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Questions and System Model

e |et us suppose that we aim to
find the support set of a sparse
vector by using OMP.

e Then, what is a sufficient
condition for successful OMP?
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Orthogonal Matching Pursuit
e OMP finds one index at a time for approximating the solution of

min”x"0 subject t0||y - Ax"z <g?

Main Iteration
Initialization

i=0,x"=0,

¢ =y.0-{}

1. Choose 7= a:rgmaxKr"‘l,aJ)
j=lyN

2. Update Q=90U{r}

3. Least Square x’ =min||y—Ax||§ s.t.

Supp(x) =)
. Update r' =y — Ax’

Sufficient conditions for successful OMP

e There are many papers that report sufficient conditions for
successful OMP.

2004 p<1/(2K -1) Deterministic
2010 5., < 1/ (3VK) Deterministic
2012 5. < 1/ (\/f + 1) Deterministic
This paper M =Q(Klog(N)) Probabilistic

2007 J. Tropp, “Greed is good: Algorithmic results for sparse approximation,” IEEE Trans. On. Inform.
Theory

2010: M. A. Davenport, M. B. Wakin, “Analysis of Orthogonal Matching Pursuit Using the Restricted
Isometry Property”, IEEE Trans. On. Inform. Theory

2012: J. Wang and B. Shim, “On the recovery Limit of Sparse Signals Using Orthogonal Matching
Pursuit’, IEEE Trans. Signal Processing Letter




The sH;)rt 0\;erview of the paper [2012]

To derive their sufficient condition, the authors considered the event
that OMP correctly selects index j at the /™" iteration.

The event occurs if min|(a,.y)|, >rrt}eazx||<at,y>”2.

They have shown that the left term is lower bounded by

. 1
minfa. )|, > =15l
Also, they have shown that the right term is upper bounded by

max”(at > y)"z < (1 ~ Ok )”XI ”2 '

tel

Then, they have derived their sufficient condition from the two
bounds.
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The m;in Theorem

(OMP with Admissible Measurement matrix.) Fix é € (0,1), and

choose M = Q(Klog(N/5)) . Suppose that x is an arbitrary
K —sparse vector in RY, and draw a random M x N admissible
measurement matrix A independent from the vector. Given the
measurement vector y=Ax. Then, OMP can reconstruct the

support set with probability exceeding 1 — 6.
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Admissible Measurement Matrices

e An admissible measurement matrix for K —sparse vectors in RV is
an M x N random matrix A with four properties.

(MO) Independence : The columns of A are stochastically
independent.

(M1) Normalization : B[ Ja [} |=1for/ =1, .

(M2) Joint correlation : Let {u'} be a sequence of vectors whose [,
norms do not exceed one. Let a be a column
of A that is independent from {u’}. Then,

]P’{mflx|<a,ut> < g} >1-2K exp (—cgzM)

(M3) Smallest singular value: Given an M X K submatrix Z from A,
the largest singular value g,,,;,,(Z)
satisfiesP {0, (Z)= 0.5} > 1-exp(-cM)
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The pri:of of the main Theorem-1

e First, let us define the greedy ratio at the /" iteration:
max|<rl ,a, >|

) e

max
e OMP correctly selects an index belonging to the support set if ,O(I’Z) <L

el

e OMP correctly reconstructs the support set when the event

E_ = maxp(rl) <1 occurs

suce 1<K

¢ \We aim to obtain the probability
IP{E } = P{maxp(rl) < 1}

suce I<K

> P{maxp(rl) <1No,.. (A7) 20.5}

1594

Owing to (M3), we can solve LS within the K iterations.




The prbof of the main Theorem-2

e Continuously, we aim to consider the probability
P{maxp( V<o, (Ar)2 0.5}

1=K
e For this end, we consider the greedy ratio at the " iteration. Then,
we have

max <rl,a> maX I' a | \/ max >|
p(rl)z ieT _
_ T_.1
max[(r'a ) A, I H
i€l

e Now, we simplify the upper bound of the greedy ratio. First, let us
definer’ =u’ ”A§r1 || /0.5. Then, the upper bound becomes

\/_max r ., | \/_max<ul||A§rl||2/O.5,ai>‘

AT ! A; r'

2 2

= ZJEn}E%X (ul,al) :
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The pri:of of the main Theorem-3

e Owing to M3, we have |‘A§rl”2/||rl||2 >0,.(A;)=20.5.

e Then, we can show that the {2 norm of the vector u! is always less

than one.
u' =0.5¢/|A%e| <r'/|r],

¢ Now, we have

P{néa}{x[)(rl) < 1|0'min (A;)= 0.5} > P{nllg%XZ\/Enileazx
- P{n;afxrﬁ%x|<“l=ai> < 2\}? |o'min (A;)= 0.5}
|
> gp{n?e}(xKu a, ) 2\/E|crmin (A,)> 0.5}

> [1 -2K exp(—cM/(4K))}N_K

(u'a)|<1[o,. (A)2 0.5}
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The proof of the main Theorem-4

e In addition, we have IP’{O'min (Z)> 0.5} >1-exp(-cM).

e Thus, we finally obtain
P{E, ) 2[1-2K exp(-eM[(4K))| " [1-exp(-cM)].

e To simplify the lower bound, we apply the inequality (l—x)" >1—kn for
n>1andx < 1. Then, for K(N — K) < N?/4, we have

P{E,,. }21-2K (N K )exp(-cM /(4K ))—exp(—cM ).

uce

e By again simplifying the above lower bound, we have
P{E, .. } 21— N?exp(—cM/K).

uce

e Finally, we can see that the choice M = Q(Klog(N/6)) is sufficient to reduce
the failure probability below §.
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New researches problems

1. Can we establish a sufficient condition for Simultaneously Orthogonal
Matching Pursuit?

X:=[xl---xS]GRNXS
i i . -
L L
.- ‘I
L L H
| [ o]
- = J Ehae
Y:=[y, -y ]eR"™ peorr J 4
= m
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Simultaneously Orthogonal Matching Pursuit

Main Iteration

i-1
r, ,a,

Initialization

i=0,x =0,

r'=y,,0={}

1. Choose t:argmaxz

AN S

2. Update Q=0U{r}

y, — Ax”i s.t.

3. Least Square x. =min

Supp(x) =)
. Update r' =y, — Ax|
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New researches problems
; ; — Block1
The SMV model B o my
Block2 m  Block2
The MMV model
0

L

2. Let M, be the number of measurements in the SMV model when OMP is
exploited. Let M, be the total number of measurements in the MMV model
when SOMP is exploited. What is the relation between M, and M,?
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Outline

® Network Tomography

— Introduction (Network Monitoring)
— Approaches:

» Deterministic vs. Stochastic
» Active vs Passive
— Challenges: Overhead, Identifiability

® Network Coding

— Applications to network monitoring: new method
— Optimization : speed/complexity tradeoffs

INFONET, GIST




Network Tomography

® Networks: set of nodes, links modeled as
graph G(V,E)

® Network monitoring

— Involves collection of network performance
statistics (link delay, link loss or failure status)

— Important for QoS guarantees (media streaming,

interactive video applications) Node or
netw{A Link or edge
e Challenges 1 2/ .
— Choice of appropriate measurement techniques 3 .ﬁ
and algorithms z x 4\
@7
5 6
G(V,E)
3

Measurement Methods

® Node-oriented: These methods are
based on cooperation among network
nodes, e.g., ping or traceroute
— Using Ping, round trip delay to every node
can be measured.

— Uses Internet control message protocol
(ICMP) packets

* Many routers do NOT respond to these
packets

— Many service providers do not own the
entire network

INFONET, GIST 4




Measurement Methods

e Edge-oriented: Access is available
to all nodes at the edge only (and
not to any in the interior) u \

— Does not require exchanging special
control messages between interior
nodes

— Inverse problem: estimate link level
status from end-to-end (path level)
measurements A

INFONET, GIST 5

Measurement Methods

% Active (sending probe packets)
- Adds overhead to normal data traffic by
introducing new control packets
+ Passive (insitu traffic analysis)

- No overhead; temporal and spatial
dependence might bias measurement

+ Considered method: edge-oriented,
active network tomography

— Given a network, and a limited number of
end hosts, when can we infer failure
status of the links?

INFONET, GIST 6
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End-to-End Probing

" Probes are inserted into a data

stream, and end-to-end properties on

that route measured.

"  Probes are exchanged between

end nodes using routing matrix of the
routerl graph

Routing matrix A

& linkl [link2 [ink3
Endl — End2 1 | 0
End2 EndS pndl > End3 1 0 |
End?2 — End3 0 1 1
7

End-to-End Probes

® Routing matrix relates link attribute to
route attribute Endl

® For some parameters like delay or
path loss, this relation is linear under
some assumptions

Endl—End?2

1 1
Dpiispnas |=]1 0
0 1

D End2—End3

INFONET, GIST 8
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Deterministic

e Link attributes (e.g. delay) are considered unknown,
constant

e Goal: estimate constants
e Link attributes are typically time varying
- method is suitable for periods of local ‘stationarity’

INFONET, GIST 9

Stochastic

e Link attribute specified by a suitable probability distribution
— e.g. link delay follows a Gaussian distribution
e Estimation problem: unknown model parameters

based on path observation in the presence of additive noise

INFONET, GIST 10




Deterministic vs. Stochastic Methods

® Stochastic

— Bayesian - requires a prior distribution
* incorrect choice leads to biases in the estimates
— More computationally intensive

® Deterministic

— Lower complexity but suffers from generic identifiability
(will be discussed later) problems

INFONET, GIST
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Link Failure Model

End1l Ry R, End?
Define an indicator function for v = 0 [;1s ok
status of each link “ 11 I iscongested

0 allof/,/,,l;1s0k

yendl—)end2 -
1 oW.

INFONET, GIST
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Binary Deterministic Model

NTL {1 ‘ ls < s
S =g g

End1 Ry R, End2

77

Vendi—senaz = X1, OV X, OV X,

y = AX
A: N-by-M binary routing matrix
x: M-by-1 binary vector, the status of each link

y: N-by-1 binary vector, the status of each path (measurements)

INFONET, GIST 13

Failure Monitoring
® Network G(V,E) with set of paths P

® X,y are binary vectors

® A path is congested if at least one of its links is congested

x e {0,}",y e{0,}""

[y, | Endl—End2|1 1 0
V) = Endl —> End3|1 0 1 'x12 5
Ys| End2— End3|0 1 1

[y, ] | %, (OR)x,

Yy | =] %, (OR)x,
Vsl | x, (OR)x,3
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Identifiability y = Ax
e Problem: Estimate x from y with
— A (N-by-M) : binary routing matrix
— X (M-by-1) : binary link failure status
— y (N-by-1) : end-to-end measurements

6 links, 3 End-to-End routes =& M=6, N=3 m@

¢ Ildentifiability: a network is identifiable if y = Ax has
a unique solution

— Usually, M ( # of links in network) >> N (# of
measurements), so network is generically NOT identifiable.

INFONET, GIST 15

Identifiability: Binary Model

e Solution: limit (maximum) number of failed links inside

the network
= Suppose at most k links can fail simultaneously

e Definition: k-Identifiability /N
— Network is k-identifiable if @/5ﬁ6\@
<1
HX|E|><1 0 Sk ‘x6><1 0

Only one link can be congested

VX, X, s.t.HleO <k

¢ From end-to-end observation it is possible to uniquely
identify up to k congested links

INFONET, GIST 16




1-Identifiability

*» A network with an intermediate degree
two node is not 1-identifiable

v If path End1->End2 is congested, it is
impossible to determine which link among [,
and |, is congested .

= Necessary but not sufficient!

X, = 1= Vi smmar =1
X, =1= Ve smnan =1

INFONET, GIST 17

k=1 Identifiability

¢ 1-identifiability Theorem: End-to-
End probe based measurements can
detect a unique congested link in a
network if and only if there are no
two identical columns in the
network routing matrix

P, 1000 0,00 0]
01 0/0 0000
00 1/00i1 00

P, {00 001 10 00
0000 0/01 0
0000000 1

INFONET, GIST 18




k- identifiability

e k-identifiability Theorem: End-to-End probe based
measurements can detect a unique congested link in a
network only if there are no k+1 dependent columns in
the network routing matrix

INFONET, GIST 19

Shortest Path Routing Revisited

e Packets are sent on shortest path between two end
nodes

- sub-graphs = tree starting from a boundary (source) node

» Node 4 has two degrees in all graphs
e But node 4 has 4 degrees in the original network

INFONET, GIST 20
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Revisiting Shortest Path Routing

e \What if we could change routing matrix ?

Example: in place of shortest path
routing, route packets through longer
paths,e.g.n, > (, 2> /, 2 n,

— Now network is 1-identifiable !

® Intrinsic limitation for end-to-end
measurement methods based on
shortest path routes

— probes transmitted along such paths contain
only minimum information

INFONET, GIST 21
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Solution

® ook to exchange probes between boundary nodes via
other (non-shortest) paths?

e Changing the routing tables violates tomography
assumption

e Use Network Coding; exploit broadcast nature of
network coding, a transmitted probe will traverse almost
every path between two boundary nodes

INFONET, GIST 22
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Linear Network Coding

® Network Coding is a coding at layer three
e The coding is conducted over the finite field F,, u=29

® Each coded symbol can be represented by g-bits within
an IP layer frame

e Signal ¥Y(j) on an outgoing link j of node v is a linear
combination of signals Y(i) on incoming link i of v:

— We assume there is no process generated at node v

Y3\ Y3
Y(H= 2 r¥(D) v Y,
{I:d ()=}
Y, Y1

INFONET, GIST
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Received Symbols

e P : j-th route from source to destination

® Source sends a over Pi
Y= 051_[7/1 =af(G), ae F,

[eP!

B.(G)= H y, Path NC Coef.

leP!

® 3, depends on topology G hence B/(G)

y=ayy, =ap(G) °‘<W$ .

\Ya

Y4 \&/VS

INFONET, GIST
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Received Symbols: Linear Model

e ¢, one of source outgoing links

e P_ : collection of all paths between source and
destination starts at the k-th outgoing edge e,

® Source sends a, over g,. By superposition destination
receives

|1F |

y=0a,; Z H?/z :akZlBi,ek (G)

P! ep, leP' i=1

y=a,(ny, tnrsrs) = al(ﬂl,el +:Bz,e1)

INFONET, GIST 25
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Received Symbols: Linear Model

® Source sends out symbols a, over e, using superposition
once more

K | P |

y=202.5.,(G)

® |n vector format: y=a'3(G) p

e B(G) is total network coding vector ) @
0 f Ya [
0N\

2 V4

Y=0,(1\7s +1V5Ys) T LYY

INFONET, GIST 26
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Received Symbols: Linear Model

® Source sends symbols in M consecutive time slots:

Pl = Aot G

ﬂ(G)le = IBI,el 182,61 IBNl,el E ﬂl,el IBN2,62 ; E IBNK,eK
& g 2 E & g 7 : \
| P,

Pe‘l i Pez K
- /)
Y
N=|UJR
B ] i=1
y _ Oy a2,|73€1| O N
MxN — : o oy
A: consisting K distinct columns
.
_aM’l aM,lBll M,N_
27

Link Failure Model

e If a link is severely congested, packets are significantly
delayed and assumed lost at the destination

® We model the network with link / in congestion state by
its edge deleted subgraph denoted by G(V,E)

Vi link failure

Ya

INFONET, GIST 28




Link Failure Model

e Total network coding vector of G(V,E)), B(G)) is different
from B(G)

p.. (G) ifleP (d)

0 o.W.

P (G) = {

e |f the congested link doesn’t belong to i-th path from
source to destination, P, it will not affect packets going
through those paths

— Itis zero otherwise }1/?\ <
ﬁ\
B(G)=ry, qﬂl(Gh):O ‘i Vs :
\ 2

PG =775 Br(G,)=Fr(G) mwy

INFONET, GIST 29

Link Failure Model

® Training sequence is A

e y': vector of symbols observed at the destination in M
time slots with link | congested

y]lMxl — MxNIB(GZ)NXI

e Potential for identifying: received symbols change
uniquely in response to link congestion

I
YrMx1 & YMmxl

/ [
yj\llxl ;ty]\i[xl

INFONET, GIST 30
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Example o
1 ﬂl,e] =1x1=1
BG)=|3| P =1x2x2=3
1 ,82’62 =3x2=1

1sttimeslot (0|2 |2 (|31 |1

2dtimeslot |23 |1 (0|13

Received symbols corresponding a single link failure

INFONET, GIST

Theorem 2: Sufficient Conditions

¢ If Rank(A)= deg(S), and

= for all P, set of paths between source and destination
starting at e,

2, |

ijﬂj,e, =0 fj =0V (more next slide)
j=1
then

AB(G)# AB(G) VIgE
AB(G )= AB(G,) VI, ¢E

INFONET, GIST 32
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Theorem 2

P, |

® Condition » & 8. =0« &, =0V, means

» For a set of paths having e, in common, P, , NC coefficient of
the paths are independent !

ndepeléient Irﬁependent |
élel 2,e IBNl,el : Le ﬂNZezi E IBNK,eK
/ E - v i ix_w__J
Pre, =17 Sm
le 1/ 2 .
1 independent . .
:Bz,e1 =V73Vs = \y3

Bro = V4t P xw 3%
33

Journal Club Meeting, June 27, 2013
Example

1"
o2 > Independent

_1_
1 1 =1x1=1
o)L o -
Pre =3x2=1
Te e, | t]G11 F T
1sttime slot | O 21 22 31 12 13 e \
2ndtimeslot |2 |3 | 1]0][1]3 & E
RS %

INFONET, GIST 34




Complexity/Speed

e First condition of Theorem 2:
Rank(4,,,,)=deg(S) mmplies M > deg(s)

— In previous example M=2=deg(S)
® Number of time slots: at least the number of outgoing
links of source

® Is it possible to decrease number of time slots? =» faster
monitoring

® Possible by increasing number of bits in LNC coeff. =
more complexity

INFONET, GIST 35
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Example

0:0 q: 3
S A=[11 4]

1sttimeslot |64 |2 |57 |1

INFONET, GIST 36




Journal Club Meeting, June 27, 2013

Theorem 3: Complexity/Speed tradeoff

e N=|P|
® q bits per symbol are used in network coding

e M number of (desired) time slots K links

o Letz={12,. k¥ XK.

e K degree of source

e Z,,. collection of all partitions of Z with size M
M

Z,={{H.H,,..H | JH =Z,H "H, =0}

i=1

e K=3, M=2 = 7={1,2,3}

o Z,~{ {{1.2,(3}} ,{{1.3L{2}} ,{{2,3}.{3}} }

INFONET, GIST 37
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Theorem 3: Complexity/speed tradeoff
e Network is 1-identifiable if

q> min  max ZNJ.

{H;,i=1,..,.M}eZ,, i jeH,

Rank(A)=M

Theorem 3 provides a tradeoff between number of time
slots for training sequence (speed of the method) and size
of network coding coefficient (complexity) to make a network
G(V; E) identifiable.

INFONET, GIST 38




