspond to the locations of
the peaks in s.

Source location with multiple time samples and l1 − SV D

• Source localization with multiple snapshots from potentially correlated sources is of greater prac-
tical importance.

• When we bring time into the picture, the overcomplete representation is easily extended and it
has the following form:

y(t) = As(t) + n(t), t ∈ {t1, t2, · · · , tT} (3)

Single and Joint inverse problem

• The first thought that comes to mind when we switch from one time sample to several time samples
is to solve each problem indexed by separately. In that case, we would have a set of solutions ŝ(t).

• If the sources are moving fast, then the evolution of the sources is of interest, and the approach is
suitable for displaying it.

• When the sources are stationary over several time samples, then it is preferable to combine the in-
dependent estimates to get one representative estimate of source locations from them, for example,
by averaging or by clustering.

• Now, we consider a simple approach that uses different time samples together. Let
Y = [y(t1),y(t2), · · · ,y(tT )], and define S and N similarly. Then, we have

Y = AS +N (4)

• We note that the matrix S is parametrized temporally and spatially, but sparsity only has to be
enforced in time not in space.

• To accommodate this issue in the optimization problem, the authors first compute the l2 norm of
all time-samples of a particular space index of s, that is, sl2i = ∥[si(t1), si(t2), · · · , si(tT )]∥2.
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• Then the authors minimize the l1 norm of sl2 =
[
sl21 , s

l2
2 , · · · , sl2N

]
. Now the problem becomes

min∥Y −AS∥2f + λ∥sl2∥1 (5)

• Note in Eqn. (5), the optimization is performed over the matrix S and once the estimate of S is
computed the peaks of S provide the source locations.

• The main drawback of this technique is its computational cost. The size of the inverse problem
increases linearly with T , and the computational effort required to solve it increases superlinearly
with T . In order to alleviate this, the authors propose a SVD based solution.

l1- SVD

• To reduce both the computational complexity and the sensitivity to noise, the authors propose to
use the SVD of the M × Tdata matrix Y .

• The idea is to decompose the data matrix into the signal and noise subspaces.

• With the signal subspace, mold the problem as multiple-vector sparse spectrum estimation problem
similar to Eqn. (4).

• Without noise on the sensors, the set of vectors of Y would lie in a K-dimensional subspace.

• If we can relate the basis of this K-dimensional subspace (set of K vectors) to the source matrix
S, then we can just keep K vectors (instead of T ) for the estimation problem.

• Take the SVD Y = ULV ′ and form a M ×K dimensional matrix Ysv as Ysv = Y V Dk, where
Dk is an T ×K matrix given as Dk = [IK0

′]

• Now Ysv can be written as

Ysv = Y V Dk

= (AS +N )V Dk

= ASV Dk +NV Dk

= ASsv +Nsv

(6)

• We note that the sparsity structure of S is retained in Ssv.

• Considering the k-th column of Eqn. (6) we have

ysv(k) = Assv(k) + nsv(k), k = 1, 2, · · · , K (7)

This is exactly the same form as multiple-vector model in Eqn. (3), expect that indexing is by
singular vector, k.

• By bringing SVD, the problem size is reduced from T to K. This reduction is substantial, because
in typical situations K ≪ T .

• Now in the matrix Ssv, the sparsity is along the spatial domain and not in the singular vector
domain.

• To accommodate the true sparsity in the minimization problem, the authors define
s̃l2i = ∥[ssvi (1), ssvi (2), · · · , ssvi (K)∥2. The sparsity of the N × 1 vector s̃l2i is the sparsity of the
spatial spectrum, which can be found by minimizing

∥Ysv −ASsv∥2f + λ∥s̃l2∥1 (8)
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• In this paper, the authors have solved the above problem using SOC programming (see paper for
details)

Multi-resolution grid refinement

• Thus far, in this paper, the estimates of the source locations are confined to a grid.

• We cannot make the grid very fine uniformly since this would increase the computational com-
plexity and also the columns of A becomes more linearly dependent.

• Hence, the authors explore the idea of adaptively refining the grid in order to achieve better
precision

• Instead of having a universally fine grid, we make the grid fine only around the regions where
sources are present.

• This requires an approximate knowledge of the locations of the sources, which can be obtained by
using a coarse grid first.

• The grid refinement algorithm goes like this

1. Create a rough grid of potential source locations θ̃(0), for i = 1, 2, · · · , N . Set r = 0.

2. Form Ar = A(θ̃(r)), where θ̃(r) =
[
θ̃
(r)
1 , θ̃

(r)
2 , · · · , θ̃(r)N

]
. Use the SOC minimization to find the

estimates of the source locations and set r = r + 1.

3. Get a refined grid θ̃(r) around the locations of the peak, θ̂
(r−1)
j (explained below).

4. Return to step 2, until the grid is fine enough.

• There are many ways of refining the grid; the authors have chosen a simple equispaced grid
refinement.

• Suppose at step r, we have a uniform grid with spacing δr. Also, we have an estimate θ̂
(r)
j
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• Pick an interval around the jth detected source with two grid spacing on either side, that is,
[θ̂

(r)
j − 2δr, θ̂

(r)
j + 2δr], for j = 1, 2, · · · , K.

• In the intervals around the peak, select a new grid whose spacing is a fraction of the old one
δr+1 = δr/γ

Simulation results

• The authors consider M = 8 sensors separated by half a wavelength. K = 2 (62◦, 65◦), T =
200, N = 180.
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• For correlated sources, the result is as follows

summary

In this paper, the authors have proposed a source location estimation based on sparse representation.
The SVD of the sensor measurements summarizes the large chunk of data which is then used as a model
for identifying the sources. This method is applicable for both narrow and wideband beamforming. The
authors have also presented a grid refinement method in order to obtain fine estimates. The advantages
of the proposed method include superior resolution ability with limited time samples for both correlated
and uncorrelated sources.
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Short summary: For cyclic LDPC codes, they propose to use their automorphism groups 

to improve the iterative decoding performance. Three types of iterative decoders are devised 

to take advantage of the code’s automor-phism group. Towards exploiting the automorphism 

group of a code, they propose a new class of cyclic LDPC codes based on pseudo-cyclic 

MDS codes with two information symbols, for which nonequivalent parity-check matrices 

are obtained. Simulation results show that for their constructed codes of short lengths, the 

automorphism group can significantly enhance the iterative decoding performance. 

I. INTRODUCTION 

 

 The use of automorphism group for classical codes 

 

Most classical codes are defined by high-density parity-check (HDPC) matrices, 

whose Tanner graphs have a large number of short cycles. 

 Iterative decoding performs rather poorly for these codes.  

To mitigate the deleterious effect of short cycles, Jiang and Narayanan [3] and 

Kothiyal et al. [4] proposed adaptive versions of iterative decoding, respectively.  

As a result, the performance was greatly improved. However, a significant increase 

in decoding complexity was incurred. 

 

Classical codes are known to have a very rich algebraic structure.  

 To overcome the adverse effect of short cycles while maintaining a reasonable 

complexity, the automorphism group, as a code structure, was exploited for iterative 

decoding 

 For HDPC and moderate-density parity-check (MDPC) codes, the automorphism 

group aided iterative decoding techniques are applied. 

Enhancing Iterative Decoding of Cyclic LDPC Codes 

Using Their Automorphism Groups 
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 In this paper, 

 

1) they apply automorphism group aided iterative decoding techniques to cyclic LDPC 

codes. 

2) For a cyclic code, two particular subgroups of the automorphism group are well 

known. They show that for a large class of cyclic LDPC codes [15]-[18], [20], the two 

subgroups of the automorphism group belong to the same equivalence class and thus 

cannot be harnessed for iterative decoding. 

3) They present a class of cyclic LDPC codes for which the automorphism group can 

be exploited for iterative decoding. 

II. HOW TO USE THE AUTOMORPHISM GROUP OF A CODE IN ITERATIVE DECODING 

A. The Automorphism Group of a Code 

 

Definition: Let C be a binary linear block code of length N. The set of coordinate 

permutations that map C to itself forms a group under the composition operation. This 

group is called the automorphism group of C, denoted by Aut(C) 

For a permutation  Aut C  , let 1   denote its inverse. From the definition we 

know that for any  0 1 1, ,..., Nc c c c C  , 
      1 1 10 1 1

, ,...,
N

cc Cc c
  

    
  . 

Let C  denote the dual code of C, then the following property holds. 

Property 1:    Aut AutC C . 

Property 2: For any  Aut C   and a parity check matrix H of C, H  also forms a 

parity check matrix of C. 

Property 3: For a binary cyclic code with odd length N, the automorphism group 

contains the following two subgroups: 

0S : The set of permutations 0 1 1, ,..., N    , where  :k j j k    mod N. 

1S : The set of permutations 0 1 1, ,..., N    , where  : 2k kj j    mod N and 1m  is 

the smallest positive integer such that 12 1
m
  mod N. 
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B. Two Perspectives and Their Equivalence 

 

Using the automorphism group of a code for decoding has a long history. In the early 

1960s, MacWilliams devised a hard-decision decoding procedure, called the permutation 

decoding [14]. Recently, the code’s automorphism group was brought into use in the 

soft-decision iterative decoding of HDPC codes [5]−[9] and MDPC codes [10]. Here, they 

review two possible perspectives involved and show their equivalence. 

 

 

 

(a) Assume that the BPSK signaling is used over the AWGN channel. Let c C  be 

the transmitted codeword and  1
N

x   the corresponding modulated sequence. Then 

the received signal sequence is given by 

y x n  , 

where n  contains N  i.i.d. Gaussian noise samples with zero mean and variance 2 . 

(b) Applying a permuation  Aut C  , we have 

y x n    . 

Fact 1: In Fig. 1(a) and Fig. 1(b), the outputs c  and c  are not necessarily equal. It is 

possible that only one of c  and c  is the transmitted codeword. 

Fact 2: In Fig. 1(a) and Fig. 1(c), the outputs c  and c  are not necessarily equal. It is 

possible that only one of c  and c  is the transmitted codeword. 

Fact 3: In Fig. 1(b) and Fig. 1(c), the outputs c  and c  are equal.  
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C. A partition of the Automorphism Group 

 

We call two parity-check matrices equivalent if they can be obtained from each other 

through row permutations; otherwise, we call them nonequivalent. Since the flooding 

schedule is assumed, we further have 

Fact 4: In Fig. 1(a) and Fig. 1(c), if H and H  are equivalent, then the outputs c  and 

c  are equal. 

Let  1 2, Aut C   , then 1  and 2  belong to the same equivalence class if and only if 

1H  and 2H  are equivalent. Note that the partition depends on the selection of H. For a 

given H, we can construct the same number of nonequivalent parity-check matrices as that of 

equivalence classes. 

 

D. Design of Three Types of Iterative Decoders 

 

Definition: Let the automorphism group of a code be partitioned based on a given H, a 

d-order diversity set is a set of d permutations that belong to different equivalence classes.  

We choose a d-order diversity set   : , 0,1,..., 1l l Aut C l d     . Denote by yL  the 

log-likelihood ratio vector (LLRV) computed from y. Below, they present three types of 

iterative decoders that use the diversity set in different manners. 

 

∙ Decoder-1: the diversity set is used in a serial manner. The decoding procedure is 

shown in Algorithm 1 
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∙ Decoder-2: the diversity set is used in a periodic manner. The decoding procedure 

is shown in Algorithm 2. In line 5, an inner iteration refers to one time updating of 

all check nodes and variable nodes of H. For d = 2, the decoder works in a Turbo 

manner [1]. But there are two main differences: 1) The message passing out of a 

component decoder in the preceding iteration is not subtracted from the a priori 

information passing to this component decoder in the current iteration; 2) Soft 

information exchanged between the two component decoders is not limited to 

information bits. 

 

 

 

Decoder-3: the diversity set is used in a parallel manner. Define 
1

l lH H 
. Then by 

concatenating lH , we form an augmented parity-check matrix 

 

0

1

1

aug

d

H

H
H

H 

 
 
 
 
 
 

. 

 

The decoder performs the SPA with flooding schedule on this highly redundant parity-check 

matrix, with the maximum number of iterations I. 
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III. A NEW CONSTRUCTION 

 

We define an    l c l c    binary matrix as 

 

   

     

0 1 2 1

1

1 0 3 2

1 1

2 3 0 1

1 1 1

1 2 1 0

,

c c

c c c

c

A A A A

A A A A

B

A A A A

A A A A

 

  



 
 
 
 
 
 
 
  

 

where each submatrix is an l l  circulant and the zeroth row of  1

iA  is the first row of iA . 

Define a permutation   as  

 

  : mod , 0,1,..., 1j j l c j l j l c         . (1) 

 

Theorem 4: If we perform row and column permutations on B, both using the permutation 

  given in (1), then we obtain a circulant matrix. 

 

They summarize the construction procedure as follows. 

Step 1: Choose a nonzero codeword from an (n, 2) pseudo-cyclic MDS code with a  . 

Step 2: Use the codeword and its pseudo-cyclic shifts to construct the base matrix 'W . 

Step 3: Use matrix dispersion on 'W  to obtain the QC matrix  'dispH W . 

Step 4: Apply Theorem 4 to  'dispH W  to obtain a circulant as the parity-check matrix H. 

 

For Step 1 and Step 2, the form of base matrix 'W  is given by 

 

 

 

0 1 2 1

1 0 3 2

2 3 0 1

1 2 1 0

'

n n

n n n

n

w w w w

w w w w

W

w w w w

w w w w



 

  

 

  



 
 
 
 
 
 
  

. (2) 
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To construct the base matrix of the form (2), they consider using pseudo-cyclic MDS codes 

with two information symbols. A pseudo-cyclic code with parameter  a GF q  has the 

property that for any codeword  0 1 1, ,..., nc c c 
, its pseudo-cyclic shift  1 0 2, ,...,n nac c c 

 is 

also a codeword. If a = 1, the pseudo-cyclic code reduces to a cyclic code. 

 

For Step3, the Tanner graph corresponding to the matrix  dispH W  has no cycles of 

length 4 and hence has a girth of at least 6. So the matrix  dispH W  can serve as the 

parity-check matrix and gives a QC-LDPC code of length n(q − 1). 

 

 

     
     

     

0,0 0,1 0, 1

1,0 1,1 1, 1

1,0 1,1 1, 1

n

n

disp

m m m n

A w A w A w

A w A w A w
H W

A w A w A w





   

 
 
 

  
 
 
 

. 

 

The way to construct the matrix A is given as follow: 

 

Let GF(q) be a finite field with q elements and a be a primitive element of GF(q). Then 

20, , , q     give all the elements of GF(q). For each non-zero element 

 , 0 2i i q    , define a    1 1q q    matrix  iA   over GF(2): it is a circulant 

permutation matrix; the zeroth row is a  1q  -tuple with weight one where the ith 

component is equal to one and all the other 2q   components are equal to zero. The matrix 

 iA   is referred to as the  1q  -fold matrix dispersion of element ai over GF(2). The 

 1q  -fold matrix dispersion of zero element of GF(q), A(0), is defined as the 

   1 1q q    all-zero matrix. 
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IV. SIMULATION RESULTS 

They present the simulation results for our constructed cyclic LDPC codes. The BPSK 

modulated AWGN channel is assumed. In addition to the three decoders presented in Section 

II, they also simulated a decoder that is not assisted by the automorphism group. The decoder 

is called Decoder-0, which performs the SPA with flooding schedule on the defining 

parity-check matrix. For all these decoders, the maximum number of iterations is set to be 

100. 

 

 

 

Fig. 2 shows the FER performance of the code. The 2-order diversity set  0 1,   is used. 

For comparison, they further simulated a (341,160) LDPC code constructed using the 

progressive-edge-growth (PEG) algorithm [29]. The parity-check matrix of the code has 

column weight 3 and row weights 5 and 6. The sphere-packing bound [30] for this length and 

rate is also included in the figure. 
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• Like HDPC codes, the performance gain for LDPC codes seems more significant for 

short code lengths. This can be seen by comparing Fig. 2 and Fig. 4 (note that the diversity 

sets for the two codes have the same order). 

• For both HDPC and LDPC with long code lengths, the automorphism group aided 

iterative decoding does not perform well. In fact, for long HPDC codes, it performs even 

worse than the hard-decision decoding. 

• To obtain a noticeable performance gain, LDPC codes require a smaller diversity set 

than HDPC codes. This is because that LDPC codes are inherently more suited to iterative 

decoding than HDPC codes. 
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I. INTRODUCTION

This paper has discussed about design and analysis of multiuser detection (MUD) using sparsely spread

CDMA systems. The objective of the MUD problem is how to detect multiple user signals simultaneously

at the low computational cost. The main obstacle is multiple-access interference (MAI). These multiple

user signals are interference for each user detection one another. The MAI problem arise in most CDMA

systems, and optimal detection in such systems requires exponentially growing computation as the number

of user increases. This paper investigates a suboptimal MUD detection using sparse CDMA systems. The

key idea of the proposed system is to encode the transmitted waveforms using sparsely spread CDMA

codes and detect the signal using a linear-complexity belief propagation (BP) algorithm. We summarize

the contributions of this work is following:

1) Description of the sparse CDMA system

2) Ensemble of the sparsely spread CDMA codes

3) Design of the BP algorithm for the MUD problem

4) Asymptotic analysis of performance of the BP algorithm based MUD detection

In this report, we aim to sketch the key point of each contribution of this paper.

II. DESCRIPTION OF THE SPARSE CDMA SYSTEM

We consider a fully-synchronous CDMA system which is able to simultaneously transmit K user

signals. As shown in Fig.1, symbols Xk from the k-th user is multiplied by the spreading code {Slk}Ll=1

having code length L, being transmitted to the receiver with gain Ak√
Λk

for the transmit power regulation.

Then, the receive observes the L channel outputs per a symbol transmission from K users, given by

Yl =

K∑
k=1

Slk
Ak√
Λk
Xk +Nl for l = 1 to L, (1)

July 25, 2013 DRAFT
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Fig. 1. System model

where we consider additive noise following the zero-mean and unit variance Gaussian distribution, i.e.,

Nl ∼ N (0, 1). In vector form, the expression in (1) can be represented as

Y = SAX +N, (2)

where Y = [Y1, ..., YL] ∈ RL denotes the channel output vector, X = [X1, ..., XK ] ∈ XK ⊂ RK is the

input symbol vector, S ∈ RL×K is the sparse spreading matrix, and A = diag( A1√
Λ1

, A2√
Λ2

, ..., AK√
ΛK

) is the

gain matrix which has a diagonal form. In the system model, we additionally assume that input symbols

Xk, elements of the spreading codes Slk and the transmit gain Ak are i.i.d. drawn from PX ,PS ,PA

respectively. In the receiver side, the goal of the multiuser detector is to estimate the input vector X from

the channel output vector Y given S,A, PX .

III. ENSEMBLE OF THE SPARSELY SPREAD CDMA CODES

Let H ∈ {0, 1}L×K denote an incidence matrix of the spreading codes S which indicates nonzero

position of the matrix S. The authors also defined that two notation from the incidence matrix, which

are

The k-th symbol degree: Λk =

L∑
l=1

Hlk (3)

The l-th chip degree: Γk =

K∑
k=1

Hlk (4)
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Fig. 2. Factor graphical representation of the CDMA system

Similarly, the average of the symbol and chip degree is defined as Λ = 1
K

K∑
k=1

Λk and, Γ = 1
L

L∑
l=1

Γl,

respectively. Then, the factor graph representation of the CDMA system is given in Fig.2. The authors

of this paper have tried to analyze the performance of this CDMA system by assuming the following:

1) Large-system limit: The system size is very large, i.e., K,L → ∞, and its system load remains a

constant, i.e., β → K/L.

2) No-short-cycle: Under the large-system-limit, the factor graph of the CDMA system does not include

cycles shorter than the number of the BP iterations denoted by t.

3) Chip-semi-regular: Under the large-system-limit, the chip degree concentrate around their average,

i.e., for every l and very small constant ε > 0, lim
K,L→∞

Pr{|Γl −EΓ| > εEΓ} = 0.

Throughout this report, such CDMA system satisfying above assumption is referred to large-sparse-system

(LSS).

IV. DESIGN OF THE BP ALGORITHM FOR THE MUD PROBLEM

Before discussing the BP detection algorithm for the MUD system, let us summarize the important

known facts the BP algorithms

1) BP basically aims to find marginal posterior PDF of each element Xk.

2) In order to reduce the complexity, BP removes the duplicated calculation with message exchanging

over the graph connection.

3) Optimality of BP: BP provides exact inference (optimal) of the marginal PDFs if the corresponding

factor graph is perfectly tree-structured.

4) Loopy BP: BP is well applied to graphs with cycles and provides good approximation of the

marginal PDFs in practice even through the performance is suboptimal .

For the description of the BP algorithm, we define two notation for the message: symbol-to-chip (StC)

messages denoted by V
(t)
k→l(x) and chip-to-symbol (CtS) messages denoted by U

(t)
l→k(x) where t is the
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number of iterations. In addition, Vk(x) denotes the marginal PDF of Xk. For convenience, we define a

set of edge representing statistical connection over the factor graph as E := {(l, k)|Slk 6= 0}. Also we

define ∂l (resp. ∂k) as the subset of symbols (resp. ships) which have the statistical connection to chip l

(resp. symbol k), called its neighborhood. Then, the iterative BP algorithm for computing the marginal

PDF of all symbols is shown in Algo.1. This iterative BP algorithm performs exact marginalization of

each symbol Xk given the entire observation Y if the factor graph is cycle-free. In practical CDMA

systems, however, the average node degree is always greater than 2 such that cycles are inevitable. Thus,

the BP algorithm performs approximate inference by assuming that all nodes, {Xk} and {Yl}, are i.i.d.

each other.

Algorithm 1 Iterative BP
Inputs: Channel output Y , Spreading matrix Φ, Gain matrix A, Prior knowledge pX(x)

Outputs: Marginal PDFs Vk(x) for every k

1)Initialization:

set U0
l→k(x) = 1 ∀x ∈ X for every (l, k) ∈ E

2)Iterations:

for t = 1 to T do

set V (t)
k→l(x) ∝ pX(x)×

∏
j∈∂k\l

U
(t−1)
j→k (x) for every (l, k) ∈ E

set U (t)
l→k(x) ∝ E

{
pYl|X(y|X)|Xk = x, V

(t)
k→l

}
:=

∑
(xi)∂l\k

exp

−1
2

(
yl − slkak√

Λk
x−

∑
i∈∂l\k

sliai√
Λi
xi

)2


×
∏

i∈∂l\k
V

(t)
i→l(xi) for every (l, k) ∈ E

end for

3)Marginal PDFs calculation:

set Vk(x) ∝ pX(x)
∏

j∈∂k
U

(T )
j→k(x) for every k

The LLR form of BP algorithm is simply obtained by fixing a reference point x0 ∈ X and then defining

LLR messages as

LLR CtS message: L(t)
l→k(x) := log

E
{
pYl|X(y|X)|Xk = x, L

(t)
k→l

}
E
{
pYl|X(y|X)|Xk = x0, L

(t)
k→l

} (5)
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LLR StC message: L(t)
k→l(x) := log pX(x) +

∑
j∈∂k\l

L
(t−1)
j→k (x) (6)

V. ASYMPTOTIC ANALYSIS OF PERFORMANCE OF BP

The key result of this paper states that

The marginal posterior computed for each symbol Xk using BP after t itertions essentially converges to

the marginal posterior of a scalar Gaussian channel as the system size increases.

Now, we provide mathematical support for the statement above by stage. Let P bp
Xk

(·|Y (t)
k ,S,A) denote

the output CDF from BP, which is approximate posterior of Xk given Y (t)
k . Here, Y (t)

k is all observations

within distance 2t − 1 to Xk on the factor graph. If Xk and Yl is directly connected, the distance will

be 1. In addition, let us introduce the canonical scalar Gaussian channel, given as

Z =
√
gX +N, (7)

where X ∼ PX and N ∼ N (0, 1) are independent, and g denotes the channel gain. For remainder

derivation, we use PX|Z;g(·|z; g) to denote the CDF of the posterior distribution of X given Z, according

to the Gaussian channel model in (7).

Theorem 1 (Gaussian convergence of Marginal posterior): Given fixed iterations t, the marginal pos-

terior of Xk converges to that of the Gaussian channel, i.e. for every k

P bp
Xk

(x|Y (t)
k ,S,A)→ PX|Z;g(x|h(Y

(t)
k ,S,A); η(t)A2

k), (8)

in probability under the LSS setup, where the Gaussian channel output is given as Z = h(Y
(t)
k ,S,A) ∼

N (
√
η(t)ax, 1), the channel gain Ak

√
η(t) is determined by the following recursion:

1

η(t)
= 1 + βvar

{
AX|

√
η(t−1)AX +N

}
, (9)

and

var {U |V } := E
{

(U −E {U |V })2
}
. (10)

Proof : The authors proved Theorem 1 by considering messages of the LLR form given in (5) and

(6). Proving Theorem 1 is equivalent to showing the LLR StC message is Gaussian distributed with

Xk ∼ N (A2
kη

(t)Xk, 1). We summarize this proof in four steps.
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Fig. 3. Upper diagram: Multiuser channel and BP detection. Lower diagram: The asymptotically equivalent scalar Gaussian

channel

Step I: The StC message is Gaussian RV by the central limit theorem (CLT): Under the no-short-cycle

assumption, all CtS messages L(t)
l→k are i.i.d. conditioned on Xk = xk. From (6), by CLT, the message

is a Gaussian random vector.

Step II: LLR obtained from a scalar Gaussian channel is also Gaussian distributed. Namely, for Y =
√
γX +N , its LLR is a Gaussian RV, i.e.,

log
pY |X(Y |x1)

pY |X(Y |x0)
=
√
γ(x1 − x0)Y − γ(x2

1 − x2
0)/2 (11)

Step III: Calculation of mean and covariance of the StC messages given as

E[L
(t)
k→l(x)] = log pX(x) +

∑
j∈∂k\l

E[L
(t−1)
j→k (x)]. (12)

We first consider the mean of the CtS messages. To this end, we have

f(y, x) := E
{
pYl|X(y|X)|Xk = x, L

(t)
k→l

}

=
∑

(xi)∂l\k


1√
2π

exp

−
1

2
(y −

∑
i∈∂l\k

sliAi√
Λi
xi − ckx)2 +

∑
i∈∂l\k

L
(t)
i→l(xi)︸ ︷︷ ︸

=Bxk



 , (13)
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where we use ck = slkak√
Λk

. Then, we apply the 2nd order Taylor approximation with respect to x = 0 as

f(y, x) ≈ f(y, x = 0) + f ′(y, x = 0)x+
1

2
f ′′(y, x = 0)x2

= g0(y) + g1(y)ckx+
1

2
g2(y)c2

kx
2, (14)

where we define

g0(y) :=
1√
2π

∑
(xi)∂l\k

exp

−1

2
(y −

∑
i∈∂l\k

sliAi√
Λi
xi)

2 +Bxk

 (15)

g1(y) :=
1√
2π

∑
(xi)∂l\k

(y −
∑

i∈∂l\k

sliAi√
Λi
xi) exp

−1

2
(y −

∑
i∈∂l\k

sliAi√
Λi
xi)

2 +Bxk

 (16)

g2(y) :=
1√
2π

∑
(xi)∂l\k

((y −
∑

i∈∂l\k

sliAi√
Λi
xi)

2 − 1) exp

−1

2
(y −

∑
i∈∂l\k

sliAi√
Λi
xi)

2 +Bxk

. (17)

Then, from (5), the CtS LLR message is given as

L
(t)
l→k = log

g0(y) + g1(y)ckx+ 1
2g2(y)c2

kx
2

g0(y) + g1(y)ckx0 + 1
2g2(y)c2

kx
2
0

≈ g1(y)

g0(y)
ck(x− x0) +

g2(y)

g0(y)
c2
k(x2 − x2

0)− 1

2

g2
1(y)

g2
0(y)

c2
k(x2 − x2

0), (18)

where we further apply the 2nd order Taylor approximation of log(x). The mean of the CtS message

E[L
(t)
j→k(x)] can be obtained by taking integration to (18) with respect to y. Then, using (12), the mean

of the LLR StC message is obtained as

E
[
L

(t)
k→l(x)

]
= Θ(xk(x− x0)− (x2 − x2

0)/2) (19)

where

Θ = A2
k

∫
g2

1(y)

g0(y)
dy

∑
j∈∂k\l S

2
jk

Λk
. (20)

In (20), by law of large number,
∑

j∈∂k\l S
2
jk

Λk
→ 1. Here, importantly note that the result in (19) is exactly

equivalent to mean of LLR in a scalar Gaussian channel

Xk =
√

ΘX +N

= Ak

√∫
g2

1(y)

g0(y)
dyX +N (21)

where Xk here is a symbol obtained from the BP iteration given the observation Y (which is equivalent

to Z in Th.1) and N ∼ N (0, 1) is additive noise with unit variance. Although the derivation of covariance

is omitted here, they are also equivalent.
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Now, we summarize the proof as following

1) LLR of StC message is asymptotically a Gaussian RV by CLT from Step I.

2) LLR of a scalar Gaussian channel is a Gaussian RV from Step II.

3) The mean and covariance of LLR StC message have the exactly same form as the LLR of the

scalar Gaussian channel in (21) from Step III.

4) From (12), each individual symbol Xk via BP is also Gaussian distributed with N ∼ N (
√

Θ, 1).

The last piece of the proof of Theorem 1 is to quantify the corresponding SNR Θ with respect to the

number of BP iterations t by showing that

lim
L,K→∞
Γ→∞

∫
g2

1(y)

g0(y)
dy = η(t). (22)

But, the proof of (22) was not well explained in the paper. One thing is that one can derive the recursion

in (9) by showing (22).
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