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Considering the threat of accessing and tempering data by an unauthorized person, a secure
transmission of multimedia information like image data using cryptography technique has
received attention in recent years. The encryption methods enable security of data by converting
it into more complex form. Besides security, the database and communication problems are
critical problems due to large data size and complexity. It has become important to reduce the
size of the data by preserving the complexity.

Image Encryption using FFT with Single random matrix
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Fig. 1. FFT based Encryption and Decryption using single random phase

Fig. 1 shows the Encryption approach using single random phase method. Let an image

multiplied by a single random matrix exp[ig,(x, y)]and further taking Fourier transform of the

result to get an encrypted image.
Decryption process is reversed by taking the complex conjugate of the random phase and further
its inverse Fourier transform. Here the key is formed by the combination of the transform and the

random matrix.



Approach
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the encrypted image. Fig. 2 Double random phase encoding
explid ,(x,y)] stands for the

random phase masks 1 & 2 represented as the key values. The encryption process can be expressed

as:
g(x,y) = FT{FT [h(x, y)explig, (x, y)])|exp[ig, (x, )]} (1)

Then the encrypted image is dispersed and embedded into a host image to form a combined image. The
corresponding decryption process is:

h(x,y) = FT" {FT " [g(x, y) exp[ig, (x, »)]) | exp[—ig, (x. »)])} @)

Compressive Sensing
CS is based on the recent understanding that a small collection of measurements of a

compressible signal contain enough information for reconstruction and processing.

y=Of =dY x (3)
Where the sensing matrix ®is a M x N matrix, where M < N. So, y becomes a M x1, while

fis Nx1.
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Fig. 3 Compressive sensing model shows the dimension reduction and the compression after sampling
process



Digital image information encryption scheme using CS Scheme

{

l Recerve decry pted image X I

g

Read image X 10 be

hidden and host image /

i

(a) Original Image (b) Encrypted Image

“

(c) Correct decrypted Image (d) Decrypted Image with
wrong key

123

y=MWer [ Seck @ by OMP algorithm I

[

[ Random phase mask | ” Congugate 10 random phase mask | ]

&
e

I Random phase mask 2 ” Congugate 10 random phase mask2 l

A

| Hade the encryption image | I Fxtract encryption image |

v T

I channel I

Fig. 5 Image encryption/decryption using

Fig. 4 Flow diagram of image information double random phase method

encryption and decryption

In this method, the image information to be hidden is encrypted by CS firstly and the size of
sampled information is reduced compared with original image.

Then, it is re-encrypted by DRPE technique where the scales of random-phase masks are also
reduced correspondingly. The double-encrypted information is dispersed and embedded into the
host image then transmitted through a channel. At the received terminal, original image
information is reconstructed approximately via OMP algorithm after the decryption of double
random-phase encoding. For CS, in order to recover the signal, the matrix A“° should be
available to the receiver otherwise, the gathered samples appear useless to anyone eavesdropping

on the channel. This encryption comes naturally and requires no additional cost.

Simulation result
Considering natural images tend to be compressible in the transform domain, here ¥ is designed
a NxN(N =256), 2-D wavelet transform matrix which have the same size with image x to be

hidden, ® is a M x N random measurement matrix and the measuring length M =192 is less

than N (the value of M changes with the signal sparsity of hiding image).



Peak-to-peak Signal-to-Noise Ratio (PSNR) is used for measuring the quality of decrypted

digital image as described in following equation
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PSNR= 10log

where R(i, j)is the reconstructed image and /(i, j)is the initial image. The experimental result

shows that the quality of decrypted digital image is very well and the PSNR is 30.8874 dB.

Wrong Key

Fig. 6 shows that when the keys of random-phase mask cannot be deciphered correctly, people
who intercept information illegally cannot reconstruct original image, the security of information
is ensured. It shows the decrypted image obtained after using the right key and random phase
matrix. For hacker, it would be extremely difficult to acquire the correct key because one needs

to know the random phase mask and the key.

Fig.6. (a & b) Reconstructed image with a condition of wrong measurement

Conclusion

In this paper, they utilized the characteristics of CS, signal sparsity , dimensional reduction and
random projection, to sample or encrypt a digital image. Then, the transformed image
information can be re-encrypted by DRPE technique. In order to improve information security

effectively, the image information is encrypted twice with low data volume transmission.
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Overview of Scenarios

® A broadband single-element unfocused transducer performs a raster
scan in a plane parallel to the cross section of the object.

® At each scan position, the transducer sends an acoustic pulse and then
detects the echo.

e For all experiments, the initial distance between the object and
transducer was set to be 75 mm.
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Introduction

*® A new model-based framework for ultrasound imaging that estimates a
complex-valued reflectivity field is presented.

® The benefits are:

— Providing improved resolution and reduced diffraction artifacts.

— Overcoming challenging observation scenarios involving sparse and reduced
apertures.

® The framework is based on a regularized reconstruction of the underlying
reflectivity field using a wave-based linear model of the ultrasound
observation process.

® The physical model is coupled with nonquadratic regularization functions,
exploiting prior knowledge that the underlying field should be sparse.

® These nonquadratic functions enable the preservation of strong physical
features, i.e., strong scatterers or boundaries.
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Observation model for ultrasound scattering

® The free space Green’s function is used to model the scattered field
in space in response to a point source of excitation,

(i —rf) = R

e This can linearize the Lippmann—Schwinger equation using Born
approximation to obtain the following observation model:

) = | G el ar

— where y(+) denotes the observed data, f(-) denotes the unknown
complex-valued reflectivity fields

— Note that squaring the Green’s function captures the two-way travel
from the transducer to the target and back
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Observation model for ultrasound scattering

® The model is discretized and the presence of measurement noise is
taken to be additive to obtain the following discrete observation

model:
y=Tf+n

— where y and n denote the measured data and the noise, respectively, at
all transducer positions; f denotes the sampled unknown reflectivity field;
and T is a matrix representing the discretized version of the observation
kernel.

® Given the noisy observation model, the imaging problem is to find an
estimate of f based on the measured data y.
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Sparsity-driven ultrasound imaging-Imaging
problem formulation

® The conventional ultrasound imaging method of synthetic aperture
focusing technique (SAFT) essentially corresponds to using T to
reconstruct the underlying field f,

fsarr = Ty

® The proposed method produces an image as the solution of the
following optimization problem, which will be called sparsity-driven
ultrasound imaging (SDUI):

fSDUI — argmin J(f)
f
— where the objective function has the following form:

J(€) = |ly — T [+ ][} +22] [DIF]]]}

— D is a discrete approximation to the derivative operator or gradient, A,
A, are scalar parameters
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Sparsity-driven ultrasound imaging-Solution
of the optimization problem (1/2)

® The following smooth approximation is used as

L[S f(l(z>i|2+e)”/ 2

=1

® Using the approximation, we obtain a modified cost function,

1) =[ly — T8+ 3010, +)

M

+ Ao Z<| (D|f’)i’2+e)f’/z-

i=1
® The quasi-Newton method is employed.

e The gradient of the cost function is expressed as

Vi (f) = H(f)f — 2Ty
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Sparsity-driven ultrasound imaging-Solution
of the optimization problem (2/2)

® The Hessian is
H(f) 2 2TYT + piy A (F)
+ pla® (F)DT Ay (F)DD(F)

e They use H(f) as an approximation to the Hessian in the following
quasi-Newton iteration:

gt _ g0 [ﬁ (f,m)ﬂ v (f‘(”))

e The following fixed point iterative algorithm can be obtained:

3 (f(”))f‘(”“) — 27"y

)

. . . ~(n+1 ~(n ~(n
e The iteration runs until ||f( g )Ilﬁ/llf( )II%< 0
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Experiments and Results

¢ Ultrasound experiments were carried out in a tank of water (2X1X1 m).

& Data acquisition scenarios are considered: (a) full aperture case, (b)
sparse aperture case, and (c) reduced aperture case.

e Afull scan forms a 64 X 64 grid with a total of 4096 scan locations.
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e Images of the 3.2 mm steel rod using
full, sparse, and reduced aperture
data

— Reconstructions by SAFT using (a) full
data, (c) 6.25% sparse data, and (e)
6.25% reduced data

— Reconstructions by the SDUI method
using (b) full data with A;=500, A,=100,
(d) 6.25% sparse data with A;=25,
A,=5, and (e) 6.25% reduced data
A=170, A,=5
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e Effect of the gradient-based regularization
— Images of the channel using sparse aperture data. Reconstructions by SAFT using (a)
14.06% and (d) 6.25% sparse data
— Reconstructions by the SDUI method with A,=0 using (b) 14.06% sparse data with
A=20, (e) 6.25% sparse data with A;=5
— Reconstructions by the SDUI method using with (c) A;=600, A,=20 and (f) A,=250,
A,=10
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Selection of regularization parameters

e Recall that A, scales the term that emphasizes preservation of strong
scatterers, whereas A, scales the gradient of the image and
emphasizes smoothness and sharp transitions.

— If the object features of interest are below the size of a nominal resolution
cell, that is they should appear as “points,” then they can be emphasized
by choosing A, > A ,. This case leads to sparse reconstructions and can
produce super-resolution.

— If instead the object features of interest span multiple pixels, and thus
form regions, these homogeneous regions can be recovered with sharp
boundaries by choosing A, << A,
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® SDUI reconstructions of the 3.2 mm steel and the 3.2 mm aluminum rod separated
by 10 mm reconstructed from 6.25% reduced aperture data for various choices of
the regularization parameters.
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Conclusions

® A new method for ultrasound image formation has been described
that offers improved resolvability of fine features, suppression of
artifacts, and robustness to challenging reduced data scenarios.

® The resulting nonlinear optimization problem was solved through
efficient numerical algorithms exploiting the structure of the SDUI
formulation.

® Results obtained from sparse aperture data scenarios suggest that
SDUI can alleviate the motion artifact problem.

& The performance of the SDUI could be likely enhanced using multi-
frequency data where the choice of number of frequency
components and the appropriate weightings will be key factors to
consider.
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