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Short summary: In this paper authors present a link capacity model for spatial time-division 

multiple access (STDMA) mesh networks. It makes use of a simplified transmission model that 

also considers channel fading. The model then forms the basis of a node-based slot-assignment 

and scheduling algorithm. This algorithm enables the user to exploit multiuser diversity that 

results in optimizes network throughput. The presented algorithm shows significant 

improvement in the throughput when compared with existing slot-assignment methods. 

I. INTRODUCTION 

In STDMA network the transmission time of a channel is divided into slots where multiple slots 

constitute a frame. These slots are assigned to potential users of the network. The goal of slot assignment 

scheme is to maximize network throughput. Existing assignment algorithms in STDMA make use of 

simplified transmission model which do not consider the time-varying fading behavior of a wireless 

channel. This results in slot wastage when link is in deep fade. The slot is also wasted if scheduled link 

has no traffic to transmit. This degrades the STDMA network throughput. Therefore a dynamic slot-

assignment with that should exploit multiuser diversity is required. However sheer complexity involved 

in coordinating with all nodes and generating scheduling map in a reasonable time makes this approach 

impractical. In order to fix these issues the authors present a node-based slot-assignment scheme in which 

scheduling in each slot is done for nodes not for links. Their contributions include: 

 Defining link capacity: a model that includes channel fading. It ensures that whichever link is 

used by a node will not change the interference profiles on the links selected by other users. 

 Node-based time-slot assignment and scheduling algorithms. 

II. SYSTEM MODEL 

Wireless STDMA mesh network with fixed routers. 

Transmissions are organized in frames. 

Synchronization among nodes provided through GPS. 
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Set of nodes are identified and assigned to a slot for their transmission. 

Each node maintains a separate queue for each outgoing link and performs scheduling without 

coordination with other nodes. 

Multiprotocol Label Switching (MPLS) multipath routing is used for routing however packets are 

transmitted in sequence.  

Adaptive modulation and time varying fading channels are considered. It is also assumed that wireless 

channels undergo slow fading. Due to fading channel an instant channel gain will be fed back to 

transmitter. The duration for feedback is no longer than coherence time (the time for which channel 

conditions remain same) 

Adaptive modulation is implemented that each data packet can be fragmented into multiple segments 

and each segment can be transmitted in with lowest data rate. If high data rate is available then multiple 

segments can be transmitted per slot duration. 

III. LINK CAPACITY MODELING 

Each node has multiple links and it can exploit multiuser diversity i.e. different links have different 

traffic and fading conditions. A channel model is presented that includes shadowing and slow fading. 

A. Signal to interference and noise ratio (SINR) Formulation 

ℎ�,�: Channel response function from transmitter ‘t’ and receiver ‘r’  

��: Signal from ‘t’ 

��, ��,
'
it : Set of transmitters causing interference to ‘r’, number of transmitters and ith transmitter in Ir 

respectively. Power control is not considered therefore transmission power of ‘t’ is  2

tpt E x . Let 

�� be thermal noise with power equal to k then received power at ‘r’ is  
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SINR at receiver ‘r’ is expressed as: 
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s h p and s h p  . The Channel response function consists of three parts:  

 Path loss 

 Shadowing 

 Fading 
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Where ,r tl is distance between ‘t’ and ‘r’, [2 4]  (constant), 

,

1010
r tf

is shadowing effect and it is 

modeled as a log-normal distributed random variable. ,r t is fading effect and it is defined as complex Gaussian 

RV with mean and variance equal to 0 and 1 respectively. PDF of s0 and si are defined as: 
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B. PDF of SINR 

Case 1: no interference is observed by receiver ‘r’ i.e. (Ir=0, nI=0) then PDF of ,r t , is defined as: let 0
     

, 0
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Probability that ,r t is smaller than w is defined as: 
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Case 2: unit interference is observed by ‘r’ i.e. (Ir>0, nI=1) then PDF of term (si+k i.e. denominator of 

equ.2) is defined as: 
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Finally PDF of ,r t is defined as: 
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Probability that ,r t is smaller than w is defined as: 
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Case 3: more than one interferers are present in Ir i.e. (nI > 1) then PDF of 
1

nI

i
i

s

 can be defined as: 
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as:  ( )I Ip v p v    . Finally the PDF of ,r t : 
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Finally Link Capacity can then be determined as: 
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Where cr,t(Ir) is average data rate between ‘t’ and ‘r’, given interference set Ir cr,t(Ir)) cr,t(Ir) 

IV. PROPOSED TIME-SLOT ASSIGNMENT ALGORITHM 

TDMA frame consists of a fixed number of slots is considered. The set of transmitting links that are 

activated in a given slot is called a link pattern, and the set of nodes activated in a given slot is called a 

node pattern. 

A. Formulation of Node-Based Time-Slot Algorithm 

Notations: 

 V: set of nodes 

 E: set of links 

 NP: Node Pattern 

 , ;e etx rx e E  transmitter and the receiver of link e, respectively, 

 , | , , ,s p eE e e E p s s NP tx p      set of links that can be used at node p, where      

p∈s i.e p is activated in node pattern s); 
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portion of time that is assigned to node pattern (s) in a frame, where,

 1
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 , , ,|s p e s pe Eò :portion of time that is assigned to each link of node p in node pattern s 

 F: set of flows in the system; where flow defines all traffic that belongs to (S, D) pair 

 fh : traffic demand for flow f, where f F  

 fS : source of flow f 

 fD : destination of flow f 

 ,f ex : percentage of traffic that flow f passes through link e, 

Calculations 

Link congestion: it is total amount of traffic routed through the link ‘e’ over its average capacity 

(ce) i.e. 
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Thus network congestion ratio ‘r’ is the maximum of all link congestion ratios, i.e. max e
e E

r r


  

Optimal node-based slot assignment scheme is one which minimizes congestion ‘r’: 
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Problem 13 is the optimization problem, whose purpose is to find the set of , ,s p eò  that will 

lead to the optimal objective function. Constraint 13c represents that in node pattern s, for any 

node p∈s, p can transmit to only one node at one time. 13d ensures that a node q can receive 

from only one node at one time while q s and p∈s. 13f and 13i ensures non-negativity 

constraints. Constraint 13b is non-linear therefore sr  and , ,s p erò  are replaced by 

, ,s s p eand   respectively. Therefore final formulation is defined as: 
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Authors describe that the presented formulation can handle scheduling of node patterns by using Linear 

Programming approach. However for link based approach, listing all link patterns does not work by using 

LP formulation. Therefore column generation method is used to tackle the problem. 

B. Frame Construction and Throughput Loss due to Frame Quantization 

Frame is constructed as:  f s
s NP

n z


   here z is frame length and function [x] rounds ‘x’ to nearest 

integer.  

The frame quantization will change the portion of time assigned to all patterns ( s ). Therefore 

parameters like minimum congestion ratio rz, the optimal link capacities (ce) and the routing scheme xf,e 
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will change. These parameters need to be recomputed as follows. let zs be number of slots assigned to 

node pattern ‘s’ in a frame. 
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C. Column Generation Method 

Column generation is an algorithm for solving large LP problems. Most of the variables are usually 

non-basic and assume zero values in the optimal solution, only a subset of variables are needed for 

solving the problem. Column generation method considers only the variables which have potential to 

improve the objective function. It splits the problem into master problem and subproblem. Master 

problem is the original problem with subset of variables being considered. In subproblem it uses duality 

approach to select new variables to be added to master problem to improve its result.  

Master Problem: it is same as defined in problem 14 except that NP is replaced with NP (subset of 

NP which is feasible for 14). Solution of master problem shall provide a routing and slot-assignment 

scheme. 

Subproblem: is a new problem created to identify a new node pattern to add to master problem and it 

is defined as: 

min s
s NP

rp
 NP

 (15) 

Here srp is reduced cost of node pattern ‘s’ in the column generation algorithm and it is optimal value 

of following problem: 
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Here , ,s p s qand  are variables that are associated with the transmitter p and the receiver q in node 

patterns s. Well the question is which node pattern should be included into NP ?  

According to duality theory if master problem is optimal then srp is always non-negative for any 

pattern in NP. The node patterns with negative srp can improve the result if they are added into NP . So 

algorithm will iterate between two phases until no more patterns can be added to NP .  

Algorithm steps are defined as follows: 

 

 

 

 

 

 

 

 

V. SCHEDULING ALGORITHMS 

Two scheduling algorithms are proposed in which each node will locally schedule its link transmissions 
without inter-node coordination and without disturbing interference profiles of other nodes.  

A. Scheme 1 

Every node ‘t’ in node pattern ‘s’ assigns a transmission probability to every link associated with ‘t’. The 

set of transmission probabilities is then defined as: 

 , ,

, , , , , ,| , s t

s

e

s t s t e s t s t eP p e E p   
ò

  (17) 

The region [0,1] is then divided into subregions, one for each link in ,| |s tE , and length of  regions is set 

according to ,s tP . The algorithm works as follows; Suppose a node pattern ‘s’ is activated in slot x . 

Each node t s  will generate a RV w , uniformly distributed within [0, 1]. The node will then schedule 

Step 1: Set node pattern A=  and Arp =0,  

Step 2: Identify 
cA v and compute 

vArp  for node pattern  . ,v vA s t A A v   . 

Step 3: select v from 
cA with minimum 

vArp   and compute Arp  of A. 

Step 4: If  
vA Arp rp  , node v will be deleted from 

cA  and add it A. 

Step 5: If 
cA  stop else go to step 3. 
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link into which subregion w falls. If selected link (e) is not usable (either  due to fading or no traffic) the 

scheduler will check link next to ‘e’ one by one until a usable link is found. 

B. Scheme 2 

Scheme 1 does not consider link quality while scheduling the links. Therefore authors presented another 

scheduling mechanism.  

Selection criteria = (queue length * link capacity) 

Each node maintains two queues for each of its link:  

1) a real data queue  to store packets and  

2) A shadow queue for scheduling. 

These queues of link ‘e’ whose transmitter can be activated in slot ‘x’, are defined as:   

( ) ( 1) ( ) ( )

( ) ( 1) ( ) ( )

e e e e

e e e e

q x q x a x d x

q x q x a x d x

   

      
 

Here qe(x) and ( )eq x are lengths of the real queue and shadow queue respectively. ae(x), ( )ea x , de(x) 

and ( )ed x  are the number of arrivals and departures for the two queues in ‘x’, respectively. In shadow 

queue the term ( )ea x is defined as:  
0

( ) 1 ( )
x

v
xe e

t

a x a t


    i.e. it is used to smooth the incoming 

traffic from source or previous hop.  

Packets departing from link ‘e’ are defined as:  ( ) min ( ), ( )e e ed x c x q x  . Here ( )ec x  is instant 

capacity of link ‘e’ in slot ‘x’. Thus scheduling, in slot ‘x’, the scheduler in node t∈s will select the link 

from all its associated links with a maximum value of ( ) ( )e eq x c x  . In doing so, it tries to strike the 

optimal balance between link quality and traffic backlog. 

VI. SIMULATION AND RESULTS 

A. Simulation Environment and Settings 

Linear optimization toolbox of MATLAB is used for proposed routing and slot-assignment algorithm. 

C++ program is then used to inspect maximum achievable throughput for different scheduling schemes.  

The physical-layer parameters are summarized as follows: 

• Transmission power: 20 dBm. 

• Thermal noise:−90 dBm. 

• Path loss(α):3.5. 

• Variance of shadow fading: 4 dBm. 
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• Minimal distance of two nodes: 15 m. 

• Slot duration: 0.22 ms. 

• Frame size: 100 slots. So frame length = 22 ms. 

The mapping between the following data rates and SINR threshold is summarized as follows. 

• 54 Mb/s: 24.56 dBm. 

• 48 Mb/s: 24.05 dBm. 

• 36 Mb/s: 18.80 dBm. 

• 24 Mb/s: 17.04 dBm. 

• 18 Mb/s: 10.79 dBm. 

• 12 Mb/s: 9.03 dBm. 

• 9 Mb/s: 7.78 dBm. 

• 6 Mb/s: 6.02 dBm. 

Network Topology: two networks 15-node and 30-node with two gateway nodes and three gateway nodes 

are considered, respectively. 

The traffic load of each flow is assumed to be the same i.e.,hf =1Mb/s, 

Throughput loss due to Frame Quantization:  

  

Fig. 1. Achievable throughput after frame generation for (a) 15- and (b) 30-node networks.  

The solid (
*
node ), dashed (

*
link ) and dashed–dotted (

* ) lines indicate the achievable throughput in 

node-based, link based and before frame construction (I.e. upper bound on throughput) respectively. The 

flat area represents the range where the performance does not improve. Note that (
*
node ) and (

*
link ) are 

function of ‘z’ and are not always monotonically increasing due to the quantization involved in the 

process, and small oscillation occurs within a short range of z. This is why, in Fig. 1(a) and (b), the curves 

move up in steps.  
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From the table it is clear that 
*
node approaches 

* much faster than 
*
link . Moreover difference in throughput 

between 
*
node and 

*
link is also significant as shown in table 1.  

The optimal scaling factors of the 
*
node for schemes 1 and 2 under the Poisson and a deterministic arrival 

process are denoted as shown by 
* * * *
exp,1 exp,2 det,1 det,2, , ,     respectively.  

{the 
*
node is derived from problem 14 and it does not include multi-user diversity gain. Therefore, it can 

be viewed as a lower bound of the two proposed scheduling schemes 1 and 2 As shown in the Table I.  

It is also clear from the table that , both (posisson and deterministic arrival rates )
*
exp,1, *

det,1 are only 

slightly larger than 
*
node for the 15- and 30-node networks. The difference is only about 3%. This is 

because scheme 1 tries to follow , ,s p eò i.e. portion of time that is assigned to each link of node p in node 

pattern s and does not select a link with the best quality. However, the situation is different in scheme 2, 

because link quality is part of the selection criteria. With scheme 2, 
*
exp,1, *

det,1 are about 26% larger 

than 
*
node for the 15-node network and 30% larger for the 30-node network. 
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Short summary: In the paper, the authors give a sufficient condition of the Orthogonal Matching Pursuit 

(OMP) algorithm. In [2], Wakin and Davenport insisted that OMP can reconstruct any K  sparse signal if 

 1 1 3K K   , where 
K  is the restricted isometry constant. However, in this talk, an improved sufficient 

condition that guarantees the perfect recovery of OMP is presented 

I. FINAL SUMMARY OF THE PAPER 

a. A strategy of the proof of Theorem 1. 

1) We aim to find a condition such that the OMP algorithm selects a correct index in the 

first iteration. 

=> We need to show that min , max ,i j
i j 

a y a y . (e.g., see from (7) to (10).) 

2) Let us suppose that the initial k  iterations of the OMP algorithm are successful, and 

that k  is the estimated support set after the initial k  iterations. Now, the OMP 

algorithm selects a correct index, which belongs to k , in the 1k   iteration. 

=> Clearly, 
k  , therefore  ˆk k k

k span   r y A x P y A  can be considered 

as a linear combination of the K  columns of A . Thus, k r Ab , where 
0

Kb , and 

   supp supp b x .  

=> Again, we find a condition such that the OMP algorithm selects a correct index 1kt   

which belongs to  supp b . 

=> Furthermore, for any ki , we have , 0k

i r a . Thus, 1k kt   . 

3) Thus, we conclude that the OMP algorithm can reconstruct K  sparse signal provided 

that the condition of 1) and the condition of 2) are satisfied 

 

b. Comparison between the result by the authors in this paper and the result by 

Davenport and Wakin. 

On the Recovery Limit of Sparse Signal Using Orthogonal 

Matching Pursuit 
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According to the authors, the improvement is possible due to 1) contradiction based 

construction of the success condition in the first iteration ( min , max ,i j
i j 

a y a y ) , and 

2) observation that the residual in the general iteration preserves the sparsity level of the 

input signal. ( k r Ab , where 
0

Kb , and    supp supp b x ). 

In fact, the authors again improved the result by Davenport and Wakin. 

The more detailed explanations are referred to the paper. 

 

c. Future Works 

1) Can we apply the techniques, which are used in the proof, to find a sufficient condition 

of an algorithm based from the OMP algorithm? For example, the SOMP algorithm selects 

a index i such as 
 

arg max
kT

i
qi

a R , where 
     

1

k k k

S
 
 

R r r , 
 

,
ˆk k

k

i i i
 r y A x , 

and 1 or 2q  . Can we find a condition such that the SOMP algorithm selects a correct 

index? 

II. HISTORY OF SUFFICIENT CONDITIONS OF THE OMP ALGORITHM 

In the below table 1, sufficient conditions that the OMP algorithm reconstructs a K  spars signal from a set of 

linear measurements y Ax , where 
M NA ( N M ), are given. 

 

Year A sufficient condition 

2007[1]   1 2 1K    

2010[2]   1 1 3K K    

 

Besides, there are many theoretical papers which analyze algorithms based on the OMP algorithm. In here, it is 

not scope of this seminar. Therefore, we do not care about them. 

 

III. SYSTEM MODEL 

Let us consider the below equation: 

 ,y Ax  (1) 

where 
M NA ( N M ), and 

Nx  is a K  sparse signal, and My  is a set of linear measurements. 

The smallest constant K  called “the restricted isometry constant” satisfies 
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    
2 2 2

2 2 2
1 1K K    x Ax x  (2) 

for any K  sparse signal x . 

IV. MAIN RESULTS 

A. Improved Recovery Bound of the OMP algorithm 
Theorem 1: For any K  sparse signal x , the OMP algorithm perfectly reconstructs x  from y  if the isometry 

constant 
1K 
 satisfies  

 1

1
.

1
K

K
  


 (3) 

In this talk, we try to understand a proof of Theorem 1. 

Before we study the proof, let us consider whether the OMP algorithm perfectly reconstructs x  or not if 

1 1K K   . 

B. The OMP algorithm can fail under 1 1K K   . 

Example 1: Let us consider the problem of reconstructing a K  sparse signal 
1Kx  such as 

1 0Kx   , and 

1ix   for 1, ,i K  from y Ax , where 

    1 1

1

1
.

1

K KT

b b

b

b

b b

  

 
 
  
 
 
 

A A  

Obviously, all the Eigen values of T
A A  are 1 2 11 , and 1 .K Kb Kb            (See Example 1 on 

Appendix). When we assume  1b K K  , T
A A  becomes 

 

   

 

 

   

   1 1

1 1 1

1 1
,

1

1 1 1

K KT

K K K K

K K

K K

K K K K

  

  
 
 

 

  
 

 
  
 

A A  (4) 

and the smallest and biggest Eigen values are  

  min max1 1 , and 1 1 .K K K      
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Therefore, we have 1 1K K   (In fact, all the Eigen values of T
A A  must be contained in the interval 

1 ,1   
 

, Thus,     1 max minmax 1,1T T

K     A A A A ). Now, we investigate a quantity ,ia y  

for 1, , 1i K  . For the OMP algorithm to reconstructs x , 
1,Ka y  must be less than any ,ia y  for 

1, ,i K . This is reason that we investigate the quantities. First, for  1, ,i K , we have 

 

 

 

 

, ,

          ,

1
          1 ,

a

i i

b
T

i

c K

K K






 

a y a Ax

A a x  (5) 

where  a  from the fact y Ax ,  b  from the fact , ,T T T T

i i i i  a Ax a Ax x A a x A a , and  c  from the 

fact that T

iA a  is the i
th

 column of T
A A  presented in (4), and x  such as 1 0Kx   , and 1ix   for 1, ,i K . 

Second, for 1i K  , we have 

 

1 1

1

, ,

              ,

1
              .

K K

T

K

K

 









a y a Ax

A a x  (6) 

Obviously, the OMP algorithm must fail in the first iteration if an inequality 
1, ,K i a y a y  for all 

 1, ,i K . The inequity becomes 

 
1 1

1
K

K K K


   

which is always true if 2K  . Thus, the OMP algorithm in the first iteration selects an incorrect index. 

V. PROOF OF THEOREM 1 

A. Notations 

The below notations will be used throughout the rest of this presentation.    supp : 0ii x  x  is the set of 

indices corresponding to non-zero coefficients of x .  is the cardinality of , and  is the set of 

elements belonging to  but not to . 
M

A  is a sub-matrix of A  which contains columns 
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corresponding to indices of . x  is a restriction of x  to the elements indexed by .  span A  is 

the span of columns in A , T
A  is the transpose of A , and  

1
† T T



A A A A  is the pseudo inverse of 

A . †P A A  is the orthogonal projection onto  span A , and   P I P  is the orthogonal projection 

onto the orthogonal complement of  span A . 

B. Lemmas 

We need the below lemmas to prove Theorem 1. 

Lemma 1: For a set , if 1  , then  

    2 22
1 1T    v A A v v  

holds for any v  supported on . 

Lemma 2: For disjoint sets , , if 1


 , then  

 
22 2

T T 


 A Av A A v v  

holds for any v  supported on . 

Lemma 3: If the sensing matrix satisfies the RIP of both orders 1K  and 2K , then 
1 2K K   for any 1 2K K  

All proofs of the above lemmas are given in [3].  

C. Proof of Theorem 1 

1) We provide a condition under which the OMP algorithm selects a correct index in the first iteration. 2) We 

show that the residual in the general iteration preservers the sparsity of a K  sparse signal. 3) The condition for the 

first iteration can be extended to the general iteration. 4) Theorem 1 is established from the conditions. The 

statements are an overall strategy of Proof of Theorem1. 

First, we need investigate the condition when the OMP algorithm selects a correct index in the first iteration. Let 

us denote 
kt  be the index of the column maximally correlated with the residual 1k

r . In the first iteration, we have  

 
1 0arg max , arg max , .i i

i i
t  a r a y  (7) 

Now, let us suppose that 
1t  always belong to the support set  of x . From (7), we have 
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 

1

( )

2

( )

2

,

1
            

1
            1 ,

T

t

a
T

b

K

K

K







 

a y A y

A y

x

 (8) 

where  a  from the norm inequalities, and  b  from the fact that y  A x  and Lemma 1.Suppose that 
1t  

does not belong to the support set , then  

 

 

1 1

( )

1 2

,

            1 ,

T

t t

a

K 



 

a y a A x

x

 (9) 

where  a  from Lemma 2. Clearly, 
1t  must belong to the support set . Thus, if  

    12 2

1
1 1K K

K
    x x  (10) 

then, the OMP algorithm selects a correct index in the first iteration. The equation (10) becomes 1 1K KK    . 

From Lemma 3, the inequality becomes 1 1 1K KK     which leads to 

 1

1

1
K

K
  


 (11) 

In short, if (11) is true, then the OMP algorithm always selects a correct index in the first iteration. 

Now, we investigate a condition such that the OMP algorithm selects a correct index in the  1k  th
 iteration. 

Let us suppose that initial k  iterations of the OMP algorithm are successful. Namely,  1, ,k kt t  . Then, 

 ˆk k

k span  r y A x A  because y A x  and kA  is a sub-matrix of A . Thus, k
r  can be expressed 

as k kr Ax  ( i.e., k
r  is a linear combination of the K  columns of A ), where the support set of k

x  belongs 

to the support set of x . If the OMP algorithm selects a correct index belonging to the support set of k
x , then the 

OMP algorithm also selects a correct index belonging to the support set of x . Clearly, if 1 1 1K KK     is 

satisfied, then the OMP algorithm success in the  1k  th
 iteration. 

Last, we need to show that the index 
1kt 
 selected at the  1k  th

 iteration of the OMP algorithm does not 

belong to kT . First, we have 
†ˆ k kx A y , and ˆk k k

k   r y A x P y . Second, for all 
ki , we have  
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  
†

ˆ, ,

ˆ, ,

0.

k k

k k

k k

k

i i

i i

T T

i iA x

 

 

 



a r a y A x

a y a A x

a a A A y

 

Therefore, we conclude that k
r  is orthogonal to the columns 

ia  for all 
ki T . It leads to 

1k kt   . 

Furthermore, if 
k r 0  and  k spanr A , then there exists i  such as , 0k

i a r . Therefore, the OMP 

algorithm selects ki . 

Now, we apply the mathematical induction. First, we proved that the OMP algorithm selects a correct index if 

1

1

1
K

K
  


. Second, when we assume that the initial k  iterations of the OMP algorithm are successful, the 

OMP algorithm selects a correct index in the  1k  th
 iteration if 1

1

1
K

K
  


. Thus, the OMP algorithm will 

terminate after the K th
 iteration if 1

1

1
K

K
  


. 

VI. DISCUSSION ON THEOREM 1 

It is hard for us to determine 1K   from a sensing matrix because we need to examine all possible K sparse signal. 

However, the below result is known 

Result [4]: If an M N  sensing matrix A  whose entries are i.i.d.  0,1 M , then A  obeys the RIP 

condition K   with high probability under  

 
2

log
N

K
K

M





 
 
 

  (12) 

where   is a positive constant. When we utilize the above inequalities, we indirectly compare the result obtained 

by [2]. 

 

 A sufficient condition A sufficient condition on M  

[1]  1 1 3K K     9 1 log
1

N
M K K

K


 
   

 
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The paper  1 1 1K K       
2

1 1 log
1

N
M K K

K
  


 

 

Appendix 

Example 1) computing all the Eigen values of 

1

1

1

b b

b

b

b b

 
 
 
 
 
 

.  

 

 

 

 

 

 

 

   
2

1 1 1 0 1

1 0 1 1 0 1 1

1 1 1

1 0 1 1 0 1

0 1 1 0 1 1

0 1 0 0 1 2

1 1 2

b b b b b b

b b b b b b

b b b b b b

b b b b

b b b b

b b b

b b

   

    

  

   

   

 

 

     

          

  

       

         

   

    

 

 Therefore, 
1 2 1 b    , and 

3 1 2b   . 

   

 

 

 

 

 

 

 

 

1 1 1

1 0 1 1 0 0 1 1 0

1 1 0 0 1 1

1 1 1

1 0 0 1 1 0 0 1

0 1 1 0 0 1 1 0

0 0 1 1 0 0 1 1

1 0 1

1 0 0 1

0 1

b b b b b b b b b

b b b b b b b

b b b b b b b b

b b b b b b b b b

b b b b

b b b b

b b b b

b b b b b b

b b

b b

  

    

   

  

   

   

   

 

 



  

        
 

     

  

       

       
 

       

  

   

 


 

 

 

 

 

   
3

1 0 0 1

1 0 0 1 1 0

0 0 1 1 0 0 1 1

0 0 2 1 0 0 0 1 3

1 1 3

b b

b b

b b b b

b b b

b b

 

  

   

 

 

   

     


       

   

    

Therefore, 1 2 3 1 b      , and 4 1 3b    

Thus, we concluded all the Eigen values of a    1 1K K  

1

1

1

b b

b

b

b b

 
 
 
 
 
 

 are 

1 11 ,  and 1K Kb Kb         . 
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Short Summary:  

This paper derives the upper and lower bounds for channel capacity of the OFDM systems 

over underwater acoustic channels as a function of distance between the transmitter and the 

receiver. The upper bound is obtained using perfect CSI at the receiver while the lower bound is 

obtained by assuming that the input is drawn from a PSK constellation which results in 

non-Gaussian distribution of the output signal and no CSI. It incorporates frequency dependent 

path loss at each arrival path at the receiver due to acoustic propagation. This leads the UW 

channel to be modeled as wide sense stationary and correlated scattering (WSS-non-US) fading 

channel. Results from both Rayleigh and Rician fading show a gap between the upper and lower 

bounds which depends, not only on the ranges and shape of the scattering function of the UW 

channel but also on the distance between the transmitter and the receiver. 

I. INTRODUCTION 

Recently, OFDM has been applied to the UWA communications and yields high data rate with 

strong bit error rate performance [2-5]. 

Time and frequency spreading are the main challenges for data transmission through UW 

channels. Several attempts have been made to characterize the UW channel, most of which view 

the UW channel as a linear time-varying channel with wide sense stationary and uncorrelated 

scattering (WSSUS) [8-10]. However, this approach treats the entire frequency band as a whole 

and neglects the frequency dependent path loss. This model is acceptable for transmissions at 

low bandwidth (<10 kHz) [9]. 

Channel capacity over WSSUS fading channel has been studied [12-15] under these 

assumptions: 1) no CSI is available at the transmitter or receiver, and 2) peak power constraints. 

It is shown that channel capacity is achieved at capacity maximizing bandwidth, which depends 

Capacity of OFDM Systems over Fading Underwater 

Acoustic Channels 
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on the ranges and shape of the scattering function of the fading channel. These studies are 

conducted over wireless fading channels which assume constant power spectral density (PSD) 

and AWGN noise. There has been some research on the capacity of UW channels [6, 16, 17] but 

all assume no fading in their UW channels. 

This paper investigates the capacity of OFDM systems over the UW fading channels with no 

CSI at the transmitter or the receiver. The UW channel is modeled by taking into account 

frequency-dependent path loss. This invalidates the assumption of stationarity in frequency of 

the WSSUS model and leads to a frequency-dependent doubly spread (DS) fading channel 

characterized by the WSS-non-US [18] assumptions. The conventional WSSUS model is 

uncorrelated in both delay and Doppler domains but the proposed model is uncorrelated in the 

Doppler domain and correlated in the delay domain. 

Using this channel model and assuming that the acoustic propagation and ambient noise PSD 

are available at both the transmitter and receiver, capacity upper and lower bounds are derived. 

Capacity upper bound is derived by assuming perfect CSI at the receiver, while lower bound is 

obtained by the mutual information rate whose input is an i.i.d. random variable and is drawn 

from a PSK modulation [12,19], which results in a non-Gaussian distribution of the output signal. 

Results are obtained for both Rayleigh and Rician fading of the UW channel. Simulation results 

show a gap between the upper and lower bounds which depends not only on the ranges and 

shape of the scattering function of the UW channel, but also on the distance between the 

transmitter and receiver. Results are confirmed with the scattering function obtained from the 

2008 rescheduled Acoustic Communications Experiment (RACE08) experimental data. 

II. OFDM SYSTEM AND UW CHANNEL MODEL 

In this section, an OFDM system model for UW acoustic communications is developed. 

Physical and statistical properties of the channel as well as PSD of the ambient noise are 

investigated and a frequency-dependent UW DS fading channel has been proposed. 
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A. OFDM System 

A conventional CP-OFDM system is considered as shown in Fig. 1. Let 
,0 , 1...

T

n n Kn
X X 
   X

and 
,0 , 1...

T

n n Kn
Y Y 
   Y be the sent and received block of data at the nth OFDM symbol duration, 

respectively. 

 

Fig. 1.  System model 

Assuming the guard interval Lcp is longer than the channel length L to avoid the interblock 

interference (IBI), the input/output relationship can be written as, 

 , , , ,( )n k n k n k n kY G d X N   (1)  

where  0,..., 1k K  is the subcarrier index and  0,..., 1n N  , while d is the distance 

between transmitter and receiver. Gn,k(d) denotes the channel transfer function at the kth 

subcarrier. Nn,k is the ambient noise in the ocean. This simplifies the fading effect into 

multiplicative coefficient, which is the basis for analysis of the UW channel in this paper. The 

impact of ICI is assumed to be negligible through appropriate parameter settings (Justified in 

App. I). For simplicity, the overall system input/output of the entire N OFDM transmissions is 

characterized by a vector of size NK × 1, as follows. 

 diag( ) ( ) diag( ( ))d d   Y X G N G X N  (2) 

where 

 0 1 ,0 , 1...  and ...
T TT T

N n n Kn
Y Y 

       Y Y Y Y  (3) 

 0 1 ,0 , 1...  and ...
T TT T

N n n Kn
X X 

       X X X X  (4) 

 0 1 ,0 , 1...  and ...
T TT T

N n n Kn
N N 

       N N N N  (5) 

 0 1 ,0 , 1( ) ( )... ( )  and ( ) ( )... ( )
T TT T

N n n Kn
d d d d G d G d 

       G G G G  (6) 
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B. Characterization of Approximate DS Fading Channels 

UW channel is modeled using both the physical property, which is the attenuation depending 

on the propagation distance and bandwidth of the transmitted signal, and the statistical property 

for which the channel is usually assumed WSSUS. 

1)  Frequency-dependent Path Loss 

For the signal propagated through UW medium, the attenuation or path loss, which is a 

function of distance and signal frequency, is a combination of geometric spreading and 

absorption, written as, 

 
2 2( , ) ( ( ))sp dQ d f d q f   (7) 

where d is the propagated distance in meter and f is the frequency in kilohertz. d
-sp

 represents the 

spreading loss and sp is the spreading factor which is set to 1.5. q
2
(f) is the absorption coefficient 

in seawater which is given by, 

 
2 2

2 4 2

2 7 2 4

1.23 10 1.522
10log( ( )) 2.49 10 0.99 1.48 10  dB/m

f f

f f
q f f 

  
      (8) 

Eq. (8) is calculated when the salinity S is 35 parts per thousand (ppt), gauge pressure Pa is 1 atm, 

temperature T=14 
ο
C, and the relaxation frequency is 111 kHz. 

2) Conventional Statistical Model 

The CIR is modeled by a sum of several multipath components [9], [10]. Let h(t, τ) denote a 

continuous-time CIR of linear time-variant (LTV) UW channels and its corresponding transfer 

function H(t, f) is, 

 

1 1
2

0 0

( , ) ( ) ( ),   ( , ) ( ) i

I I
j f

i i i

i i

h t h t H t f h t e
    

 


 

     (9) 

where I is the number of arrival paths. WSSUS is commonly assumed to characterize the channel, 

i.e.,         , * , ,
chE h t h t R t t            where  ,

chR t t   is the autocorrelation 

function of the delay τ between time t and t’. Its corresponding scattering function is 

   ( , ) , exp 2
cc hS v R t j tv d t       where  0, m  . For a bandwidth of less than 10 kHz, 

let τm and fd denote the maximum channel delay spread and 3-dB Doppler spread of Sc(τ,v), 

respectively. 

3) Frequency-dependent DS Fading Channels 

Conventionally, UW models use WSSUS properties to characterize LTV UW channels, 

assuming equal attenuation across all the signal bandwidth, treating the entire frequency band as 
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flat and neglecting frequency-dependent parameters of the individual arrival path. In reality, 

various factors from channel physics such as the attenuation, reflection loss, or tx/rx operating 

ranges influence frequency dependency on the path loss. In this paper, the impact of channel 

physics is limited to only the attenuation Q
2
(di, f) (7) where di is the propagation distance of ith 

delay path. 

Let ( )
id  denote a CIR of the ith delay path corresponding to Q(di, f) i.e., 

 ( , ) ( )exp 2
ii dQ d f j f d       where 2( , ) ( , ) *( , ).i i iQ d f Q d f Q d f  Taking into account 

( )
id   yields a modified CIR, gd(t, τ) 

  
1

0

( , ) ( ) ( )
i

I

d i d i

i

g t h t     




    (10) 

 

2

1
2

0

1
2

1

0

( , ) ( , )

( ) ( , )

( 0, ) ( )  ( , ) ( , )

( , ) ( , )

i

i

j f

d d

I
j f

i i

i

I
j f

i I

i

G t f g t e d

h t Q d f e

Q d f h t e Q d f Q d f

Q d f H t f







 

















 









 (11) 

 d0 is the distance between transmitter and receiver and the subscript of d is neglected for 

simplicity. Hence the modified CIR is 

 

1

0

( , ) ( ) ( ) ( )
I

d d i i

i

g t h t     




    (12) 

From the sampling theorem, the Ts-spaced discrete time CIR is, 

 

     

 

0,

0

, , sinc

,   is large

[ ] [ , ]

d l d s l

d s l s

d l

g m p g mT B p d

g mT p T B

l h m p



  



 



 



 (13) 

where B=1/Ts. From (13) the channel transfer function can be written as 
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 

 

1 1 1
2 / 2 /

, 0,

0 0 0

1 1 1
2 ( )/ 2 /

0

0 0 0

1 1
2 /

,

0 0

,

1
( ) ,

1
[ ] ,

[0]

( , )

K L K
j p m l Kn j m k K

n k d cp

m l p

K L K
n j m p k K j pl K

d cp

p l m

K L
d j kl K

n l

p l

k n k

G d g m L l e e
K

l h m L l e e
K

G e

Q d f H

 

 





  
 

  

  
  

  

 


 

 
     

 

 
      

 





  

 



 (14) 

where / ( )k c sf f k KT   and fc is the center frequency corresponding to the zeroth subcarrier. 

   0, 0, 0, ,n

d d s lg m l g nN p m p    and  0 0[ , ] ,n

s lh m l h nN p m p    where s cpN L K  is the 

OFDM symbol length and p0 is the arrival time of the first arrival path. Eq. (14) is derived under 

negligible ICI. Moreover, 

 

1 1
2 /

, 0

0 0

1
2 /

,

0

1
,

[0]

L K
n j lk K

n k cp

l m

L
j lk K

n l

l

H h m L l e
K

h e





 


 






 
    

 



 



 (15) 

 

1
2 /

0

( , ) [ ]
L

j lk K

k d

l

Q d f l e 






  (16) 

and  

  
1

2 ( )/

, 0

0

1
[ ] [ ] ,

K
d n j m p k K

n l d cp

m

G p k l h m L l e
K




 



       (17) 

Gn,k(d) is the fading gain encountered by the signal transmitted on the kth subcarrier. Q(d, fk) is 

assumed constant within a subcarrier with center frequency fk. Hn,k[0] is the approximate CIR. Eq. 

(14) simplifies the transfer function of frequency-dependent UW DS channel into a 

multiplication of the attenuation Q(d,fk) and statistical part Hn,k governed by the scattering 

function S[l, λ]. Assuming  [ , ] , /c s bS l S lT T  when the variation of h0[m, pl] within 

Tb(Tb=NsTs) is negligible [32]. Tb is the OFDM symbol interval λ∈[-0.5,0.5]. Its range (L, λd) is 

related to (τ,fd) of Sc(τ,v) through mL B    and λd=fdTb. This leads Gn,k(d) to be a WSS but 

non-US fading channel [18]. 

    *

, ,( ) ( ) ( , ) *( , ) ,n k n k k k HE G d G d Q d f Q d f R n n k k  
     (18) 

where   *

, ,,H n k n kR n n k k E H H        . Compared to the conventional WSSUS model 

(uncorrelated in both delay and Doppler domains), the proposed model is still uncorrelated in 
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Doppler but correlated in the delay domain because of attenuation. To be consistent, a vector 

form for Gn,k(d) from (14) is 

 ( ) ( )n nd dG Q H  (19) 

where   0 1( ) diag ( , )... ( , )Kd Q d f Q d f Q and 
,0 , 1...

T

n n n KH H 
   H from (15). Fig 2 shows a 

realization of 
2

, ( )n kG d when d=5 and 20 km. Hn,k is assumed zero-mean complex Gaussian 

random variable with exponentially decaying PDP with 20-dB power difference between the first 

and last paths. Transmit bandwidth is 51.2 kHz. Channel delay length is 5 ms which corresponds 

to L=256. The number of subcarriers K is 512. We can see that the propagation distance and 

signal frequency have a significant impact on the realization of 
2

, ( )n kG d . 

 

Fig. 2.  Impact of attenuation on CIR 

C.  Ambient Noise 

Nn,k in (1) is assumed the ambient noise in the ocean which consists of four sources [6]: 

turbulence At(f), shipping As(f), waves Aw(f), and thermal noise Ath(f), described by Gaussian 

statistics with a continuous PSD in dBre/μPa per hertz, 

 

( ) 17 30log

( ) 40 20( 0.5) 26log 60log( 0.03)

( ) 50 7.5 20log 40log( 0.4)

( ) 15 20log

t

s

w

th

A f f

A f s f f

A f w f f

A f f

 

     

    

  

 (20) 

where f is the frequency in kilohertz, s ∈ [0,1] is the shipping activity, w is the wind speed in 

meters per second, and overall noise PSD is 

  ( )/10 ( )/10 ( )/10 ( )/10
( ) 10log 10 10 10 10t s w thA f A f A f A f

A f      (21) 
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III. CAPACITY OF THE UW CHANNELS 

The upper bound Uc(d) and lower bound Lc(d) are derived as a function of distance d between 

the transmitter and receiver. The capacity C(d) is given in bits per second by 

 
( )

1
( ) lim sup ( ; )

N pb

C d I
NT


X

Y X  (22) 

where the maximization is over the set p(X) of all input distributions that satisfy a given 

average-power constraint. Uc(d) is obtained when the input vector follows a join complex 

Gaussian distribution. Lc(d) is obtained under imperfect CSI whose reduction from Uc(d) comes 

from limited mutual information from PSK constellation and the MMSE prediction error related 

to channel uncertainty [12], [14]. This bounding technique is used in [12] for wireless fading 

channels while this paper uses it for UW channels. The bounds are derived under the following 

assumptions: 

 Information of attenuation (7) and ambient noise PSD (21) of UW channels are available 

at both the transmitter and receiver. 

 For statistical part [Hn,k (15)] of UW channels, its approximate CIR hn,l[0] is assumed a 

WSSUS random process with variance 2

l where 
22

, 1l n kl
E H   
   . Rayleigh and 

Rician fading are also considered. A scattering function which characterizes Hn,k is 

available at the receiver. 

 The noise vector  , ( )diagN 0 ACN . Where  0 1...
T

NA A A and 

 0 1( ),..., ( )
T

n KA f A f A . 

 The impact of ICI is negligible compared to A(fk). 

Let F denote the subcarrier spacing and B=KF, the signal bandwidth. P is the signal transmit 

power in dBre/μPa. 

A. Upper Bound Uc(d) 

To bound 
( )

sup ( ; )
p

I
X

Y X , we use the chain rule ( ; ) ( ; , ( )) ( ; ( ) | )I I d I d Y X Y X G Y G X . The 

output vector Y depends on the input vector X through b=daig(X)G(d), so I(Y;X,G(d))=I(Y;b). 

The upper bound of I(Y;b) is achieved when the input ( , ( ) ( ))d d X Gb 0 I R RCN . Where 
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( ) [ ( ) ( )]Hd E d d
G

R G G .  
0 1

( ) diag ( ),..., ( )
N

d d d


   X X X
R R R where 

 2 2

0 1( ) diag ( , )... ( , )
n x x Kd d f d f  

   X
R  and 

22

,( , )x k n kd f E X  
  

.  

The upper bound Uc(d) is [27], 

 

  

2

1

( )

21 1
2

,
( ) 0 0

21
2

( , )0

1
( ) lim sup log det ( ) ( ) diag( )

( , )1
lim sup log 1

( )

( , )1
sup log 1 ( , )

( )

( )

x k

N db

N K
k

n k
N d n kb k

K
k

x k
d fkb k

c

C d d d
NT

Q d f
E X

NT A f

Q d f
d f

T A f

U d









 


 





 

       

 
  

 







X

X

X G
R

R

I R R A

 (23) 

where the inequality follows from Hadamard’s inequality [11]. This result is similar to [6] which 

is the capacity of time-invariant UW channels but is scaled by a factor of FTb which is greater 

than 1 to avoid IBI. 2 ( , )x kd f  is subject to the source power constraint 

 

1
2

0

( , )
K

x k

k

F d f P




  (24) 

Uc is obtained when energy allocation across all subcarriers satisfies 

 
  2

( )

2 ( , )
max ,0

( , )

0

k

k

A f

kQ d f
x k

Th f B
d f

otherwise


  

 


 (25) 

where Th is chosen so that (24) is satisfied according to the water-filling algorithm [11]. 

B. Lower Bound Lc(d) over Rayleigh Fading Channels 

For lower bound, channel fading statistics are assumed available at the receiver, not the 

transmitter. Our results show, for the first time, that decrease in Lc(d) depends not only on the 

channel variations but also on the propagation distance d between the transmitter and receiver.  

Consider I(Y;X) where each entry of X, Xn,k is an i.i.d r.v. drawn from PSK modulation whose 

amplitude ,n k xX  and phase ,n kX has a uniform discrete distribution across a circle. I(Y;X) 

can be written as, 

 
   

   

( ; ) ; , ( ) ; ( ) |

; | ( ) ; ( ) |

I I d I d

I d I d

 

 

Y X Y X G Y G X

Y X G Y G X
 (26) 
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The inequality is due to the non-negativity property of mutual information. Exact calculation of 

the mutual information is infeasible due the non-Gaussian distribution of Y [28]. Note that [29] 

 ( ; | ( ))  ( ; | ( ))N N NI d N I dY X G Y X G  (27) 

where ( ) ( ),  ,  and N n N n N nd d  G G X X Y Y since the input Xn,k has an i.i.d. distribution and 

every block of the channel coefficients Gn(d) has the same distribution. 2 ( , )x kd f  is set 

according to (25) under constraint (24) and apply it to ( ; | ( ))N N NI dY X G . This water-filling 

policy is suboptimal for PSK constellation [30]. I(Y;G(d)|X) is calculated in App. II which yields 

   
1

0

( ; ( ) | ) log det ( )diag ( )
N

n

n

I d d d




 Y G X I B S  (28) 

where S(d) is the K×1 vector whose kth entry is 2 2( , ) ( , ) / ( )x k k kd f Q d f A f . Bn(d) is the linear 

MMSE prediction error matrix which depends on both the transmission distance d and channel 

variation RH[m,k]. Substituting (27) and (28) into (26), the mutual information is 

     
1

0

( ; )  ; | ( ) logdet ( )diag ( )
N

N N N n

n

I N I d d d




  X Y Y X G I B S  (29) 

Finally, the lower bound Lc(d) of the capacity C(d) can be written as, 

     

1
( ) lim ( ; )

1 1
; | ( ) log det ( )diag ( )

( )

N
b

b b

c

C d I
NT

I d d d
T T

L d



   



  



Y X

Y X G I B S  (30) 

where ( )dB is calculated given infinite past channel symbols. From (30), unlike [12] and [19], 

channel scattering function is not explicit but lies within ( )dB . 

C. Lower Bound Lc(d) over Rician Fading Channels 

Let ρ denote a Rician fading parameter which is the ratio of the fixed to a scatter part. ρ is 

assumed independent of the transmission distance d and identical for every delay path. The 

approximate CIR hn,l[0] of the lth path is modeled as 

  , ,[0] lj

n l l l n lh Ae s
   (31) 
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2

2

,

22

,

where  

1
and  ,

1 1

l

n l

l n l

A

E s

A E s





 


 
  

  
   

 (32) 

2 2

, [0]n l lE h   
  

. l is assumed uniformly distributed from –π to π and uncorrelated across 

different delay paths. For h(Y) , using (31), Hn,k is 

 

1 1
2 / 2 /

, ,

0 0

l

L L
j j lk K j lk K

n k l l l n l

l l

H Ae e s e
   

 
 

 

    (33) 

From (33), sum of scatter part follows  0,1/ ( 1) CN . This causes  , ,1/ ( 1)n k kH D  CN

where 
1

2 /

0

l

L
j j lk K

l l

l

Dk Ae e
 






 . 

For h(Y|X), we assume that the receiver can successfully track the fixed part lj

lAe


and the 

autocorrelation function of the approximate CIR is 

     * 2 2

, ,[0] [0] ,n l n l l s lE h h A R n n l l l  
         (34) 

Where   *

, ,,s n l n lR n n l E s s 
      . Apply (34) to calculate Bn(d) and obtain h(Y|X). 

 

IV. SIMULATION RESULTS 

The UW fading channel is modeled by two parts, attenuation and statistical as explained 

earlier. The delay profile is assumed exponentially decaying whose maximum delay spread τm is 

set where the first and last arrival paths have 10-dB power difference. The range of the Doppler 

profile scattering function is determined by fd, the 3-dB bandwidth of the frequency response. 

For A(fk), the shipping activity s = 0.5 and wind speed w = 10 m/s. OFDM symbols are 

transmitter at frequency beyond 1 KHz. Energy allocation across transmit bandwidth Bc(d) is 

implemented using (25) subject to power constraint (24). P=145 dBre/μPa and Rayleigh fading is 

assumed unless stated otherwise. 

1) Limitations due to the ICI 

Because of the attenuation, the variance of ICI is frequency dependent. This model assumes 

the ICI variance is negligible compared to that of the ambient noise. In simulation, the ICI 

variance is limited to at least 3 dB lower than ambient noise variance. The ICI variance depends 
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on attenuation, 2 ( )x kf , and shape of the scattering function. Two scattering functions, AR-1 

and uniform scattering are considered whose 3 dB bandwidth is equal to λd. Let S1[l, λ] and S2[l, 

λ] denote these scattering functions of hn,l[0], respectively, given by 
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 (35) 

These scattering functions are assumed unchanged over the transmission ranges of interest. 

Fig. 3 displays variance of the ICI at their widest spread of both scattering functions when d=5 

km such that its variance is at least 3 dB lower than that of the ambient noise for most of the 

transmission bandwidth. For the AR-1 model, τm =1 ms and fd =1 Hz. For the uniform model, 

τm=5 ms and fd =7 Hz. We notice that the 3-dB gap is violated when signal bandwidth is greater 

than 31 kHz. These account for only 0.39% of the total signal energy and have negligible impact 

on the capacity as justified in Appendix I. 

 

Fig. 3.  PSD of the received signal, ambient noise, and the ICI variance at d=5 km 

2) Impact of Signal Bandwidth 

From Fig. 4, we can see that both Uc(d) and Lc(d) increase as a function of signal bandwidth B 

and remain fixed when B is greater than a certain value. We define this value as the 

capacity-maximizing bandwidth Bc(d) which is a signal bandwidth that maximizes both Lc(d) and 

Uc(d). The gap beyond Bc(d) is rather wide due to the limited mutual information that can be 

conveyed by the PSK constellation. 
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Fig. 4. Uc(d) and Lc(d) versus bandwidth for AR-1 model at d=5km 

 

3) Impact of Ranges and Shape of the Scattering Function 

Figs. 5 and 6 show the impact of the ranges of (fd,τm) on Lc(d) over the distance for S1[l, λ] and 

S2[l, λ], respectively. 

 

Fig. 5. Impact of (a) Doppler spread and (b) delay spread on Lc(d) for AR-1 scattering function 

As expected, the ratio between Lc(d) and Uc(d) increases as either fd or τm increases. This is 

due to the higher prediction error influenced by stronger channel variations. 
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Fig. 6. Impact of (a) Doppler spread and (b) delay spread on Lc(d) for uniform scattering 

The impact of the shape of the scattering function is compared in Fig. 7 when fd=1 Hz and 

τm=1 ms. We set F=500 kHz and Tb=15 ms. From the figure, Lc(d) from S1[l, λ] is lower than that 

of S2[l, λ] as shown in Fig. 7(a). Fig. 7(b) shows the ratio of Lc(d)/ Uc(d). 

 

Fig. 7. Impact of the shape of scattering function on (a) Lc(d) and (b) Lc(d)/ Uc(d) 
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4) Impact of Over Rician Fading Channels 

The Ricean fading parameter ρ is set to -5, 0, 5, and 10 dB, identical for every path and 

independent of the distance. The Doppler spread profile of the scatter part (34) is assumed 

uniformly distributed. The fixed part is perfectly known at the receiver. From Fig. 8, the gap 

between the upper and lower bounds decreases as ρ increases which is due to the reduced power 

in the scatter part of the channel. 

 

Fig. 8. Uc(d) and Lc(d) to the channel capacity over (a) Rician fading channel, (b) Lc(d)/ Uc(d). Uniform Doppler spread profile 

 

5) Impact of the Transmission Distance 

From Figs. 5 and 6, both Lc(d) and Uc(d) decrease at longer distance owing to strong channel 

attenuation which determines Bc(d). The gap at a short transmission distance is due to the energy 

wasted because of the PSK constellation while the gap at a very long distance is due to the higher 

prediction error because of the stronger attenuation. 

6) Impact of Transmit Power 

Fig. 9 shows the impact of transmit power on Lc(d) and Bc(d) for AR-1 scattering. A 

significant decrease in Lc(d) and Bc(d) occurs especially at long distance. This shows that for data 

transmission at low power, a short distance or multiple short hops across the transducers are 

preferred to one long transmission. 
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Fig. 9. Impact of transmit power on (a) Lc(d) and (b) Bc(d) for AR-1 scattering 

V. EXPERIMENTAL DATA 

The capacity of OFDM systems is investigated using the scattering function from real UW 

environments measured from the RACE08 experiment. Data is selected from the receiving arrays 

which are 1000 m from the transducer. The array is a 12-element vertical array with 12-cm 

spacing between elements. 8-PSK signals are upsampled by a factor of ten and filtered by a 

square root raised-cosine filter with a rolloff factor 0.25. A block of data which contain 64 data 

symbols are transmitted every 28.7 ms. A guard period is inserted between blocks to avoid the 

IBI. The bandwidth is 4.8 kHz at 12-kHz carrier frequency. Fig. 10(a) shows a contour plot of 

the estimates of the scattering function and Fig. 10(b) shows their corresponding PDP of process 

I–IV obtained from four different measurement periods. 

Fig. 11(a) shows Lc(d) and Uc(d) from process I–IV over a range of the distance. Their 

corresponding Lc(d) / Uc(d) are displayed in Fig. 11(b). From the results, process II yields the 

best performance while process IV yields the worst. This is due to high Doppler spread at the 

dominant arrival paths in process IV while process II experiences smallest Doppler spread for 

almost every arrival path as shown in Fig. 10. Processes I and III exhibit similar results although 

process III is slightly worse since more dominant paths experience stronger Doppler spread 

compared to process I. 
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Fig. 10. (a) Scattering function estimates and (b) corresponding normalized PDP 

 

 

Fig. 11. (a) Lc(d) Uc(d) and (b) corresponding Lc(d)/ Uc(d) over experimental UW fading channels 

VI. DISCUSSION 

After meeting, please write discussion in the meeting and update your presentation file. 
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Appendix 

A. ICI Justification 

To investigate the ICI impact, a simulation is run assuming that the ICI behaves as an 

independent complex Gaussian r.v. Therefore, the total noise accumulated in the simulation is 

the ICI plus the ambient noise. From (1), by including the ICI, the received signal can be written 

as 

 
, , , , ,

, , ,

( )

( )

n k n k n k n k n k

n k n k n k

Y G d X C N

G d X Z

  

 
 (36) 

where Zn,k is the complex Gaussian noise consisting of the ambient and ICI noise whose variance 

is 
2

, ( )n k kE C A f  
  

. Using this assumption, Fig. 12 shows the Uc(d) and Lc(d) bounds at 5 km 

distance between transmitter and receiver. This distance gives highest ICI variance since longer 

distance means higher attenuation resulting in lower ICI. 

In conclusion, it is shown that by taking into account the ICI as an additive complex Gaussian 

noise, Uc(d) is reduced by at most 5.89% while Lc(d) is reduced by at most 3.03%. This 

reduction is quite small and has little impact on the overall performance, and justifies our ICI 

setting. 

 

Fig. 12. Impact of ICI on Lc(d) and Uc(d) for AR-1 scattering function 
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B. I(Y;G(d)|X) Derivation 

To calculate I(Y;G(d)|X), use the chain rule of differential entropy [11], 
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 (37) 

where 

        0 1 0 1| ... , log det Cov | ... ,
K

n n n nh e Y Y Y X Y Y Y X  (38) 

To calculate  0 1Cov | ... ,n nY Y Y X , we begin with mean 
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Where (39) is obtained using (2) and (19).  0 1
ˆ ( ) ( ) | ,..., ,n n nd E d H H Y Y X is the MMSE 

channel estimate given the current and past detected symbols and can be written as the 1-step 

output of the linear K×K MIMO predictor filter of length J 
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T

n n n Kd H d H d
   H and Ej(d) is the predictor coefficient of size K×K. With (1), the 

observation , 1( )n KH d is obtained by 
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Then from (39),  0 1Cov | ... ,n nY Y Y X is 
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 (42) 

Where Bn(d) is the linear MMSE prediction error matrix obtained using the orthogonality 

principles. 

Substituting (42) into (38) and into (37), I(Y;G(d)|X) is given as 
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The kth entry of the K×1 vector S(d) is 2 2( , ) ( , ) / ( )x k k kd f Q d f A f . 
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Abstract 

 

In this paper, we consider the application of compressive sensing (CS) in wireless sensor networks 

(WSNs). CS is a signal acquisition and compression framework recently developed in the field of 

signal processing and information theory. We applied this CS technique to WSN which consists of a 

large number of wireless sensor nodes and a central fusion center (FC). This CS based signal 

acquisition and compression is done by a simple linear projection at each sensor node. Then, each 

sensor transmits the compressed samples to the FC. The FC which collects the compressed signals 

from the sensors jointly reconstructs the signals in polynomial time using a signal recovery algorithm. 

 The distributed sensors observe similar event in designated region. Therefore, the observed 

signals have considerable correlation each other. We make some effort in modeling correlation 

between the signals acquired from the sensors and analyze the component in observed signals. After 

modeling the correlated signals, we propose POMP (Phased-OMP) which can recover any type of 

correlated signals stably and effectively. We introduce the idea of our proposed algorithm in detail and 

then compare the reconstruction performance of POMP with previous algorithms ReMBo, MEM, 

SOMP, etc.  
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 1. Introduction 

In this paper, we discuss the application of a new compression technique called compressive sensing 

(CS) in wireless sensor networks (WSNs). The objective of a WSN which we assume in this paper is to 

collect information about events occurring in a region of interest. This WSN consists of a large number 

of wireless sensor nodes and a central fusion center (FC). The sensor nodes are spatially distributed 

over the said region to acquire physical signals such as sound, temperature, wind speed, pressure, and 

seismic vibrations. After sensing, they transmit the measured signals to the FC. In this paper, we focus 

on the role of the FC which is to recover the transmitted signals in their original waveforms for further 

processing. By doing so, the FC can produce a global picture that illustrates the event occurring in the 

sensed region. Each sensor uses its onboard battery for sensing activities and makes reports to FC via 

wireless transmissions. Thus, limited power at the sensor nodes is the key problem to be resolved in the 

said WSN. 

CS is a signal acquisition and compression framework recently developed in the field of signal 

processing and information theory [1],[2]. Donoho [1] says that “The Shannon–Nyquist sampling rate 

may lead to too many samples; probably not all of them are necessary to reconstruct the given signal. 

Therefore, compression may become necessary prior to storage or transmission.” According to 

Baraniuk [3], CS provides a new method of acquiring compressible signals at a rate significantly below 

the Nyquist rate. This method employs non-adaptive linear projections that preserve the signal’s 

structure; the compressed signal is then reconstructed from these projections using an optimization 

process. 

We applied this CS technique to WSN. One of our aims in this paper is to determine whether the CS 

can be used as a useful framework for the aforementioned WSN to compress and acquire signals and 
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save transmittal and computational power at the sensor node. This CS based signal acquisition and 

compression is done by a simple linear projection at each sensor node. Then, each sensor transmits the 

compressed samples to the FC; the FC which collects the compressed signals from the sensors jointly 

reconstructs the signal in polynomial time using a signal recovery algorithm. Illustrating this process in 

detail throughout this chapter, we check to see if CS can become an effective, efficient strategy to be 

employed in WSNs, especially for those with low-quality, inexpensive sensors. 

The distributed sensors observe similar event in designated region. Therefore, the observed signals 

have considerable correlation each other. In this paper, as we assume a scenario in which a WSN is 

used for signal acquisition, we intend to pay some effort in modeling correlation between the signals 

acquired from the sensors. Then, we divide the correlated signals to three parts for example, common 

sparsity, innovation sparsity, and total sparsity. Those terminologies give more easy understanding to 

solve multiple measurement vector (MMV) modeled from WSN structure. 

If we will use the correlated information to recover signals transmitted from each sensor, its 

reconstruction performance will increase over that not using correlated information. We demonstrated 

this assumption by showing a simulation result. Finally, we proposed advanced algorithm to recovery 

the correlated signals effectively. The proposed algorithm is called phased advanced orthogonal 

matching pursuit (POMP). POMP has better performance about reconstruction probability than 

previous algorithms, for examples, SOMP, ReMBo etc. We will introduce the idea of our proposed 

algorithm in detail and then compare the reconstruction performance of our algorithms with previous 

algorithms 
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 2. Wireless sensor network 

2.1. Network structure 

We consider a WSN consisting of a large number of wireless sensor nodes and one FC (Figure 1). The 

wireless sensor nodes are spatially distributed over a region of interest and observe physical changes 

such as those in sound, temperature, pressure, or seismic vibrations. If a specific event occurs in a 

region of distributed sensors, each sensor makes local observations of the physical phenomenon as the 

result of this event taking place. An example of sensor network applications is area monitoring to 

detect forest fires. A network of sensor nodes can be installed in a forest to detect when a fire breaks 

out. The nodes can be equipped with sensors to measure temperature, humidity, and the gases 

produced by fires in trees or vegetation [7]. Other examples include military and security applications. 

Military applications vary from monitoring soldiers in the field, to tracking vehicles or enemy 

movement. Sensors attached to soldiers, vehicles and equipment can gather information about their 

condition and location to help planning activities on the battlefield. Seismic, acoustic and video sensors 

can be deployed to monitor critical terrain and approach routes; reconnaissance of enemy terrain and 

forces can be carried out [8]. 

 

 . Wireless Sensor Network (WSN)Figure 1  
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 After sensors observe an event taking place in a distributed region, they convert the sensed 

information into a digital signal and transmit the digitized signal to the FC. Finally, the FC assembles 

the data transmitted by all the sensors and decodes the original information. The decoded information 

at the FC provides a global picture of events occurring in the region of interest. Therefore, we assume 

that the objective of the sensor network is to determine accurately and rapidly reconstruct transmitted 

information and reconstruct the original signal.  

 We discuss the resource limitations of WSNs in the next section. 
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2.2. Resource limitations in WSNs  

In this section, we describe the assumptions made in the sensor network we are interested in. We 

assume that the sensors are distributed and supposed to communicate with the FC through a wireless 

channel. Because each sensor is important components of WSN which observes event, they should 

typically be deployed in a large volume over the region of interest. Therefore, they are usually 

designed to be inexpensive and small. For that reason, each sensor operates on an onboard battery 

which is not rechargeable at all; thus, for simplicity, the hardware implementation of sensor nodes can 

provide only limited computational performance, bandwidth, and transmission power. As a result of 

limitations on the hardware implementation in sensor nodes, the FC has powerful computation 

performance and plentiful energy which naturally performs most of the complex computations.  

 Under the limited conditions stated above for a WSN, CS can substantially reduce the data 

volume to be transmitted at each sensor node. With the new method, it is possible to compress the 

original signal using only   log /O k n k  samples without going through many complex signal 

processing steps. These signals can be recovered successfully at the FC. All these are done under the 

CS framework. As the result, the consumption of power for transmission of signal contents at each 

sensor can be significantly reduced thanks to decreased data volume. Moreover, this data reduction 

comes without utilizing complex signal processing. Namely, the sensor nodes can compress the signal 

while not spending any power for running complex compression algorithms onboard.  

 We discuss the new technique CS in the next section and check how CS can get the 

advantages like data reduction and simple data compression.  
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3. Compressive sensing (Literature survey) 

In a conventional communication system, an analog-to-digital converter based on the Shannon–

Nyquist sampling theorem is used to convert analog signals to digital signals. The theorem says that if 

a signal is sampled at a rate twice, or higher, the maximum frequency of the signal, the original signal 

can be exactly recovered from the samples. Once the sampled signals are obtained over a fixed 

duration of time, a conventional compression scheme can be used to compress them. Because the 

sampled signals often have substantial redundancy, compression is possible. Several compression 

schemes follow this approach, e.g., the MP3 and JPEG formats for audio or image data. However, 

conventional compression in a digital system is sometimes inefficient because it requires unnecessary 

signal processing stages, for example, retaining all of the sampled signals in one location before data 

compression. According to Donoho [1], the CS framework, as shown in Figure 2, can bypass these 

intermediate steps, and thus provides a light weight signal acquisition apparatus which is suitable for 

those sensor nodes in our WSN. 

 

 

 . Conventional compression and compressive sensingFigure 2  
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 The CS provides a direct method which acquires compressed samples without going through 

the intermediate stages of conventional compression. Thus, CS provides a much simpler signal 

acquisition solution. In addition, the CS provides several recovery routines which the original signal 

can be regenerated perfectly from the compressed samples.  
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3.1 Theoretical background 

Let a real-valued column vector s  be a signal to be acquired. Let it be represented by 

 

 s x  (1) 

 

,where x  and 
ns R , and x  is also a real-valued column vector. The matrix n nR  is an 

orthonormal basis, i.e., T T

nI    , the identity matrix of size n n
R . The signal s  is called 

k -sparse if it can be represented as a linear combination of only k  columns of  , i.e., only the k  

components of the vector x  are nonzero as represented Eq.Error! Reference source not found. .  

. 

1

,  where  is a column vector of .
n

i i i

i

x 


 s  (2) 

 

 A signal is called compressible if it has only a few significant (large in magnitude) 

components and a greater number of insignificant (close to zero) components. The compressive 

measurements y (compressed samples) are obtained via linear projections as follows (Figure 3): 

 

  y s x Ax  (3) 

 

where the measurement vector is ,  with m m n y R , and the measurement matrix 
m nA R . Our 

goal is to recover x  from the measurement vector y . We note that Eq. 

Error! Reference source not found. is an underdetermined system because it has fewer equations 

than unknowns; thus, it does not have a unique solution in general. However, the theory of CS asserts 
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that, if the vector x  is sufficiently sparse, an underdetermined system is guaranteed with high 

probability to have a unique solution.  

 In this section, we discuss the basics of CS in more detail. 

 

 

 . The summary of compressive sensingFigure 3  

 

)i  k -sparse signal x  in orthonormal basis 

The k -sparse signal, s  in Eq. Error! Reference source not found., has k  nonzero components 

in x . The matrix   is, again, an orthonormal basis, i.e., T T

nI    , the identity matrix of 

size n n
R .  

 

)ii  Measurement vector y and underdetermined system  

The sensing matrices are   and A  in Eq. Error! Reference source not found., where its 

dimension m n
R , m n . When m  is closer to k  than n  is, sufficient conditions for good signal 

recovery are satisfied. Then a compression effect exists. Note that Eq. 
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Error! Reference source not found. appears to be an ill-conditioned equation. That is, the number of 

unknowns n is larger than m the number of equations, m n . However, if x  is k -sparse and the 

locations of the k  nonzero elements are known, the problem can be solved provided m k . We can 

form a simplified equation by deleting all those columns and elements corresponding to the zero-

elements, as follows: 

 

 y A x  (4) 

 

where  1,2, ,n   is the support set, which is the collection of indices corresponding to the 

nonzero elements of x. Note that the support set  can be any size- k subset of the full index set, 

 1,2,3,...,n . Eq. Error! Reference source not found. has the unique solution x  if the columns of 

A are linearly independent. The solution can be found using pseudo inverse easily as Eq. 

Error! Reference source not found. 

 

 
1

T T

   



x A A A y  (5) 

 

Thus, if the support set  can be found, the problem is easy to solve provided the columns are linearly 

independent.  

 

)iii  Incoherence condition 

The incoherence condition is that the rows of   should be incoherent to the columns of  . If the 

rows of   are coherent to the columns of  , the matrix A cannot be a good sensing matrix. In the 

extreme case, we can show a matrix A  having m  rows of   that are the first m columns of  .  
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 1: ,:

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

T

m

 
 
      
 
 
 

A  (6) 

 

 If A  of Eq. Error! Reference source not found. is used as sensing matrix, the 

compressed measurement vector y  captures only the first m  elements of the vector x , and the rest 

of the information contained in x  is completely lost.   

 

)iv  Designing a sensing matrix   

One choice for designing a sensing matrix   is Gaussian. Under this choice, the sensing matrix   

is designed as a Gaussian, i.e., matrix elements are independent and identically distributed Gaussian 

samples. This choice is deemed good since a Gaussian sensing matrix satisfies the incoherence 

condition with high probability for any choice of orthonormal basis  . This randomly generated 

matrix acts as a random projection operator on the signal vector x . Such a random projection matrix 

needs not depend on specific knowledge about the source signals. Moreover, random projections have 

the following advantages in the application to sensor networks [5]. 

 

1) Universal incoherence: Random matrices   can be combined with all conventional sparsity basis 

 , and with high probability sparse signals can be recovered by an 1L  minimum algorithms from the 

measurements y . 
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2) Data independence: The construction of a random matrix does not depend on any prior knowledge 

of the data. Therefore, given an explicit random number generator, only the sensors and the fusion 

center are required to agree on a single random seed for generating the same random matrices of any 

dimension.  

 

3) Robustness: Transmission of randomly projected coefficients is robust to packet loss in the network. 

Even if part of the elements in measurement y  is lost, the receiver can still recover the sparse signal, 

at the cost of lower accuracy.  
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3.2 System equations 

We knew the method how to find a unique solution of CS problem in previous section. In this section, we 

discuss various equations which are handled in CS theory as single measurement vector (SMV) and 

multiple measurement vector (MMV). The SMV is a basic equation for CS. It is expressed as Eq. 

Error! Reference source not found.. Many CS paper about this SMV problem is researched in 

[Ref],[Ref]. 

         

1

1 , 1 1 , 2 1 ,1 2

2 , 1 2 , 2 2 ,2

1

, 1 , 2 ,

n

n

n

m m m nn

n

x

a a ay x

a a ay

y

a a ay

x





 
 

    
    
    
         
    
    
    
       

  

y Ax

   (7) 

Otherwise, the MMV has multiple measurement vectors and sparse matrix as Eq. 

Error! Reference source not found.. The sparse vector in each SMV results in MMV. It has much 

unknowns compared with SMV. The many number of unknowns may make the MMV to be solved hard. 

To solve this equation effectively, some algorithms are proposed as SOMP, ReMBo, M-FOCUSS. If each 

column of sparse matrix X  has similar support set, the priori information about support location can be 

used to get exact solution easily.  

 



INFONET, GIST 
Journal Club 

 

 

 

 - 20 - 
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
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     
     
      
     
     
      

    
 

Y AX

 (8) 

 The MMV equation can have the more number of equations by transforming Eq. 

Error! Reference source not found.. It means that the MMV equation has more information to solve 

underdetermined equation. The modified MMV equation is expressed as below Eq. 

Error! Reference source not found.. Furthermore, infinite measurement vector (IMV) consists of an 

infinite set of jointly sparse vectors.  
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Therefore, we can draw the relationship among the SMV, MMV and IMV as Figure 4. As the Figure 

4 shows, the MMV includes all of the SMV. It means that the MMV has all the information of the 

SMV. Therefore, if we solve the MMV equation exactly, it results the solution of each SMV also.  

 

      

 . The relationship among SMV, MMV and IMVFigure 4  
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3.3. Unique solution condition of SMV and MMV 

In CS, a core problem is to find a unique solution for an underdetermined equation. This problem is 

related to the signal reconstruction algorithm, which takes the measurement vector y  as an input and the 

k -sparse vector x  as an output. To solve an underdetermined problem, we consider minimization 

criteria using different norms such as the 
2L , 

1L , and 
0L  norms. The 

pL  norm of a vector x  of 

length n  is defined as 

 

1

1

,   0
n pp

ip
i

x p


 
  
 
x  (10) 

 .  

 Although we can define the 
2L  and 

1L  norms as 

1

22

2
1

n

i

i

x


 
  
 
x  and 

1
1

n

i

i

x


x , 

respectively, using the definition of pL  norm, 
0L  norm cannot be defined this way. The 

0L  norm is a 

pseudo-norm that counts the number of nonzero components in a vector as defined by Donoho and Elad 

[6]. Using this definition of norms, we will discuss the minimization problem to get solution x .  

 

)i  The minimization problem in SMV 

1) 2L  norm minimization in SMV 

 

   

 

2 2

1

ˆ arg min   subject to ,  where R ,  

          

m n

T T

L rank m



   



x x y Ax A A

A AA y
 (11) 

  

However, this conventional solution yields a non-sparse solution, so it is not appropriate as a solution to 

the CS problem. Thus, we do not consider this method for finding solution. 
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2) 
0L  norm minimization in SMV 

 

   0 0
  Minimize   subject to ,  where R ,  m nL rank m  x y Ax A A  (12) 

 

The 
0L  norm of a vector is, by definition, the number of nonzero elements in the vector. In the CS 

literature, it is known that the 
0L  norm problem can be solved by examining all the possible cases. Since 

this process involves a combinatorial search for all possible 
n

k

 
 
 

 support sets, it is an NP-complete 

problem. Thus, we cannot solve it within polynomial time. Therefore, we consider 
1L  norm 

minimization as an alternative. In literature [Ref], the unique solution of the 
0L  minimization is known 

as following, 

 

      
 s p a r k

2
k 

A
  (13) 

 

 The  spark A  is the smallest number n  such that there exists a set of n  columns in A  

which are linearly dependent. In summary, if the above equation is satisfied, then the unique solution of 

the Eq. Error! Reference source not found. is guaranteed.  

 

3) 1L  norm minimization in SMV 

 

   1 1
  Minimize   subject to ,where R ,  m nL rank m  x y Ax A A  (14) 
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This 
1L  norm minimization can be considered as a relaxed version of the 

0L  problem. Fortunately, the 

1L  problem is a convex optimization problem and in fact can be recast as a linear programming problem. 

For example, it can be solved by an interior point method. Many effective algorithms have been 

developed to solve the minimum 
1L  problem, and it will be considered later in this chapter. Here, we 

aim to study the sufficient conditions under which Eq. Error! Reference source not found. and 

Error! Reference source not found. have unique solutions. We provide a theorem related to this issue.  

 

0 1/L L  equivalence condition in SMV: 

Let m nA R be a matrix with a maximum correlation definition  ,   max , ,i j
i j




A a a  where 
ia  

is the i th column vector of A  with 1,2,...,i n , and x is a k -sparse signal. Then, if 
1 1

1
2

k


 
  

 
 

is satisfied, then the solution of 
1L  coincides with that of 

0L  [6] . 

Table 1. 
0 1/L L  Equivalence condition. 

 

)ii  The minimization problem in MMV 

To get the unique solution of MMV, it can be considered similar method with that of SMV. We introduce 

theorems from references [Ref]. To explain the uniqueness condition for MMV, we introduce the 

following definitions  R X  and  relax X . 

 

    
1 0i n

R m


X x  (15) 
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where L

ix R  is the transpose of the i th row of matrix X , ie  1 2, ,...,
T

nx x xX ,  m   is any 

vector norm in 
LR . Therefore,  R X  is the number of rows which have nonzero element in matrix X . 

When norm of  
1i n

m


x  is one, then it is defined as  relax X . 

 

     
1 1

i n
relax m


X x  (16) 

1) 
0L  norm minimization in MMV 

 

               0 1 0
  M i n i m i z e    s u b j e c t  t o  ,  w h e r e  R ,  m n

i n
L R m rank m


   X x Y AX A A  (17) 

 

In literature [Ref], the MMV unique solution of the 0L  minimization is known as following, 

 

       
    s p a r k 1

2

r a n k C o l s
R

 


A Y
X   (18) 

 

 The   rank Cols Y  is the column rank of matrix Y . If the above equation is satisfied, then 

the unique solution of the Eq. Error! Reference source not found. is guaranteed.  

 

2) 1L  norm minimization in MMV 

 

             1 1 1
  M i n i m i z e    s u b j e c t  t o  ,  w h e r e  R ,  m n

i n
L relax m rank m


   X x Y AX A A  (19) 

 

A sufficient condition to be the unique solution to 2) of MMV is that 
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 †

1
1,  S j j S  A A  (20) 

. 

SA  is reduced matrix of A  corresponding to indices from support location of  R X . So, we can write 

S SY A X , where matrix 
SX  is made by nonzero rows of X . SA  is of full column rank. †

SA  is 

pseudo-inverse which is defined by  
1

† T T

S S S S



A A A A . Because SA  is of full column rank, the 

generalized inverse is well defined. The above is the Exact Recovery Condition (ERC) in Tropp’s “Greed 

is good: Algorithmic results for sparse approximation” 

 

0 1/L L  equivalence condition in MMV: 

If  
 

2

spark
R 

A
X  is satisfied, then the solution of 1L  in MMV coincides with that of 0L  [Ref] . 

Table 1. 
0 1/L L  Equivalence condition. 
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 4. Compressive sensing and its application in WSN 

4.1 The usefulness of CS in WSNs 

In this section, we provide a brief comparison of using CS and using the conventional compression in a 

WSN. This comparison illustrates why CS could be a useful solution for WSNs.  

 

)i  Sensor network scheme with conventional compression 

For a conventional sensor system, the distributed sensors observe physical changes in designed area. 

Since each sensor observes similar physical changes, the signals observed from each sensor have much 

correlation. The correlated signal can be compressed for reducing data. The conventional compression for 

WSN requires exchanging information between distributed sensors in order to exploit inter-sensor 

correlation. Such a transmission strategy makes the network system complex below Figure 9. 

 The conventional compression needs to get together redundant data for compression as Figure 

10. At the collection point, joint compression can be made and compressed information can be sent to the 

FC. This option has a couple drawbacks. First, gathering the samples from all the sensors and jointly 

compressing them cause a transmission delay. Second, a lot of onboard power should be spent at the 

collaboration point. Third, each sensor should be collocated so that the transmitted information can be 

gathered at collaboration location.  

 . Conventional sensor network structureFigure 9  . Conventional sensor network structureFigure 10
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 Now, we may suppose that the joint compression is not aimed at and each sensor compresses 

the signal on its own. First, the data reduction effect with this approach will be limited because inter-

sensor correlation is not exploited at all. The total volume of the independently compressed data is much 

larger than that of jointly compressed data. This may produce a large traffic volume in the WSN and a 

large amount of transmission power will be wasted from the sensor nodes which transmit essentially the 

same information to the FC. Thus, this is an inefficient strategy as well. 

 

)ii  Sensor network scheme with compressive sensing 

In contrast to the conventional schemes considered in the previous paragraph, the CS method aims to 

acquire compressed samples directly. If a high-dimensional observation vector x  exhibits sparsity in a 

certain domain (by exploiting intra-sensor correlation), CS provides the direct method for signal 

compression as discussed in Figure 2. To compress the high-dimensional signal x  into a low-

dimensional signal y , as Eq. Error! Reference source not found., it uses a simple matrix 

multiplication with an m n  projection matrix  ,  1,2,...j j JA , where j  is the sensor index, as 

depicted in Figure 12.  

 In the CS-based sensor network scheme, each sensor compresses the observed signals using a 

simple linear projection and transmits the compressed samples to the FC. Then, the FC can jointly 

reconstruct the received signals (by exploiting inter-sensor correlation) using one of the CS algorithms. 

Therefore, each sensor does not need to communicate with its neighboring sensors for joint compression. 

Our method is distributed compression without having the sensors to talk to each other; only the joint 

recovery at the FC is needed. Thus, no intermediate stages are required which are to gather all of the 

samples at a single location and carry out compression aiming to exploiting inter-sensor correlation. This 

free of intermediate stages allow us to reduce time delay significantly as well. Therefore, if the original 
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data are compressed by CS, each sensor node produces much smaller traffic volume which can be 

transmitted to the FC at a much lower transmission power and with a smaller time delay. The CS sensor 

network structure applied for WSN is as below (Figure 11). You can check the simplicity of transmission 

strategy of CS based WSN compared with conventional network. 

  

 

 

 

 . CS sensor network schemeFigure 11  . CS sensor network structureFigure 12
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4.2 Distributed compressive sensing 

Each sensor can observe only the local part of an entire physical phenomenon, and a certain event of 

interest is measured by one or more sensors. Therefore, the sensed signals are often partially correlated. 

These measured signals have two distinct correlations: intra-sensor correlation and inter-sensor 

correlation. Intra-sensor correlation exists in the signals observed by each sensor. Once a high-

dimensional sensed signal has a sparse representation in a certain domain, we can reduce its size by using 

CS. This process exploits the intra-sensor correlation. In contrast, inter-sensor correlation exists between 

the signals sensed by different sensors. By exploiting inter-sensor correlation, further reduction in 

transmitted signals can be made.   

 These two correlations can be exploited to improve the system performance. As the number of 

sensors in a region becomes dense, each sensor has a strongly correlated signal that is similar to that of 

neighboring sensors. In contrast, if we decrease the density of sensors distributed in a given region, the 

sensed signals will obviously be more weakly correlated with each other. In this section, we discuss two 

strategies for transmitting signals in a multi-sensor CS-based system. One strategy uses only intra-sensor 

correlation, and the other uses both types of correlation. We illustrate that CS-based system in WSN 

exploits the inter-sensor correlation more effectively and simply than that of conventional sensor network.  

 

)i  Exploiting only intra-sensor correlation 

In Figure 13, each sensor observes the source signal and independently compresses it to a low-

dimensional signal. After compression, each sensor transmits the compressed signal to the FC. Without 

exploiting inter-sensor correlation between transmitted signals, the FC recovers these signals separately. 

In this case, even if there exists correlation among the sensed signals, because only intra-sensor 
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correlation is exploited, we cannot gain any advantages from joint recovery. This method has the 

following characteristics: 

1) Independent compression and transmission at each sensor 

2) Signal recovery by exploiting only intra-sensor correlation at the FC 

 

)ii  Exploiting both intra- and inter-sensor correlation 

Figure 14 shows the same process as in situation )i  above, except that the FC exploits the inter-sensor 

correlation among sensed signals at signal reconstruction stage. In conventional sensor network system as 

shown in Figure 10, the sensor nodes communicate with their neighboring sensors to take advantage of 

joint compression by exploiting inter-sensor correlation. However, in the CS-based system, a stage for 

exploiting inter-sensor correlation is achieved at FC. It means that if inter-sensor correlation exists within 

the sensed signals, and the FC can exploit it. This is done with sensors communicating with the FC but 

not among the sensors themselves. We refer to this communication strategy as the Distributed 

Compressive Sensing (DCS). Exploitation of inter-sensor correlation should be manifested with the 

reduction of the measurement size m  of matrix m nA R , where y Ax , required for good single 

recovery. The characteristics of our DCS sensor network are: 

1) Independent compression and transmission at each sensor 

2) Exploitation of inter-sensor signal correlation with the joint recovery scheme at the FC 

3) Variation of the per sensor CS measurements to manipulate the level of signal correlation 
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     .  I n t r a - s e n s o r  c o r r e l a t i o n  s c h e m eF i g u r e 1 3        . Intra/Inter-sensor correlation schemeFigure 14  
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4.3. Correlated signal models 

We assumed the WSN which consists of large number of sensor with a built-in CS and one fusion center. 

Because of the feature of considered WSN, the observed signals have inter-sensor correlation. We can 

model this WSN as Eq. Error! Reference source not found. or Eq. 

Error! Reference source not found.. Those two equations have sparse signal matrix X  which consists 

of signals transmitted from each sensor.  

 In this section, we introduce how the signal matrix with different degrees of correlation can be 

generated as sparse signal models. The sparse signal matrix in WSN has correlated properties. The degree 

of sparseness which is called the sparsity, is proportional to the amount of correlation. More correlated 

signal means sparser in terms of intra-sensor correlation. In addition, inter-sensor signal correlation can 

be modeled )i  by the degree of overlaps in the support sets of any two sparse signals, and )ii  by the 

correlation of non-zero signal values. By using those two properties, we can model correlated sparse 

signal matrix X  as below examples Figure 15.   
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 . The examples of correlated signalsFigure 15  
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 We can divide those correlated signals in Figure 15 as three components; common sparsity 

part, innovation sparsity part, and total sparsity part. The common sparsity part has one more nonzero 

value in the row of sparse signal matrix X . The Innovation sparsity part has only one nonzero value in 

the row of signal matrix. Lastly, the total sparsity part is the total number of rows which have nonzero 

elements. The common sparsity is a correlated part. Therefore, if we find the location of common part, we 

can also use it to solve another SMV. The innovation sparsity is a uncorrelated part. Even if we find the 

location of innovation part, we cannot use it to solve other SMV equations. Finally, the total sparsity is 

related with the degree of correlation among observed signals. We re-expressed the correlated signals as 

following Figure 16 by using three terminologies mentioned. 
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 . The components of correalted signalsFigure 16  

 

 The first and second correlated signals of Figure 16 have only common sparsity part. The 

third signal consists of only innovation sparsity. Therefore, there is no common part which has one 
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more nonzero element in same row. The 4) , 5)  signals have both common part and innovation part. 

If we know the prior information of the heuristic signal X  about support location, we can use it to 

find solution effectively. We can use those correlated properties to recover signals transmitted from 

each sensor, and its reconstruction performance will increase over that not using correlated information. 

We discuss the ideas for recovering those correlated signals in next section. 
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 5. The recovery ideas for correlated signals 

5.1 Joint decoding and separate decoding 

We discussed the correlated signals which consist of common, innovation, and total parts in the previous 

section. The understanding of various correlated signal models gives more clues to get solution. In this 

section, we argue ideas using correlated information to get solution effectively.  

 Some specific correlated signals also are handled in [Ref],[Ref]. In those references, the 

correlation signals are referred to as JSM-1 (joint signal model) or JSM-2 depending on the correlation 

type. In JSM-1, all of the signals share exactly the same common nonzero components that have the same 

values, whereas each signal also independently has different nonzero components, which is called 

innovation. In JSM-2, it shares same support location that has different value. Those two signals is 

expressed below, Figure 17. In [Ref],[Ref], they proposed methods which find the solution of the 

correlated signals consisting of those specific pattern in Eq. Error! Reference source not found..  

 

1) JSM-1                       2) JSM-2
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 7. Joint signal models, JSM-1, JSM-2Figure 1  
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 The JSM-1 is expressed as 

 

 ,  1,2,..., ,   is the index of the sensorsj c j j J j  x z z  (21) 

 

where 
0c ckz (Common part), and 

0j jkz (Innovation part) in each sensed signal. Obviously, 
cz  

appears in all the columns of the correlated signals. It can be recognized as the inter-sensor correlation. 

We note that the intra-sensor correlation is that all of the signals are sparse. The j th sensor transmits 

j j jy A x  to the FC. After all the sensed signals are transmitted to the FC, the FC aims to recover all the 

signals. Because inter- sensor correlation exists in the sensed signals, we can obtain several benefits by 

using the correlated information in the transmitted signals. For ease of explanation, suppose that the WSN 

contains J  sensors, and its sensed signal follows JSM-1 pattern. Then, the FC can exploit both intra- 

and inter- sensor correlation by solving Eq. Error! Reference source not found. as described below. 

 

)i  Joint recovery scheme for JSM-1 (Modified equation method) 

The sensed signals from j  sensors can be expressed as follows. 

 

1 1

2 2

n

c

n

c

n

J c J

  

  

  

x z z R

x z z R

x z z R

, 

where the sparsity of vectors cz  and jz  are ck  and jk , respectively and each sensor has same 

spasity c jk k k  . Then, the transmitted signal jy  can be divided into two parts as follows.  

 

( )j j c j j c j j   y A z z A z A z  
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 If the FC received all the signals transmitted from J  sensors, it then concatenates the used 

sensing matrix and received signal using Eq. Error! Reference source not found.. Therefore, the sensed 

signal in JSM-1 is transformed into Figure 18. This idea is handled in [Ref],[Ref]. 

1 1 1
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2 2 2
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 (22) 
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 . Concatenating JSM-1 to a column signalFigure 18  
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Because JSM-1 shares common part 
cz  in the equation, we can reduce the number of nonzero value as 

1) of Figure 18. In conclusion, the total number of nonzero in matrix X  is 12, but in transforming 

equation, it is 6 only. Thus, the total number of nonzero, s  is reduced from  c jJ k k   to 

 c jk J k  . The total number of sparsity affects the probability of exact reconstruction. By solving this 

equation, the FC can take advantage of exploiting inter-sensor correlation. However, if the FC recovers 

the received signals independently without using any correlation information, separate recovery is done. 

Even if the sensed signals are correlated, separate recovery offers no advantages for signal reconstruction 

because it does not exploit inter- sensor correlation.  

 

)ii  Separate recovery scheme for JSM-1 

Even if a common correlated element exists in the sensed signals, separate recovery does not use that 

correlation information as before example. Therefore, the received signals are recovered as follows and 

its concatenated signal is express as 2) of Figure 18. 
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y 0 A 0 x

0
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 (23) 

 

 To solve Eq. Error! Reference source not found. and Error! Reference source not found., 

we use the primal-dual interior point method (PDIP) in Appendix 7.1, which is an 1L  minimization 

algorithm, and compare the results of the two types of recovery, joint decoding and separate decoding 

respectively. Using the comparison results, we can confirm that the measurement size required for perfect 

reconstruction is smaller for joint recovery than for separate recovery. 
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 Now, we introduce JSM-2, which is simpler than JSM-1. All the signal coefficients are 

different, but their indices for nonzero components are the same. Suppose that there exist two signals, 
1x  

and 
2x . The i th coefficient for 

1x  is nonzero if and only if the i th coefficient for 
2x  is nonzero. 

This property represents inter-sensor correlation, because if we know the support set for 
1x , then we 

automatically know the support set for 
2x .  

 

)iii  Joint and separate decoding scheme for JSM-2 

The prior inter-correlation becomes relevant when the number of sensors is more than two. To get the 

advantages of exploiting inter-sensor correlation about JSM-2, we should solve the Eq. 

Error! Reference source not found. and Eq. Error! Reference source not found. jointly. Like the FC 

in JSM-1, the FC in JSM-2 can exploit the fact that the support set is shared. By solving the MMV jointly, 

we obtain several benefits as high reconstruction probability on same number of measurement. If we 

solve those two equations separately, but not jointly, it is separate recovery. As an algorithm for solving 

the equation of the JSM-2 signal, we use a simultaneous OMP (SOMP) modified from an OMP algorithm 

for joint decoding and apply OMP for separate decoding. These algorithms are introduced in Appendix 

7.2 and 7.3 correspondingly.  

 

)iv  Joint vs. separate recovery performance for JSM-1 and JSM-2 

Now, we compare the results of joint recovery and separate recovery. In joint recovery, if a correlation 

exists between the signals observed from the distributed sensors, the FC can use the correlated 

information to recover the transmitted signals. In separate recovery, correlated information is not used 

regardless of whether a correlation pattern exists between the observed signals. In Figure 19, solid lines 

were obtained from joint reconstructions, whereas dotted lines are the results of separate reconstructions.  
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Figure 19. Joint (solid line) and separate (dotted line) reconstruction using PDIP 

algorithm for JSM-1. System parameters: 50N  , 2J  . The benefits of joint 

reconstruction depend on the common sparsity
ck . 

 

When we use separate reconstruction, we cannot obtain any benefits from correlated information. 

However, when we use joint reconstruction, we can reduce the measurement size. For example, in Figure 

20, the required number of measurements is almost 40 (dashed line and circles, 6k  ) for perfect 

reconstruction when we use separate reconstruction. On the other hand, when we use joint reconstruction, 

it decreases to around 30 (solid line and circles, 6k  ). Furthermore, as the common sparsity increases, 

the performance gap increases. For example, when the common sparsity is 9, joint reconstruction has a 

90% probability of recovering all the signals at 30m  . However, the probability that separate 

reconstruction can recover all the signals is only 70%. Figure 19 also shows that joint reconstruction is 

superior to separate reconstruction. For example, we need at least 30 measurements for reliable recovery 
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using separate reconstruction. However, we merely need at least 25 measurements for reliable recovery 

using joint reconstruction.  
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Figure 20. Joint (solid line) and separate (dotted line) reconstruction using SOMP 

for JSM-2. System parameters: 50N  , 2J  . Joint reconstruction has a higher 

probability of success than separate reconstruction.  
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5.2 Phased-Orthogonal matching pursuit (POMP)  

In previous section, we discussed joint decoding methods for specific correlated signal, JSM-1 and 

JSM-2. The joint decoding method for JSM-1 cannot apply for JSM-2 which shares same support 

location only, since JSM-2 does not have same nonzero value. Therefore, if we use same idea for JSM-

2, we cannot get the advantages of exploiting inter-sensor correlation. In reverse, SOMP, joint 

decoding algorithm for JSM-2, cannot apply for JSM-1 which has a large number of innovation 

sparsity. If we use SOMP algorithm for JSM-1, it may not find solution exactly. In summary, those two 

methods cannot apply all of the correlated signals which have various correlated pattern. To get exact 

solution of various correlated signals, we proposed joint decoding algorithm. The proposed algorithm 

is called phased orthogonal matching pursuit (POMP). POMP has better performance about the exact 

reconstruction probability of correlated signals than previous algorithms, for examples, PDIP, SOMP, 

ReMBo, etc. We will introduce the idea of our proposed algorithm in detail and then compare the 

reconstruction performance of our algorithms with previous algorithms. 

 

i ) Previous algorithm for MMV 

1) One-step greedy algorithm 

Figure 21 plots the probability of success in recovering the support set by using the one-step greedy 

algorithm (OSGA). OSGA finds common support location by using method described in Table 9, for the 

JSM-2 signal. In comparison with other greedy algorithms, it finds all the nonzero location at once so its 

performance is lower than that of SOMP.  

The result of Figure 21 suggests that the number of required measurements decreases for the same 

probability of exact reconstruction as the number of sensors increases. The OSGA works for a small 
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number of measurements m  if the number of sensors is sufficiently large. Therefore, if many 

distributed sensors observe a correlated signal, each sensor is enough to send only a small number of 

compressed signals to achieve perfect reconstruction probability. Consequently, the transmission power 

of each sensor can be reduced because only the traffic volume required for exact reconstruction, which 

decreases significantly, must be transmitted. However, OSGA works poorly when there are fewer sensors, 

so it is not good method finding correlated signals. The OSGA is described in more details in Error! 

Reference source not found.. 

 

The one-step greedy algorithm (OSGA): 

1. Make greedy choice: Given all of the measurements, compute the test statistics 

2

,

1

1
,

J

n j j n

j

y
J

 


   

for  1,2,...,n N and estimate the common coefficient support set by  

 ˆ  having one of the  largest nn k   . 

Table 9. The one-step greedy algorithm (OSGA). 
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Figure 21. Reconstruction using OSGA for JSM-2. Experimental probability of 

success in recovering the support set in JSM-2. Signal length and sparsity are 

50n   and 5k  , respectively.  

2) Reduced and boost algorithm 

The Reduced and boost algorithm (ReMBo) is introduced in [Ref]. They reduce the correlated signal 

matrix X  to one column signal and then solve reduced SMV problem by using greedy or gradient 

algorithm. The algorithm is summarized in Appendix 7.4. To get solution of MMV, ReMBo makes 

Y AX  to y Ax  by multiplying randomly generated vector a as Figure 22.  
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           : Different value   

 . Reduce MMV to SMV in ReMBoFigure 22  

 

 The reduced SMV can be solved by using any one of SMV algorithm and then ReMBo 

algorithm saves the support location of SMV solution. From the information of support set, they can 

get the exact solution of matrix X . This algorithm has easy stage for understanding and its algorithm 

speed is fast and effective. However, it is possible to apply only Eq. 

Error! Reference source not found. not Error! Reference source not found., and if the original 

matrix X  has much number of distributed innovation part as Figure 23, it cannot find solution. In 

the case of Figure 23, it makes the reduced signal x  which is not sparse. The transformed equation 

y Ax from the signal of Figure 23 cannot be solved. Therefore, it has limitations to apply various 

correlated signals.  
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                        : Different value  

 . The limition of ReMBo algorithmFigure 23  

 

 ii ) Phased-OMP algorithm 

Until now, we discussed various methods for recovering correlated signals. They are modified equation 

method, SOMP, OSGA, ReMBo. Those methods can apply only specific correlated signals as JSM-1, 

JSM-2 which have fixed pattern. If those methods are applied to other various signal models, it would 

not work properly. Thus, we proposed one method for any kind of correlated signals. It is called to 

phased-OMP (POMP). In this section, we explain how the algorithm works to recover various 

correlated signals. To help understanding algorithm, we will use the terminologies which are 

mentioned in previous section.  

 

1) Basic idea of correlated signal recovery  

We already talked about the unique solution of SMV problem before. The condition satisfied for 

solving SMV equation is
 

2

spark A
k  . It is proved in [Ref]. We used this proof as an idea for making 
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our proposed algorithm. If the total sparsity made from matrix X satisfies
 

2

spark
T 

A
, it guarantees 

each column has unique solution. Otherwise, even though each column satisfies
 

2

spark A
k  , it 

doesn’t mean that 
 

2

spark
T 

A
 is satisfied due to distributed innovation part  

 

: Unknown value
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   
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    
   
   
   
   
   



 

 . Total sparsity of MMV equationFigure 24
 

 

 Consider this specific signal which has only common sparsity and its total sparsity satisfy 

 
2

spark
T 

A
. Because each column in MMV also satisfies

 
2

spark A
k  , and then we can get 

unique solution and its support location by using separate decoding. From the support set information 

of first SMV problem, we can also solve next SMV problem easily by using pseudo-inverse, if the next 

support set also has same support set. Therefore, it is important to know common part information 

since exact common part can reduce calculation time and complexity.  

 

1  2  3  4  5     T   
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The idea for proposed algorithm follows. Common sparsity is a correlated part. Therefore, if we find 

the location of common part, we can also use it to solve another SMV. Innovation sparsity is an 

uncorrelated part. Therefore, even if we know the location of innovation part, we cannot use it to 

recover the innovation of other signals. In SMV problem, if we want to find the unique solution, each 

SMV should satisfy the unique condition. However, if we use correlated sparsity information in MMV 

equation, each SMV problem can get more guarantee for exact solution by using correlated 

information. 

 To use correlated information in POMP, we will find the common support location at first 

by using joint decoding. Then, by using separate decoding, we will find the remaining support location 

for each SMV problem. Therefore, we use the specific characters of both the joint decoding and 

separate decoding for effective reconstruction. Although the proposed algorithm works with easily 

understanding, its performance is better than previous methods (Modified equation method, POMP, 

SOMP) for correlated signal reconstruction. In addition, it doesn’t be related with the number of total 

sparsity.  
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2) Pseudo-code of POMP 

POMP uses the method which finds support set at every iteration. It is similar with the OMP method 

about finding support set, but we applied many ideas different with original OMP. We illustrate the 

pseudo code of POMP algorithm as following table. 

 

Input Output 

A  measurement matrix 

A dimensional data vector 

The sparsity level  of the ideal signal

The estimate number of common sparisty 

Stop conditon 

j

j

m n

m

k

C







A

y

 
 ,

,

, ,

ˆAn estimate  in  for the ideal signal.

A set  containing  elements from 1,...,

ˆAn dimensional approximation  of the data 

ˆAn dimensional residual 

n

j

j k

j k j

j k j j k

k n

m

m





  

x R

y y

r y y

 

Table 4. Inputs and outputs of SOMP algorithm. 

 

The POMP algorithm: 

Phase 1: For find common sparsity 

1. Initialize:  

Let the residual matrix be ,0 ,0j jr y . The sparse set ,0 {}j  , and iteration number 1t  . 

 

2. Find the common sparsity index ,j t  for each j :  

, , 1 ,
1,..., 1

arg max ,
J

j t j t j i
i n j

 
 

  r a . The ,j ia  is the i th column vector of matrix jA . 

 

3. Update set:  

 , , 1 ,j t j t j t    .  

 

4. Signal estimate:  

  †

, , , tj t j t j j x A y  and  , ,

C

j t j t x 0 , where  , ,j t j tx  is the set of elements whose indices are 

corresponding to the sparse set. 

 

5. Get new residual:  

, , , , ,
ˆ ˆ,  j t j t j t j t j j t  y A x r y y . 

 

6. Increment t : 

Increase iteration number 1t t  , and  

if t C  return to Step 2 of Phase 1 
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otherwise, t C  go to Phase 2 

 

Phase 2: For find innovation sparsity for each j  

7. Find the index 
,j t  for each j :  

, , 1 ,
1,...,

arg max ,j t j t j i
i n

 


 r a  for every j . The 
,j ia  is the i th column vector of matrix jA . 

 

8. Update set:  

 , , 1 ,j t j t j t     for each j . 

 

9. Signal estimate:  

  †

, , , tj t j t j j x A y  and  , ,

C

j t j t x 0 , where  , ,j t j tx  is the set of elements whose indices are 

corresponding to the sparse set. 

 

 

10. Get new residual:  

, , , , ,
ˆ ˆ,  j t j t j t j t j j t  y A x r y y . 

 

11. Increment t :  

Increase iteration number 1t t  , and  

return to Step 7 of phase 2 if 
2

1

J

j j j

j




  y A x  

otherwise stop the algorithm.  

Table 5. POMP algorithm. 

 

For Phase 1, it is a stage for finding common sparsity Because the common sparsity is the correlated 

part of the signal matrix X , we use joint decoding method for finding the location of common part. 

The joint decoding method is able to find support location successfully. We already knew the 

advantages of joint decoding from the comparison of joint decoding and separate decoding in Section 

5.1. Therefore, if it is possible to use joint decoding for MMV equation, we should use it for 

advantages about signal reconstruction. It results in better performance for solving MMV equation. 

According to pseudo-code of POMP, it finds the location of common part in Phase 1 and memorizes 

the index as Figure 26. After the stage of Phase 1 is finished, POMP algorithm tries to find the 
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remaining support set by separate decoding. Due to separate decoding of Phase 2 for remaining 

support set, POMP can find the missed common sparsity in previous stage.  

 We draw Figure 26 which expresses the movement of POMP algorithm. The nonzero 

values in red box are common sparsity which is exploited in Phase 1 and then the remaining nonzero 

values in green box can be exploited in Phase 2. The index of row having nonzero values is added to 

  at every iteration until the criteria 
2

1

J

j j j

j




  y A x  is satisfied. After finishing the movement 

of POMP, we can get the original solution by using pseudo-inverse based on the estimated support set.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  

                                : Different value  

 . The movement of POMP algorithmFigure 25  

 

Moore-Penrose pseudo inverse: 

If we define that j  is the support set of the j th column in matrix X , we can reduce the sensing 

matrix jA  to 
jA  corresponding to the nonzero elements of jx .  If the columns of the reduced 

matrix 
jA  are linearly independent, Moore-Penrose pseudo inverse equation is accepted.  

 

Phase 1: Correlated part  

Phase 2: Innovation part   

   

Phase 2: Innovation part   

 

Phase 2: Innovation part   

Phase 1: Correlated part    

 

Support set in Phase 1: 

j = 1, {3, 5, 6, 7} 

j = 2, {3, 5, 6, 7} 

j = 3, {3, 5, 6, 7} 

j = 4, {3, 5, 6, 7} 

j = 5, {3, 5, 6, 7} 

j: 1   2   3   4   5      

Support set in Phase 2: 

j = 1, {3, 5, 6, 7, 8} 

j = 2, {3, 4, 5, 6, 7} 

j = 3, {3, 5, 6, 7, 9} 

j = 4, {1, 2, 3, 5, 6, 7} 

j = 5, {3, 5, 6, 7, 10} 



INFONET, GIST 
Journal Club 

 

 

 

 - 53 - 

 
†

j j  A A I , where  
1

†

j j j j

T T


   A A A A  

 

Therefore, if we know the support set and the reduced matrix 
jA  are linearly independent, then the 

original signal 
jx  can be found by using pseudo-inverse. 

 

 
1

j j j j

T T


   x A A A y  

 

Table 9. Moore-Penrose pseudo inverse. 
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5.3 The properties of POMP algorithm 

)i  The advantages of using prior correlation information 

If we know the prior information of correlated signal like the number of common sparstiy, innovation 

sparsity, or the distribution of support location, we can use that information for signal recovery. If we 

know the number of common sparsity as prior information, we can choice parameter C as the number 

of iteration used for finding common part exactly. To select the number of iteration exactly in POMP 

affects the reconstruction performance as Figure 25. The parameters of simulation are 150N  , 

10C  , 10I  . Even though the value of estimated C  is not exact correct as red and or blue, its 

performance is stable. However, it requires much number of measurements for perfect signal recovery.  
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 . The advantages of using prior informationFigure 25
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)ii  The complexity of POMP 

1) The complexity of Moore-Penrose pseudo inverse 

We express how POMP works for MMV equation throughout pseudo-code. According to POMP 

algorithm, it requires pseudo-inverse calculation to get unique solution when we know the support set 

of original signal. In general, the calculation of matrix multiplication and inverse matrix require high 

complexity respectively  2O n  and  3O n  respectively. However, we already know that the 

number of sparsity k  is very short in comparison with the length of signal n  as k m n   so, the 

complexity of those calculations is simple as below Table.  

 

The complexity of pseudo-inverse: 

By using pseudo-inverse, we can get the nonzero values corresponding to support set. The pseudo 

inverse complexity is not high. From the relation k m n  , we can get the complexity. 

 

       

1

1

2 2

3 3 2 2

Multiplication: 1 2

Inverse: . Therefore, total:  

T T

S S S S

mk m m k k m

A A A y x

k m k k k m k m k m km O mk

O k O k O mk O mk k m



  

 
 

 
 

          

  

 

Table 9. Pseudo-inverse in MMV. 

 

2) The complexity of POMP algorithm in terms of sparsity. 

POMP algorithm has two stages for find support location which consists of common sparsity and 

innovation sparsity. In this section, we analyze the complexity of POMP algorithm related with 

sparsity and the number of sensors J . We assumed that the observed signal has both the C  number 

of common sparstiy and the I  number of innovation sparsity. In Phase 1, it will find the C  number 

of sparsity and it requires such as calculations, for examples , , 1 ,
1,..., 1

arg max ,
J

j t j t j i
i n j

 
 

  r a  and 
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  †

, , , tj t j t j j x A y . After finishing the calculations of Phase 1, it starts the calculation of Phase 2  

for finding innovation sparsity. We consider 
, , 1 ,

1,...,

arg max ,j t j t j i
i n

 


 r a  and   †

, , , tj t j t j j x A y  in 

Phase 2. The complexity of POMP algorithm is below.  

 

The complexity of POMP 

Phase 1 

Considered parameter: signal length n , measurement m , sparsity k , the number of sensors J , 

common sparstiy C , innovation sparsity I . We already know the relationship ( )C I k m n     

1) , , 1 ,
1,..., 1

1 1

 times summation

arg max ,
J

j t j t j i
i n j

m m

J

 
 

 

  r a  

Inner product and sigma summation:      O m O J O m   In general J m  

By J n  iteration:    JnO m O Jnm  

2)   †

, , , tj t j t j j x A y  

Pseudo-inverse:  2O mk  

3) The number of iteration: C  

Therefore,       2C O Jmn O mk O CJmn   In general 2k n  

In conclusion, the complexity of Phase 1 is  O CJmn  

 

Phase 2 

1) , , 1 ,
1,...,

arg max ,j t j t j i
i n

 


 r a  

Inner product :  O m  

By J n  iteration:    JnO m O Jnm  

2)   †

, , , tj t j t j j x A y  
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Pseudo-inverse:  2O mk  

3) The number of iteration: I  

Therefore,       2I O Jmn O mk O IJmn   In general 2k n  

In conclusion, the complexity of Phase 2 is  O IJmn  

 

By Phase 1 + Phase 2,   

In conclusion, the complexity of POMP is         O CJmn O IJmn O Jmn C I O Jmnk    . 

The complexity of POMP algorithm is affected by the parameters , , ,J m n k . 

Table 9. The complexity of POMP algorithm 

 

)iii The recovery condition of POMP
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 6. Performance evaluation  

In previous section, we already discuss the various correlated signals which are handled with 

references. For distinguishing those correlated signals, we named it correlated signal model (CSM) as 

following Figure 27 and then we solved MMV equation Error! Reference source not found. and 

Error! Reference source not found. by using algorithms like modified equation method (MEM), 

SOMP, ReMBo, POMP. All of the algorithms are handled in previous section.  

1) CSM-1                        2) CSM-2                       3) CSM-3                       4) CSM-4                    
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 
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 . Correlated signal model (CSM)Figure 27  
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In Figure 27, we define correlated signal model which has various kinds of pattern. Most of the signal 

pattern can be defined by our CSM. CSM-1 and CSM-2 is similar with JSM-1 and JSM-2 which are 

handled in [Ref] but we consider the case that has some vacancies in common part and innovation part 

is also same signal model and we changed the definition of innovation part. In our case, innovation 

sparsity exist only one nonzero value in same row in different with [Ref]. CSM-1 and CSM-3 have 

common part and innovation part together but CSM-1 has same value for common part. CSM-2 has 

only common part and CSM-4 has only innovation part. Other case which does not exist in Figure 27 

will not be considered in this paper. Now, we simulate the performance POMP algorithm compared 

with other methods as ReMbo, SOMP, MEM.  

   

1) CSM-1 and Different matrix A  

We generated the CSM-1 which has common and innovation part. Its common part has same values. 

We observed the reconstruction performance for MEM, SOMP, and POMP algorithm when the signal 

has CSM-1 pattern and each sensing matrix is different.  
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 7. Conclusion  

In this chapter, we discussed the application of compressive sensing (CS) for wireless sensor networks 

(WSNs). We assumed a WSN consisting of spatially distributed sensors and one fusion center (FC). 

The sensor nodes take signal samples and pass their acquired signal samples to the FC. When the FC 

receives the transmitted data from the sensor nodes, it aims to recover the original signal waveforms, 

for later identification of the events possibly occurring in the sensed region. (Section 2.1)  

 We discussed that CS is the possible solution which provides simpler signal acquisition and 

compression. CS is suitable for the wireless sensor networks since it allows removal of intermediate 

stages such as sampling the signal and gathering the sampled signals at one collaboration point which 

would usually be the case in a conventional compression scheme. Using CS, the amount of signal 

samples that need to be transferred to the FC from the sensors can be significantly reduced. This may 

lead to reduction of power consumption at the sensor nodes, which was discussed in Section 4.1. In 

summary, each sensor with CS can save power by not needing to run complex compression operations 

on board and by cutting down signal transmissions.  

 Distributed sensors usually observe a single globally occurring event and thus the observed 

signals are often correlated with each other. We considered two types of correlations: intra- and inter-

sensor signal correlation. We provided the sparse signal models which encompass both types of 

correlation in Sections 4.2 and 4.3.  

 The FC receives the compressed signals from the sensors. The FC then recovers the original 

signal waveforms from the compressed signals using a CS recovery algorithm. We considered two 

types of algorithms. One is a greedy algorithm type, which includes the orthogonal matching pursuit 

(OMP) and the simultaneous orthogonal matching pursuit (SOMP) algorithms, discussed in Section 
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Error! Reference source not found.. The other is a gradient type for which we used the primal-dual 

interior point (PDIP) method, in Section Error! Reference source not found.. 

 Finally, we presented simulations results in which the CS based WSN system parameters 

such as the number of measurements, the sparsity, and the signal length were varied. We discussed the 

use of a joint recovery scheme at the FC. A CS recovery algorithm is referred to as the joint recovery 

scheme when it utilizes inter-sensor signal correlation as well. In contrast, when the inter-sensor signal 

correlation is not utilized, it is referred to as the separate recovery scheme.  In the joint recovery 

scheme, inter-sensor signal correlation information is incorporated in the formation of recovery 

equation as shown Eq. Error! Reference source not found. and 

Error! Reference source not found.. In the separate recovery scheme, a sensor signal recovery is 

done individually and independently from the recovery of other sensor signals. We compared the 

results of the joint recovery with those of the separate recovery scheme. We have shown that 

correlation information can be exploited and the number of measurements needed for exact 

reconstruction can be significantly reduced as shown in Figure 14. It means that the traffic volume 

transmitted from the sensors to the FC can decrease significantly without degrading the quality of the 

recovery performance. (Section Error! Reference source not found.)  

 We have shown that the CS is an efficient and effective signal acquisition and sampling 

framework for WSN which can be used to save transmittal and computational power significantly at 

the sensor node. This CS based signal acquisition and compression scheme is very simple, so it is 

suitable for inexpensive sensors. The number of compressed samples required for transmission from 

each sensor to the FC is significantly small, which makes it perfect for sensors whose operational 

power is drawn from onboard battery. Finally, the joint CS recovery at the FC exploits signal 

correlation and enables Distributed Compressive Sensing.  
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 . Summary of CS application in WSNFigure 16  
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8. Appendix  

8.1. Primal-dual interior point method (PDIP)  

The 
1L  minimization in Eq. Error! Reference source not found. can be recast as linear programming. 

Here we examine this relationship. Clearly, the 
1L  minimization problem in Eq. 

Error! Reference source not found. is not linear programming because its cost function is not linear. 

However, by using a new variable, we can transform it to linear programming. Thus, the problem that we 

want to solve is  

 

  

 

 

,
min

subject to 

i
x u

i

i i

u

x i u 





Ax b

 (24) 

  

 

 The solution of the above equation is equal to the solution of the 1L  minimization problem. 

Many approaches to solving Eq. Error! Reference source not found. have been studied and developed. 

Here, we discuss the primal-dual interior point (PDIP) method, which is an example of gradient-type 

algorithms. First, we have the Lagrangian function of Eq. Error! Reference source not found., as 

follows: 

 

    T T T T

1 2, ,L
   

            

e e
t λ v 0 1 t v A 0 t b λ t

e e
 (25) 
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where e  is the n n  identity matrix, 
10  is the zero vector, 

20  is the m n  zero vector, and 1  is 

the 1n  vector whose elements are all one, 2 1: n 
  
 

x
t R

u
, 1mv R , and 2 1 0n λ R . From the 

Lagrangian function, we have several KKT conditions,  

 

 

 

 

T

* *

3T

*

2 4

*

1

T
* * *

30,

    
      

     

 

 
 

  

 
  

  

0 e eA
v λ 0

1 e e0

A 0 t b 0

e e
t 0

e e

e e
λ t λ 0

e e

 (26) 

 

where 
30  is the 2 1n  zero vector, and 

40  is the 1m  zero vector. The main point of the PDIP is to 

seek the point  * * *, ,t λ v  that satisfies the above KKT conditions. This is achieved by defining a 

mapping function      2 1 2 1
F , , :

n m n m   
t λ v R R , which is  

 

  

   
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T

T 2 1* * * *

4 1 3

2

F , , , ,
n m 

     
      

      
                    
 

 
 
 
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1 e e0
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A 0 t b

 (27) 
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where 
40  is the  2 1 1n   zero vector. Now, we would like to find the point  * * *, ,t λ v  satisfying 

 * * *

4F , , t λ v 0 . Here, we use a linear approximation method. From the Taylor expansions of the 

function  F , ,t λ v , we have  

 

        , ,
F , , F , , F , ,

 
 

        
 
  

t λ v

t

t t λ λ v v t λ v t λ v v

λ

 (28) 

 

Thus, solving the above equations yields the direction  , ,  t v λ . Next, we seek the proper step length 

along the direction that does not violate *

1

 
 

  

e e
t 0

e e
 and *

3λ 0 . The pseudo code for the PDIP 

algorithm is shown in Table 6. 

 

The primal-dual interior point method algorithm: 

1. Initialize:  

Choose 0 1mv R , 0

3λ 0 , and 
T

0 0 0   t x u , where †x A b , and 0 0 0 u x x  and iteration 

number 1k  . (The  
1

† T T


A A A A  is the Moore-Penrose pseudo-inverse of A  and T
A  denotes 

the transpose of A .) 

2. Find the direction vectors  , ,  t v λ : 

 
     

1

, ,
F , , F , ,k k k

k k k k k k


 
      
    
  

t λ v

t

v t λ v t λ v

λ

. 

3. Find the proper step length:  

Choose the largest   satisfying    
2 2

2 2
F , , F , ,k k k k k k     t λ v t λ v . 

4. Update parameters:  

1 1 1,  ,  k k k k k k            t t t v v v λ λ λ . 

5. Update the signal:  

 1 1:k k n  x x t . 
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6. Increment the iteration number k :  

Increase iteration number 1k k  , and return to Step 2 if 
2

2

k eps y Ax . 

Table 6. Primal-dual interior point method algorithm. 
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8.2 Orthogonal matching pursuit (OMP) 

The orthogonal matching pursuit (OMP) is a famous greedy-type algorithm Error! Reference source not 

found.. OMP produces a solution within k  steps because it adds one index to the sparse set   at each 

iteration. The strategy of OMP is outlined in Tables 2 and 3. 

 

Input Output 

A  measurement matrix 

A dimensional data vector 

The sparsity level  of the ideal signal

m n

m

k





A

y  
 

ˆAn estimate  in  for the ideal signal.

A set  containing  elements from 1,...,

ˆAn dimensional approximation  of the data 

ˆAn dimensional residual 

n

k

k

k k

k n

m

m





  

x R

y y

r y y

 

Table 2. Inputs and outputs of OMP algorithm. 

 

The OMP algorithm: 

1. Initialize: 

 Let the residual vector be
0 r y , the sparse set 

0 {}  , and iteration number 1t  . 

2. Find the index 
t : 1

1,...,

arg max ,t t i
i n

 


 r a . The 
ia  is the i th column vector of matrix A .  

3. Update set:  1t t t    . 

4. Signal estimate:   †

tt t  x A y  and  C

t t x 0 , where  t tx  is the set of elements whose 

indices are corresponding to the sparse set. 

5. Get new residual: ˆ ˆ,  t t t t t  y A x r y y . 

6. Increment t : Increase iteration number 1t t  , and return to Step 2 if t k . 

Table 3. OMP algorithm. 

 

 Let us examine the above OMP algorithm. In step 2, OMP selects one index that has a 

dominant impact on the residual vector r . Then, in step 3, the selected index is added to the sparse set, 

and the sub matrix 
t

A  is constructed by collecting the column vectors of A  corresponding to the 

indices of the sparse set t . OMP estimates the signal components corresponding to the indices of the 
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sparse set and updates the residual vector by removing the estimated signal components in steps 4 and 5, 

respectively. Finally, OMP finishes its procedures when the cardinality of the sparse set is k .  

 OMP is a greedy-type algorithm because it selects the one index regarded as the optimal 

decision at each iteration. Thus, its performance is dominated by its ability to find the sparse set exactly. 

If the sparse set is not correctly reconstructed, OMP’s solution could be wrong. Because OMP is very 

easy to understand, a couple of modified algorithms based on OMP have been designed and developed. 

For further information on the OMP algorithm and its modifications, interested readers are referred to two 

papers [13][14].  
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8.3 Simultaneous orthogonal matching pursuit (SOMP) 

We introduce another greedy-type algorithm based on OMP as an example: simultaneous orthogonal 

matching pursuit (SOMP) Error! Reference source not found.. This greedy algorithm has been 

proposed for treating multiple measurement vectors for JSM-2 when the sparse locations of all sensed 

signals are the same. Namely, SOMP algorithm handles multiple measurements 
jy  as an input, when 

j  is the index of distributed sensors,  1,2,...,j J . In a later section, we use this algorithm to recover 

JSM-2. The pseudo code for SOMP is shown in Table 4 and 5.  

 

Input Output 

A  measurement matrix 

A dimensional data vector 

The sparsity level  of the ideal signal

j

j

m n

m

k





A

y  
 

,

, ,

ˆAn estimate  in  for the ideal signal.

A set  containing  elements from 1,...,

ˆAn dimensional approximation  of the data 

ˆAn dimensional residual 

n

j

k

j k j

j k j j k

k n

m

m





  

x R

y y

r y y

 

Table 4. Inputs and outputs of SOMP algorithm. 

 

The SOMP algorithm: 

1. Initialize:  

Let the residual matrix be ,0 ,0j jr y . The sparse set 0 {}  , and iteration number 1t  . 

2. Find the index t : , 1 ,
1,..., 1

arg max ,
J

t j t j i
i n j

 
 

  r a . 

 The ,j ia  is the i th column vector of matrix jA . 

3. Update set:  1t t t    .  

4. Signal estimate:   †

, , tj t t j j x A y  and  ,

C

j t t x 0 , where  ,j t tx  is the set of elements 

whose indices are corresponding to the sparse set. 

5. Get new residual: , , , , ,
ˆ ˆ,  j t j t j t j t j j t  y A x r y y . 

6. Increment t : Increase iteration number 1t t  , and return to Step 2 if t k . 

Table 5. SOMP algorithm. 
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8.4 Reduce and boost (ReMBo) 

ReMBo algorithm is for recovering correlated signals. The authors in [Ref] insisted that the algorithm 

improves the recovery probability of any suboptimal methods for signal matrix X . Its idea is simple and 

effective. They transformed the matrix X  to a single vector x  and do Y  to a single measurement 

vector y . After modifying MMV equation to SMV, they apply any algorithm for SMV. We attached 

ReMBo algorithm from [Ref]. 

Input Output 

A  measurement matrix 

A dimensional data vector 

The sparsity level  of the ideal signal

j

j

m n

m

k





A

y  

ˆAn estimate  in  for the ideal signal.

ˆSupport set 

flag

n

j

S

x R

 

Table 4. Inputs and outputs of ReMBo algorithm. 

 

The ReMBo algorithm: 

Control parameters : k ,  , Maxiters 

1. Initialize:  

Set iter = 1, flag = false.  

2. while (iter   Maxiter) and (flag is false) do 

Draw a random vector a  of length j  according to randomly generated distribution. 

y Aa  

Solve y Ax  using SMV algorithm and save the solution x . 

 Ŝ I x  

If  Ŝ K  and  2
 y Ax  then 

flag = true 

else 

flag = false 

end if 

Construct X  using Ŝ  and pseudo inverse 

iter = iter + 1 

end while 

return X , Ŝ , flag 

Table 5. ReMBo algorithm. 
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