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Short summary: To increase the diversity order of cooperative wireless communication 

systems without sacrificing the system’s rate, they propose the generalized dynamic-network 

code (GDNC). They showed that the problem of designing network codes that maximize the 

diversity order is related to that of designing optimal linear block codes, in the Hamming 

distance sense over finite fields. 

 

I. INTRODUCTION 

In the network coding schemes, each user linearly combines the messages coming from other 

users, and generates a new message, and then forwards it to the destination. 

    

 
The contributions of this paper are: 

i) they investigate another relationship between network codes and classical 

error-correcting codes. They explain on the dynamic-network coding (DNC) scheme 

by first recognizing the associated network code design problem as equivalent to that 
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of designing linear block codes over for erasure correction. In particular, for perfect 

interuser channels, we note that the diversity order equals the minimum Hamming 

distance of the block code, so the network transfer matrix should correspond to the 

generator matrix of an optimal block code under the Hamming metric. The Singleton 

upper bound for the minimum Hamming distance of a linear block code appears as a 

natural limit to the diversity order, and this bound is achieved with a sufficiently 

large field size. The codes that achieve the Singleton bound are called maximum 

distance separable (MDS) codes. 

ii) Regarding the GDNC network code design, they show that if a generator matrix of a 

MDS code is used as the GDNC network code, the maximum diversity order is 

guaranteed. They also show that a much better tradeoff between rate and diversity 

order can be achieved, e.g., it is possible to improve both rate and diversity order 

over the DNC scheme. 

 

II. SYSTEM MODEL 

A. System Model 

The received baseband codeword at User i  at time t  is given by 

 , , , , , , ,y x nj i t j i t j t j i th= +  (1) 

where { }1,...,j M∈  represents the transmit user index and { }0,1,...i M∈  the receive user 

index (0 corresponds to the BS). 

The mutual information , ,j i tI  between ,x j t  and , ,y j i t  is 

 ( )2

, , 2 , ,
1 log 1j i t j i tI h SNR
M

= +  (2) 

where the factor 1 M  follows form the division of the channel’s resources among the M  

users. 

For Rayleigh fading, the outage probability is calculated as 

 { }2

, ,Pr 1 g
e j i tP h g e g−= < = − ≈  (3) 

The diversity order D  is defined as 
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 0loglim
logSNR

PD
SNR→∞

−
  (4) 

 

B. Binary vs. Nonbinary Network Coded Cooperation 

 
 

The network codes for both schemes are 

 1

2

Binary

1 0
0 1
1 1
1 1

I
I

 
         
 
 

 (5) 

and 

 1

2

4

1 0
0 1
1 1
1 2 ary

I
I

−

 
         
 
 

 (6) 

For the binary and 4-ary network coding schemes, the general and exact form of the outage 

probability of the 1I  message at the BS are obtained as follows [1] 

 31 2
,4 2 2 3

1 2 1 2 1
o ary

AA AP
P P P P P− ≈ + +  (7) 

and 

 31 2 4
, 2 2 3

1 2 1 2 1 2 1
o binary

BB B BP
PP P P PP P

≈ + + +  (8) 

where the constants cA  and cB  are determined by the variances of channel gains and 

transmission rates. 
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III. GENERALIZED DYNAMIC-NETWORK CODES 

In the DNC scheme [2], [3], the diversity order is related to the minimum number of correctly 

received packets at the BS from which the information packets from all users can be recovered. 

A packet which is not received correctly may be thought of as an erasure, and is discarded by the 

receiver. The receiver’s ability to recover the information packets from the non-erased packets is 

thus equivalent to the erasure correction capability of the associated (network) block code. It is 

well-known that the transmitted codeword of a linear block code with minimum Hamming 

distance can be recovered if no more than of its positions have been erased by the channel. 

 

 
For example: Each user broadcasts three packets of its own in the broadcast phase, and then 

each user transmits two nonbinary linear combinations (of the six previously broadcasted packets) 

over in the cooperative phase, where is an integer greater than zero. The receiver collects the 10 

packets, which can be seen as a codeword of a systematic 6/10 linear block code. 

In this case, the outage probability of ( )1 1I  message can be approximately derived, 

 ( ) 4
,1 ,1 ,11o e f e p eP P P P P P= + − ≈  (9) 

where the outage probability 3
,1f eP P≈  is from fact that the 3 outage events (direct transmission 

and two parity messages) occur when User 2 cannot correctly decode ( )1 1I , the outage 

probability 5
,1p eP P≈  is obtained from that when User 2 can decode ( )1 1I , one direct 
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transmission plus four parity messages are erased in the worst case. We can also verify that the 

outage probability is dominated by the term related to the interuser channel being in outage, 

when User 2 cannot help User 1. 

 

The GDNC overall rate is given by  

 1 1

1 2 1 2
GNDC

k M kR
k M k M k k

= =
+ +

 (10) 

In general, for a rate /k n  linear block code, the minimum Hamming distance is upper 

bounded by the Singleton bound, 

 min 1d n k≤ − +  (11) 

Thus, we can see that the diversity order of the GDNC scheme is upper bounded by 

 2 1GDNCD k M≤ +  (12) 

However, due to outages in interuser channels, this upper bound cannot be achieved. 

 

IV. ON THE NETWORK CODE DESIGN 

Theorem 1: The diversity order of the GDNC scheme for an appropriately designed network 

code with sufficiently large field size is 2GDNCD M k= + .  

Proof: Let { }, 1,..,j tD M⊆  be the index set corresponding the users that correctly decoded  

the information packet ( )jI t . We define a new set ( ),j t I  as the set of all messages correctly 

decoded by the users in ,j tD  in the broadcast phase, including ( )jI t  itself. There are at least 

( ), , 2j t j tI D k+  packets containing messages of ( ),j t I . For a fixed ,j tD , the message 

( )jI t  is declared and erased at the BS only if the direct transmission ( )jI t  and the at least 

, 2j tD k  out of the remaining ( ), , 2 1j t j tI D k+ −  received packets are not correctly decoded 

by the BS which occurs with probability 
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( ) ( ) ( ) ( )( )
( )

( )

( ) ( ) ( )
( )
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1
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, , 21
1 2 , 1 2 ,
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1
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 The outage probability of the information message ( )jI t  is given by 

 

( )( ) ( )

( ) ( )

( ) ( )

,,

,

, 2 ,

,

* *
, 2 ,

1
, , ,

1
1 2 ,

1 *
* 1 2 ,

,

1

, ,

1
, ,

j tj t

j t

j t j t

j t

j t j t

M DD
o j e e o j j t

D

M D k D
e j t

D

M D k D

e j t
j t

P P P P D

P k k D

M
P k k D

D

γ

γ

− −

− + +

− + +

= −

≈

− 
 ≈
 
 

∑

∑  (14) 

For 2 2k ≥ , 
*

, 1j tD M= −  since the lowest exponent achieves. Thus, the exponent of (14) is 

2M k+ . 

 

Theorem 2: An ( )min, ,n k d  code   with generator matrix G I P=    , is minimum distance 

separable (MDS) if and only if every square submatrix of P  is nonsingular. 

 

We consider network codes in the light of classical coding theory. Let   be an ( )min, ,n k d  

linear block code over GF(q) with systematic generator matrix G  given by 

 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

1 0 0
0 1 0

  

0 0 1

G I P

n k

n k
k k n k

k k k n k

p p p
p p p

p p p

−

−
× −

−

 
 
 = =    
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A. A Theory of Faulty Generator Matrices 

We study some properties of new block codes obtained from systematic MDS codes by 

zeroing some entries of its generator matrix, and we refer to the obtained generator matrix as 

faulty generator matrix.  

 

Theorem 3: Let   be an ( )min, ,n k d  MDS code with systematic generator matrix 

G I P=    . The replacement by zeros of δ  entries in any row of the matrix P  gives rise to

( )min, ,n k d δ−  code  . 

 

 

Theorem 4: If a systematic generator matrix of a MDS code   with minimum Hamming 

distance min 2 1d Mk= +  is used as a transfer matrix of the GDNC scheme, the diversity order 

2GDNCD M k= +  is guaranteed. 

Proof: One fault corresponds to one interuser channel being in outage. When that happens, the 

user’s receiver cannot correctly decode its partner’s information, so, when forming 2k  linear 

combinations to generate its 2k  parity-check packets, this user replaces this erroneous packet 

with an all-zero packet, or equivalently, sets to zero the 2k  coefficients associated with this 

partner. This amounts to replacing by zeros the 2k  corresponding entries (in same row) of the 

parity matrix P , i.e., 2A k= . Since each user knows its own information, 2k  entries in each 

row of P  are immune to faults, while the other ( )2 1k M −  entries are subject to faults. In the 

worst scenario, when all the possible faults happen, the generator matrix takes the form 

 
1

  G

M

P
I

P

 
 =  
  

  (16) 

where the ( )1 2k k×  submatrix iP  contains the immune entries associated with User i . From 

Theorem 2, we know that every submatrix of iP  is nonsingular. Thus, the least minimum 

Hamming distance of a block code obtained from the original MDS code   due to the 

occurrence of faults is 2 1k + . Nevertheless, the same minimum Hamming distance can be 
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achieved with a much lower number of faults. We can see that the minimum number of faults for 

a code with minimum distance 2 1k +  is 1M − , when all of these faults occur in the same row 

of P , for example. 

For all the possible minimum distances in the range 2 min 21 1k d Mk+ ≤ ≤ + , a sufficient 

condition for the worst possible scenario (the lowest number of faults that result in this minimum 

distance) is when all the faults are located in the same row of P . Thus, we can observe that the 

larger the number of faults in a given row (and consequently the lower the minimum distance of 

the resulting code), the lower the composite minimum distance. This assures that the code with 

minimum distance 2 1k +  is the one that generates the least composite minimum distance, with 

is then given by, see the Appendix in detail, 

 

( )( ){ }
( ) ( )

min min

2

2

min

1 1

comp

B
d d B B A

k M
M k

χ
χ χ∈

= +

= + + −

= +




 (17) 

It is easy to see the connection between the two terms in the composed minimum distance and 

the exponents of eP . 
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V. SIMULATION RESULTS 
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VI. DISCUSSION 

After meeting, please write discussion in the meeting and update your presentation file. 
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VII. APPENDIX 

 

When a set of entries of the generator marix P  of the MDS code   is replace by zeros, the 

new code ′  produced is no longer MDS. Let ( ) ( ){ }1 1 2 2, , , ,...A a b a b=  be a subset of entries 

of P  that are replaced by zeros, where ( ),a b  is the entry in row a  and column b  of the 

matrix P . We call A  as a fault. Let  ={ }0 1 1, ,..., fA A A −  be a collection of f  faults. We 

consider that two different faults iA  and jA  cannot contain a common entry of the matrix P . 

That is, i jA A∩ =∅ . It is also considered that every fault has fixed cardinality, i.e., 

iA A i= ∀ . 

Let ( )0 1 1, ,..., fχ χ χ χ −=  be the binary indicator vector associated with the occurrence of 

faults, where 

 
1,    if  occurs
0,   if  does not occurs

i i

i i

A
A

χ
χ
=

 =
 (18) 

For a nonnegative integer i , let ( )b i  denote the binary (vector) representation of i . We 

denote the collection of all possible combinations of faults by ( ) ( ) ( ){ }0 1 2 1
, ,..., fb b b

B B B
−

= , with 

( ) ( ){ }: 1
, ,

i
ii

B a b a b Aχ χ =
= ∈



. Each event χ , which consists of the occurrence of Aχ  , 

gives rise to a new generator matrix of a block code ( )Bχ  with minimum Hamming distance 

( )( )mind Bχ . We also define the minimum composite distance of the code ( )Bχ  as 

 ( )( ) ( )( )min min
compd B d B B Aχ χ χ+   (19) 

which is composed of its minimum Hamming distance ( )( )mind Bχ  plus a “compensation” 

term related to the number of faults in the combination Bχ . 

A parameter of fundamental importance to indicate the performance of a MDS code subject to 

a set of faulty generator matrices is the least minimum composite distance of any possible 
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combination of faults. In particular, given a MDS code   and a collection of f  faults  , 

this distance is defined as 

 ( ) ( )( ){ }min min, mincomp comp

B
d d B

χ
χ∈

    (20) 

where, when there is no confusion, it is simply called minimum composite distance. 
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