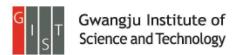
Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit

J. A. Tropp and A. C. Gilbert

IEEE Trans. on Inform. Theory

Presenter: Sangjun Park

GIST, Dept. of Information and Communication, INFONET Lab.



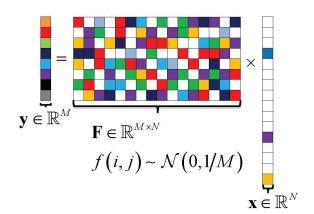
INFONET, GIST

1 / 14

Journal Club Meeting, Thursday, 13, June 2013

Questions and System Model

- Let us suppose that we aim to find the support set of a sparse vector by using OMP.
- Then, what is a sufficient condition for successful OMP?

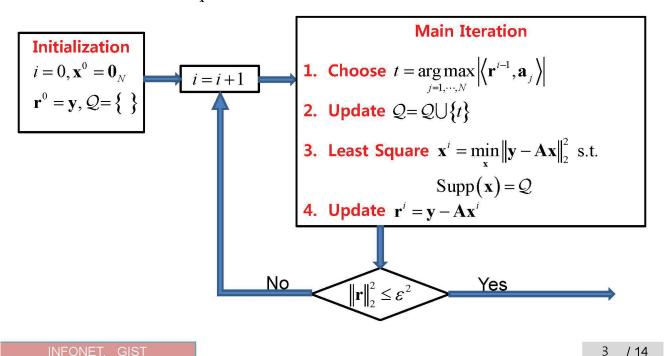


INFONET, GIST 2 / 14

Orthogonal Matching Pursuit

OMP finds one index at a time for approximating the solution of

$$\min_{\mathbf{y}} \|\mathbf{x}\|_{0} \text{ subject to } \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} \le \varepsilon^{2}$$



Journal Club Meeting, Thursday, 13, June 2013

Sufficient conditions for successful OMP

 There are many papers that report sufficient conditions for successful OMP.

Year	A sufficient condition	Types
2004	$\mu < 1/(2K-1)$	Deterministic
2010	$\delta_{K+1} < 1/(3\sqrt{K})$	Deterministic
2012	$\delta_{K+1} < 1 / \left(\sqrt{K} + 1\right)$	Deterministic
This paper	$M = \Omega(K\log(N))$	Probabilistic

2007: J. Tropp, "Greed is good: Algorithmic results for sparse approximation," IEEE Trans. On. Inform. Theory

2010: M. A. Davenport, M. B. Wakin, "Analysis of Orthogonal Matching Pursuit Using the Restricted Isometry Property", IEEE Trans. On. Inform. Theory

2012: J. Wang and B. Shim, "On the recovery Limit of Sparse Signals Using Orthogonal Matching Pursuit", IEEE Trans. Signal Processing Letter

INFONET, GIST 4 / 14

The short overview of the paper [2012]

- To derive their sufficient condition, the authors considered the event that OMP correctly selects index j at the ith iteration.
- The event occurs if $\min_{t \in T} \|\langle \mathbf{a}_t, \mathbf{y} \rangle\|_2 > \max_{t \notin T} \|\langle \mathbf{a}_t, \mathbf{y} \rangle\|_2$.
- They have shown that the left term is lower bounded by

$$\min_{t \in \mathcal{I}} \left\| \left\langle \mathbf{a}_{t}, \mathbf{y} \right\rangle \right\|_{2} \geq \frac{1}{\sqrt{K}} (1 - \delta_{K}) \left\| \mathbf{x}_{\mathcal{I}} \right\|_{2}.$$

Also, they have shown that the right term is upper bounded by

$$\max_{t \notin \mathcal{I}} \left\| \left\langle \mathbf{a}_{t}, \mathbf{y} \right\rangle \right\|_{2} \leq \left(1 - \delta_{K+1} \right) \left\| \mathbf{x}_{\mathcal{I}} \right\|_{2}.$$

 Then, they have derived their sufficient condition from the two bounds.

INFONET, GIST

5 / 14

Journal Club Meeting, Thursday, 13, June 2013

The main Theorem

• (OMP with Admissible Measurement matrix.) Fix $\delta \in (0,1)$, and choose $M = \Omega(Klog(N/\delta))$. Suppose that \mathbf{x} is an arbitrary K-sparse vector in \mathcal{R}^N , and draw a random $M \times N$ admissible measurement matrix \mathbf{A} independent from the vector. Given the measurement vector $\mathbf{y} = \mathbf{A}\mathbf{x}$. Then, OMP can reconstruct the support set with probability exceeding $1 - \delta$.

INFONET, GIST 6 / 14

Admissible Measurement Matrices

- An admissible measurement matrix for K —sparse vectors in \mathbb{R}^N is an $M \times N$ random matrix \mathbf{A} with four properties.
 - (M0) Independence : The columns of **A** are stochastically independent.

(M1) Normalization :
$$\mathbb{E}\left[\left\|\mathbf{a}_{i}\right\|_{2}^{2}\right] = 1 \text{ for } j = 1, \dots, N.$$

(M2) Joint correlation : Let $\{\mathbf{u}^t\}$ be a sequence of vectors whose l_2 norms do not exceed one. Let \mathbf{a} be a column of \mathbf{A} that is independent from $\{\mathbf{u}^t\}$. Then, $\mathbb{P}\Big\{\max_t \Big| \Big\langle \mathbf{a}, \mathbf{u}^t \Big\rangle \Big| \leq \varepsilon \Big\} \geq 1 - 2K \exp\Big(-c\varepsilon^2 M\Big)$

(M3) Smallest singular value: Given an $M \times K$ submatrix \mathbf{Z} from \mathbf{A} , the largest singular value $\sigma_{min}(\mathbf{Z})$ satisfies $\mathbb{P}\left\{\sigma_{\min}\left(\mathbf{Z}\right) \geq 0.5\right\} \geq 1 - \exp\left(-cM\right)$

INFONET, GIST

7 / 14

Journal Club Meeting, Thursday, 13, June 2013

The proof of the main Theorem-1

• First, let us define the greedy ratio at the Ith iteration:

$$\rho(\mathbf{r}^{l}) := \frac{\max_{i \notin \mathcal{I}} \left| \left\langle \mathbf{r}^{l}, \mathbf{a}_{i} \right\rangle \right|}{\max_{i \in \mathcal{I}} \left| \left\langle \mathbf{r}^{l}, \mathbf{a}_{i} \right\rangle \right|}$$

- OMP correctly selects an index belonging to the support set if $\rho(\mathbf{r}^i) < 1$.
- OMP correctly reconstructs the support set when the event $E_{succ} := \max_{l < V} \rho(\mathbf{r}^l) < 1$ occurs
- We aim to obtain the probability $\mathbb{P}\left\{E_{succ}\right\} \coloneqq \mathbb{P}\left\{\max_{l \leq K} \rho\left(\mathbf{r}^{l}\right) < 1\right\}$ $\geq \mathbb{P}\left\{\max_{l \leq K} \rho\left(\mathbf{r}^{l}\right) < 1 \cap \sigma_{\min}\left(\mathbf{A}_{\mathcal{I}}\right) \geq 0.5\right\}$
- Owing to (M3), we can solve LS within the Kth iterations.

INFONET, GIST 8 / 14

The proof of the main Theorem-2

Continuously, we aim to consider the probability

$$\mathbb{P}\left\{\max_{l \leq K} \rho(\mathbf{r}^{l}) < 1 \middle| \sigma_{\min}(\mathbf{A}_{\mathcal{I}}) \geq 0.5\right\}$$

• For this end, we consider the greedy ratio at the *I*th iteration. Then, we have

$$\rho\left(\mathbf{r}^{l}\right) = \frac{\max_{i \notin \mathcal{I}} \left|\left\langle\mathbf{r}^{l}, \mathbf{a}_{i}\right\rangle\right|}{\max_{i \in \mathcal{I}} \left|\left\langle\mathbf{r}^{l}, \mathbf{a}_{i}\right\rangle\right|} = \frac{\max_{i \notin \mathcal{I}} \left|\left\langle\mathbf{r}^{l}, \mathbf{a}_{i}\right\rangle\right|}{\left\|\mathbf{A}_{\mathcal{I}}^{T} \mathbf{r}^{l}\right\|_{\infty}} \leq \frac{\sqrt{K} \max_{i \notin \mathcal{I}} \left|\left\langle\mathbf{r}^{l}, \mathbf{a}_{i}\right\rangle\right|}{\left\|\mathbf{A}_{\mathcal{I}}^{T} \mathbf{r}^{l}\right\|_{2}}$$

• Now, we simplify the upper bound of the greedy ratio. First, let us define $\mathbf{r}^l := \mathbf{u}^l \| \mathbf{A}_{\mathcal{I}}^T \mathbf{r}^l \|_2 / 0.5$. Then, the upper bound becomes

$$\frac{\sqrt{K} \max_{i \notin \mathcal{I}} \left| \left\langle \mathbf{r}^{l}, \mathbf{a}_{i} \right\rangle \right|}{\left\| \mathbf{A}_{\mathcal{I}}^{T} \mathbf{r}^{l} \right\|_{2}} = \frac{\sqrt{K} \max_{i \notin \mathcal{I}} \left| \left\langle \mathbf{u}^{l} \left\| \mathbf{A}_{\mathcal{I}}^{T} \mathbf{r}^{l} \right\|_{2} / 0.5, \mathbf{a}_{i} \right\rangle \right|}{\left\| \mathbf{A}_{\mathcal{I}}^{T} \mathbf{r}^{l} \right\|_{2}} = 2\sqrt{K} \max_{i \notin \mathcal{I}} \left| \left\langle \mathbf{u}^{l}, \mathbf{a}_{i} \right\rangle \right|.$$

INFONET. GIST

9 / 14

Journal Club Meeting, Thursday, 13, June 2013

The proof of the main Theorem-3

- Owing to M3, we have $\|\mathbf{A}_{\mathcal{I}}^T \mathbf{r}^l\|_2 / \|\mathbf{r}^l\|_2 \ge \sigma_{\min}(\mathbf{A}_{\mathcal{I}}) \ge 0.5$.
- Then, we can show that the l^2 norm of the vector \mathbf{u}^l is always less than one.

$$\mathbf{u}^{l} = 0.5 \,\mathbf{r}^{l} / \left\| \mathbf{A}_{\mathcal{I}}^{T} \mathbf{r}^{l} \right\|_{2} \le \mathbf{r}^{l} / \left\| \mathbf{r}^{l} \right\|_{2}$$

Now, we have

$$\mathbb{P}\left\{\max_{l \leq K} \rho\left(\mathbf{r}^{l}\right) < 1 \middle| \sigma_{\min}\left(\mathbf{A}_{\mathcal{I}}\right) \geq 0.5\right\} \geq \mathbb{P}\left\{\max_{l \leq K} 2\sqrt{K} \max_{i \notin \mathcal{I}} \left|\left\langle\mathbf{u}^{l}, \mathbf{a}_{i}\right\rangle\right| < 1 \middle| \sigma_{\min}\left(\mathbf{A}_{\mathcal{I}}\right) \geq 0.5\right\}$$

$$= \mathbb{P}\left\{\max_{i \notin \mathcal{I}} \max_{l \leq K} \left|\left\langle\mathbf{u}^{l}, \mathbf{a}_{i}\right\rangle\right| < \frac{1}{2\sqrt{K}} \middle| \sigma_{\min}\left(\mathbf{A}_{\mathcal{I}}\right) \geq 0.5\right\}$$

$$\geq \prod_{i \notin \mathcal{I}} \mathbb{P}\left\{\max_{l \leq K} \left|\left\langle\mathbf{u}^{l}, \mathbf{a}_{i}\right\rangle\right| < \frac{1}{2\sqrt{K}} \middle| \sigma_{\min}\left(\mathbf{A}_{\mathcal{I}}\right) \geq 0.5\right\}$$

$$\geq \left[1 - 2K \exp\left(-cM/(4K)\right)\right]^{N-K}$$

INFONET, GIST 10 / 14

The proof of the main Theorem-4

- In addition, we have $\mathbb{P}\left\{\sigma_{\min}\left(\mathbf{Z}\right) \geq 0.5\right\} \geq 1 \exp\left(-cM\right)$.
- Thus, we finally obtain

$$\mathbb{P}\left\{E_{succ}\right\} \geq \left[1 - 2K \exp\left(-cM/(4K)\right)\right]^{N-K} \left[1 - \exp\left(-cM\right)\right].$$

• To simplify the lower bound, we apply the inequality $(1-x)^n \ge 1-kn$ for $n \ge 1$ and $x \le 1$. Then, for $K(N-K) \le N^2/4$, we have

$$\mathbb{P}\left\{E_{succ}\right\} \ge 1 - 2K(N - K)\exp\left(-cM/(4K)\right) - \exp\left(-cM\right).$$

By again simplifying the above lower bound, we have

$$\mathbb{P}\left\{E_{succ}\right\} \ge 1 - N^2 \exp\left(-cM/K\right).$$

• Finally, we can see that the choice $M = \Omega(Klog(N/\delta))$ is sufficient to reduce the failure probability below δ .

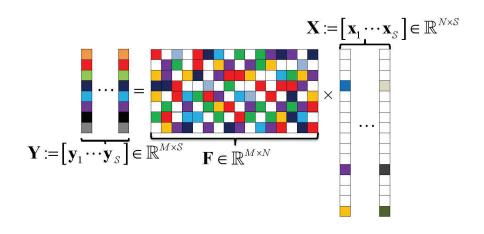
INFONET, GIST

11 / 14

Journal Club Meeting, Thursday, 13, June 2013

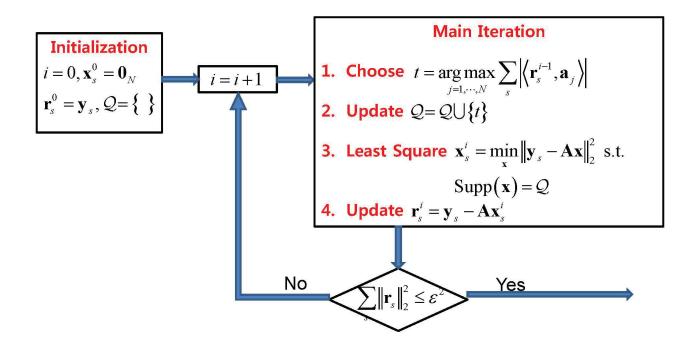
New researches problems

1. Can we establish a sufficient condition for Simultaneously Orthogonal Matching Pursuit?



INFONET, GIST 12 / 14

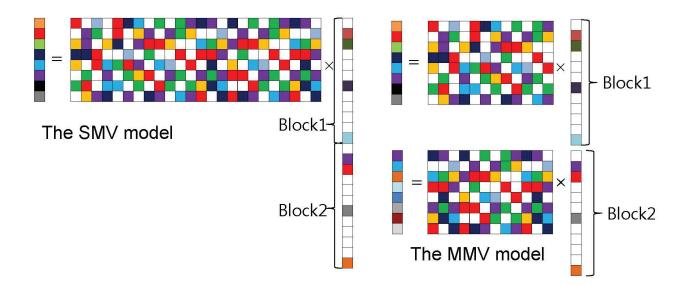
Simultaneously Orthogonal Matching Pursuit



INFONET, GIST 13 / 14

Journal Club Meeting, Thursday, 13, June 2013

New researches problems



2. Let M_1 be the number of measurements in the SMV model when OMP is exploited. Let M_2 be the total number of measurements in the MMV model when SOMP is exploited. What is the relation between M_1 and M_2 ?

INFONET, GIST 14 / 14

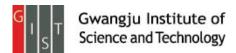
Link Status Monitoring Using Network Coding

M. H. Firooz et al.

To appear IEEE/ACM Trans. on Networking

Presenter: Jin-Taek Seong

GIST, Dept. of Information and Communications, INFONET Lab.



INFONET, GIST

1

Journal Club Meeting, June 27, 2013

Outline

Network Tomography

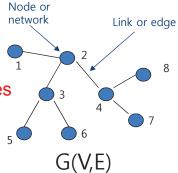
- Introduction (Network Monitoring)
- Approaches:
 - Deterministic vs. Stochastic
 - Active vs Passive
- Challenges: Overhead, Identifiability

Network Coding

- Applications to network monitoring: new method
- Optimization : speed/complexity tradeoffs

Network Tomography

- Networks: set of nodes, links modeled as graph G(V,E)
- Network monitoring
 - Involves collection of network performance statistics (link delay, link loss or failure status)
 - Important for QoS guarantees (media streaming, interactive video applications)
- Challenges
 - Choice of appropriate measurement techniques and algorithms



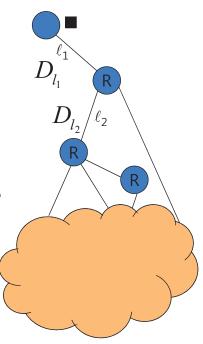
INFONET, GIST

3

Journal Club Meeting, June 27, 2013

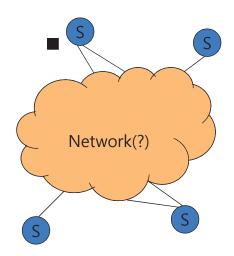
Measurement Methods

- Node-oriented: These methods are based on cooperation among network nodes, e.g., ping or traceroute
 - Using Ping, round trip delay to every node can be measured.
 - Uses Internet control message protocol (ICMP) packets
 - Many routers do NOT respond to these packets
 - Many service providers do not own the entire network



Measurement Methods

- Edge-oriented: Access is available to all nodes at the edge only (and not to any in the interior)
 - Does not require exchanging special control messages between interior nodes
 - Inverse problem: estimate link level status from end-to-end (path level) measurements



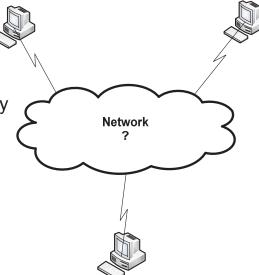
INFONET, GIST

5

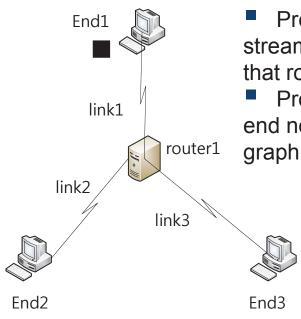
Journal Club Meeting, June 27, 2013

Measurement Methods

- Active (sending probe packets)
 - Adds overhead to normal data traffic by introducing new control packets
- Passive (insitu traffic analysis)
 - No overhead; temporal and spatial dependence might bias measurement
- Considered method: edge-oriented, active network tomography
 - Given a network, and a limited number of end hosts, when can we infer failure status of the links?



End-to-End Probing



- Probes are inserted into a data stream, and end-to-end properties on that route measured.
- Probes are exchanged between end nodes using routing matrix of the graph

Routing matrix A

	link1	link2	link3
$End1 \rightarrow End2$	1	1	0
$End1 \rightarrow End3$	1	0	1
$End2 \rightarrow End3$	0	1	1

INFONET, GIST

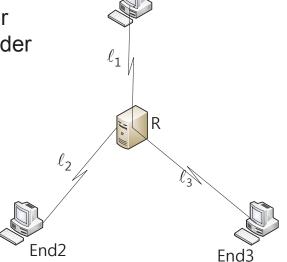
7

Journal Club Meeting, June 27, 2013

End-to-End Probes

- Routing matrix relates link attribute to route attribute
- For some parameters like delay or path loss, this relation is linear under some assumptions

$$\begin{bmatrix} D_{End1 \to End2} \\ D_{End1 \to End3} \\ D_{End2 \to End3} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} D_{l_1} \\ D_{l_2} \\ D_{l_3} \end{bmatrix}$$



End1

Deterministic

- Link attributes (e.g. delay) are considered unknown, constant
- Goal: estimate constants
- Link attributes are typically time varying
 - → method is suitable for periods of local 'stationarity'

INFONET, GIST

q

Journal Club Meeting, June 27, 2013

Stochastic

- Link attribute specified by a suitable probability distribution
 - e.g. link delay follows a Gaussian distribution
- Estimation problem: unknown model parameters
 based on path observation in the presence of additive noise

Deterministic vs. Stochastic Methods

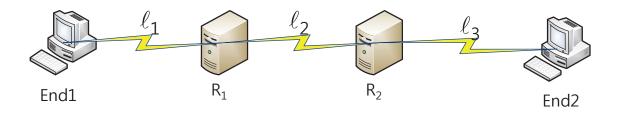
- Stochastic
 - Bayesian requires a prior distribution
 - · incorrect choice leads to biases in the estimates
 - More computationally intensive
- Deterministic
 - Lower complexity but suffers from generic identifiability (will be discussed later) problems

INFONET, GIST

11

Journal Club Meeting, June 27, 2013

Link Failure Model

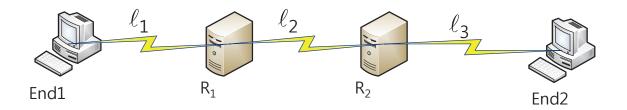


Define an indicator function for status of each link

$$x_{l_i} = \begin{cases} 0 & l_i \text{ is ok} \\ 1 & l_i \text{ is congested} \end{cases}$$

$$y_{end1 \rightarrow end2} = \begin{cases} 0 & \text{all of } l_1, l_2, l_3 \text{ is ok} \\ 1 & o.w. \end{cases}$$

Binary Deterministic Model



$$y_{end1 \to end2} = x_{l_1} \text{ or } x_{l_2} \text{ or } x_{l_3}$$

$$y = Ax$$

A: N-by-M binary routing matrix

x: M-by-1 binary vector, the status of each link

y: N-by-1 binary vector, the status of each path (measurements)

INFONET, GIST

Journal Club Meeting, June 27, 2013

Failure Monitoring

- Network G(V,E) with set of paths P
- x, y are binary vectors
- A path is congested if at least one of its links is congested

$$\mathbf{x} \in \{0,1\}^{|\mathbf{E}|}, \mathbf{y} \in \{0,1\}^{|\mathbf{P}|}$$

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} End1 \rightarrow End2 \\ End2 \rightarrow End3 \\ End2 \rightarrow End3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_{l_1} \\ x_{l_2} \\ x_{l_3} \end{bmatrix}, \quad x_{l_1} \in \{0,1\}$$

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} x_{l_1}(OR)x_{l_2} \\ x_{l_1}(OR)x_{l_3} \\ x_{l_2}(OR)x_{l_3} \end{bmatrix}$$
End2
End3

INFONET GIST

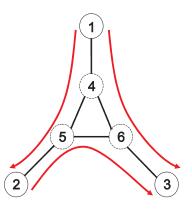
14

13

Identifiability y = Ax

- Problem: Estimate x from y with
 - A (N-by-M): binary routing matrix
 - x (M-by-1): binary link failure status
 - y (N-by-1): end-to-end measurements

6 links, 3 End-to-End routes → M=6, N=3



- <u>Identifiability</u>: a network is identifiable if y = Ax has a <u>unique solution</u>
 - Usually, M (# of links in network) >> N (# of measurements), so network is generically NOT identifiable.

INFONET, GIST

15

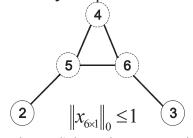
Journal Club Meeting, June 27, 2013

Identifiability: Binary Model

- Solution: limit (maximum) number of failed links inside the network
 - Suppose at most k links can fail simultaneously

- Network is k-identifiable if

$$\left\|\mathbf{x}_{|\mathrm{E}|\times 1}\right\|_{0} \leq k$$



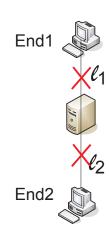
Only one link can be congested

$$\forall \mathbf{x}_1, \mathbf{x}_2 \text{ s.t.} \|\mathbf{x}_1\|_0 \le k, \|\mathbf{x}_2\|_0 \le k, \ \mathbf{x}_1 \ne \mathbf{x}_2 \Longrightarrow \mathbf{A}\mathbf{x}_1 \ne \mathbf{A}\mathbf{x}_2$$

 From end-to-end observation it is possible to uniquely identify up to k congested links

1-Identifiability

- ❖ A network with an intermediate degree two node is **not** 1-identifiable
 - ✓ If path End1→End2 is congested, it is impossible to determine which link among I₁ and I₂ is congested.
- Necessary but not sufficient!



$$x_{l_1} = 1 \Rightarrow y_{End1 \rightarrow End2} = 1$$

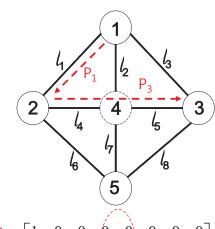
$$x_{l_2} = 1 \Rightarrow y_{End1 \rightarrow End2} = 1$$

INFONET, GIST 17

Journal Club Meeting, June 27, 2013

k=1 Identifiability

 1-identifiability Theorem: End-to-End probe based measurements can detect a unique congested link in a network if and only if there are no two identical columns in the network routing matrix



18

k- identifiability

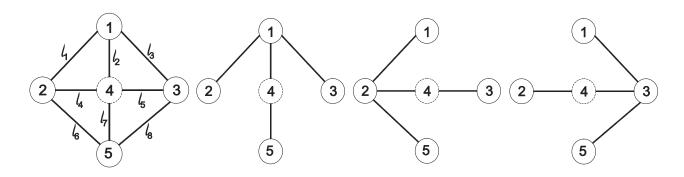
 k-identifiability Theorem: End-to-End probe based measurements can detect a unique congested link in a network only if there are no k+1 dependent columns in the network routing matrix

INFONET, GIST

Journal Club Meeting, June 27, 2013

Shortest Path Routing Revisited

- Packets are sent on shortest path between two end nodes
 - sub-graphs = tree starting from a boundary (source) node
 - > Node 4 has two degrees in all graphs
- But node 4 has 4 degrees in the original network

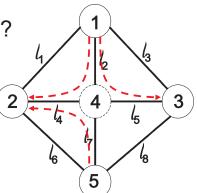


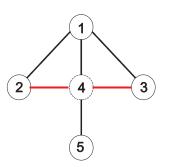
Revisiting Shortest Path Routing

• What if we could change routing matrix ?

Example: in place of shortest path routing, route packets through longer paths, e.g. $n_1 \rightarrow \ell_2 \rightarrow \ell_4 \rightarrow n_2$

- Now network is 1-identifiable!
- Intrinsic limitation for end-to-end measurement methods based on shortest path routes
 - probes transmitted along such paths contain only *minimum information*





INFONET, GIST

21

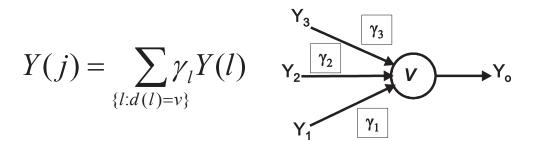
Journal Club Meeting, June 27, 2013

Solution

- Look to exchange probes between boundary nodes via other (non-shortest) paths?
- Changing the routing tables violates tomography assumption
- Use Network Coding; exploit broadcast nature of network coding, a transmitted probe will traverse almost every path between two boundary nodes

Linear Network Coding

- Network Coding is a coding at layer three
- The coding is conducted over the finite field F₁₁, u=2^q
- Each coded symbol can be represented by q-bits within an IP layer frame
- Signal Y(j) on an outgoing link j of node v is a linear combination of signals Y(i) on incoming link i of v:
 - We assume there is no process generated at node v



INFONET, GIST

23

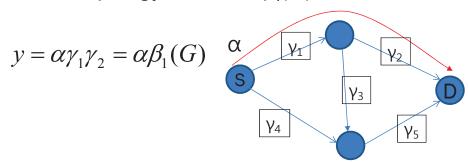
Journal Club Meeting, June 27, 2013

Received Symbols

- Pi: i-th route from source to destination
- Source sends α over Pⁱ

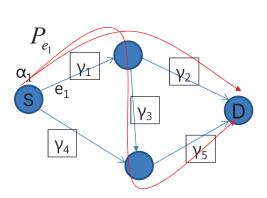
$$y = \alpha \prod_{l \in P^i} \gamma_l = \alpha \beta_i(G), \quad \alpha \in F_{2^q}$$
$$\beta_i(G) = \prod_{l \in P^i} \gamma_l \quad \text{Path NC Coef.}$$

• β_i depends on topology G hence $\beta_i(G)$



Received Symbols: Linear Model

- e_k one of source outgoing links
- P_{ek}: collection of all paths between source and destination starts at the k-th outgoing edge e_k
- Source sends α_k over e_k . By superposition destination receives



$$y = \alpha_k \sum_{P^i \in P_{e_k}} \prod_{l \in P^i} \gamma_l = \alpha_k \sum_{i=1}^{|P_{e_k}|} \beta_{i,e_k}(G)$$

$$y = \alpha_1(\gamma_1\gamma_2 + \gamma_1\gamma_3\gamma_5) = \alpha_1(\beta_{1,e_1} + \beta_{2,e_1})$$

INFONET, GIST

25

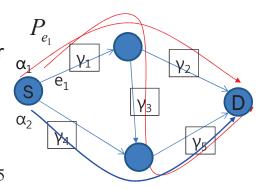
Journal Club Meeting, June 27, 2013

Received Symbols: Linear Model

• Source sends out symbols α_k over e_k using superposition once more

$$y = \sum_{k=1}^{K} \alpha_k \sum_{i=1}^{|P_{e_k}|} \beta_{i,e_k}(G)$$

- In vector format: y=α^tβ(G)
- β(G) is total network coding vector



$$y = \alpha_1(\gamma_1\gamma_2 + \gamma_1\gamma_3\gamma_5) + \alpha_2\gamma_4\gamma_5$$

Received Symbols: Linear Model

• Source sends symbols in *M* consecutive time slots:

$$y_{M\times 1} = A_{M\times N}\beta(G)_{N\times 1}$$

$$\beta(G)_{N\times 1} = \left[\underbrace{\beta_{1,e_1} \quad \beta_{2,e_1} \quad \cdots \quad \beta_{N_1,e_1}}_{P_{e_1}} \quad \underbrace{\beta_{1,e_1} \quad \cdots \quad \beta_{N_2,e_2}}_{P_{e_2}} \quad \cdots \quad \underbrace{\beta_{N_K,e_K}}_{P_{e_K}} \right]^t$$

$$A_{M\times N} = \begin{bmatrix} \alpha_{1,1} & \cdots & \alpha_{1,|\mathcal{P}_{e1}|} & \cdots & \alpha_{1,N} \\ \alpha_{2,1} & \cdots & \alpha_{2,|\mathcal{P}_{e1}|} & \cdots & \alpha_{2,N} \\ \vdots & \vdots & \ddots & \cdots & \vdots \\ \alpha_{M,1} & \cdots & \alpha_{M,|\mathcal{P}_{e1}|} & \cdots & \alpha_{M,N} \end{bmatrix}$$
 A: consisting K distinct columns

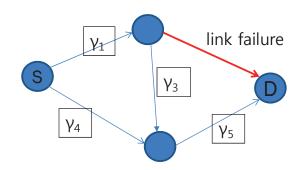
INFONET, GIST

27

Journal Club Meeting, June 27, 2013

Link Failure Model

- If a link is severely congested, packets are significantly delayed and assumed lost at the destination
- We model the network with link / in congestion state by its edge deleted subgraph denoted by $G_{i}(V,E_{i})$



Link Failure Model

• Total network coding vector of $G_{l}(V;E_{l})$, $\beta(G_{l})$ is different from $\beta(G)$

$$\beta_{i,e_k}(G_l) = \begin{cases} \beta_{i,e_k}(G) & \text{if } l \notin P_{e_k}^i(d) \\ 0 & \text{o.w.} \end{cases}$$

- If the congested link doesn't belong to i-th path from source to destination, Pi, it will not affect packets going through those paths
 - It is zero otherwise

$$\beta_{1}(G) = \gamma_{1}\gamma_{2} \longrightarrow \beta_{1}(G_{l_{1}}) = 0$$

$$\beta_{2}(G) = \gamma_{4}\gamma_{5} \longrightarrow \beta_{2}(G_{l_{1}}) = \beta_{2}(G)$$

$$\beta_{2}(G) = \beta_{2}(G)$$

INFONET, GIST

γ3

Journal Club Meeting, June 27, 2013

Link Failure Model

- Training sequence is A
- y
 ^I: vector of symbols observed at the destination in M
 time slots with link I congested

$$y_{M\times 1}^l = A_{M\times N}\beta(G_l)_{N\times 1}$$

 Potential for identifying: received symbols change uniquely in response to link congestion

$$y_{M\times 1} \neq y_{M\times 1}^{l}$$
$$y_{M\times 1}^{l_1} \neq y_{M\times 1}^{l_2}$$

Journal Club Meeting, June 27, 2013

Example

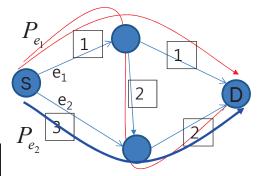
$$\beta(G) = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} \qquad \beta_{1,e_1} = 1 \times 1 = 1$$

$$\beta_{2,e_1} = 1 \times 2 \times 2 = 3$$

$$\beta_{2,e_2} = 3 \times 2 = 1$$

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

		e ₁	e_2	ℓ_1	ℓ_{2}	ℓ_3
1 st time slot	0	2	2	3	1	1
2 nd time slot	2	3	1	0	1	3



Received symbols corresponding a single link failure

INFONET, GIST

Journal Club Meeting, June 27, 2013

Theorem 2: Sufficient Conditions

- If Rank(A)= deg(S), and
 - for all P_{ek} set of paths between source and destination starting at e_k

$$\sum_{j=1}^{|P_{e_k}|} \xi_j \beta_{j,e_i} = 0 \Longleftrightarrow \xi_j = 0 \, \forall j \qquad \text{(more next slide)}$$

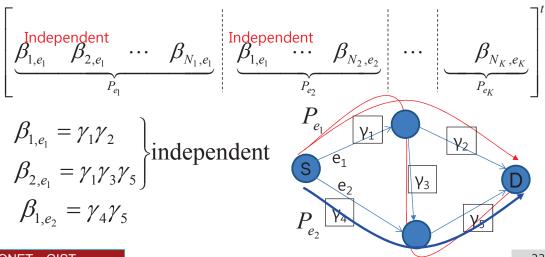
then

$$A\beta(G) \neq A\beta(G_l) \quad \forall l \notin E$$

 $A\beta(G_{l_1}) \neq A\beta(G_{l_2}) \quad \forall l_1, l_2 \notin E$

Theorem 2

- Condition $\sum_{j=1}^{|P_{e_k}|} \xi_j \beta_{j,e_i} = 0 \Leftrightarrow \xi_j = 0 \ \forall j$ means
 - ➤ For a set of paths having e_k in common, P_{ek}, NC coefficient of the paths are independent!



INFONET, GIST

33

Journal Club Meeting, June 27, 2013

Example

$$\beta(G) = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
 Independent

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

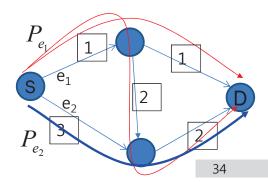
$$Rank(A) = 2 = deg(S)$$

$$\beta_{1,e_{1}} = 1 \times 1 = 1$$

$$\beta_{2,e_{1}} = 1 \times 2 \times 2 = 3$$

$$\beta_{2,e_{2}} = 3 \times 2 = 1$$

		e ₁	e_2	ℓ_1	ℓ_{2}	ℓ_3
1 st time slot	0	2	2	3	1	1
2 nd time slot	2	3	1	0	1	3



Complexity/Speed

• First condition of Theorem 2:

$$\operatorname{Rank}(A_{M \times N}) = \deg(S)$$
 implies $M \ge \deg(S)$

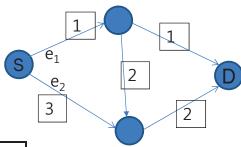
- In previous example M=2=deg(S)
- Number of time slots: at least the number of outgoing links of source
- Is it possible to decrease number of time slots? → faster monitoring
- Possible by increasing number of bits in LNC coeff. → more complexity

INFONET, GIST

35

Journal Club Meeting, June 27, 2013

Example



		e ₁	e_2	ℓ_1	ℓ_{2}	ℓ_3
1st time slot	6	4	2	5	7	1

Theorem 3: Complexity/Speed tradeoff

- N_i=|Pⁱ|
- q bits per symbol are used in network coding
- M number of (desired) time slots
- Let Z={1,2,...,K}
- K degree of source
- Z_M: collection of all partitions of Z with size M

$$Z_{M} = \{\{H_{1}, H_{2}, ..., H_{M}\} \mid \bigcup_{i=1}^{M} H_{i} = Z, H_{i} \cap H_{j} = \Phi\}$$

K links

- K=3, $M=2 \rightarrow Z=\{1,2,3\}$
- $Z_M = \{ \{1,2\},\{3\} \}$, $\{\{1,3\},\{2\} \}$, $\{\{2,3\},\{3\} \}$

INFONET, GIST 37

Journal Club Meeting, June 27, 2013

Theorem 3: Complexity/speed tradeoff

Network is 1-identifiable if

$$q \ge \min_{\{H_i, i=1,\dots,M\} \in Z_M} \max_i \sum_{j \in H_i} N_j$$

 $Rank(\mathbf{A})=M$

Theorem 3 provides a tradeoff between number of time slots for training sequence (speed of the method) and size of network coding coefficient (complexity) to make a network G(V; E) identifiable.