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Short summary: This paper  considers the reconstruction of structured-sparse signals 

from noisy linear observations. In particular, the support of the signal coefficients is 

parameterized by hidden binary pattern, and a structured probabilistic prior (e.g., Markov 

random chain/field/tree) is assumed on the pattern. Exact inference is discussed and an 

approximate inference scheme, based on loopy belief propagation (BP), is proposed. The   

proposed scheme iterates between exploitation of the observation-structure and 

exploitation of the pattern-structure, and is closely related to noncoherent turbo 

equalization, as used in digital communication receivers. An algorithm that exploits the 

observation structure is then detailed based on approximate message passing ideas. 

 

I. INTRODUCTION 

The main objective is to estimate the sparse signal Nx  from the noisy linear 

measurements My , 

  y Ax w  (1) 

 

where M NA  is a known matrix and 
Mw is additive noise, often modeled as circular 

white Gaussian,  i.e., 2~ (0, )CN w I . By “sparse,” we mean that the signal has only a few 

(say K , where K N ) non-zero coefficients. 

In many cases of interest, the system of equations in (1) is underdetermined, i.e., M N , so 

that, even in the noiseless case, there is no unique inverse. However, when x  is known to be 

sparse, it is possible to accurately reconstruct x  from y  if the columns of A are sufficiently 

incoherent. For various sparse reconstruction algorithms, including convex- optimization-based, 
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greedy, and iterative thresholding algorithms, there exist elegant bounds on reconstruction error 

that hold when A  satisfies a certain restricted isometry property (RIP). In many applications, 

however, the signal x  has structure beyond simple sparsity. For example, the wavelet transform 

coefficients of natural scenes are not only approximately sparse, but also exhibit persistence 

across scales, which manifests as correlation within the sparsity pattern. Many other forms of 

structure in the sparsity pattern are also possible, and so we desire a powerful and flexible 

approach to modeling and exploiting such structure. 

In this paper, we take a probabilistic approach to modeling sparsity structure, allowing the use 

of, e.g., Markov chain (MC), Markov random field (MRF), and Markov tree (MT) models [2].  

Such models have been previously exploited for sparse reconstruction, but only to a limited 

extent. For example, [3] and [4] proposed Monte-Carlo-based [5] sparse reconstruction 

algorithms using MRF and MT models, respectively, and [6] and [7] proposed to iterate 

matching- pursuit with MAP pattern detection based on MRF and MT models, respectively. 

Monte-Carlo algorithms, while flexible, are typically regarded as computationally too expensive 

for many problems of interest. Matching-pursuit algorithms are typically much faster, but the 

schemes in [6], [7] are ad hoc. We attack the problem of reconstructing structured-sparse signals 

through the framework of belief propagation (BP) [8]. While BP has been successfully used to 

recover unstructured sparse signals (e.g., [9], [10]), we believe that its application to structured 

sparse signals is novel. As we shall see, the BP framework suggests an iterative approach, where 

sparsity pattern beliefs are exchanged between two blocks, one exploiting observation structure 

and the other exploiting pattern structure. In this regard, our scheme resembles turbo equalization 

from digital communications [11], where bit beliefs are exchanged between a soft equalizer and 

a soft decoder. Our two blocks are themselves naturally implemented using BP, and we detail a  

particularly efficient algorithm based on the approximate message passing (AMP) framework  

recently proposed by Donoho, Maleki, and Montanari [10]. 

 

II. SIGNAL MODEL 

Our structured-sparse signal model uses hidden binary indicators 1{ }N

n ns  , where {0,1}ns  . In 

particular, 1ns   indicates that the signal coefficient nx  is active while 0ns   indicates that 
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nx  is inactive. Assuming that the active signal coefficients are independently but 

non-identically distributed, we can write 

 

 ( | ) ( ) (1 ) ( )n n n n n n np x s s q x s x    (2), 

 

Where ( )nq   denotes the pdf of
nx , when active, and ( )   denotes the Dirac delta. We refer 

to  1 2, , , {0,1}
T N

Ns s s s  as the sparsity pattern, and model structure in s  through an 

assumed prior pmf ( )p s . 

 

III. TURBO INFERENCE  

Our primary goal is estimating the structured-sparse signal x  given the observations 0y y  

in model (1). In particular, we are interested in computing minimum mean-squared error(MMSE) 

estimates of { }nx . 

 

Figure 1 Factor graph of posterior 0( , | )p x s y y . The boxes represent factor nodes and the circles represent 

variable nodes. Dashed line partitions the factor graph into two sub-graphs 

 

A. Exact inference 

The estimation task is facilitated by the following factorization of the posterior pdf shown by 

the factor graph in Fig. 1. 

 0 0 0

1( ) ( ) ( , )

( , | ) ( | , ) ( , ) ( ) ( | ) ( | )

n n n

N

n n

nh g f x s

p p p p p p x s


     
s x

x s y y y y x s x s s y y x  (3) 

We use   to denote equality after scaling to unit area. 

The MMSE estimate of nx  is given by the mean of the marginal posterior 0( | )np x y y , 

which can be written as 
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Where 
ns  denotes vector s  with the thn  element omitted, and ,n qs  denotes s  with 

both the 
thn  and 

thq  elements omitted. Writing ,( | ) ( | , ) ( | )n n n q q n q np s p s s p s s s s , the 

last summation in (7) reduces to ( | )q np s s , giving 

 0( | ) ( ) ( )
n n nn f x n g x np x v x v x  y y  (8) 

 

1

0

( ) ( , ) ( )
n n

n

f x n n n n n

s

v x f x s p s



  (9) 

 

1

0

( ) ( ) ( , ) ( | )
n

n
q

g x n q q q q n

sq n

v x g f x s p s s






x x  (10) 

 

B. Implementing the Message Passes 

Whereas exact posterior calculation via (8)-(10) is computationally prohibitive for typical 

problem sizes, approximate calculation can be efficiently accomplished using message 

passing. Using the framework of BP, the functions ( )
n nf xv    and ( )

ng xv    can be 

approximated. 
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 x x  (12) 

Which depend on the other messages 
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( )

( ) ( )

( )

( ) ( , ) ( )
n n n n

n

t
ng fn

t t

f s n n n n x f n
x

v x

v s f x s v x



 



   (14) 

We use the superscript-(t) to denote iteration. These messages can then be combined for 

marginal inference: 

 

 
( )

( ) ( )

0( | ) ( ) ( )
n n n

t
t t

n f x n g x np x v x v x  y y  (15) 

 
( )

( ) ( )

0( | ) ( ) ( )
n n n

t
t t

n f s n h s np s v s v s  y y  (16) 

 

Where 
( )t

p  denotes the iteration- t  approximation to the pdf. 

  We now partition our factor graph into the two sub-graphs separated by the dashed line in 

Fig.1. The message   ( )

1
( )

n n

N
t

f s
n

v 


  form the outputs of the left sub-graph and the inputs to the 

right one, while the messages  ( )

1
( )

n

N
t

h s
n

v 


  form the outputs of the right sub-graph and the 

inputs to the left one. From this, we can interpret the BP scheme as iterationg between two 

blocks, one which performs inference on the left sub-graph (which models structure in the 

observation) and the other which performs inference on the right sub-graph (which models 

structure in the sparsity pattern), with message-passing between blocks. 

 

We will henceforth refer to inference on the left sub-graph of Fig.1 as “sparsity pattern 

equalization” (SPE) and inference on the right sub-graph as “sparsity pattern decoding” 

(SPD). We now formally decouple these subtasks and represent each of them using a 

separate factor graph, as in Fig. 2. For this, we define two additional tht  iteration constraint 

functions, 

 
( ) ( )( ) ( )

n

t t

n n h s nh s v s  (17) 

 
( ) ( 1)( ) ( )

n n

t t

n n f s nd s v s

  (18) 

 



 

 

6 

 

Figure 2 Decoupling of partitioned factor graph from Fig. 1 into  

(a) sparsity pattern equalization and (b) sparsity pattern decoding. 

IV. SPARSITY PATTERN EQUALIZATION  

Below we outline a BP-based technique that follows the “approximate message passing” 

(AMP) framework recently proposed by Donoho, Maleki, and Montanari. Since we focus on 

a single iteration t , we suppress the superscript- ( )t  notation on messages in this section. 

For BP-based SPE, we expand the g  node in Fig. 2(a), yielding the loopy factor graph in 

Fig.3, with constraints 

 
2( ) ( ; , )H

m m mg x CN y a x  (19) 

 

Where H

ma  denotes the thm  row of A . Noting that SPE will require several iterations of 

message passing between nodes { }mg  and { }nx , we will henceforth use 
n m

i

x gv   and 

m n

i

g xv   to denote the SPE-iteration- i  messages. In addition, we will assume Gaussian 

active-coefficients, i.e., 

 
2( ) ( ;0, )n n n nq x CN x   (20) 

 

We use n  to abbreviate (1)nh , the prior probability of 1ns   assumed by SPE. Thus, the 

coefficient is Bernoulli-Gaussian, with the form 

 
2( ) ( ;0, ) (1 ) ( )

n nf x n n n n n nv x CN x x         (21) 

 

 

Figure 3 Factor graph for BP-based implementation of SPE 
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A. BP approximation via the large-system limit 

Exact calculation of ( )
m n

i

g x nv x  would involve the iteration of 12N  terms, which is cleary 

impractical. However, in the large system limit(i.e., ,M N   with /M N fixed), the 

central limit theorem motivates the treatment of ( )
m n

i

g x nv x  as Gaussian. In this case, it is 

sufficient to parameterize the inputs to 
mg  via 

 

 ( )
n m

n

i i

nm n x g n
x

x v x   (22) 

 
2( ) ( )

n m
n

i i i

nm n nm x g n
x

v x v x   (23) 

 

Which yields outputs from 
mg  that take the form  

 

 ( ) ( ; , ) 
m n

i i i

g x n mn n mn mnv x CN A x z c  (24) 

 


i i

mn m mq qmq n
z y A  (25) 

 
2 2| | 


i i

mn mq qmq n
c A  (26) 

 

 

From (22), (23), we see that 1 i

nm and 1i

nmv  are then determined by the mean and variance, 

respectively of the pdf 
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Using following equation 
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The product term in (27) reduces to 
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And so, under the large-system-limit approximations 

 

 ln 1
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Mi i i
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 (30) 

 

And 2

ln ln1
| | | | 1

 
  

M

l m l
A A , (27) simplifies to 

 

 
1 2 *

ln ln( ) ( ( ;0, ) (1 ) ( )) ( ; , )   
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Applying (28) to (31), we find, after some algebra, that 
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The thi  SPE iteration yields the nx -posterior approximation 

 

 
1

0 1
( | ) ( ) ( )





 
  n n l xn

i M i

n f x n g nl
p x v x v xy y  (36) 

 

 

The mean and variance of (36) constitute the MMSE estimate of nx  and its MSE. Nothing 

that (35) differs from (27) only in the inclusion of the 
thm  product term. 

 

B. Approximate message passing 
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The approximate BP algorithm outlined updates ( )O NM  variables per iteration. When 

N and M  are large, the resulting complexity may be undesirably high, motivating us to 

find a simpler scheme. 

Recently, Donoho, Maleki proposed AMP algorithms that greatly simplify BP algorithms 

of the form outlined by tracking only ( )O N  variables. Using AMP, we find that 

  

 
*

1
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Above, (.;.)nF , (.;.)nG , and '(.;.)nF  are nonlinear functions that depend on the 

coefficient prior. We chose the Bernoulli-Gaussian prior. Thus, the nonlinear functions take 

the following form 
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V. NUMERICAL RESULTS 

  Numerical experiments were conducted for the observation model (1), where the elements of 

A  were independently drawn from a 
1

0,
 
 
 

CN
M

 distribution and where the signal coefficients 

were generated via ( | ) ( ;0,1) (1 ) ( )  n n n n n np x s s CN x s x  using Markov chain-generated 

binary sprsity pattern { }ns . We set (0,1]   called the Markov independence parameter. Note 
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that, as   increases, the pattern becomes less correlated, with 1   corresponding to an i.i.d 

pattern. 

 

VI. DISCUSSION 

After meeting, please write discussion in the meeting and update your presentation file. 
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CS algorithm make up fluorescence microscope major drawback
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Recovering the signal x from acquired signal by solving the optimization 
problem.

The acquired signal is noisy, it is better to relax the constraints into

W will be either an orthonormal basis(e.g., Dirac basis) or an overcomplete
signal representation(e.g., undecimated wavelet frame or curvelet frame).

is chosen empirically depending on the noise level.
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M=N/Under sampling-ratio.

Under sampling ratio = 8, 16, 32, 64,...

       => M=8192, 4096, 2048,…

It means, we can save the time to using this system.
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Top left to bottom right: camera snapshot and reconstructed 
256-by-256 bead images for values of the undersampling ratio 
equal to 8, 16, 32, 64, and 128.

FOV: 6um * 6um

Nominal illumination 
level(blue) and for the 
same level reduced by 
a factor 10(red) and a 
factor of 100(green). 
Solid lines correspond 
to the PSNR in raster 
scan for the same 
surfacic
illumination(Blue: I, Red: 
I/10).
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• Conclusion

1. Reconstruct result is affected by measurement matrix.

      =>If we can make measurement matrix well, the reconstructed image will  

       get high resolution image.

2. Fluorescence microscopy imaging is possible in diffusing media.
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Short summary: In this paper authors propose solution of a combined problem; relay 

selection and power allocation to secondary users under the constraint of limited interference to 

primary users in cognitive radio (CR) system. Objective of the joint problem was to maximize 

system throughput.  A high complexity optimal solution and a low complexity suboptimal 

solution are proposed. The presented solutions show over 50% improvement in system throughput.  

I. INTRODUCTION 

Cooperative technique for spectrum sensing and sharing in CR networks has been investigated in the 

literature. It can obtain spatial diversity and combat detrimental effects of wireless channels however it 

has some limitations associated. For example, while doing relay selection and resource allocation one 

must also consider spectrum efficiency and interference limitation as well. Authors in this paper consider 

these combined issues i.e. relay selection and power allocation with interference limitation. 

II. SYSTEM DESCRIPTION 

In order to have effective cooperation following decisions must be made prior to cooperation:  

• When to cooperate 

• To whom cooperate with 

• What resources to share and how to share? 

These decisions are basis of relay selection and power allocation problem. 

 

Figure 1: The structure of a cooperative CR network 

Simplified Relay Selection and Power Allocation in 

Cooperative Cognitive Radio Systems 
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A simple three-node relay system where each CR user can only help one CR transceiver pair is shown 

in the figure. The source node transmits data to the destination and the relay simultaneously using 

orthogonal channels, Channel (CH) 0 and CH ��, respectively. The relay node forwards scaled version of 

the received signal from CH �� to the destination node using CH iC′ .  

Power modeling: 

Existing relay selection schemes does not consider interference issue. In order to prevent primary users 

from interference the transmission powers on channels (CH 0), CH �� and CH iC′  must satisfy: 

2

1, , , 1

2

2, , , 2

2

3, , 3

(1)

i s p d

i s p i

i i p

P h I

P h I

P h I

≤

≤

≤

 

Where , ,s p ih and , ,s p dh are channel gain between CR source and primary users of CH �� and (CH 

0) respectively while ,i ph is channel gain between CR source and primary user of channel CH iC′ . 

1I , 2I and 3I are acceptable interference powers of primary users over channel CH 0, CH �� and 

CH iC′ respectively. The overall transmission power of CR source and relay nodes are limited as: 

1, 2, 3, 3i i total iP P P and P P+ ≤ ≤  

The channels under consideration i.e. CH 0, CH �� and CH iC′  are �(0, 
2σ )  with known channel 

gains at CR source and CR relay nodes. If i
th
 CR user is relay node then signal and noise powers at 

destination from relay is:  

2 2

3, 2, , ,

2 2
2, ,

,

i i s i i d

i s i

P P h h

s i
P h

P
σ+

=  

2

3, ,

2 2
2, ,

2

, 1i i d

i s i

P h

n i
P h

P
σ

σ
+

 = + 
 

 

,

,

s i

n i

P

i P
SNR =  

Where ,s ih and ,i dh are channel gains between source and relay and relay and destination nodes 

respectively and SNRi is SNR value at destination from i
th

 relay channel.  

Throughput Calculation: 

The system throughput for i
th
 relay is: 
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( ) ( ) ( ) ( )
2 2 2

1, , 3, , 2, ,

2 2 2 2 2
3, , 2, ,

1, 2, 3,, , 1 log 2 1 1 log 2 1 (2)i s d i i d i s i

i i d i s i

P h P h P h

i i i i
P h P h

T P P P
σ σ σ

α α
+ +

  = − + + − +  
   

Where α is mis-detection probability of spectrum sensing. 

This equation tells us that data will be lost if interference happens. 

III. ALGORITHM DEVELOPMENT 

Optimal and suboptimal algorithms are developed for power allocation and relay selection problem.  

A. Optimal Approach 

Optimization problem is formulated as:  

( ) ( )

( )
1, 2, 3,

1, 2, 3,

1, 2, 3,

* * *

1, 2, 3,
, ,

* * *

1, 2,

3, 3

2

1, , , 1

2

2, , , 2

2

3, , 3

, , arg max , , (3 )

arg max , , (3 )

(3 )

(3 )

0 (3 )

0 (3 )

0 (3 )

i i i
i i i

i i i

i i i i
P P P

i
i

i i total

i

i s p d

i s p i

i i p

P P P T P P P a

i T P P P b

subject to

P P P c

P P d

P h I e

P h I f

P h I g

=

=

+ ≤

≤

≤ ≤

≤ ≤

≤ ≤

 

Lagrange multiplier is then used to divide the problem into subproblems and then obtain solution for 

subproblems: 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2

1, , 3, , 2, ,

2 2 2 2 2
3, , 2, ,

1, 2, 1 2 3 2 2

2 2

1 1, 2, 2 1, , , 1 3 2, , , 2

, , , , 1 log 1 1 log 1

(4)

i s d i i d i s i

i i d i s i

P h P h P h

i i
P h P h

i i total i s p d i s p i

L P P

P P P P h I P h I

σ σ σ
λ λ λ α α

λ λ λ

+ +

  = − − + − − +  
   

+ + − + − + −

According to Karush-Kuhn-Tucker conditions: 

1,0 iP≤ , 2,0 iP≤  and 0iλ ≥  i∀  



 

 

4 

( )

( )
( )

1, 2,

1 1, 2,

2

2 1, , , 1

2

3 2, , , 2

0,
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0

0 0
i i
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L L
P P

P P P

P h I

P h I
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λ

λ

λ

∂ ∂
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+ − =

− =

− =

= =

 

Solving them by using dual-domain and sub-gradient method we get solution for Lagrangian dual variables as:  

( ) ( ) ( )( )
( ) ( )( )
( ) ( )( )

1, 2,

1,

2,

1

1 1 1 2 3 1 2 3

21

2 2 1 2 3 , , 1
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, , , , ,
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i

i
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P P P
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P h I

λ λ µ λ λ λ λ λ λ

λ λ µ λ λ λ

λ λ µ λ λ λ

+
+

+
+

+
+

 = + + −
 

 = + −  

 = + −  

 

Here ‘
nµ ’ is sequence of scalar step-sizes. Once we get ,i iλ ∀ we can calculate 1,iP and 2,iP  as follows; 

( )

2

2 2

,1 2 , ,

4 2 2 22 2
, 3, , ,3, 3, ,

2 2

, ,

1
1,

ln 2

4 2
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2 2

,
s ds p d
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i
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P h P h h K P h

i
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P

P

α σ
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σ

+

−

+
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= − 
 

 

Where 
( )

2

1 3 , ,

1

ln 2s p ih
K α

λ λ

−

+
=  and [ ] ( )max ,0

+
⋅ = ⋅  

By using these values we get optimal power allocation 
1, 2,

* *,
i i

P P . Note that 
3

2
3,

,

*

3min ,
i

i p

I

h
P P

 =  
 

. 

Finally system throughput 
*

iT  when i
th

 CR node acts as relay is then calculated from equation … 

B. Sub-Optimal Approach 

Joint relay selection and power allocation problem provides optimal throughput yet it is quite complex 

algorithm. A low complexity, sub-optimal version of the problem can be defined as follows: 

Transmission power constraints of CR nodes are defined as: 
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In order to calculate system throughput by using equation 2 we need to choose relay as: 

2 2

3, , ,

2 22 2 2
3, , , , 2 , , ,

arg max i s i i d

i i d s p i s i s p i

P h h

P h h I h hi
i

σ+ +
=  

The optimal power limit and other constraints in (2) are taken as total power limit. 

IV. SIMULATION RESULTS 

Parameters: 

Interference limits:= 1 2 3 0.1I I I mW= = = , Path loss exponent= 4, channel of unit bandwidth 

is used. Channel fading follows Rayleigh distribution with 6dBσ =  

Results: 

 

Fig. 2. System throughput versus transmission power limit of CR source 

Transmission power limit of relay node is P3 = 0.5W and no. of candidate relay nodes = 20 

From figure we see proposed scheme achieves about 50% throughput achievement over optimal 

power allocation (OPA) and equal power allocation (EPA) schemes. Comparing sub-optimal 

scheme with optimal scheme we see only about 15% degradation in throughput is observed. 

Moreover in low Ptotal region the system throughput increase rapidly however for high Ptotal 

region the growth is restricted due to interference limits.  
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Fig. 3. System throughput versus number of candidate relays. 

Figure 3 shows that gap between optimal and sub-optimal schemes is small well when the number of 

candidate users is small. This shows that sub-optimal approach performs well when number of relays are 

small. 

 

 

 


