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Short summary:  

In this work, they propose a model for iterative decoding algorithms with memory which 

covers successive relaxation (SR) version of belief propagation and differential decoding with 

binary message passing (DD-BMP) algorithms as special cases. Based on this model, they derive 

a Bayesian network for iterative algorithms with memory over memoryless channels and use this 

representation to analyze the performance of the algorithms using density evolution. 

I. INTRODUCTION 

 

Iterative decoding algorithm  Decoding algorithm of LDPC codes 

Low-density parity-check (LDPC) codes are known to have good performance when decoded 

with iterative decoding algorithms, also known as message-passing algorithms.  

 

Density Evolution  An analytical tool of LDPC codes 

An analytical tool called density evolution can be used to find the threshold of a particular 

code ensemble under a given iterative decoding algorithm. The threshold is an asymptotic 

measure of performance and is defined as the worst channel parameter (e.g., largest noise 

variance) for which the probability of error still converges to zero as the number of iterations 

tends to infinity 

 

Density Evolution  A technique for constructing irregular LDPC codes 

Density evolution is also a powerful technique for constructing irregular LDPC codes through 

the optimization of the degree distributions. 

Performance Analysis of Iterative Decoding Algorithms 

with Memory over Memoryless Channels 
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All message-passing algorithms analyzed by density Evolution  Memoryless 

To the best of our knowledge however, all the message-passing algorithms analyzed by 

density evolution in the literature are memoryless, i.e., the output message of a variable node 

(check node) at iteration l is only a function of the input messages to that node at iteration l (l -1) 

and also of the initial message of the channel in the case of variable nodes. 

 

Iterative decoding algorithms with memory  Exist 

There exist however a number of iterative decoding algorithms, such as successive relaxation 

(SR) variants of BP and MS and DD-BMP (differential decoding with binary message-passing), 

that have memory. 

 

The presence of memory in algorithms  Improves the performance but makes the 

density evolution analysis much more complex. 

 

In this paper, they develop the framework for the density evolution analysis of iterative 

extrinsic message-passing algorithms with memory which includes DD-BMP and SR algorithms. 

 

They employ the Bayesian network representation via a directed acyclic graph (DAG), to 

capture the dependences among different messages and memory contents in a space with two 

dimensions: iteration l and the depth of the decoding tree d. 

 

Independent 

Incoming messages to a node along different edges 

 

Dependencies 

A message passed along a given edge at iteration l 

All the messages passed along that edge at previous iteration l’<l. 

 

Such dependencies cause the complexity of density evolution to grow at least exponentially 

with l. They derive the density evolution equations and use techniques to make them tractable. 
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II. ITERATIVE DECODING ALGORITHMS WITH MEMORY 

 

A. General Model 

 

1) Memoryless decoding algorithm 

 

 

 

The figure (a) shows a snapshot of the Tanner graph of an LDPC code at iteration l for a 

memoryless decoding algorithm, where variable and check nodes are represented by circles and 

squares, respectively. 

 

Under cycle-free assumption and based on the principle of extrinsic message passing, 

∙ Incoming messages    
1 1, ,

v

l l

dM M   to node V are independent of each other and of 

the channel message 0M . 

∙ The outgoing message 
 l
V CM   of node V to node C at iteration l is a function of 

1vd   i.i.d. random variables and the channel message. 

∙ The outgoing message of a check node is a function of 1cd   i.i.d. random variables 

corresponding to the extrinsic incoming message. 

 

 The distribution of a function of independent random variables is relatively easy to find since 

the joint distribution of these variables is the product of their marginal distribution. In this case, 

one can recursively derive the distribution of messages at iteration l as a deterministic function of 

the distribution at iteration l-1 with a complexity that is independent of l. 
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2) Memory decoding algorithm 

 

Similar to figure (a), we have a set of i.i.d. extrinsic incoming messages to a variable node V. 

The outgoing message from V :  l
X  

Memory units: 
 

, , ,
l

B M B D  . 

 l
B  is updated by 

    1
,

l l

B X B


 , where B  is a deterministic function of  l
X  and the 

content of the memory at iteration l-1. 

The incoming message 
 l
V CM   to node C from V is obtained by 

  l

M B  

Note that while the message  l
X  is a function of independent random variables, the outgoing 

messages, 
 l
V CM  , is a function of dependent random variables  l

X  and  1l
B


. 

Our focus will be on the link from variable nodes to check nodes and on finding the 

distribution of  l
B  and 

 l
V CM  . 

 

B. SR and DD-BMP Algorithms 

 

1) SR Algorithms: Any standard memoryless iterative algorithm, such as BP or MS, can be 

turned into an SR algorithm by proper introduction of memory. SR algorithms can be performed 

in different message domains. In this work, we assume log-likelihood ratio (LLR) domain for 

messages (SRLLR). Based on the model of Fig. 1(b), the SR version is defined by the following 

variable node map 

            

      

1 1
, 1 ,

,

l l l l l

B

l l l

V C M

B B X B X

M B B

 
 



    

  
(1) 



 

 

5 

where 
      0 1 1, ,...,

v

l l l

V dX M M M   . In (1),   is called the relaxation factor, and can be 

optimized for the best performance. The optimal value of   is usually in the interval (0, 1). 

 

2) DD-BMP: Differential decoding with binary message passing (DD-BMP) was introduced 

as an attractive alternative to purely hard-decision algorithms. This algorithm combines the 

simplicity of binary message-passing with the good performance of soft-decision algorithms, 

where the soft information is stored in edge- or node-based memories. In the former case, studied 

in this paper, the variable node map, following the model of Fig. 1(b), is defined by 

          

       

1 1
, ,

sgn ,

l l l l l

B

l l l

V C M r

B B X B X

M B B

 



   

  
(2) 

where  sgn 1r x   for 0x  , and 1   for 0x  . For 0x  ,  sgnr x  takes +1 or -1 

randomly with equal probability. In (2), 
      0 1 1, ,...,

v

l l l

V dX M M M   , which for the BIAWGN 

channel reduces to    1

1

vdl l

ii
X M




 . 

Both the variable and the check node operations (particularly the latter) are simpler for 

DD-BMP compared to BP and MS algorithms. 

 

C. Symmetry of the Decoder and Error Probability 

 

The analysis of iterative decoders is greatly simplified assuming that both the channel and the 

decoder are symmetric. 

In particular, the variable node symmetry condition has some implications on the choices of 

the mappings B  and M : B  should be sign inversion invariant, and    M Mx x    . 

As it can be seen in (1) and (2), both conditions are satisfied for SRLLR and DD-BMP 

algorithms. 

With both the channel and the decoder being symmetric, we can assume, without loss of 

generality, that the all-zero codeword is transmitted. In this case, the average fraction of incorrect 

messages passed at iteration l from variable nodes to check nodes is calculated by 
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       1
0 0

2

l l l

eP P B P B    .(3) 

We refer to 
 l

eP  in (3) as the probability of bit error at iteration l. 

 

III. BAYESIAN NETWORK REPRESENTATION OF ITERATIVE DECODING ALGORITHMS WITH 

MEMORY 

A. Bayesian Networks and Conditional Independence 

In this work, they use a Bayesian network to represent the dependencies among different 

messages and memory contents of an iterative algorithm with memory. 

The conditional independence between two sets of random variables  and  given a 

third set  is defined by 

     | , | | |    

where    and  |  are the marginal distribution of  and the conditional 

distribution of  given , respectively. 

 

B. Bayesian Networks of Iterative Decoders with Memory 

 

Based on the principle of extrinsic message-passing, one can see that  l
X  is a deterministic 

function of 
 1

1

l
B


 and 0M . Moreover, as it can be seen in Fig. 1(b),  l

B  is a function of 
 1l

B


 

and  l
X . In addition, 

 l
iB  depends on 

 1l

iB


 and 
 1

1

l

iB


 . 
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IV. DENSITY EVOLUTION 

 

Based on (3), to obtain the error probability  l
eP  at each iteration l, we need to compute 

  k
B . 

A efficient approach is to compute 
  k

B  is: 

       
   

1

', : ',

', ,
B X B

l l l

B

b x S S b b x

P B b P B b X x b S


  

      . 

where BS  is sample space of  l
B  and 

    1
,

l l
B X


 is 

              
 

  

       
 

1 1

1 1

1 1 1 1 1 1 1 1

1 1 1 1

,
l

l

l l l l l l l

x

l l l

x

B X B X X X X

B X X

 

 

       

   








 

where 
        1 1 2

, , ,
k k

X X X X


  for 1k  . 

 Calculation of     1l l
B X


 

∙ 

                
 

           
 

1

1

1 1 1 1 1

1 1 1 1

,

, , 2

l

l

l l l l l l l

b

l l l l l

b

B X B X B B X

B X B B X l





    

   



 




 

 Calculation of 
  1 l

X


 

The variables 
 l
iM  are i.i.d.. Since 

        1 2 1, , ,
v

l l l l

v dX M M M   ,  l
X  is conditionally 

independent of all other random variable given  
1 1v

l

dM   . We thus have 

          
 

       
 

1

1 1

1

1 1

1 1 1 1

1 1 1 1

1
1

1 1

1 1

v v
l

dv

v

v
l

dv

l l l l

d d

m

dl
i i l

d j

i jm

X X M M

X M M



 



 

   

   




 

 







  
(4) 
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V. MEMORY TRUNCATION 

A. Main Idea 

 

To explain the approximation, we consider the calculation of the joint distribution 

    1l l
B X


. This computation uses the fact that 

     1 1 1
|

l l l
B X X

  
 . The problem lies in 

the fact that the size of the sample space of the conditioning set  1 1l
X

 
 grows exponentially 

with l. Now consider making the following approximation: 

 

     1 1 1
| , 2

l l l n l
B X X n

    
  . (5) 

Regardless of l, the conditioning set in (5) will always have a sample space with size 
1n

XS


. 

Consider the sequence  0 l
B


. This sequence, in general, is not a Markov process of some finite 

order. The memory truncation approximates  0 l
B


 by a Markov process of order n, n . 

This is represented by the following: 

             1 0 1
, , , ,

n k n k n k n k k
B B B B B B

     
 (6) 

and corresponds to removing the edges between  i
X  and  i

B  for 1,...,i k , in the Bayesian 

network of Fig.3. 

We refer to the approximation of (6) as memory truncation of order  nn MT .  
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B. Analysis 

We consider a memory truncation of order n, and assume that we have already calculated 

(approximated) 
  k

B , k n . For 1,...,k n , we have the following distributions available: 

∙     1
,

k k
B X


 

∙     1 1 1k k n k
B X

    
 

∙   1k n k
X

  
 

 

We now derive 
  1k

B


. To perform this, we will use the calculation of the joint 

distribution 
    1

,
k k

B X


. 

 

              
 

  
    

 

  

2

2

1 2 1 2 2

2 2 1

, | |

|

k n k

k n k

k k k k n k k k n k k n k

x

k k n k k n k

x

B X B X X X X

B X X

  

  

          

      








(7) 

In (7), the distribution 
    2

|
k k n k

B X
  

 is calculated by  

                
 1

2 1 1 2
| | , | ,

k

k k n k k k k k k n k

b

B X B X B B X


       
  

where  

    
         

 

  
       

 

    
  
  

1

1

1 2

1 1 1 2

1

1 1 1 1 1 2

2 2

|

| |

1
| |

k n

k n

k k n k

k k n k k n k n k

x

k n k

k k n k k n k k n k n k

k n k k n k
x

B X

B X X X

X
B X X X X

X X

 

 

   

        

  

            

     



 




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VI. SIMULATION RESULTS 

 

In general, the accuracy of 
  l

B  increases with increasing the memory truncation order n, 

and so does the complexity. It is however expected that after increasing n beyond a certain order 

0n , the accuracy improvement would be negligible. The goal is thus to find 
0n . 

 

 

In Fig. 4, we have shown 
 l

eP  of the (3, 6) LDPC code ensemble for 200l   vs. 0/bE N  

for different values of memory truncation order n. The curves demonstrate a convergence 

behavior as n is increased. In particular, the two curves for n = 4 and n = 5 are very close. We 

have also tried a number of other ensembles and observed a similar trend 
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For the ensemble of (4, 5) codes, we have plotted 
 l

eP  vs. l for truncation orders 3, 4 and 5, 

and for 0/bE N  values 4.34 dB and 4.14 dB in Figures 5 and 6, respectively. The figures 

suggest that the ensemble threshold is between the two SNR values. 
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To clearly see the effect of memory truncation on the calculated thresholds, in Fig. 7, we show 

the threshold values of the (3, 6) ensemble for different memory truncation orders n. The 

thresholds for each truncation order are plotted versus the quantization step   for q = 8.the 

calculated thresholds for n = 4 and n = 5 are practically identical for different values of  . From 

Fig. 7, the optimal threshold of the (3, 6) ensemble (as a function of  ) is seen to be about 3.26 

dB. Based on the above results, in the following, we use 
0n  = 4 to derive the thresholds. In all 

cases, we use q = 8 and the optimal value of   that minimizes the threshold. 
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To verify the calculated threshold, for the (5, 10) ensemble, we compare the performance of 

randomly constructed (5, 10) codes of large block length (N = 300, 000; 400, 000 and 500, 000) 

with the threshold value of the ensemble (3.18 dB) in Fig. 8. 
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These results show that for a fixed dv, the threshold gap between DD-BMP and BP decreases 

with increasing the rate. As it can be seen, at higher rates the performance gap is less than 1 dB. 

In comparison with MS, for codes with larger degrees, DD-BMP outperforms MS 

 

These results show that by increasing the degrees, the performance gap between MS and 

DD-BMP, which is to the advantage of MS for smaller degrees, disappears and then reverses to 

the advantage of DD-BMP. 

These performance results for DD-BMP are impressive considering that both the check node 

operations and the message-passing for DDBMP are much simpler than those of BP and MS. 

They also demonstrate the potential of iterative decoding algorithms with memory in achieving 

better performance/complexity tradeoffs compared to memoryless algorithms. 

 

 

 

 



gJournal Club Meeting, Feb. 14, 2013

INFONET,   GIST / 24

Faster STORM using compressed sensing
Lei Zhu et al.

Nature method. (2012.04)

Presenter : Eunseok Jung

GIST, Dept. of Mechatronics , Bioscopy Lab.
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STORM (Stochastic optical reconstruction microscopy)

Background 

2

• STORM is a super-resolution optical microscopy 
technique based on stochastic switching of single-molecule fluorescence signal.

• STORM utilizes fluorescent probes that can switch between fluorescent
and dark states so that in every snapshot, only a small, optically resolvable fraction 
of the fluorophores is detected.

• This enables determining their positions with high precision from the center positions
of the fluorescent spots.

Cited form : http://huanglab.ucsf.edu
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Matrix(A)
Optic system - LTI

Original 
Image(X)

Microscope image
-Blurred picture

Fluorephore(Yes)

Fluorephore(No)

From : http://www.ruf.rice.edu/
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Matrix(A)
Optic system - LTI

Original 
Image(X)

Microscope image
-Blurred picture

Fluorephore(Yes)

Fluorephore(No)

From : http://www.ruf.rice.edu/
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Point spread function(PSF)

Background 

5

• The point spread function (PSF) describes the response of an imaging system to 
a point source or point object.

• A more general term for the PSF is a system's impulse response, the PSF being the 
impulse response of a focused optical system.

From : http://en.wikipedia.org
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Introduction & Motivation 
Super resolution microscope overcome traditional optical 

microscope limit.(According to Abbe’s theory :                                           )

The super resolution microscope and fluorescence technique make  
spatial resolution closer to the molecular scale.(Approximately : 30nm)

Now we can see a ten nanometer scale cell structure.

6
From : Imaging Intracellular Fluorescent Proteins at Nanometer 
Resolution, E. Beitzig, science, 2006

݄ݐ݈݃݊݁	݁ݒܽݓ	ݐ݄݃݅ܮ
2

≈200nm
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Introduction & Motivation  
Benefit of compressed sensing in fluorescence imaging.

7

C.S.

Algorithm

High resolution
result

Microsocpe image
32*32 pixel

Reconstruction
256*256 pixel

Conventional fluorescence image Compressed sensing image

gJournal Club Meeting, Feb. 14, 2013

INFONET,   GIST / 24

Oversampling

8

For increasing spatial resolution, the author used grid method.

According to the nyquist theorem, we need 2 times more sampling for 
reconstruct singal. In here, 21nm*2=42nm.

Finally, the reconstruction image can get a 42nm spatial resolution.

1      :      64
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Measurement matrix (1) 

9

• Measure the PSF of optic system.
• Fit the Gaussian function. 

• Optic system is LTI system.

gJournal Club Meeting, Feb. 14, 2013

INFONET,   GIST / 24

A∈ ܴெ௑ே
x∈ ܴே(M<N)

A = Measurement matrix x = Reconstruct image

b∈ ܴெ

Measurement matrix (2) 

10
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A∈ ܴெ௑ே
x∈ ܴே(M<N)

A = Measurement matrix x = Reconstruct image

b∈ ܴெ

- Measurement matrix A

Measurement matrix (3) 
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A∈ ܴெ௑ே
x∈ ܴே(M<N)

A = Measurement matrix x = Reconstruct image

b∈ ܴெ

- Measurement matrix A

Measurement matrix (4) 
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A∈ ܴெ௑ே
x∈ ܴே(M<N)

A = Measurement matrix x = Reconstruct image

b∈ ܴெ

64 : 1

Measurement matrix (5) 
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Matrix(A)
Optic system - LTI

Original 
Image(X)

Microscope image
-Blurred picture

Fluorephore(Yes)

Fluorephore(No)

From : http://www.ruf.rice.edu/

14
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Reconstruction

15

• The matrix A is determined by the point-spread function (PSF) 
of the imaging system.

• The i th column of A corresponds to the acquired raw image 
if only one molecule emits fluoroscopic photons at the position index i of x.

• The weight vector c is to account for the difference of the total contribution 
to the camera image from one fluorescent molecule at different locations.

• The value of the i th element of c equals the summation of the i th column of A.
• The minimization term cTx is equivalent to a weighted L1 norm of x

because x is non-negative.
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Reconstruction

16

• CVX converts the above problem to an 
SOCP (Second-order cone programming), 
and solves it.
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Scale bar : 300nm
FOV : 4um*4um
Pixel : 32*32

Scale bar : 300nm
FOV : 4um*4um
Pixel : 256*256
The pixel size of 166nm, the 21nm grid size should be able 
to support a final image resolution of 42nm.

C.S.

Algorithm

Results

17
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Results

• Conventional fitting
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Results 
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Results
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Data Analysis and Discussions

21

• The red-cross is the 
reconstructed image using 
compressed sensing

• The white one is 
fluorescence position 
(original image).

• The maximum difference 
between two positions is 
60nm.

• Scale bar is 300nm.
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• Conclusion
1) This journal has potential benefit. It was first step of compressed sensing 

with super resolution microscope.

2) It had not been impossible to taking a living cell image without compressed 
sensing.

3) Now, it could be done with compressed sensing.

4) The author spent 3sec for taking living cell photo. And they get a same 
result when they spent over 30sec. They decrease experiment time 
10times more.

5) According to this, now we can get a living cell image.

Conclusions

22
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Improvement

23

• Algorithm

1) If we make measurement matrix A using difference method, we can 
decrease error and also increase spatial resolution.

2) The other reconstruction method, instead of SOCP, can decrease error.

• Hard ware

1) The author used EM-CCD camera, it is very expensive detect device.

2) But if we can make same result using cheap detect device like a sCMOS or 
CMOS, the system cost is more cheaper than before.
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Short summary: In this paper authors present a link capacity model for spatial time-division 

multiple access (STDMA) mesh networks. It makes use of a simplified transmission model that 

also considers channel fading. The model then forms the basis of a node-based slot-assignment 

and scheduling algorithm. This algorithm enables the user to exploit multiuser diversity that 

results in optimizes network throughput. The presented algorithm shows significant 

improvement in the throughput when compared with existing slot-assignment methods. 

I. INTRODUCTION 

In STDMA network the transmission time of a channel is divided into slots where multiple slots 

constitute a frame. These slots are assigned to potential users of the network. The goal of slot assignment 

scheme is to maximize network throughput. Existing assignment algorithms in STDMA make use of 

simplified transmission model which do not consider the time-varying fading behavior of a wireless 

channel. This results in slot wastage when link is in deep fade. The slot is also wasted if scheduled link 

has no traffic to transmit. This degrades the STDMA network throughput. Therefore a dynamic slot-

assignment with that should exploit multiuser diversity is required. However sheer complexity involved 

in coordinating with all nodes and generating scheduling map in a reasonable time makes this approach 

impractical. In order to fix these issues the authors present a node-based slot-assignment scheme in which 

scheduling in each slot is done for nodes not for links. Their contributions include: 

 Defining link capacity: a model that includes channel fading. It ensures that whichever link is 

used by a node will not change the interference profiles on the links selected by other users. 

 Node-based time-slot assignment and scheduling algorithms. 

II. SYSTEM MODEL 

Wireless STDMA mesh network with fixed routers. 

Transmissions are organized in frames. 

Synchronization among nodes provided through GPS. 

A Node-Based Time Slot Assignment Algorithm 
for STDMA Wireless Mesh Networks 
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Set of nodes are identified and assigned to a slot for their transmission. 

Each node maintains a separate queue for each outgoing link and performs scheduling without 

coordination with other nodes. 

Multiprotocol Label Switching (MPLS) multipath routing is used for routing however packets are 

transmitted in sequence.  

Adaptive modulation and time varying fading channels are considered. It is also assumed that wireless 

channels undergo slow fading. Due to fading channel an instant channel gain will be fed back to 

transmitter. The duration for feedback is no longer than coherence time (the time for which channel 

conditions remain same) 

Adaptive modulation is implemented that each data packet can be fragmented into multiple segments 

and each segment can be transmitted in with lowest data rate. If high data rate is available then multiple 

segments can be transmitted per slot duration. 

III. LINK CAPACITY MODELING 

Each node has multiple links and it can exploit multiuser diversity i.e. different links have different 

traffic and fading conditions. A channel model is presented that includes shadowing and slow fading. 

A. Signal to interference and noise ratio (SINR) Formulation 

ℎ�,�: Channel response function from transmitter ‘t’ and receiver ‘r’  

��: Signal from ‘t’ 

��, ��,
'
it : Set of transmitters causing interference to ‘r’, number of transmitters and ith transmitter in Ir 

respectively. Power control is not considered therefore transmission power of ‘t’ is  2

tpt E x . Let 

�� be thermal noise with power equal to k then received power at ‘r’ is  

' ', , 0,
1

I

i i

n

r t r t t r t t
i

y h x h x n


    (1) 

SINR at receiver ‘r’ is expressed as: 

2 2

, , 0

2 2

' ' ' ', ,
1 1 1

,
r t t r t t

n n nI I I

ir t t r t ti i i ii i i

h x h p s

r t
h x h p s  



  

  

  
  

  (2) 

Here ' '

22

0 , , i i
r t t i r t t

s h p and s h p  . The Channel response function consists of three parts:  

 Path loss 

 Shadowing 

 Fading 
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,

,

10
, ,10

r t

r t

f

r t r th l    (3) 

Where ,r tl is distance between ‘t’ and ‘r’, [2 4]  (constant), 

,

1010
r tf

is shadowing effect and it is 

modeled as a log-normal distributed random variable. ,r t is fading effect and it is defined as complex Gaussian 

RV with mean and variance equal to 0 and 1 respectively. PDF of s0 and si are defined as: 

0

0

0 0

1
0( )sp e








   (4a) 

1( )
i

i

i is ip e







   (4b) 

Here  
,

,

10
0 0 10

r t

r t

f

tE s l p    and  
',

'
',

1010
r ti

ir ti

f

i i t
E s l p    

B. PDF of SINR 

Case 1: no interference is observed by receiver ‘r’ i.e. (Ir=0, nI=0) then PDF of ,r t , is defined as: let 0
     

, 0

1( ) ( )
z

r t sp z p z e 
 


   (5) 

Probability that ,r t is smaller than w is defined as: 

 
,, ( )

w

r tr t

w

Pr w p z dz e 





    (6) 

Case 2: unit interference is observed by ‘r’ i.e. (Ir>0, nI=1) then PDF of term (si+k i.e. denominator of 

equ.2) is defined as: 

1

1 1

1( )
v

sp v e




 



    (7) 

Finally PDF of ,r t is defined as: 

 1
10 1

, 0 1 0 1 0 1

1( ) ( ) ( )
vz v

u

r t

u
v

s s up z vp vz p v dv e e dv e

 



     

 


 

  

     (8) 

Probability that ,r t is smaller than w is defined as: 

 
,

0
,

0 1

( )
w

r tr t

w

Pr w p z dz e
w







 




  
   (9) 
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Case 3: more than one interferers are present in Ir i.e. (nI > 1) then PDF of 
1

nI

i
i

s

 can be defined as: 

1

( ) ( )

1

( )
I v

i i
n sI n iI

i

i

n
b

v p vI
s i

p v P e 






 






  (10) 

Here  1,
1

1
I

I i

i j

n
n

i j j i i
i

b and b
  



   . The PDF of term (si+k i.e. denominator of equ.2) is defined 

as:  ( )I Ip v p v    . Finally the PDF of ,r t : 

 2
, 0

1

( ) ( ) ( )
I

i

r t i i

n
q

s I i q q
i

p z vp vz p v dv d e  
 









     (11) 

Here    
0

1
i

z
iq     and  

0

ii

i

qb
id e 

 
 .  Probability that ,r t is smaller than w is defined as: 

 
, 0, 0

1

( )
Iw

i

r t i

n
b

r t w
iw

Pr w p z dz e 
   







      (12) 

Finally Link Capacity can then be determined as: 

     
1

1
, , ,

1

i i
r t r i thr r t thr r t thr

i

c I c Pr c Pr



    






     � �  

Where cr,t(Ir) is average data rate between ‘t’ and ‘r’, given interference set Ir cr,t(Ir)) cr,t(Ir) 

IV. PROPOSED TIME-SLOT ASSIGNMENT ALGORITHM 

TDMA frame consists of a fixed number of slots is considered. The set of transmitting links that are 

activated in a given slot is called a link pattern, and the set of nodes activated in a given slot is called a 

node pattern. 

A. Formulation of Node-Based Time-Slot Algorithm 

Notations: 

 V: set of nodes 

 E: set of links 

 NP: Node Pattern 

 , ;e etx rx e E  transmitter and the receiver of link e, respectively, 

 , | , , ,s p eE e e E p s s NP tx p      set of links that can be used at node p, where      

p∈s i.e p is activated in node pattern s); 
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portion of time that is assigned to node pattern (s) in a frame, where,

 1

s

s

s NP










 , , ,|s p e s pe Eò :portion of time that is assigned to each link of node p in node pattern s 

 F: set of flows in the system; where flow defines all traffic that belongs to (S, D) pair 

 fh : traffic demand for flow f, where f F  

 fS : source of flow f 

 fD : destination of flow f 

 ,f ex : percentage of traffic that flow f passes through link e, 

Calculations 

Link congestion: it is total amount of traffic routed through the link ‘e’ over its average capacity 

(ce) i.e. 
,f e

e

x

e c
f F

r


 
  
 
  where link capacity (data rate between transmitter ‘t’ and receiver ‘r’ is 

defined as: 

 ,

,

|

,

,

,

, s p

e s e

s s NP p s e

s p

E

ec c
  

  ò .  

Thus network congestion ratio ‘r’ is the maximum of all link congestion ratios, i.e. max e
e E

r r


  

Optimal node-based slot assignment scheme is one which minimizes congestion ‘r’: 

 

 

 

 

   

 

,

,

| ,

, ,

, ,

,

,

, ,

, ,

,

|

| , ,

, ,

| |

, ,

,

|

min (13 )

. (13

0,

)

(13 )

(13 )

1 (13 )

0, (13 )

0 (13 )

0

f e f

f F

s e

e s NP p s e Es p

s p

s p e

e e

s p e

e f

x h

c

s

e e E

s

e p s e E rx q

s

s NP

s

f e f e

e tx v e rx v

f e f e

e tx S e

s p e

s p e

s p e

r a

s t r b

c

d

e

f

x x g

x x

r











  



  



 
































 



ò

ò

ò

ò

 |

,

1(13 )

0 (13 )

e frx S

f e

h

x i








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Problem 13 is the optimization problem, whose purpose is to find the set of , ,s p eò  that will 

lead to the optimal objective function. Constraint 13c represents that in node pattern s, for any 

node p∈s, p can transmit to only one node at one time. 13d ensures that a node q can receive 

from only one node at one time while q s and p∈s. 13f and 13i ensures non-negativity 

constraints. Constraint 13b is non-linear therefore sr  and , ,s p erò  are replaced by 

, ,s s p eand   respectively. Therefore final formulation is defined as: 

 

 

 

   

   

,

,

,

, ,

| , ,

|

| , ,

, ,

|

, ,

, ,

, ,

, ,

|

, ,

| |

min (14 )

. (14 )

(14 )

(14 )

0, (14 )

0 (14 )

1

0

(14

s p

s p

s p e

e e

e f e f

s

s p e

s p e s

s p e s

s NP

f e f s e

f F e s NP p s e E

e e E

e p s e E rx q

f e f e

e tx v e rx v

f e f e

e tx S e

s s p

rx S

e

a

s t x h c b

c

d

e

x x f

x x



 

 

 



   



  

 

 









 

 



 





 

 

ò

,

)

0 (14 )f e

g

x h

 

 

Authors describe that the presented formulation can handle scheduling of node patterns by using Linear 

Programming approach. However for link based approach, listing all link patterns does not work by using 

LP formulation. Therefore column generation method is used to tackle the problem. 

B. Frame Construction and Throughput Loss due to Frame Quantization 

Frame is constructed as:  f s
s NP

n z


   here z is frame length and function [x] rounds ‘x’ to nearest 

integer.  

The frame quantization will change the portion of time assigned to all patterns ( s ). Therefore 

parameters like minimum congestion ratio rz, the optimal link capacities (ce) and the routing scheme xf,e 
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will change. These parameters need to be recomputed as follows. let zs be number of slots assigned to 

node pattern ‘s’ in a frame. 

 

 

 

   

   

,

,

,

, ,

| , ,

|

| , ,

, ,

, ,

, ,

| |

, ,

| |

,

, ,

min (15 )

. (15 )

(15 )

(15 )

0 (15 )

(15 )

s p

s

s

s NPs p

s

s

s NPs p e

e e

e f e f

z

f e f s e

f F s s NP p s e E

z

z
e e E

z

z
e p s e E rx q

f e f e

e tx v e rx

s p e

s p e

s p e

v

f e f e f z

e tx S e rx S

f e

a

s t y h c b

c

d

y y e

y y h f

y









   



  

 

 









 

 

 





 

 

ò

ò

ò

, ,0, (0 15 )s p e g ò

 

Here  ,1
, ,, , f es

z zs
s NP

xz
r rz s f e f e zz

y x  


 
    

 
  

C. Column Generation Method 

Column generation is an algorithm for solving large LP problems. Most of the variables are usually 

non-basic and assume zero values in the optimal solution, only a subset of variables are needed for 

solving the problem. Column generation method considers only the variables which have potential to 

improve the objective function. It splits the problem into master problem and subproblem. Master 

problem is the original problem with subset of variables being considered. In subproblem it uses duality 

approach to select new variables to be added to master problem to improve its result.  

Master Problem: it is same as defined in problem 14 except that NP is replaced with NP (subset of 

NP which is feasible for 14). Solution of master problem shall provide a routing and slot-assignment 

scheme. 

Subproblem: is a new problem created to identify a new node pattern to add to master problem and it 

is defined as: 

min s
s NP

rp
 NP

 (15) 

Here srp is reduced cost of node pattern ‘s’ in the column generation algorithm and it is optimal value 

of following problem: 
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   ,

, ,

| | , ,

, , ,

max 1

. 0

s p e

s p s q

p p s q p s e E rx q

s p s p e s es t c

 

  

   

 

  

 
  
 

 
 (16) 

Here , ,s p s qand  are variables that are associated with the transmitter p and the receiver q in node 

patterns s. Well the question is which node pattern should be included into NP ?  

According to duality theory if master problem is optimal then srp is always non-negative for any 

pattern in NP. The node patterns with negative srp can improve the result if they are added into NP . So 

algorithm will iterate between two phases until no more patterns can be added to NP .  

Algorithm steps are defined as follows: 

 

 

 

 

 

 

 

 

V. SCHEDULING ALGORITHMS 

Two scheduling algorithms are proposed in which each node will locally schedule its link transmissions 
without inter-node coordination and without disturbing interference profiles of other nodes.  

A. Scheme 1 

Every node ‘t’ in node pattern ‘s’ assigns a transmission probability to every link associated with ‘t’. The 

set of transmission probabilities is then defined as: 

 , ,

, , , , , ,| , s t

s

e

s t s t e s t s t eP p e E p   
ò

  (17) 

The region [0,1] is then divided into subregions, one for each link in ,| |s tE , and length of  regions is set 

according to ,s tP . The algorithm works as follows; Suppose a node pattern ‘s’ is activated in slot x . 

Each node t s  will generate a RV w , uniformly distributed within [0, 1]. The node will then schedule 

Step 1: Set node pattern A=  and Arp =0,  

Step 2: Identify 
cA v and compute 

vArp  for node pattern  . ,v vA s t A A v   . 

Step 3: select v from 
cA with minimum 

vArp   and compute Arp  of A. 

Step 4: If  
vA Arp rp  , node v will be deleted from 

cA  and add it A. 

Step 5: If 
cA  stop else go to step 3. 
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link into which subregion w falls. If selected link (e) is not usable (either  due to fading or no traffic) the 

scheduler will check link next to ‘e’ one by one until a usable link is found. 

B. Scheme 2 

Scheme 1 does not consider link quality while scheduling the links. Therefore authors presented another 

scheduling mechanism.  

Selection criteria = (queue length * link capacity) 

Each node maintains two queues for each of its link:  

1) a real data queue  to store packets and  

2) A shadow queue for scheduling. 

These queues of link ‘e’ whose transmitter can be activated in slot ‘x’, are defined as:   

( ) ( 1) ( ) ( )

( ) ( 1) ( ) ( )

e e e e

e e e e

q x q x a x d x

q x q x a x d x

   

      
 

Here qe(x) and ( )eq x are lengths of the real queue and shadow queue respectively. ae(x), ( )ea x , de(x) 

and ( )ed x  are the number of arrivals and departures for the two queues in ‘x’, respectively. In shadow 

queue the term ( )ea x is defined as:  
0

( ) 1 ( )
x

v
xe e

t

a x a t


    i.e. it is used to smooth the incoming 

traffic from source or previous hop.  

Packets departing from link ‘e’ are defined as:  ( ) min ( ), ( )e e ed x c x q x  . Here ( )ec x  is instant 

capacity of link ‘e’ in slot ‘x’. Thus scheduling, in slot ‘x’, the scheduler in node t∈s will select the link 

from all its associated links with a maximum value of ( ) ( )e eq x c x  . In doing so, it tries to strike the 

optimal balance between link quality and traffic backlog. 

VI. SIMULATION AND RESULTS 

A. Simulation Environment and Settings 

Linear optimization toolbox of MATLAB is used for proposed routing and slot-assignment algorithm. 

C++ program is then used to inspect maximum achievable throughput for different scheduling schemes.  

The physical-layer parameters are summarized as follows: 

• Transmission power: 20 dBm. 

• Thermal noise:−90 dBm. 

• Path loss(α):3.5. 

• Variance of shadow fading: 4 dBm. 
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• Minimal distance of two nodes: 15 m. 

• Slot duration: 0.22 ms. 

• Frame size: 100 slots. So frame length = 22 ms. 

The mapping between the following data rates and SINR threshold is summarized as follows. 

• 54 Mb/s: 24.56 dBm. 

• 48 Mb/s: 24.05 dBm. 

• 36 Mb/s: 18.80 dBm. 

• 24 Mb/s: 17.04 dBm. 

• 18 Mb/s: 10.79 dBm. 

• 12 Mb/s: 9.03 dBm. 

• 9 Mb/s: 7.78 dBm. 

• 6 Mb/s: 6.02 dBm. 

Network Topology: two networks 15-node and 30-node with two gateway nodes and three gateway nodes 

are considered, respectively. 

The traffic load of each flow is assumed to be the same i.e.,hf =1Mb/s, 

Throughput loss due to Frame Quantization:  

  

Fig. 1. Achievable throughput after frame generation for (a) 15- and (b) 30-node networks.  

The solid (
*
node ), dashed (

*
link ) and dashed–dotted (

* ) lines indicate the achievable throughput in 

node-based, link based and before frame construction (I.e. upper bound on throughput) respectively. The 

flat area represents the range where the performance does not improve. Note that (
*
node ) and (

*
link ) are 

function of ‘z’ and are not always monotonically increasing due to the quantization involved in the 

process, and small oscillation occurs within a short range of z. This is why, in Fig. 1(a) and (b), the curves 

move up in steps.  
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From the table it is clear that 
*
node approaches 

* much faster than 
*
link . Moreover difference in throughput 

between 
*
node and 

*
link is also significant as shown in table 1.  

The optimal scaling factors of the 
*
node for schemes 1 and 2 under the Poisson and a deterministic arrival 

process are denoted as shown by 
* * * *
exp,1 exp,2 det,1 det,2, , ,     respectively.  

{the 
*
node is derived from problem 14 and it does not include multi-user diversity gain. Therefore, it can 

be viewed as a lower bound of the two proposed scheduling schemes 1 and 2 As shown in the Table I.  

It is also clear from the table that , both (posisson and deterministic arrival rates )
*
exp,1, *

det,1 are only 

slightly larger than 
*
node for the 15- and 30-node networks. The difference is only about 3%. This is 

because scheme 1 tries to follow , ,s p eò i.e. portion of time that is assigned to each link of node p in node 

pattern s and does not select a link with the best quality. However, the situation is different in scheme 2, 

because link quality is part of the selection criteria. With scheme 2, 
*
exp,1, *

det,1 are about 26% larger 

than 
*
node for the 15-node network and 30% larger for the 30-node network. 
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Summary: 

 It happens that the convergence rate of IST algorithms depends heavily on the linear observation 
operator, becoming very sow when this operator is ill-conditioned or ill-posed. 

 In this paper, the authors introduce two-step IST (TwIST) algorithms, exhibiting much faster 
convergence rate than IST for ill-conditioned problems. They showed that TWIST converges to a 
minimizer of the objective function, for a given range of values of its parameters. 

 

I. Introduction 

Many approaches to LIPs define a solution x̂  as a minimizer of a convex objective function f: 

21
( ) ( )

2
f    x y Kx x                                  (1) 

In a regularization framework, minimizing f is seen as a way of overcoming the ill-conditioned, or singular, 
nature of K which precludes inverting it. In this context,   is called the regularizer and   the regularization 

parameter. 

 

The current state-of-the-art regularizers for image restoration are nondifferentiable. 

Examples of such choices are total-variation (TV) regularization and wavelet-based regularization. 

The nondifferentiable nature of f, together with the huge dimension of its argument, place its minimization 
beyond the reach of standard off-the-shelf optimization methods. 

 

Contribution 

This paper is strictly concerned with algorithms for minimizing (1). 

This paper introduces a new class of iterative schemes, bringing together the best of IRS and IST. For ill-
conditioned (but invertible) linear observation operators, they prove (linear) convergence of TwIST to minima of 
the objective function f, for a certain range of the algorithm parameters, and derive bounds for the convergence 
factor. 

 

II. Regularizers and Denoising 

 

Denoising with convex regularizers 



Denoising problems are LIPs in which K is the identity, Kx=x. 

21

2den yf d    . where 
22

yd  y x                            (2). 

With several standard assumptions about the regularizer : R   (convex, lower semi-continuous (lsc), 

proper), its minimizer is unique; refer to Theorem 5 and Theorem 7 in appendix I. This allows defining the 
denoising function. 

21
( ) arg min ( ) ( )

2 yd     
 x

Ψ y x x                             (3). 

 

Denoising with l-Homogeneous Regularizers 

Let ( )  denote the set of functions : R   that are convex, lsc, proper, and phd-1. 

An important recent result states that denoising with regularizers from ( )  corresponds to the residual of the 

projection onto a convex set, as formalized in the following theorem. 

Theorem 1: If ( ) , then the denoising function Ψ  defined in (3) is given by 

( ) ( )CP  Ψ y y y                                     (4) 

Where C   is a closed convex set depending on the regularizer  , and :AP    denotes the 

orthogonal projection operator onto the convex set A  . 

 

Total variation 

, ( )m
iTV niTV R    

 

Weighted lp norm 

1/

,
( )p

w

p
p

i ip wl
i

w x
     
 
x x  

Being a norm, p
wl

  clearly belongs to  . 

The denoising function Ψ  under a p
wl

  regularizer cannot be optained in a closed form, except in some 

particular cases, the most notable of which is p=1; in this case, Ψ  is the well known soft-thresholding 

function, that is ˆ( ) Ψ z x  with 

 ˆ ( ) max 0,i i i ix sign z z w                               (8). 

Orthogonal representations 



21
( ) ( ) ( )

2
p
wl

f d   yx HWx x                              (9). 

 

III. Existence and uniqueness of solutions 

 

Proposition 1: Let :f X R  be defined as in (1), where operator K is linear and bounded, and   is a 

proper, lsc, convex function. Let G denote the set of minimizers of f. Then: 

i) If   is coercive, then G is nonempty; 

ii) If   is strictly convex or K is injective, then G contains at most one element; 

iii) If K is bounded below, then G contains exactly one element. 

 

Application of Proposition 1 to the several regularization function. 

Weighted l-p norm and its p-th power 

If all the weights are strictly positive, both are coercive; this ensures existence of minimizers of f. If K is 

injective, the minimizer is unique; otherwise, the minimizer is unique with p
w

p

l
 , with p>1 (which is strictly 

convex). 

Finite-dimensional cases. 

Injectivity of K is sufficient to guarantee existence and uniqueness of the solution (under any convex regularizer, 
strictly or not, coercive or not). It is because any finite-dimensional injective operator is bounded below. 

 

 

IV. Previous algorithms 

 

Iterative shrinkage/thresholding (IST) 

1 (1 ) ( ( ))T
t t t t      x x Ψ x K y Kx                       (13) 

Each iteration of the IST algorithm only involves sums, matrix-vector products by K and TK , and the 

application of the denoising operation Ψ . 

Theorem 2: Let f be given by (1), where   is convex (and lsc) and 
2

2
2K . Let G be nonempty. Fix some 

x1 and let the sequence be produced by (13), with [0,1]  . Then the sequence converges to a point Gx . 

 

Iterative Re-Weighted Shrinkage (IRS) 



The IRS algorithm was specifically designed for wavelet-based problems of the form (9), where W contains an 
orthogonal or redundant wavelet basis and the regularizer is not necessarily a weighted lp norm. 

   1 solution solution ( )T T
t t t     x A x b D K K x K y  

tD  is a diagonal matrix (of non-negative elements) that depends on tx  and  . Observe that matrix tD  

shrinks the components of 1tx , thus the term iterative reweighted shrinkage. 

The huge size of ( )T
t t A D K K  forces the use of iterative methods to implement. This is done with a two-

step stationary iterative method, which we will next briefly review. 

 

Two-Step Methods for Linear Systems 

Considering the linear system Ax b , with A positive definite; define a so-called splitting of A as A=C-R, 

such that C is positive definite and easy to invert (e.g., a diagonal matrix). A stationary two-step iterative 
method (TwSIM) for solving Ax=b is defined as 

Two-step iterative method (TwSIM) 

1
1 0 0 0+ ( )  x x C b Ax  

1
1 1(1 ) + + ( )t t t t   
   x x x C b Ax                           (15). 

 

Theorem 3: Let { , }tx t  be the sequence produced by (15), with arbitrary x0. Let 1  and m  denote the 

smallest and largest eigenvalues of matrix 1C A , and 1 / mk   . Then, { , }tx t  converges to the solution 

of Ax=b if and only if 0 2   and 0 2 / m    . The optimal asymptotic convergence factor is 

(1 ) / (1 )k k    . 

 

Comparing IST with IRS 

For ill conditioned systems, IRS is much faster than IST. On the other hand, when noise is the main factor, and 
the observation operator is not too ill-conditioned, IST outperforms IRS because it uses a closed-form denoising 
step in each iteration. 

 

V. Two-Step IST (TwIST) 

 

The TwIST method aims at keeping the good denoising performance of the IST scheme, while still being able to 
handle ill-posed problems as efficiently as the IRS algorithm. 

Taking t C I D  and T R I K K  in the splitting A=C-R of matrix T
t A D K K , the two-step 

iteration (15) for the linear system TAx K y  becomes 
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   (19). 


