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Short summary:  

This paper proposes a fast algorithm for overcomplete sparse decomposition. The 

algorithm is derived by directly minimizing the L0 norm after smoothing. Hence, the 

algorithm is named as smoothed L0 (SL0) algorithm. The authors demonstrate that their 

algorithm is 2-3 orders of magnitude faster than the state-of-the-art interior point solvers with 

same (or better) accuracy. 

 

I. INTRODUCTION 

o To introduce the algorithm the authors have used the context of source component analysis 

(SCA). SCA is a method to achieve separation of sparse sources. 

  

o Suppose that m source signals are recorded by a set of n sensors each of which records a 

combination of all sources. In linear instantaneous (noiseless) model, it is assumed that 

( ) ( )x t As t in which ( )s t and ( )x t  are 1m  and 1n  vectors of source and recorded 

signals, respectively, and 
n mA R   is a mixing matrix.  

 

o The goal of blind source separation (BSS) is then to find ( )s t  only by observing ( )x t . 

The general BSS problem is impossible for the case n<m. However, if the sources are 

sparse then this problem can be solved (using L1 minimization). 

 

o We have the problem of finding sparse solutions of the undetermined system of linear 

equations (USLE) As=x. To obtain the sparsest solution of As=x, we may search for a 

solution with minimal L0 norm. (Intractable problem, sensitive to noise) 

 

o Hence, researchers consider L1 approaches such as basis pursuit (BP), LP-norm 

approaches such as IRLS, and greedy approaches such as matching pursuit (MP). 

 

o In this paper, authors present an approach for solving USLE by direct minimization of the 

L0 norm after smoothing (approximating with smooth functions). 

 

o Performance of the algorithm is equal to (or better than) the interior point based 

algorithms with 2 to 3 orders of magnitude faster. 

 

 

 

 

 

 

A fast approach for overcomplete sparse decomposition 

based on smoothed L0 norm 
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II. APPROACH 

o L0 norm of a vector  mx R is a discontinuous function of that vector.  
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o The idea then is to approximate the discontinuous function with a continuous function. 

The continuous function has a parameter (say ) that determines the quality of the 

approximation. 
 

o For example, consider the (one-variable) family of Gaussian functions 
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o For small values of , the approximation tends to equality. Hence, we can define the 

minimum L0 norm solution by maximizing ( )F s . 

o The value of  determines how smooth the function ( )F s  is: the larger value of  , 

the smoother ( )F s  (but worse approximation to L0-norm); and the smaller value of  , 

closer the behavior of ( )F s to L0-norm. 

o However, for smaller values of , ( )F s is highly non-smooth and contains a lot of local 

maxima, and hence its maximization is not easy. On the other hand, for larger values of

 , ( )F s is smoother and contains less local maxima (in fact, no local maxima for large

 ). 

o “Basic idea”: In order to find an s that maximizes ( )F s , the authors start with maximum

 . For this maximum , they find the maximizer of ( )F s . Then they decrease  and 

again find the maximizer of ( )F s . 

o They claim that eventually this process (decreasing  and maximizing ( )F s ) results in 

the maximization of ( )F s  or equivalently minimization of the L0 norm. 
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o Other family of functions that approximates the Kronecker delta functions like family of 

triangular functions, 

 
o or truncated hyperbolic functions 

 
o or functions of the form  

 
o For sufficiently large values of  the maximizer of ( )F s subject to As=x is the 

minimum L2-norm solution, i.e.,  
1

ˆ T Ts A AA x


 . 

Justification of the statement for Gaussian family: 
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The Lagrangian is ( ) ( )TF s As x   . Differentiating the Lagrangian w.r.t s and and 

setting the result to zero gives the following KKT systems of m+n non-linear equations 

of m+n unknowns.  
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Now, let us look at this problem:   
2

2
min . .s s t As x .  Again using Lagrange 

multipliers this minimization results in the system of equations 
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Authors claim that for a larger  these two systems of equations are identical and hence 

the maximizer of ( )F s  for larger  is the minimum L2 norm solution. 

 

o Hence, the authors start with large and maximize the corresponding ( )F s . They then 

decrease   and repeat the maximization of ( )F s again. They repeat the process for a 

few sequences of  and shown that the subsequent maximization of ( )F s leads to L0 

solution. Their algorithm is based on the principles of graduated non-convexity. 

 

From Wikipedia: 

 

o Graduated non-convexity is a global optimization technique that attempts to solve a 

difficult optimization problem by initially solving a greatly simplified problem, and 

progressively transforming that problem (while optimizing) until it is equivalent to the 

difficult optimization problem. 

http://en.wikipedia.org/wiki/Global_optimization
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o Graduated optimization is an improvement to hill climbing that enables a hill climber to 

avoid settling into local optima. It breaks a difficult optimization problem into a 

sequence of optimization problems, such that the first problem in the sequence is convex 

(or nearly convex), the solution to each problem gives a good starting point to the next 

problem in the sequence, and the last problem in the sequence is the difficult 

optimization problem that it ultimately seeks to solve. Often, graduated optimization 

gives better results than simple hill climbing [1]. 

 

 

 
 

 

 

 

 

 

III. THE SL0 ALGORITHM 

 

The algorithm consists of 2 loops: the outer and inner loops. 

In the outer loop, they vary the values of  . 

In the inner loop, for a given   they use a steepest ascent algorithm for maximizing ( )F s . 

 

 

 

 

 

http://en.wikipedia.org/wiki/Hill_climbing
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Remark 1:  The internal loop is repeated for a fixed, say L, and small number of times. In 

other words, we do not wait for the steepest ascent algorithm (SAA) to converge. That is, we 

do not need the exact maximizer of ( )F s . We just need to enter the region near the (global) 

maximizer of for escaping from its local maximizer. 

 

Remark 2:  The SAA consists of update step ( )js s F s   . Here, j s are step size 

parameter and they should be chosen such that for decreasing values of , j should be 

smaller. In the algorithm, they let 
2

j  for some constant  . Then, 

( )js s F s s      where 
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.  

Remark 3:  Each iteration of the inner loop consists of gradient ascent step, followed by a 

projection step.  

If we are looking for a suitable large  (to reduce the required number of iterations), a 

suitable choice is to make the algorithm to force all those values of is satisfying is 

toward zero. For this aim, we should have  
2

22
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



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2
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 for

is  , the choice 1   seems reasonable. 



 

 

6 

Remark 4:   The algorithm may work by initializing to an arbitrary solution. However, as 

discussion before the best initial value of is the minimum L2 solution. In fact, calculating 

minimum L2norm is one of the earliest approaches used for estimating the sparsest solution 

called the method of frames [4].  

 

Remark 5:  After initiating with minimum L2 solution, the next value for   may be 

chosen about two to four times of the maximum absolute value of the obtained solution 

( max i
i

s ). For example, if we take 4maxi is  , then  
2

22
exp 0.96 1 1,2, ,is i m




   . This 

value of   acts virtually like infinity for all values of is .   

 

Remark 6:  The term ( )F s  (
0

( )s m F s  ) simply counts the number of zero 

components of s. However, instead of hard-thresholding that is “zero is   ” and 

“non-zero is   ” 
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uses a soft-thresholding, for which   is a 

rough threshold.  

Remark 7: 

o If s is an exactly K-sparse signal, then can be decreased to arbitrarily small values. In 

fact, in this case, the minimum value of  is determined by the desired accuracy (as will 

be discussed in Theorem 1).  

o If s is an approximately K-sparse signal (say the source vector is noisy), then the smallest 

 should be about one to two times of (a rough estimation of) the standard deviation of the 

noise (in the source vector). This is because, while is in this range, ( )f s shows that the 

cost function treats small (noisy) samples as zeros (i.e., for which ( ) 1f s  ). 

o However, below this range, the algorithm tries to ‘learn’ these noisy values, and moves 

away from the true answer. (According to the previous remark, the soft threshold should 

be such that all these noisy samples be considered zero).  

o Restricting  to be above the standard deviation of the noise, provides the robustness of 

this approach to noisy sources, which was one of the difficulties in using the exact L0 

norm. 

 

 

IV. ANALYSIS OF THE ALGORITHM 

A. Convergence analysis  

In this section, we try to answer two questions for the noiseless case (the noisy case will be 

considered in Section IV-C):  

 

 

a) Does the SL0 solution converges to the actual minimizer of the L0 norm?  

b) If yes, how much should we decrease to achieve a desired accuracy? 
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Assuming the maximization of ( )F s for fixed is perfectly done (and we obtain the 

maximizer s ). The authors show that the sequence of ‘global’ maximizers of ( )F s ’s will 

converge to the sparsest solution. That is we need to prove  

 
0

0
lim s s


  

For proving the above statement the authors have introduced three intermediate results via 

lemmas. 

 

Lemma 1: Assume a matrix 
n mA R  has the property that all of its n n sub-matrices are 

invertible, which is called the unique representation property (URP) in [3]. For any

( )s N A   if the m-n elements of s have absolute values less than s   . 

 

Proof: We have to show that  

 

0, 0, . ( ) :s t s N A        

m-n elements of s have absolute values less than s        . stands for L2 norm 

 

Let ( )s N A and assume that the absolute values of at least m-n elements of it are smaller 

than . Let I be the set of all indices i, for which is  .Consequently, I n  . Then we 

write 
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Let Â be the submatrix of A containing only those columns of A that are indexed by the 

elements of I . Thus, Â has at most n columns, and the columns of Â are linearly 

independent, because of the URP of A. Therefore, there exists a left inverse 1Â for Â .  

Let s and s denote those sub-vectors of s which are, and which are not indexed by I , 

respectively. Then 
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Now, let Mbe the set of all submatrices Â of A, consisting of at most n columns of A. Then,

M is clearly a finite set (in fact 2M m ).  

Let  1ˆ ˆmax A AM  M then 

   1ˆs 1 A 1 .m M m      

 

M is a constant and its value depends only on the matrix A. Thus, for each  it is suffice to 

choose / ( 1)m M    

 

Corollary 1: If 
n mA R  satisfies the URP, and ( )s N A has at most n elements with 

absolute values greater than , then  s 1 M m  .  

 

Lemma 2:  

 

Let a function ( )f s  have the properties (0) 1f  and 0 ( ) 1s f s   , and let

1

( ) ( )
m
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F s f s 



 . Assume A satisfies the URP, and let  |S s As x  . Assume that there 

exists a (sparse) solution 
0s S  for which 

20

ns k  (such a sparse solution is unique). 

Then, if for a solution  1 2
ˆ ˆ ˆ ˆ, , ,

T

ms s s s S  , ˆ( ) ( )F s m n k    and if 0  is chosen such 

that the ˆ 'is s with absolute values greater than  satisfy ˆ( ) 1/if s m  , then 

 0ˆ 1s s M m    

 

 

Proof: Let I be the set of all indices i, for which îs  , then  
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We assume that we have chosen ( )f s  such that ˆ( ) ( )F s m n k    . (We prove this next) 

 

Now, we get ˆ( ) ( ) 1m n k F s m I       , from which we can get I n k   .  

 

As a result, at most n-k elements of ŝ have absolute values greater than .  

 

Since 0s has exactly k non-zero elements, we conclude that 0ŝ s has at most (n-k)+k=n 

elements with absolute values greater than . 
 

Moreover, 0ˆ ( )s s N A   and hence by Corollary 1 we have  0ˆ 1s s M m   . 

 

Corollary 2: For the Gaussian family  2

22
( ) exp sf s 

 , if ˆ( ) ( )F s m n k     holds for a 

solution ŝ , then 

 

 0ˆ 1 2lns s M m m    

 

Proof:   
 

For the Gaussian family  2

22
( ) exp sf s 

 ,   required for lemma 2 can be chosen as 

2lnm  . Because for ˆ 2lnis m , 
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Moreover, Gaussian family satisfies the other condition required in lemma 2. 

 

Lemma 3: Let f , F , S and 
0s be as in Lemma 2, and let s be the maximizer of ( )F s on 

S, then s satisfies ˆ( ) ( )F s m n k    . 

Proof: We write  
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Note that Lemma 3 and Corollary 2 prove together that for the Gaussian family

 2
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As x

F s s as 0  .This result can however be stated for a 

larger class of functions, as done in Theorem 1 (next page). 
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Theorem 1: Consider a family of univariate functions f , indexed  R satisfying the 

following set of conditions: 

1.  
0

lim 0; 0


  f s s  

2.  0 1;    f R  

3. 0 ( ) 1;      f s R s R  

4. For each positive values of  and  , there exists 0
R that satisfies 

   0;       s f s  (1) 

 

Assume A satisfies the URP, and let F , S and 
0s be defined as in Lemma 2, and 

 1 2, , ,    
T

ms s s s S be the maximizer of F on S. Then: 

 
0

0
lim 


s s  

 

 

Working definition of limit of a sequence 

 

We say that lim n
n

a L


 if we can make na as close to L as we want for sufficiently large n. 

 

Precise definition of the limit 

 

We say that lim n
n

a L


 if for some positive error term  the distance of the sequence at n 

from L must be less than the allowed error  , that is, na L   . But, it is important to 

remember that it is not enough that our sequence does converge once or twice; it must be 

within the error for all values from some point onwards, that is, na L   , n N  . 

 

Analytically,  0, , .nN n N a L          

 

 

Proof: To prove
0

0
lim 


s s , we have to show that  

      0

0 00, 0, .           s s  (2) 

 
 

For each 0  , let / ( 1)m M   .Then for this  and 1/  m , condition 4 of the 

theorem gives a 0  for which the (1) holds. We show that this is the 0 we were seeking for 

in (2).  

 

Note that 0   , (1) states that for 


is ’s with absolute values greater than  we have 

( ) 1/

 if s m . Moreover, Lemma 3 states that 
s satisfies ( ) ( )

   F s m n k . 

Consequently, all the conditions of Lemma 2 have been satisfied, and hence it implies that
0 ( 1)     s s M m .  
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Remark 1: The Gaussian family  2

22
( ) exp sf s 

 satisfies conditions 1 through 4 of 

Theorem 1. Other Families of functions also satisfy the conditions of Theorem 1. 

 

 

Remark 2: Using Corollary 2, where using Gaussian family, to ensure an arbitrary accuracy 

in estimation of the sparse solution 0s , it suffices to choose  

 
( 1) 2 ln


 

m M m
    and do the optimization of ( )F s subject to As=x. 

 

 

Remark 3:  Consider the set of solutions in ˆs in S, which might not be the absolute maxima 

of functions F  on S, but satisfy the condition  

 ˆ( ) ( )

   F s m n k  

By following a similar approach to the proof of Theorem 1, it can be proved that 
0

0
lim 


s s  . In other words, for the steepest ascent (internal loop), it is not necessary to 

reach the absolute maximum. It is enough reach a solution in which is F large.  

 

 

Remark 4: The previous remark proposes another version of SL0 in which there is no need to 

set a parameter L: Repeat the internal loop until  F s exceeds m-n/2[the worst case of the 

limit given by ˆ( ) ( )F s m n k    ] or ( ) m n k  if k is known a priori. The advantage of 

such a version is that if it converges, then it is guaranteed that the estimation error is bounded 

as  0ˆ 1 2lns s M m m   , in which  is replaced with J , the last element of the 

sequence of  . 

 

It has, however, two disadvantages: first, it slows down the algorithm because exceeding the 

limit ( ) m n k for each  is not necessary (it is just sufficient); and second, because of the 

possibility that the algorithm runs into an infinite loop because  F s cannot exceed this 

limit (this occurs if the chosen sequence of  has not been resulted in escaping from local 

maxima). 

 
 

Remark 5:  As another consequence, Lemma 1 provides an upper bound on the estimation 

error 
0ˆ s s , only by having an estimation ŝ  (which satisfies ˆ As x ): Begin by sorting 

the elements of ŝ in descending order and  let be the absolute value of the 
2  
n +1’th 

element. Since 
0s has at most n/2 nonzero elements, 

0ˆ s s has at most n elements with 

absolute values greater than . Moreover, 0ˆ ( ) s s N A and hence Corollary 1 implies that 

 0ˆ 1   s s M m . This result is consistent with the heuristic that “if ŝ has at most n/2 

‘large’ components, the uniqueness of the sparsest solution insures that ŝ  is close to the true 

solution.” 
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B. Relation to minimum norm 2 solution 

Kindly refer the paper for proof of   ˆlim argmax 
 


As x

F s s , where ŝ is the minimum L2 

norm solution. 

C. Noisy case  

As shown in the proof of Theorem 1 (noiseless case), a smaller value of  results in a more 

accurate solution and it is possible to achieve solutions as accurate as desired by choosing 

small enough values of  . However, this is not the case in the presence of additive noise, 

that is, if  x=As+n. In fact, the noise power bounds the maximum achievable accuracy. 

 

V. NUMERICAL RESULTS 

The performance of the SL0 algorithm is experimentally verified and is compared with BP 

(FOCUSS) and LP (L1 magic). The effects of the parameters, sparsity, noise, and dimension 

on the performance are also experimentally discussed (Please refer the paper). 

 

In experiments, sparse sources are artificially created using a Bernoulli–Gaussian model: 

each source is “active” with probability p, and is “inactive” with probability (1-p). If it is 

active, each sample is a zero-mean Gaussian random variable with variance 
2

on ; if it is not 

active, each sample is a zero-mean Gaussian random variable with variance 
2

off , where
2 2

off on   .  

 

Each column of the mixing matrix is randomly generated using the normal distribution and 

then is normalized to unity. 

 

To evaluate the estimation quality, signal-to-noise ratio (SNR) and mean-square error (MSE) 

are used. SNR (in dB) is defined as  ˆ
20log



s

s s
and MSE as 

2
1 ˆ
m

s s   
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VI. CONCLUSIONS 

In this paper, authors showed that the smoothed L0 norm can be used for finding sparse 

solutions of an USLE. They also showed that the smoothed version of the L0 norm results in 

an algorithm which is faster than the state-of-the-art algorithms based on minimizing the L1 

norm.  

 

Moreover, this smoothing solves the problem of high sensitivity of L0 norm to noise. In 

another point of view, the smoothed L0 provides a smooth measure of sparsity. 

 

The basic idea of the paper was justified by both theoretical (convergence in both noiseless 

and noisy case, relation to the L2 norm solution) and experimental analysis of the algorithm. 

 

Appendix (Not available in the paper) 

 

The following are taken from [5]  

 

Consider the following problem of the Euclidean orthogonal projection of a point to an affine 

set: For the given m nA R  , 
mb R and np R , find a vector 

* nx R satisfying 

 

 *

*

min
Ax b

Ax b

p x p x




  
 

 

The solution to the above problem exits and it is unique and it is 

 

 

* *

*

( )

[ ( )]

N A

x p A Ap A b x p A Ap b

I A A p A b

x P p A b

  

 



     

    

 
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I. INTRODUCTION

In this report, the author introduces a expectation maximization (EM) based belief propagation algo-

rithm (BP) for sparse recovery, named EM-BP. The algorithm have been mainly devised by Krzakala et

al. from ParisTech in France [1]. The properties of EM-BP are as given below:

1) It is A low-computation approach to sparse recovery,

2) It works well without the prior knowledge of the signal,

3) It overcomes the l1 phase transition given by Donoho and Tanner [11] under the noiseless setup,

4) It is further improved in conjunction with seeding matrices (or spatial coupling matrices).

The main purpose of this report regenerates a precise description of EM-BP algorithm construction

from the reference paper [1]. It might be very helpful for understanding of EM-BP algorithm, and an

answer for such a question: How and why does the algorithm work ? Therefore, we will focus on the

explanation of 1) and 2) in the properties, and just show the result of the paper with respect to that of

3) and 4).

In addition to EM-BP, the belief propagation approach to the sparse recovery problem has been widely

investigated in [2],[3],[4],[5],[6],[7].

II. PROBLEM SETUP

In the sparse recovery problem, the aim is to recovery a sparse signal X ∈ RN whose elements have

nonzero value independently each other, with a probability rate q called sparsity rate. Therefore, the q

determines the density of signal X. Then, the algorithm performs the recovery from the measurements

Y ∈ RM , given as

Y = ΦX + N, (1)
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where Φ ∈ RM×N is a fat measurement matrix with M < N , and N ∈ RM denotes a additive Gaussian

noise vector following N (0, Iσ2
N ).

III. ALGORITHM CONSTRUCTION OF EM-BP

Krzakala et al. has taken a probabilistic approach to devise EM-BP. From the Bayesian point of view,

the posterior density of the signal X is represented in the form of Posterior = Prior× Likelihood
Evidence as

fX(x|y,Φ) = fX(x|Φ)× fY(y|Φ,X)

fY(y|Φ)
. (2)

Then, using the knowledge of z and Φ, the signal posterior is given as

fX(x|y,Φ) =
1

C
fX(x)×

M∏
j=1

1√
2πσ2

N

exp

[
− 1

2σ2
Nj

(yj −
∑N

i=1
φjixi)

2

]
, (3)

where C is a normalization constant for
∫
fX(x|y,Φ) dx = 1. In addition, we consider a mixture type

prior density function represented as

fX(x) :=

N∏
i=1

[(1− q)δ0 + qθ(xi)], (4)

where θ(xi) is a Gaussian PDF with mean x̄ and variance σ2
X .

Exact finding of the signal posterior is computationally infeasible. Therefore, researchers have employed

BP as a standard approach to approximate the signal posterior where BP finds marginal posterior density

of each signal element Xi. In addition, Guo et al. showed that the marginal posterior finding is exact if

the matrix Φ is a sparse matrix and N → ∞ [8],[9],[10]. BP seeks the signal posterior by iteratively

exchanging probabilistic messages over the signal elements, where the messages are classically described

as

Measurement to signal (MtS) message :

mj→i(xi) :=
1

Cj→i

∫
{xk}k 6=i

∏
k 6=i

mk→j(xi)× exp

− 1

2σ2
N

(
∑
k 6=i

φjkxk + φjixi − yj)2

 ∏
k 6=i

dxi

 , (5)

Signal to measurement (StM) message :

mi→j(xi) :=
1

Zi→j
[(1− q)δ0 + qθ(xi)]×

∏
k 6=j

mk→i(xi), (6)

where Cj→i and Zi→j are normalization constants to make the messages as PDFs. Then, the marginal

posterior approximately is obtained as

fXi(x|y,Φ)
BP
=

1

Ci
[(1− q)δxi + qθ(xi)]×

∏
k

mk→i(xi). (7)
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However, the message update rule in (5) and (6) is practically intractable because each BP message

is probability density function (PDF). Therefore, we need to convert the density-passing procedure to a

parameter-passing procedure using some relaxation techniques.

Using Hubbard-Stratonovich transformation (HST) from spin glass theory which is

exp

(
− w2

2σ2

)
=

1√
2πσ2

∫
exp

(
− λ2

2σ2
+
iwλ

σ2

)
dλ, (8)

the exponent in (5) can be rewritten as

exp

[
− 1

2σ2
Nj

(yj −
∑N

i=1
φjixi)

2

]
= exp

−
(∑
k 6=i

φjkxk

)2

2σ2
Nj︸ ︷︷ ︸

Here, HST applied

−

∑
k 6=i

φjkxk(φjixi − yj)

σ2
Nj

− (φjixi − yj)2

2σ2
Nj


=

1√
2πσ2

Nj

∫
λ

exp

− λ2

2σ2
Nj

+

∑
k 6=i

φjkxk(φjixi − yj + iλ)

σ2
Nj

− (φjixi − yj)2

2σ2
Nj

 dλ. (9)

By applying (9) to (5), we have

mj→i(xi) =
exp

(
− (φjixi−yj)

2

2σ2
Nj

)
Cj→i

√
2πσ2

Nj

∫
λ

exp

(
− λ2

2σ2
Nj

)
×

 ∫
{xk}k 6=i

∏
k 6=i

mk→j(xi) exp

( ∑
k 6=i

φjkxk(φjixi−yj+iλ)

σ2
Nj

) ∏
k 6=i

dxi

 dλ

(10)

In (10), we observe that the integration over {xk}k 6=i can be decomposed into integration over each

scalar xk. In addition, the integration over scalar xk takes the form of the moment generating function.

Therefore,

mj→i(xi) =
exp

(
− (φjixi−yj)

2

2σ2
Nj

)
Cj→i

√
2πσ2

Nj

∫
λ

exp

(
− λ2

2σ2
Nj

)
×
∏
k 6=i

 ∫
{xk}k 6=i

mk→j(xi) exp

(
xkφjk(φjixi−yj+iλ)

σ2
Nj

)
dxi

 dλ

=
exp

(
− (φjixi−yj)

2

2σ2
Nj

)
Cj→i

√
2πσ2

Nj

∫
λ

exp

(
− λ2

2σ2
Nj

)
×
∏
k 6=i

EXk

[
exp

(
xkφjk(φjixi−yj+iλ)

σ2
Nj

)]
dλ

(11)

By assuming that each scalar Xk is Gaussian distributed during the BP-iteration with mean µi→j and
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variance σ2
i→j , we can approximate the MtS message expression as

mj→i(xi) ≈
exp

(
− (φjixi−yj)2

2σ2
Nj

)
Cj→i

√
2πσ2

Nj

×

×
∫
λ

exp

(
− λ2

2σ2
Nj

)∏
k 6=i

exp

µk→jφjk(φjixi − yj + iλ)

σ2
Nj

+
σ2
k→j
2

(
φjk(φjixi − yj + iλ)

σ2
Nj

)2
 dλ.

(12)

By evaluating the Gaussian integration over λ, the expression in (12) becomes

mj→i(xi) '
√
Aj→i/2π

φjiCj→i
× exp

(
−x

2
i

2
Aj→i + xiBj→i +

B2
j→i

2Aj→i

)
. (13)

where

Aj→i :=
φ2
ji

σ2
Nj

+
∑
k 6=j

σ2
k→jφ

2
jk

, (14)

Bj→i :=

φji(yj −
∑
k 6=j

µk→jφjk)

σ2
Nj

+
∑
k 6=j

σ2
k→jφ

2
jk

. (15)

Then, the expression of the StM message is rewritten as

mi→j(xi) :=
1

Z̃i→j
[(1− q)δ0 + qθ(xi)]× exp

−
x2
i

2

∑
k 6=j

Ak→i + xi
∑
k 6=j

Bk→i +
1

2

(∑
k 6=j

Bk→j

)2

∑
k 6=j

Ak→j

 ,

(16)

where we use an approximation
∑
k 6=j

B2
k→j ≈

(∑
k 6=j

Bk→j

)2

. The exponent can be rewritten as

−x
2
i

2

∑
k 6=j

Ak→i + xi
∑
k 6=j

Bk→i +
1

2

(∑
k 6=j

Bk→j

)2

∑
k 6=j

Ak→j

= − 1

2 1∑
k 6=j

Ak→i

x2
i − 2

∑
k 6=j

Bk→i∑
k 6=j

Ak→i
+


∑
k 6=j

Bk→i∑
k 6=j

Ak→i


2 = −

(
xi −

∑
k 6=j

Bk→i∑
k 6=j

Ak→i

)2

2 1∑
k 6=j

Ak→i

(17)
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Hence, equations (14) and (15) together with (19) fully describe the iterative BP-process. We define

two variable given as

Σ2
i :=

1∑
k 6=j

Ak→i
, Ri :=

∑
k 6=j

Bk→i∑
k 6=j

Ak→i
, (18)

Using the notations, we rewrite the expression of the StM message given as Then, the expression of the

StM message is rewritten as

mi→j(xi) :=
1

Z̃i→j
[(1− q)δ0 + qθ(xi)]× exp

(
−(xi −Ri)2

2Σ2
i

)
, (19)

Then, the mean µk→j and variance σ2
k→j of the StM message are calculated as

µi→j :=

∫
Xi

ximi→j(xi)dxi

=
q

Z(Σ2
i , Ri)

∫
Xi

xiθ(xi) exp

(
−(xi −Ri)2

2Σ2
i

)
dxi

=
q

Z(Σ2
i , Ri)

×
Σi(xΣ2

i +Rσ2
X)

(Σ2
i + σ2

X)
3/2

exp

(
− (R− x)2

2(Σ2
i + σ2

X)

)
, (20)

and

σ2
i→j :=

∫
Xi

x2
imi→j(xi)dxi − µ2

i→j

=
q

Z(Σ2
i , Ri)

∫
Xi

x2
i θ(xi) exp

(
−(xi −Ri)2

2Σ2
i

)
dxi − µ2

i→j

=
q(1− q) exp

(
− R2

i

2Σ2
i
− (R−x)2

2(Σ2
i+σ

2
X)

)
Σi

(Σ2
i+σ

2
X)5/2

(
σ2
XΣ2

i (Σ
2
i + σ2

X) + (xΣ2
i +Rσ2

X)
2
)

Z(Σ2
i , Ri)

2

+
q2 exp

(
− (R−x)2

2(Σ2
i+σ

2
X)

)
σ2
XΣ4

i

(Σ2
i+σ

2
X)2

Z(Σ2
i , Ri)

2 , (21)

where the normalization constant is

Z(Σ2
i , Ri) : = (1− q)

∫
Xi

δ0 exp

(
−(xi −Ri)2

2Σ2
i

)
dxi + q

∫
Xi

θ(xi) exp

(
−(xi −Ri)2

2Σ2
i

)
dxi

= (1− q) exp

(
− R2

i

2Σ2
i

)
+ q

Σi√
Σ2
i + σ2

X

exp

(
− (R− x)2

2(Σ2
i + σ2

X)

)
. (22)

The authors stated that the parameters x̄, σ2
X , and q of the prior density fX(X) can be learned and

updated at every iteration. A statistical approach for the parameter learning is the use of EM. For the object
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function in EM, they used Bethe free-entropy. It is known that BP algorithm is constructed by applying

Lagrange multipliers to Bethe entropy [12]. Therefore, the fixed point of BP-iteration corresponds to the

stationary points of the Bethe free-entropy minimization, in the signal posterior finding problems. For

details about the relationship between Bethe free-entropy and BP, please see Yedidia’s paper.

The Bethe entropy is defined as

HBethe := −
N∑
i

H(Zxi)−
M∑
j

H(Zyj ) +

M∑
j

∑
i∈N(j)

H(Zxi), (23)

where the concept of free-entropy, defined as H(Z) := logZ, is used and Zxi and Zyj are an approximated

marginal partition function of x, that is,

Zxi =

∫
[(1− q)δxi + qθ(xi)]×

∏
j

mj→i(xi)dxi, (24)

Zyj =

∫ ∏
i

mi→j(xi)× exp

[
− 1

2σ2
N

(
∑
i

φjixi − yj)2

]∏
i

(dxi) . (25)

Thus, the parameters (x̄, σX , q) are learned by seeking the stationary point of the Bethe free-entropy

function given in (23). We update the parameter for the prior knowledge from

x =

∑
i
µi

Nq
(26)

σ2
X =

∑
i

(σ2
i + µ2

i )

Nq
− x2 (27)

q =

∑
i

1/σ2
X+

∑
j Aj→i∑

j Bj→i+x/σ
2
X
µi∑

i

(
1− q + q

σX
√

1/σ2
X+

∑
j Aj→i

exp
(

(
∑
j Bj→i+x/σ

2
X)2

2(1/σ2
X+

∑
j Aj→i)

− x2

2σ2
X

))−1 . (28)

I implemented the EM-BP algorithm using the equations of (14), (15), (20), (21), (22), (26), (27) in C

language. I did not update the sparsity rate q in the BP-iteration. The performance is not working well

as shown in Fig.1. I need to check my implementation by translating the code to MATLAB. I think the

EM update not much improve the performance. So, we need to modify the update rule to elementwise

update rule like SuPrEM Algorithm.
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