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Background

e Channel selection problems in EEG-based BCI

— Alarge number of EEG channels

+ It may include noisy and redundant signals. — degradation of
performance

+ It needs a prolonged preparation time. — inconvenience in installation
process

— Selecting the least number of channels with required accuracy can
balance both needs.

# Various channel selection methods

SVM based

» Recursively eliminates the least-contributed channels based on
classification accuracy.

Mutual information(MI) based
» Rank the channels based on MI between channels and class labels
Common spatial filter(CSP) based
+ Directly select the channels according to their CSP coefficients
— RCSP based
+ used sparse solutions of spatial filters
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Background

e Research problems in EEG channel selection

— How many channels are required for the best classification accuracy?

— What is the minimum number of channels required to achieve the same
accuracy as obtained by using all the channels?

e To address the research questions...

— They proposed a sparse common spatial pattern(SCSP) algorithm.

— The proposed algorithm minimizes the number of channels by
sparsifying the common spatial filters within a constraint of classification
accuracy.
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CSP algorithm

e The CSP algorithm is effective in discriminating two classes of EEG
data by maximizing the variance of one class while minimizing the
variance of the other class.

e Summary of formula derivation
— Let single trial EEG data X e RV

(N : the number of channels, S: the number of measurement samples)

— The CSP algorithm projects X to spatially filtered Z as Z = WX
(the rows of W : the spatial filters, the columns of W' : CSP)
— Normalized covariance matrix _ XX’
trace(XX")
trace(X) : sum of diagonal elements of X
_ C.=C,+C,=FyF."
C,,C, : Computed by averaging over multiple trials of EEG data
F. : matrix of normalized eigenvectors
y :diagonal matrix of eigenvalues
— Whitening transformation matrix

— Transformation of covariance matrices
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CSP algorithm

e Summary of formula derivation

— Whitening transformation matrix p = I‘FFZ
— Transformation of covariance matrices
C/=PCP’', C,=PC,P’
=UAU’ =UAU" A +A,=1
C|,C, : share common eigenvectors,

U : eigenvectors matrix
A . diagonal eigenvalues matrix

— Apply CSP projection matrix W =U"P
C/=U'PCP'U=A,, C,=UPC,P'U=A, A +A,=1

— Because A, +A, =1, the maximum variance of one class lead to the
minimum variance of the another class.— Optimal discrimination

— Projection matrix W can be formulated as an optimization problem

i=m i=2m
min Kz;wiczwi + 2 wew, \ C, : covariance matrix of class i
A\
T T . . .
we "i={, ,2m)} indicate
i=m+1 )
Subject to : w,(C, +C,)w/ W C +C)Hw’
i 1 2 j

(
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CSP algorithm__

il first and last m rows
2, of CSPzﬁf'}i)jection
i,j matrix
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SCSP algorithm

Motivation

— Sparsify the CSP spatial filters to emphasize on a limited number of
channels with high variances between the classes

— Discard the rest of the channels with low or irregular variances that may
be due to noise or artifacts.

Sparsity measurement
/1

_ 1
"I
2

— The sparsest possible vector(only a single element is nonzero) has a
sparseness of one.

— Non-sparsity measurement :/, //, norm increases when the sparsity
decreases.

Modification of CSP algorithm
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SCSP algorithm
e Modification of CSP algorithm

— Include regularization parameter in optimization problem

min(l1-r)  wCw' + waT\+r .
i=m i=2m i=2m ||W ||

wo AT e X ;Ilwillz

i=m+1
Subjectto : w,(C, +C,)w; =1, i={1,2, ,2m}
w(C +C)w) =1, i,j=1{1,2, ,2m}i#

— Parameter 7’(0 <r< 1) controls the number of removed channels and
classification accuracy.

— Non-linear optimization problem — solved using sequential quadratic
programming(SQP) and augmented Lagrangian methods
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SCSP algorithm

¢ Channel selection

— From training set of two class motor imagery data, first two sparse
spatial filters corresponding each class are obtained by solving the
optimization problem.

— Zero element channel — discard
Non-zero element channel — select the channels

— Importance order : apply ranking method(used maximum of the absolute
values of the corresponding sparse spatial filter.
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Datasets and processing

¢ Datasets

— With a moderate number of channels (22 channels)

+ Dataset 2a from BCI competition 4

* 9 subjects

+ Used only right and left hand motor imagery tasks

» 72 trials training set + 72 trials testing set on each subjects
— With a large number of channels (118 channels)

+ Dataset 4a from BCI competition 3

* 5 subjects

+ Right hand and foot motor imagery tasks

+ 140 trials training set + 140 trials testing set on each subjects

e Data processing

Extract 0.5 ~ 2.5 seconds data samples after the visual cue
Apply 8 ~ 35Hz band-pass filter

(Training set) select optimal channels using first and last sparse spatial
filter

(Test set) CSP retraining over selected channels and dataset spatially
filtered using the first and last 3 spatial filters.

Variance of spatially filtered signal applied SVM classifier
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Results and Discussion

e Performance comparison of /, and/ /I, Regularization term

— Varying r value(different number of channels)

— [, /1,norm based SCSP algorithm leads better classification accuracies
when two different regularization based SCSP algorithm select same
number of channels.

Average over 9 Subjects " Average over 5 Subjects
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Results and Discussion

e Channel selection with different criteria

— Two channel selection criteria

« First criterion : maximizes the accuracy by removing noisy and irrelevant
channels.(SCSP1)

« Second criterion : minimizes the number of selected channels while
maintaining the classification accuracy.(SCSP2)

— Procedure
« r was chosen from 0.01 to 0.99.

« For each r, a set of selected channels was determined.

+ Using 10x10 fold cross validation on training set, compute classification
accuracy with each set of the selected channels.

» Optimal r was selected based on the accuracy.
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Results and Discussion

® Channel selection with different criteria
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* the use of small values of r improved the accuracy by removing some noisy
and redundant EEG channels, while increased values of r reduced the number
of channels but also decreased the classification accuracy.

« further increase of the r value did not yield further reduction in the number of
selected channels.
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Results and Discussion

— Classification accuracy vs. number of selected channels.

— About bellow table (overall 22 channel subjects)

+ Decreasing the number of channels is very effective without accuracy
degradation.(SCSP1: reduced 40% of the channels, SCSP2: reduced 61.2%
of the channels)

* the proposed SCSP algorithm using both criteria yielded significantly
better classification accuracies (average 9.45% more) compared to the use
of three typical channels.

Dataset Ila, BCI Competition IV
SCSP1 SCsP2
Subject Al Ch (C3,C4,Cz)  Acc fSelected Acc fSelected
Ace(%) Acc(%) (%) Ch (%) Ch

Al 90,97 75.60 91.66 13 91.66 13
A2 56.25 53.47 67.36 9 60.41 4
A3 96.52 93.05 9791 14 97.14 12
Ad 7291 68.05 7222 14 7083 11
A5 63.88 53.47 6527 11 63.19 9
A6 63.88 61.11 66.67 14 6111 10
A7 79.86 57.63 8472 19 7847 15
A8 97.22 86.80 9722 15 9513 5
AY 91.66 88.88 91.66 10 9375 5
Mean 79.23 70.90 81.63 1322 7907 8.55
~ Sud 15.63 15.72 137 299 1561 390
p-value 0.006 =h 0.003 = 0.004 =

P-value denotes the paired T-1est between resulis of (C3,04.C4) and other resulis,
{CH: Channels, ACC: Accuracy, f : Number),
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Results and Discussion

— Classification accuracy vs. number of selected channels.

— About bellow table (overall 118 channel subjects)

+ Decreasing the number of channels is very effective without accuracy
degradation.(SCSP1: reduced 81% of the channels, SCSP2: reduced 93%
of the channels)

» The results also show an average improvement of 11.5% in the
classification accuracy compared to the use of three typical channels.

Dataset IVa, BCI Competition III

SCSP1 SCSP2
Subject ANl Ch (C3,C4,Cz) Acc fSelected Ace {Selected

Acc(%) Acc(%) (%) Ch (%) Ch

B1 74.28 54.28 80.71 17 T1.42 7
B2 94,28 80 97.14 12 95.71 10
B3 49.28 55 57.14 33 57.14 3
B4 77.14 70 85 36 77.85 10
BS 72.85 87.14 91.42 15 94.28 10
Mean 73.56 69.28 8228 226 7928 7.6
Std 16.06 14.69 1538 11.05 16.19  3.08
p-value 0.535 — 0.043 — 0.023 —

P-value denotes the paired T-test between resulls of (C3,04,C7) and other results,
(CH: Channels, ACC: Accuracy, 4 : Number).
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Results and Discussion

e Spatial filter coefficient distribution

— CSP filters have large weights in several unexpected locations.—
degradation of classification accuracies.
— the SCSP filters have strong weights over the motor cortex areas and

smooth weights over the other areas. — the proposed SCSP yielded
filters that are neurophysiologically more relevant and interpretable.

BS B4

csp

SCSP1

Hand
Foot Right Hand Foot Right Hand

+I
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Conclusion

They investigated the reduction of channels whereby the
classification accuracy is constrained to an acceptable range.

Two criterions
— Using the first criterion yielded the best classification.
— Using the second criterion retained the least number of channels.

The proposed SCSP algorithm yielded an average improvement of
10% in classification accuracy compared to the use of typical three
channels

A visualization of the obtained sparse spatial filters

— The proposed algorithm improved the results by emphasizing on a
limited number of channels with high variances between the classes.
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Introduction

o I i

(a) Diffuse light out (b) Clear light out (invasive surgery)

+ Photoacoustic formation sound waves,
following light absorption in a material sample.
For Photoacoustic effect the light intensity
must vary periodically or as a single flash.

+ The Photoacoustic effect is quantified
by measuring the formed sound.

a1 @

* By proceSSIng vaUIred Slgnal map (c) Clear light out (d) Clear sound out
Of absorbed ||ght can be reconstructed_ (toxic optical clearing) (photoacoustic conversion)
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Pic. 1. Optical modalities compared

+ Tissues are irradiated by a pulsed laser to photoacoustic

+ Absorbed energy converted into heat
« Which further converted to thermoelastic expansion
« Initial pressure raise then propagates as ultrasonic waves

* Laser could be replaced by microwave or RF sources
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Introduction
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b) Open-skull photograph of
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transducer Mouse on a holder

Pic. 2. Photoacoustic setup

« Unfocused ultrasonic transducer with 512 elements is placed
outside of object
» 64-channel data acquisition module (DAQ) is used




Compressive sensing

Pressure measurement at detecting aperture p(7,t)

Initial pressure raises distribution p,(7)

e

Forward problem which predicts p(¥#,¢t) by p,(¥)
Where c-is a speed of sound, 7 is a position of ultrasonic sensor
Velocity potential ¢@(7,¢)

() =] [zp(ﬁ)f)—

p(r,t)=— {

MM} dQ, /0, 2
ot Ir—ro|

Inverse problem which reconstruct p,(¥)with p(7,1)
Where ¢ =ct, S, is the detecting aperture, dQ,/Q,solid-angle weighting factor

Compressive sensing

x to represent p,(7) where each element of x is the average value of initial
pressure per unit volume
Size of x depends on the field of view (N,*N,*N,)

Vector y is velocity potential measured by all sensors as a function of time
Size of y is the number of detecting positions (L) times the number of
temporal position (M)

Forward problem can be described as y = ®x
Where @ is projection matrix

Inverse problem can be written as X =® 'y
Where X is reconstructed image

® containing N,*N,*N,*L*M
Even for 256x256 image with measurement fro 512 positions, each position
has 1024 time points  contain 3.4x1010 points (~256 GB)




Results
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Pic. 4. (a) to (d) Images reconstructed using the BP method with 240, 120, 80,
and 60 tomographic angles. (e) to (h) Images reconstructed using the CS

method with 240, 120, 80, and 60 tomographic angles. (i) to (I) Images

reconstructed using the traditional iterative reconstruction method with 240, 120,
80, and 60 tomographic angles. (m) Lines extracted from (a), (d), (h), and ().

(n) Comparison of the mean square errors of the three reconstruction methods.
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Conclusion

They demonstrated the CS method using tissue-mimicking phantom
with 3 human hair crosses with interval 10 mm. Laser pulses 10 Hz.
20 measurements at 240 different angles. Acquisition time was 8 min.
Experiment shows that CS method can efficiently reduce the
undersampling artifacts.

- = Ground glass
PC Qscilloscope g

=0
PR Sas
o

o

Pre-amplifier  Detector =~ Human hair

Pic. 5. used PA setup
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Introduction

In the past, there have been numerous attempts to design and build
full-bodied humanoid robots.

The realization of a robotic system that understands human
intentions and produces complex behaviors is needed, for disabled
or elderly persons.

The EEG-based BCI system for robots has been suggested in
robotics and neural engineering fields because some elderly or
disabled people can control robots naturally and intuitively by
thinking while using this system.

The active BCIl can control an application using consciously
intended brain signals without external events.

BCI methods using sensorimotor rhythms belong to the active BCI.

These methods classify specific motor images in a general sense
through the power over the frequency ranges [e.g., mu (8-12 Hz) or
beta (18-22 Hz)].
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Introduction

In a synchronous BCI system, sequential cues are provided at a
fixed rate.

Because a user cannot control the timing of motion commands, it
tends to lower the information transfer rate (ITR).

One main goal of EEG-based BCls for human robot interaction is
being able to command a robot directly by thinking.

This paper describes a new brain-actuated humanoid robot
navigation system that allows for asynchronous direct control of
humanoid motions using the active BCI system.

Their system provides five low-level motion commands (e.g., “stop,”
“turn the head to the left,” “turn the head to the right,” “turn the body,”
or “walk forward”) by combining the classification of three motor
imagery (MI) states (e.g., “left hand,” “right hand,” or “foot”) with a
posture-dependent control paradigm.

To evaluate the proposed system, a humanoid robot navigation
experiment in a maze was conducted with human subjects.

| 3
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Methods

Their proposed system has four key features.

First, low-level commands make the humanoid turn at any angle and
walk to any position.

Second, five complex humanoid motions are controlled by three
intentional mental states.

Third, the subject can command the humanoid using asynchronous
protocol.

Fourth, their system does not employ a reactive but rather an active
system.
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Methods(System Description)

e The system consists of three main subsystems: the BCI system, the
interface system, and the humanoid control systems.

e The BCI system classifies four user mental states.

e The non-control state is referred to as “rest” and the three Ml states

LE 11

are referred to as “left hand”, “right hand”, and “foot”.
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Methods(Experimental Protocol)

1) Offline training session (a) (b)

. . . lEILeﬂ ‘z‘hft
2) Selection of informative feature @m [ o N (o [o]non g

compqnents and training of two EJ"“" EIFM
classifiers

. . . Rest llﬂlmrhm Rest [Mntorlmqery
3) Online testing sessions Statc Cue 9 Fade-out Feedback Cue
4) Checking the accuracy of the ° * jnges = ° I -
online session

. ) ) . (c) Selection Level : Fade-out : Fade-in : i

5) Real-time humanoid navigation 5 ;

control experiment

?ee

Fig. 2. (a) Offline training protocol: After the rest sessions, the subject is
asked to imagine a motor imagery indicated by a static cue. (b) Online feedback
testing protocol: 6 s are allowed to test the performance of the classification with
dynamic fade-out feedback. (c) Dynamic fading feedback is used to secure a
robust classification of a mental state from the ongoing EEG (see Section II-H).
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Methods(Experimental Protocol)

e To verify the navigation
performance of system, an indoor
maze was designed.

e It was aimed to reduce the bias
through an order of experiments
(manual control or BCI control).

we

e |f they missed any waypoints, they
could skip them.

e Each subject conducted the
experiment 3 times using the BCI
system and one time through
keyboard control for comparison.

(a)
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Methods(Data acquisition & Feature Extraction)

e In this paper, they applied this signal
processing protocol to filter and detect
the sensorimotor rhythm.

) GND

e An electrode at the vertex of the head s o
was used as a reference, and extra R

electrode was used as a ground. FG3 R R4

I

e The impedances of all of the electrodes G G o
were lower than 5 kQ.

N N I
CP3  CPz P4

e For the real-time process, a total of 21
electrodes around the sensorimotor
cortex were used to apply the large
Laplacian ~filter over the nine LRI I
frontocentroparietal locations based on i ne e B i

the international 10-20 system as show  msuis
in fig.
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Methods(Data acquisition & Feature Extraction)

To extract amplitude features, every 250ms observation segment
recorded for 2 s (500 samples) from nine channels was analyzed by
the autoregressive algorithm, and the square root of power in 1Hz
wide frequency bands within 4-36 Hz was calculated.

In the offline training session, 32 feature vectors with 288 dimensions
(9 channels * 32 frequency components) were collected within the Ml
and rest periods ( 4 s for each) for one trial.

These feature vectors were used to select informative feature
components and train the classifiers.

During the online testing and real-time control session, the feature
vectors were sampled from the selected informative feature
components and these were used to produce real-time feedback and
classification for the motion commands.
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Methods(Feature Selection)

In this study, the Fisher ratio was used to select informative feature
components of each subject that can be interpreted as suitable
channel-frequency bands.

For the amplitude feature vector from the “rest” and MI states,
let 4.« and %~ denote the mean and variance, respectively, of the
amplitude feature set from the “rest” state, and let «,, and o,, denote
the mean and variance, respectively, of the amplitude feature set
from the MI state.

The Fisher ratio is defined as the ratio of the between-class variance
to the within-class variance as follows:
2
_ O-lfetween _ (‘u rest — M )
fV— 2 - 2 2
Gwithin Urest + O-MI
The Fisher ratio is a measure of the (linear) discrimination of two
variables, and it can also be considered as a signal-to-noise ratio.
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Methods(Feature Selection)

(a)
(b)
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(1) Left-hand (2) Right-hand (3) Foot

Fig. 5. Channel-frequency selection using the Fisher ratios from three sets of “rest” versus MI tasks. (a) Channel-frequency distribution of the Fisher ratios of
subject A. (b) Topographical distribution of the Fisher ratios of subject A at the highest frequency bands (12, 14, and 10 Hz, respectively). The first two top-scoring
channels for the “left-hand” imagery tasks were channels C4 and FC4, while channels C3 and FC3 were selected for the “right-hand” imagery tasks, and channels
CPz and Cz were selected for the “foot” imagery tasks. (c) Spectral distribution of the Fisher ratios for subject A. For the “left-hand” imagery tasks, the maximum
Fisher ratio of C4 was 0.15 at 12 Hz, and a 5-Hz window centered at 12 Hz was selected as the optimal frequency region.
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Methods(Classification)

e To translate the intended EEG data into appropriate movement
commands for the humanoid robot, the intentional activity classifier
(IAC) and movement direction classifier (MDC) were employed.

e If the signals are interpreted as the MI state by the IAC, then the
MDC classifies the specific M| state as either a “left hand”, “right
hand”, or “foot” states.

e For the initial training, the features from the training trials between 0
and 4 s (e.g., rest period) were assigned to the “rest” class, and the
signal segments between 4 and 8 s (e.g., Ml period) were assigned
to the MI class.

e For the training, the negative output values of the IAC denote the
“rest” classes, while the positive output values of the IAC denote the
Ml classes.

12 /23




Methods(Classification)

1.0
@ & °05
= :
_____ v
Threshold
% Adjustment
(b) s
é .
Fig. 6. Time period selection using the LDA distance metric and determination

of a classifier threshold. (a) ROC curve determines an appropriate threshold
value and (b) a typical intention level curve of a subject to discriminate the rest

and MI time periods. As the informative time period, a 1-s interval centered at

the maximum and minimum LDA distance points was selected.

INFONET, GIST
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Methods(Dynamic Fading Feedback rule)

e Because the classification results of the sensorimotor rhythm based
active BCIl could generate the misclassification results, some
normalization methods would be used to enable a smooth transition

between class-specific feedbacks.

e In this study, the dynamic fading feedback rule was designed to

avoid abrupt false classifications, as shown in fig.

~Stop” “Head Twurm Left™ “Body Twrm™
«
- -
e 3
o
e |
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=
o
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M L OO T T T T T T T
L] 1 = 3 -4 = 3 i
Tirme (Saec)
eft- MHight- -
—— Hamd Haznr.'l —i— Foot —_— Rest
Fig. 8. Dyvnamic fading feedback male. Variation of selection levels and clas-

sifications of a real-time BCI experiment over 8.5 s,

INFONET, GIST
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Methods(Dynamic Fading Feedback rule)

1) the candidate decision produced during the online feedback
testing session and the real-time control session

2) the selection level associated with the confidence measurement of
selected classifications.

Rule 1: When the selection level is zero, the next first classification is
newly set to be the candidate’s decision.

Rule 2: Whenever the classification result is identical to the
candidate decision, the selection level is increased by 1; otherwise,
the selection level is decreased by 1.

Rule 3: When the selection level reaches 4, the control system
confirms its decision and generates a motion command accordingly
(i.e., “left,” “right,” or “forward”).

Rule 4: The fading feedback cues and the arrow and text shown on
the display are transparentized according to the candidate’s decision
and its selection level.
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Methods(Dynamic Fading Feedback rule)

Fig. 8 illustrates an example of the
command selection procedure.

Body
For the first 1 s, the consecutive FOW @wmj

“rest” commands appear.

At 1.25 s, the four consecutive “left- . T _eﬁ\meht‘ WY
hand” classifications increase the . o % le
selection level up to 4, and then, the

system generates a “left” command. \ A‘:
The robot executes its motion

accordingly through the control

paradigm, as described in Fig. 7 (i.e., Leﬂ

“head turn left”). mght F""”a"'
Next, consecutive “left-hand”
. . Forward
classifications cause the robot to Walk
keep turning its head to the left up to
150 (30 per Command) Fig. 7. Diagram of humanoid navigation control. (Left) Left-hand imagery.

(Right) Right-hand imagery. (Forward) Foot imagery.
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Methods(Evaluation)

e 1) Performance of the Brain—Computer Interface System: (ITR)
1, =log, N + plog, p+(1-p)log,{(1-p)/ (N -1}, ITR=f,x1,

1, is the bit rate (bits/trial) for the three mental state choices (N=3), p
is the accuracy, and /., is the decision rate (trial/min).

2) Navigation Performance

Total Time: total time taken to accomplish the task (in seconds);

Traveled Distance: distance traveled to accomplish the task (in centimeters);
Forward Steps: number of walking steps during forward movement;

Turning Steps: number of walking steps to turn the robot body;

N N X X XN @

Explored Angle: total turning angle of the robot head to explore the
surrounding environment (in degrees);

\

# Trans: number of transitions between the walking mode and the
exploration mode;

v" Waypoint: number of waypoints on which the robot
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Results(Feature Selection)

e The Fisher ratios for the channel and frequency components and
averaged discriminant values for the offline training period for each
motor imagery and subject are illustrated.

e Table | describes the selected feature components of the five

subjects.
Fes Fos ro ] TABLEI
F(‘l l- FcA I .r h FCl F(4 FEATURE SELEC”ON RESULTS
(a’ I | Cl mr m n - [ :
rm crs
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Fig. 10. Channel-frequency distributions of Fisher ratios for all subjects for “left-hand.,” “right-hand.” and “foot™ imagery tasks. (a) Left. (b) Right. (c) Foot.
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e Tables Il and Il provide details about the performance of the two
hierarchical classifiers (IAC and MDC) for the five subjects.

e Table Il shows the number of offline training trials per mental task,
the TPR and FPR of the IAC, and the accuracy of the MDC for each
task.

e Table Ill shows the online testing performance achieved using the
fading feedback rule for the given mental tasks.

TABLEI TABLE 111
OFFL“\E TRA[\][NG RESULTS ONLINE FEEDBACK TESTING RESULTS

A B c D E A B € D E

. Response Tl 22 1.6 1.4 1.9 2.1
Trials 140 160 120 | 200 200 Time % w i ¥ T 13

Lefirhand 790 888 | 966| 860 785 (scc) S Tl S
. T Lefi-hand 867 800 [100.0| 933 867
ACE%Y;'CY lgF fixin 59'3 ?5'3 8‘4‘2 62‘8 75'0 Accuracy Righthand 80.0 867 933 | 667 667
oot : : o = i (%) Foot 66.7 733 |86.7| 667 733
Average 747 845 1873) 707 758 Average 778 800 [933| 778 756

ITR TR

(bit/mic) 77 121 | 136 64 3.2 (bit/min) 106 128 |265| 104 9.8
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e The results of the real-time navigation experiments of the humanoid
robot.

e During the manual control experiments, all of the subjects controlled
the robot to pass through all five waypoints without any collisions
during navigation.

e During the BCI control experiments, the robot stepped on 3.2
waypoints with an average of 0.3 collisions, while the robot always
successfully reached the final position.

Total Distance Forward Turning Explored

Subject Session time travelled steps steps angle ﬁ:[—ir:en:)‘ \}{zyn'::;;] L C(C;Iill:;z;‘ 3
(sec) (cm) (times) (times) )
BCI 634.1 335.5 102.7 64.3 1161.3 397 2.5 0.7
A Manual 479.7 415.8 126.0 64.0 543.0 27.0 5.0 0.0
BCI 642 .4 4290 1293 783 1485.9 40 4 0.7
B Manual 432.7 403.7 129.0 58.0 501 21 5 0
BCI 632.3 430.1 130.3 69.7 974.0 49.7 4.7 0.0
c Manual 452.9 389.4 118.0 64.0 605.0 34.0 5.0 0.0
o BCI 448.8 307.0 86.7 46.0 704.9 31.3 2.0 0.0
Manual 410.5 481.0 134.0 61.0 494.1 21.0 5.0 0.0
BCI 448.8 410.0 115.0 51.7 585.1 27.0 2.7 0.3
E Manual 424 .4 508.9 143.0 58.0 509.0 24.0 5.0 0.0
ST Mean 561.3 382.3 112.8 62.0 982.2 375 3.1 0.3
(+ Std) (+102.8) (£57:2) (+18.5) (£13.2) (+360.7) (+38.8) (£1.2) (+x0.4)
Mean 440.0 439.8 130.0 61.0 530.4 254 5.0 0.0
Manwal oy g5 (+27.0) (+52.2) (+9.3) (+3.0) (+45.7) (+£5.4) (+0.0) (+0.0)
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e Fig. shows the sequential snapshots taken during an experiment.

Temastang LFREER (004 amwats 9012 : Trwamg [TRRM TR wecnde B 07 Trvwyaymg (AT 80 momtn. W ] Tievtang: INE RV sacoide. 94 12 Traitng IR 1IE oot W4 0]

Fig. 12, Navigation task is to make the robot move from a starting position to destination regions, while passing through the five waypoints at the comers of the
maze. The first row shows snapshots taken during a trial, and the second row shows images acquired from the robot camera at each position.
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Discussions

e This paper has described a new humanoid navigation system that is
directly controlled through an asynchronous sensorimotor rhythm-
based BCI system.

e Their approach allows for flexible robotic motion control in unknown
environments using a camera vision.

e Brain-actuated humanoid control by this active BCI could be further
improved in speed and accuracy.

e Recently, researchers have introduced hybrid BCls that exploit the
advantages of different reactive approaches (e.g., P300 or steady-
state visually evoked potentials) and active approaches to improve
the overall performance of BCI system.

e Another extension of this study is to realize human—robot interaction
that can recognize high-level human cognitions, such as affective
states.
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Thank you!




