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Short summary: Polar codes are shown to be instances of both generalized concatenated 

codes and multilevel codes. It is shown that the performance of a polar code can be 

improved by representing it as a multilevel code and applying the multistage decoding 

algorithm with maximum likelihood decoding of outer codes. Additional performance 

improvement is obtained by replacing polar outer codes with other ones with better error 

correction performance. In some cases this also results in complexity reduction. It is shown 

that Gaussian approximation for density evolution enables one to accurately predict the 

performance of polar codes and concatenated codes based on them. 

 

 

I. INTRODUCTION 

 

The practical performance of polar codes under the successive cancellation (SC) 

decoding reported up to now turns out to be worse than that of LDPC and Turbo codes. 

 

This paper demonstrates  

1) Polar codes can be efficiently constructed using Gaussian approximation for density 

evolution.  

2) It is shown that polar codes can be treated in the framework of multilevel coding. This 

enables one to improve the performance of polar codes by considering them as multilevel or, 

equivalently, generalized concatenated (GCC) ones, and using block-wise 

near-maximum-likelihood decoding of outer codes. In some cases this results also in 

reduced decoding complexity.  

3) A simple algorithm for construction of GCC with inner polar codes. 

Efficient Design and Decoding of Polar Codes 
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II. BACKGROUND 

A. Polar codes 

 

Consider a binary input output symmetric memoryless channel with output probability 

density function  |W y x , y Y , 2x . It can be transformed into a vector channel 

given by    1 1 1 1| |n n n n n

n nW y u W y u G , where    1 1 1
| |

nn n n

i ii
W y x W y x


 , s

n sG B F , 

2sn  , 
1 0

1 1
F

 
  
 

, s  denotes s-times Kronecker product of a matrix with itself, and sB  

is a 2 2s s  bit reversal permutation matrix.  

For example) 
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The vector channel can be further decomposed into equivalent subchannels 
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For example) 

According to this, we can write       1 2

2 2, ,W W W W  for any given B-DMC W . 
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Given 1

ny  and estimates 
1

1

i

u


 of 1

1

iu  , the SC decoding algorithm attempts to estimate 

iu . This can be implemented by computing the following log-likelihood ratios 

   
   
   

1

111

11 1

11

, | 0

, log

, | 1

i
i n

n ii
i n

n i
i n

n i

W y u u

L y u

W y u u













: 

 

 
           

2 2 2 2 2 2 2 2
2 1 1 /2

1 1, 1, 1,1 /2 1 /2 /2 1, 2 tanh tanh , / 2 tanh , / 2 ,
i i i i

i i in n n
e o en n n nL y u L y u u L y u

   
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 (1) 
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where 1, 1,,
i i

e ou u  are subvectors of 1

i

u  with even and odd indices, respectively, and 

   
 

 
1

| 0
log

|1

i i

i

i

W y
L y

W y
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III. DESIGN OF POLAR CODES BASED ON GAUSSIAN APPROXIMATION 

The main drawback of the polar code construction method based on density evolution is its 

high computational complexity. The most practically important case corresponds to the 

AWGN channel. In this scenario, 
   1 2 4

2 4
~ ,

i

iL y N
 

 
 
 

, provided that the all-zero 

codeword is transmitted. 

The value given by (1)-(2) can be considered as Gaussian random variables with 

   
2

i i

n nL L   
   

D E , where E  and D  are the mean and variance, respectively. This enable 

one to compute only the expected value of 
 i
nL , drastically reducing thus the complexity. In 

the case of polar codes this approach reduces to 
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E E  (3) 
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The error probability for each subchannel is given by 

 
/ 2 , 1 .

i

i nQ L i n        
E  

IV. DECOMPOSITION OF POLAR CODES 

The overall performance of a polar code is dominated by the performance of the worst 

subchannel. The proposed approach avoids this problem by performing joint decoding over a 

number of subchannels. 

 

A. Generalized concatenated polar codes 

The recursive structure of polar codes enables one to consider them as GCC. Namely, 

the generator matrix of a polar code can be represented as 
  s ls lG AF A F F

     , 

where 
1 0

1 1
F

 
  
 

 and A is a full-rank matrix with at most one non-zero element in each 

column. 

 

Inner code encoding: Inner codes i  of length 2ln   is generated by rows i,..., 2l  of 

matrix l

lB F . 

 

Outer code encoding: The generator matrix of the   1 ,R i l -th outer code iC  is 

obtained by taking rows  1 ,R j s l   of 
 s l

F
 

, such that row  1 2 ,s lR i j s   of sF  

is included into the generator matrix of the original polar code, where 0 2li  , 

0 2s lj   , and 

 
1 1

1

0 0

2 , 2 , 0,1 .
m m

j j

j m j j

j j

R i m i i
 

 

 

 
  

 
   



 

 

5 

 

B. Multilevel polar codes 

In the context of polar codes, signal constellation A is given by 2n  binary n-vectors 

 a u , which can be obtained as   l

la u uB F ,  2
n

u GF , where 2ln  . This 

constellation is recursively partitioned into subsets  1

iA u  by fixing the values of 1,..., iu u . 

The elements of u are obtained as codeword symbols of outer codes iC  of length 2s lN  . 

That is, one can construct N vectors    1, ,,...,
j

j n ju c c , 1 j N  , where  ,1 ,,...,i i N ic c C , 

1 i n   and obtain a multilevel codeword 
    1

,...,
Nl l

l lu B F u B F  . 

 

The multilevel polar codes can be decoded by multistage decoding algorithm. 

V. CONCATENATED CODES BASED ON POLAR CODES 

The performance of a polar code under the multistage decoding with block-wise 

maximum-likelihood decoding of outer codes can be improved by changing the set of 

frozen bits. Furthermore, if the algorithm used to perform block-wise decoding of outer 

codes does not take into account their structure, one can use any linear block code with 

i 
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suitable parameters, not necessary polar, as iC . This enables one to employ outer codes 

with better error correction performance. 

 

A. Capacity rule 

The rate iR  of iC  should be chosen equal to the capacity iC  of the i-th subchannel of 

the multilevel code, which is induced by matrix l

lB F . According to [10], one obtains 

 

       1
1 1

1 1

1 1 1 1; | i i

n i i i

i i u u
C I y u u E C A u E C A u

      
   

 

where 

 
   

 
1 1
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1

| |
log

|
n

n n n n

n

n nR
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b B
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C B dy

B W y b



 
 

  
 
 




 

is the capacity when using the subset B of 2

n  for transmission over the vector channel 

 1 1|n n nW y x . In the case of binary input memoryless output symmetric channels, one can 

drop the expectation operator to obtain 
     1i i

iC C A C A


  ,  where 
   

times

0,...,0
i

i

A A . 

It can be seen that the latter set is a linear block code iC  generated by l i  last rows of 
l

lB F . The expression can be further simplified to  

    
 

 

1

2 1

1

1

| 0

| 0 log

|
N

N

i jN
i j N

j NR
j

j j

b B j

C W y

C A W y dy

W y b





 

 
 
 
 
 
 





. 

Hence, the capacity of the i-th subchannel of the multilevel polar code can be computed 
as 

  
 

 

1 1

2 1

1

1
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|

i
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i

N
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j
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 



 

 
 
 
 
 
 

 



. (5) 

 

Obviously, employing this rule results in a capacity achieving concatenated code, 

provided that the outer codes can achieve the capacity too. However, evaluating (5) seems 

to be a difficult task. 
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B. Equal error probability rule 

  

The probability of incorrect decoding of a binary linear block code C can be obtained as 

 
2

N
i

e j

j d

L
p A Q j



 
 
 
 


E

 

where iA  are weight spectrum coefficients of code C, and d is its minimum distance. 

Since it is in general difficult to obtain code weight spectrum, and union bound is known 

to be not tight in the low-SNR region, one can use simulations to obtain a performance 

curve for the case of AWGN channel and some fixed (probably, non-ML) decoding 

algorithm, and use least squares fitting to find suitable   and  , so that the decoding 

error probability is given by 

 
 
2

i

e

L
p m Q 

 
 
 
 

E
. 

 

Assume now that the outer codes iC  are selected from some family of error-correcting 

codes (not necessary polar) of length N. Let tK , tD  and  tP m  be the dimension, 

minimum distance and decoding error probability function for the t - th code, respectively, 

where m is the expected value of LLR.  

 

Figure 4 presents a simple algorithm for construction of a generalized concatenated 

(multilevel) code of rate R  according to the equal error probability rule. The algorithm 

employs the bisection method to approximately solve the equation

  
2

1
, 2

l
l

i
K i P RN


 , where  ,K i P  is the maximum dimension of a code capable of 

achieving error probability P  at the i -th subchannel. The parameter   is a sufficiently 

small constant, which affects the precision of the obtained estimate for P. The code is 

optimized for the case of AWGN channel with noise variance 2 . The algorithm returns 

the dimensions of optimal codes for each level, as well as an estimate for the decoding 

error probability for each code. 
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The SC/multistage decoder produces an error if decoding of any of the component 

codes is incorrect. Therefore, the overall error probability of the GCC can be computed 

as 

 

     

    

1

1 2 1 1 1

1

1 ,...,

1 | | ,...,

1 1 1 1
i

n

n n

n n

t i

i

P P C C

P C P C C P C C C

P m P





 

 

     

 

where iC  denotes the event of correct decoding of the outer code at the i-th level, P is the 

quantity computed by the above algorithm, and it  is the index of the code selected for the 

i-th subchannel. This expression enables semi-analytic prediction of the performance of 

the concatenated code, based on the available performance results for component outer 

codes. 

 

C. Decoding complexity 

One can use any suitable algorithm to implement soft-decision decoding of outer 

codes in the GCC obtained either by decomposing a polar code, or constructed explicitly 

using the algorithm in Figure 4. Box-and-match algorithm is one of the most efficient 

methods to perform near maximum likelihood decoding of short linear block codes [20]. 

Its worstcase complexity for the case of (N, K) code with order t reprocessing is 

given by     1t tO N K K O N   , although in practice it turns out to be much more 

efficient. Decoding of a concatenated code of length v = Nn involves decoding of N 

inner codes using the SC algorithm, and decoding of n outer codes. Therefore the 

overall complexity is given by  1 logt

b sO N nC Nn nC  , where bC  and sC  are some 

factors which reflect the cost of elementary operations performed by these algorithms.  
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VI. NUMERICAL RESULTS 

 

Figure 5 presents simulation results illustrating the accuracy of bit error rate analysis 

based on the Gaussian approximation. 

 

 

Figure 6 presents the performance of polar codes of length 2048 designed using the 

Gaussian approximation method for the case of AWGN channel with Eb/N0 = 3 dB. For 

multistage decoding, degree l decomposition of the original polar code was performed, 

and box-and-match algorithm with order t reprocessing was used for decoding of outer 

polar codes.  
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It can be seen that block-wise decoding of outer codes provides up to 0.25 dB 

performance gain compared to SC decoding. Higher values of N do not provide any 

noticeable performance improvement. The figure presents also the performance of GCC 

based on inner polar codes and outer optimal linear block codes with multistage decoding. 

It can be seen that increasing the length of outer codes provides additional 0.5 dB 

performance gain. This is due to much higher minimum distance of optimal codes 

compared to polar codes of the same length, obtained by decomposing the polar code of 

length Nn. 
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Abstract

This paper considers the use of sparse signal representation for the wideband direction of arrival (DOA)
or angle of arrival estimation problem. In particular, this paper discusses about the two ambiguities,
namely, spatial and algebraic aliasing that arise in wideband-DOA. The authors of the paper suggest
procedures to avoid the aliasing using multiple measurement vector and multiple dictionaries.

Introduction and Background

• A beamformer is a processor used in conjunction with an array of sensors to provide spatial
filtering. The sensor array collects spatial samples of propagating wave fields, which can be
processed by the beamformer.

• The objective of a beamformer is to estimate the signal arriving from a desired direction in the
presence of noise and interfering signals. A beamformer thus performs spatial filtering to separate
signals that have overlapping frequency content but originate from different spatial locations.

• Estimating the spatial locations (or directions) is a well-known problem in array signal processing.

• Three major DOA estimation techniques are 1. Classical methods (Delay-sum beamformer,
MVDR) 2. Subspace methods (MUSIC, ESPRIT) 3. ML-based methods

• This paper discusses about beamforming and in particular wide-band beamforming.

• DOA estimation by beamforming can be subjected to ambiguity called spatial aliasing [1].

• Spatial aliasing occurs when the spacing, d, between the sensors is larger than half of the apparent
wavelength, that is, d > λ/2 (See Fig. 1)

• We note from the figures, the resolution increases as d increases, but spatial aliasing also increases.

• This paper discusses how to avoid spatial aliasing ( if there is any) in a wideband setting.

• Various authors [2-5] have studied sparse representation (SSR) for narrowband DOA estimation
in various contexts. In [2], CS is applied to reduce the ADC sampling rate, in [3,4] it is used to
improve angle resolution, in [5] it is used to reduce hardware complexity. All these works assume
spatial aliasing is not present.

• However, in SSR based methods aliasing (or ambiguity) comes not only from spatial aliasing, but
also from the over-completeness of the dictionary (algebraic aliasing).

• This paper discusses, how to avoid both spatial and algebraic aliasing.
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Figure 1: Illustration of spatial aliasing

• In summary, the spatial aliasing can be avoided by using multiple dictionaries and the robustness
to algebraic alaising can be obtained by using multiple measurement vectors.

Data model

• A uniform linear array (ULA) comprised of N channels indexed by which are equally spaced on a
line with spacing d. It receives signals radiated from Q point sources.

• The signal at each channel after time-sampling is partitioned into P segments, where for each seg-
ment, K frequency subbands are computed by e.g., a filter bank or the discrete Fourier transform
(DFT).

• Let Sq,k(p) denote the kth subband (frequency) coefficient computed for the pth segment of the
signal that is radiated from theQth target; similarly, let yn,k(p) denote the kth subband (frequency)
coefficient for the pth segment of the signal received at the nth channel.

• With narrow-band assumption, the received signal at the nth sensor at the kth DFT bin is given
[1] by

yn,k(p) =

Q−1∑

q=0

ej2πfk
d
c
n sin θmq Sq,k(p) (1)

• The aim of this paper is to estimate the target DOAs {θ0, θ1, · · · , θQ−1}

• The matrix-vector form of Eqn. (1) is

yk,p =

Q−1∑

q=0

ak,mq
Sq,k(p) = AkSk,p (2)

where ak,mq
=

[
1, ej2πfk

d
c
1 sin θmq , · · · , ej2πfk

d
c
(N−1) sin θmq

]T
is called array response vector and Ak

steering matrix.

Assumption 1: The array response vectors corresponding to different targets are mutually inde-
pendent.
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Classical beamforming

• Classical beamforming (in this paper, delay-sum beamformer) sets the beamformer coefficients
corresponding to a single target angle.

• For example, if the beamformer wants to listen to angle θ = 30 deg, then it sets its coefficient

vector as
[
1, ej2πfk

d
c
1 sin π

6 , · · · , ej2πfk
d
c
(N−1) sin π

6

]T
and forms the product aH

k,myk,p

• The angle domain is divided into M points Θ = {θ0, · · · , θM−1}

• In many applications, such as sonar, a range (time)-bearing(angle) image is desired which can be
made by repeating the above procedure for all the subbands; the outputs are then combined and
transformed back into the time domain by means of e.g., an inverse Fourier transform.

• In the end, the signal for the pth segment at the mth angle in the range-bearing image I(p,m)
can be computed as

I(p,m) =

∣∣∣∣∣
1

N

K−1∑

k=0

aH
k,myq,k(p)e

j2πfkp

∣∣∣∣∣

2

(3)

• I(p,m) can be interpreted as the power of the output of a spatial-temporal filter steered to
the direction θm. The DOAs are estimated by seeking those θm whose corresponding values in∑P−1

p=0 I(p,m) are the largest.

• The delay-sum beamformer is subject to spatial aliasing. That is, when the spacing d is larger
than apparent wavelength, it is possible to find another θm′ 6= θm such that for an arbitrary integer
j

fk
d

c
sin θm = fk

d

c
sin θm′ + j (4)

holds and thus ak,m = ak,m′ , which gives multiple peaks in the range-bearing image I(p,m).

DOA estimation via SSR

Problem formulation

• Divide the whole angle search range into a fine grid Θ = {θ0, θ1, · · · , θM−1}.

• Each θm corresponds to a certain array response vector ak,m, which depends on fk.

• Construct N ×M steering matrix Ak = [ak,0, · · · ,ak,M−1] (dictionary)

• Assumption 2: The DOAs of the targets {θm0
, θm1

, · · · , θmQ−1
} ∈ Θ Ω = {m0,m1, · · · ,mQ−1}

• Data model : yk,p = Akxk,p xk,p is a Q-sparse signal (Q < N)

• We have P such snapshots (measurement vector), then we can form Yk = AkXk Yk is N ×P ,
Ak is N ×M and Xk is M × P

• Assume that the DOAs during the span of P snapshots remain unchanged, then the columns of
Xk share a common sparsity.

• Let R(A) denote an operation that collects the indexes of all the nonzero rows of a matrix A.
R(Xk) = Ω and |R(Xk)| = Q.

• With these notations, we can formulate the sparse recovery problem as

min
X̂k

|R(X̂k)| subject to Yk = AkXk (5)
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Aliasing Suppression

• As mentioned earlier, spatial aliasing occurs if d is larger than half of the apparent wavelength,
which leads to similar columns in the steering matrix

• In classical beamforming, the DOAs are sought by steering a beamformer to different potential
angles.

• However, the SSR-based method recovers Xk first and then estimates the DOAs by locating the
rows of Xk that contain dominant entries.

• The over-completeness of the SSR dictionary gives rise to non-unique solutions and thus ambiguity
in DOA estimation, which is termed as algebraic aliasing.

• Algebraic aliasing is essentially related to the “goodness” of the sensing matrices (steering matrix)
for the DOA recovery.

Proposition 1: Under Assumption 1, if the number of targets Q and channels N satisfy

N > 2Q− rank(Yk) (6)

then the SSR-based method will not suffer from algebraic aliasing.

Proof: Algebraic aliasing will not exist if we can find unique solution X̂k satisfying Yk = AkX̂k. This
is only possible if the Kruskal-rank of Ak is larger than 2Q− rank(Yk) [6, Theorem 2.4]. Since Ak is a
Vandermonde matrix, whose Kruskal-rank is equal to its rank, N.

Kruskal-rank (or k-rank) of a matrix A is defined as the largest integer r for which every set of r columns
of A is linearly independent.

Remarks:

• If rank(Yk) = 1 (P = 1), then Q < N/2, that is we can discriminate at most N/2 targets.

• On the other side, rank(Yk) ≤ rank(Xk) ≤ Q, suggests that Q < N .

• Thus, using multiple measurement vectors the authors argue that it is possible to counter the algebraic
aliasing.

So far, we have concentrated on the data model for a single frequency fm. We can obtain different measure-
ments and different dictionaries Ak 6= Al if we use different frequency fk 6= fl. We will next show that using
multiple dictionaries enables us to eliminate spatial aliasing.

• Let Γk denote the support of all possible DOA solutions for the k-th dictionary

Γk = {R(X̂
(0)
k ),R(X̂

(1)
k ), · · · }

• Spatial aliasing is frequency-dependent, which means that for different center frequencies, the resulting
ambiguity will not (completely) overlap. Therefore, we can imagine that if we solve Eqn. (5) for several
frequencies: f0, f1, · · · , fK−1 and combine the solutions in a judicious way, the ambiguity due to spatial
aliasing will at least be reduced.
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Theorem 1: With Proposition 1 met, if there exist at least two dictionaries, whose corresponding frequencies,
say fk and fl , satisfy

0 < |fk − fl| <
c

2d
(7)

then the intersection of the solution support related to different dictionaries will contain exclusively the target
DOAs, i.e., ⋂

k

Γk = Ω (8)

Proof: With proposition 1 satisfied, we can exclude the ambiguity due to algebraic aliasing and need to focus
only on spatial aliasing. Let us proceed with a counter-example. Suppose θm is one of the target angles and
θm 6= θm′ is spatial aliasing contained in both dictionaries corresponding to fk and fl , which implies that
{θm, θm′} belongs to both Γk and Γl. In accordance with Eqn. (4) we then have

fk
d

c
sin θm − fk

d

c
sin θm′ = j1

fl
d

c
sin θm − fl

d

c
sin θm′ = j2

fk
d

c
sin θm − fk

d

c
sin θm′ − fl

d

c
sin θm + fl

d

c
sin θm′ = j1 − j2 = j3

where j1, j2, j3 are integers and j1, j2 are not equal to 0. Using trignometric identities, the above equations can
be written as

− 2fk
d

c
sin

θm − θm′

2
cos

θm + θm′

2
= j1 (9)

− 2fl
d

c
sin

θm − θm′

2
cos

θm + θm′

2
= j2 (10)

− 2(fk − fl)
d

c
sin

θm − θm′

2
cos

θm + θm′

2
= j3 (11)

Since 0 < |fk−fl| <
c
2d , it is only possible for Eqn. (11) to hold if the integer j3 = j1− j2 = 0. On the other

hand, from the above equations we know that j1 and j2 are not zero and they cannot be equal. Therefore, the
angle θm′ cannot be contained simultaneously in Γk and Γl, which concludes the proof. A judicious choice of
frequencies can not only prevent spatial aliasing, but also enhance the performance in a noisy environment.

Aliasing-Free SSR Recovery

Based on the analysis in the previous section, the authors formulate the following multi-dictionary (MD) joint
optimization problem with the joint-sparsity constraint:

min
X̂k

|R(X̂k)| for k = 0, 1, · · · ,K − 1

subject to Yk = AkXk, and R(X̂k) = R(X̂l) for k 6= l (12)

whose solution will be free from any ambiguity under Theorem 1.

The authors have not proposed any new algorithm. They have used OMP in their simulations.

Numerical Examples

1. The authors demonstrate their approach using synthetic and real data.

2. For both cases, they considered ULA with N = 16 hydrophones, with a spacing of d = 0.06 m. The
speed of the signal wave is assumed to be c = 1500 m/s

3. In the synthetic data they consider two sinusoids Q = 2 with frequencies f0 = 25 kHz and f1 = 35 kHz.
The DOA are {35◦, 39◦}. The search gird is defined as Θ = {−90◦,−89.75◦, · · · , 90◦}. With P=100
snapshots, each dictionary has a dimension of 16× 720
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Figure 2: Comparison of classical beamforming with the proposed method. Upper-left subplot: the
frequency-bearing image after beamforming; upper-right subplot: the time-bearing image after beam-
forming; lower-left subplot: the integrated energy of the time-bearing image; lower-right subplot: the
result yielded by the proposed method.

Figure 3: MSE performance against the number of utilized frequencies

4. They halt OMP after 5 iterations. MSE = 1
Ns

∑Q−1
q=0 (θ̂m − θm)

1. In the real data experiment, the direction of the divers has to be estimated based on their exhaling sound.
Two divers who are 150 m away from the hydrophone are considered. The received signals are from 52◦

and 60◦, respectively.

2. We can see that the frequencies lower than 10 kHz are completely useless for DOA estimation: the diver
signal is subdued by the ambient noise dominated by the ship traffic in the harbor.

3. In the midfrequency range (between 10 and 12.5kHz), where the hydrophone array is not subject to
aliasing, there is a strong interference signal at a direction around −40◦, which possibly comes from a
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departing ship blowing the horn.

Figure 4: Comparison of classical beamforming with the proposed method for the diver signal. Upper-
left subplot: the frequency-bearing image after beamforming; upper-right subplot: the time-bearing
image after beamforming (only signals above 25 kHz are taken); lower-left subplot: the integrated
energy of the time-bearing image; lower-right subplot: the result yielded by the proposed method.

In Summary, the authors have applied sparse signal reconstruction for DOA estimation (for ULA). They
formed an MD optimization problem with joint sparsity constraints. They show how to avoid ambiguities
(spatial and algebraic) by using multiple dictionaries and multiple measurement vectors, respectively. They
have demonstrated their findings through synthetic and real-life examples.
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