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The holographic process is described mathematically as follows:

O(x,y) = o(x, y) e - (11)
Is the complex amplitude of the object wave with real amplitude o and phase ¢, and

R(x,y) =r(x,y)e " . (1.2)

Is the complex amplitude of the reference wave with real amplitude r and phase ¢,
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Fig. 1 Construction of a hologram

Both waves interfere at the surface of the recording medium. The intensity is calculated by
1, (x,) =[0Cx. )+ R(x,»)[

= (0(x, )+ R(x, ))(O(x, p) + R(x, y))’

=R(x, )R (x,y) +0(x,»)0"(x, y)

+ O(x, )R (x,y)+ R(x,»)0 (x,y) - (1.3)



Digital Recording

A, AL
<« > i
A
A, | ;
Y ¢ i
4 K
- m{mimid)-c- -—!—.—. ..... - ___."’\1
i
i
i
N

Fig. 2 Concept diagram of a surface-pixel sensor

The digital recording will (depending on the directions x and y on the recording plane) consist of M x N

pixels. Each of these pixels is of a dimension A _ x Ay. In CCD sensors, Matrices made up of

photosensitive elements called pixels are generally square-shaped. In our case itis 12x12um

In their case, the hologram intensity was recorded by a standard black and white CCD camera (Hitachi
Denshi KP-M2).

The two neutral-density filters allow the adjustment of the object and the reference intensities.

A square image of area LxL (Sensor size) = 4.83mm X 4.83mm containing N x N=512 x 512 pixels is
acquired in the center of the CCD sensor, and a digital hologram is transmitted to a computer via a
frame grabber.

The digital hologram 1,,(k,/) results from two-dimensional spatial sampling of /,, (x, y) by the CCD:

X
>

1,(kD=1, (w)rect[ :

%sz D S(x—kAx,y —IA) .. (1.5)
k !

Where k and | are integers (-N /2 <k,/ < N/2) and Ax and Ay are the sampling intervals in the
hologram plane i.e. pixel size: Ax =Ay =L/N
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A wave front v, (x,y) = R(x,y)I(x, ) is transmitted by a hologram and propagates toward an
observation plane, where a three-dimensional image of the object can be observed.

For reconstructing a digital hologram, a digital transmitted wave front v, (kAx,[Ay) is computed by

multiplication of digital hologram [,,(k,/) by a digital computed reference wave, R, (k,/) ,called the
digital reference wave.

Taking into account the definition of hologram intensity [Eg. 1.3], we have

w (kAx,Ay) =R, (k,[)1,,(k,I) - (1.7)

=R, |R[ +R,|O] +R,R°O+R,RO’

Zero order of diffraction ~ Twin image  real image

To avoid an overlap of these three components of ¥ during reconstruction, they recorded the hologram
in the so-called off-axis geometry. For this purpose the mirror in the reference arm, M is oriented such
that the reference wave R reaches the CCD at an incidence angle 6 .The value @ must be sufficiently
large to ensure separation between the real and the twin images in the observation planes. However, 6
must not exceed a given value so that the spatial frequency of the interferogram does not exceed the
resolving power of the CCD.

0<6_ . =arc sin (Lj .. (1.8)
2Ax



Reconstructed images obtained with a pure

Real image /
Zero order
phase object: (a) amplitude contrast, (b) phase contrast,

Twin image /
(¢) three-dimensional perspective of the reconstructed

Geometry for hologram reconstruction. Oxy, hologram height distribution (the vertical scale is not equal to the
plane; 0O&n, observation plane; d, reconstruction distance; W(¢, n), transverse.scale):
reconstructed wave front.

The reconstructed wave fronty (mA&,nAn), at a distance d from the hologram plane, is computed by
use of a discrete expression of the Fresnel integral:

w(mAE, nAn) = Aexp %(mer;‘z +n’An%)

« FFT{ R, (k,)1,, (k,])exp %(szxzﬂszz . (1.9)

m,n

Where m and n are integers (=N /2 <m,n < N/ 2), FFT is the fast Fourier transform operator, and
A=exp(i2rnd / A)/(iAd)
A& and An are the sampling intervals in the observation plane and define the transverse resolution of

the reconstructed image.
This transverse resolution is related to the size of the CCD (L) and to the distance d by,

Aé=An=Ad/L .. (1.10)
The reconstructed wave front is an array of complex numbers. The amplitude and the phase contrast
images can be obtained by calculation of the square modulus.
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Objective

e The goal of this study is to find a suitable classifier for EEG data

derived from a new learning paradigm which aims at communication

in paralysis.

e A reflexive semantic classical (Pavlovian) conditioning paradigm is
explored as an alternative to the operant learning paradigms,
currently used in most BCls.

e Four classification algorithms are compared for classifying off-line
data collected from a group of 14 healthy participants

— stepwise linear discriminant analysis (SWLDA)

— shrinkage linear discriminant analysis (SLDA)

— linear support vector machine (LIN-SVM)

— radial basis function kernel support vector machine (RBF-SVM)

Nov 20, 2012
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Introduction

¢ BCls provide a non-muscular communication channel for individuals who
are no longer able to communicate due to severe physical impairment.

¢ Opver the last years it has been shown that patients with severe motor
disability are able to control an EEG based BCI (e.g. sensori-motor rhythm
(SMR) and P300)

¢ However, there are no documented cases of CLIS(completely locked-in
state : all motor control is lost) patients communicating by means of BCI

¢ |t has been suggested that a paradigm shift from instrumental-operant
learning to classical conditioning is necessary to overcome the failure of
CLIS patients to achieve BCI control

¢ The aim of this study is to find a suitable classifier and to assess the relative
performance of four classification techniques on EEG data derived from a
classical conditioning paradigm.

Nov 20, 2012 3 /27

Introduction

¢ Classical conditioning ( Pavlovian conditioning)

IHow Dag_1‘3_alnlng Works I

Before conditioning:

1.Before Conditioning

2. Before Conditioning

Pavlov's famous study
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3. During Conditioning 4, After Conditioning
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The unconditioned stimulus (FOOd) » (D FOO')

automatically causes an
Nothi
(BeII) mp Nothing

unconditioned response.
During conditioning: NS
(Bell)

The neutral stimulus
CAUSES NO response.

The neutral stimulus is
repeatedly paired with the
unconditioned stimulus.

(Food) ‘ (Drool)

After conditioning:

The neutral stimulus

becomes a conditioned
stimulus, which evokes
a conditioned response.

(Bell) =) (Drool)

http://drlack.wikispaces.com/Principles+of+Learning
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Data collection

e Participants
— Fourteen healthy participants (8 women and 6 men, mean age 24.36,
SD 5.4, range 21-42) took part in this study
e Task procedure and design

— All participants took part in two experimental sessions

— Each session was divided into three blocks, each block consisted of 50
true and 50 false sentences, i.e. trials.

— In each block, the sentences were presented in random order through
earphones.

— The conditioned stimuli (CS) were either ‘yes’ or ‘no’ sentences,
according to the type of the sentence (CS1 and CS2).

Nov 20, 2012 5 27

Data collection

e Task procedure and design

a Acquisition phase
e 3 = Extinction
Session 1 | Block 1 Block 2 | Block 3 ‘ _ phase
Session 2 | Block1 | | Block2 | | Block3 | | Block4 | ‘

b CS+ [Berin is the capital of Germany. | us, (pink nolse]l| ITI 5 seconds |

€S+ | Berinis the capital of ltaly. | US, (white nodse)| ITI 5 seconds I

c Block 1: 50 CS,+ and 50 CS,+ trials at random
Block 2: 40 CS,+, 40 CS,+, 10 CS - and 10 C5,- frials at random
Block 3: 35 C8,+, 35 C8,+, 15 CS,- and 15 C5,- trials at random
Block 4: 20 CS- and 20 CS,- trials at random
Fig. 2. The experimental design. (a) Session setup: blocks 1, 2 and 3 from sessions
1 and 2 are referred to as the acquisition phase; block 4 from session 2 is referred

to as extinction phase. (b) An example of the conditioned stimuli C5;+ and (5:+. ()
MNumber of randomly presented trials per block.

— To learn ‘yes-’ or ‘no-thinking’ two different unconditioned stimuli (US)
were used:

* a pink noise US1 immediately following a true sentence

 a white noise US2 immediately following a negative sentence
which produced the unconditioned brain response(UR)

| Nov 20, 2012 6 /27




Data collection
Both US were set to have the same duration of 500 ms and were presented
monaurally at different intensities.

US1 was always presented to the right ear with an intensity of 75 dB and
US2 was always presented to the left ear with an intensity of 105 dB.

For each session, during the first block, every CS was paired with an US
and denoted as CS1+ and CS2+.

In the second block 10 CS, at random, were not paired with US1 and US2
and are referred to as CS1- and CS2-.

In the third block 15 CS, at random, were not paired with US1 and US2.

CS1- and CS2- are of a particular importance for on-line communication
because in an on-line scenario only unpaired sentences can be used.

At the end of the second session a fourth block of sentences was
introduced, further referred to as the extinction phase.

The purpose of this phase was to assess the lasting effects of conditioning.

Nov 20, 2012 7 127

Data acquisition and processing

Nov 20, 2012 8 /27
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Data collection

- stepwise Linear Discriminant Analysis
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Methods
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Figure 7: Lefi: Eigenvalue spectrum of a given covariance matrix (bold line) and eigenvalue spectra of covariance
matrices estimated from a finite number of samples drawn (N= 50, 100, 200, 500) from a comesponding Gaussian
distribution. Middle: Data points drawn from a Gaussian distribution (gray dots; d = 200 dimensions, two dimensions
selected for visualization) with true covariance matrix indicated by an orange colored ellipsoid, and estimated covariance
matrix in cyan. Right: An approximation of the true covariance matrix can be obtained as a linear interpolation between
the empirical covariance matrix and a sphere of approriate size.
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Background- the coherence parameter u

® The coherence parameter that measures the dissimilarity between the
sensing matrix @ and the sparsifying matrix ¥ is defined as

u(®, %)= max|(d.v )

e Then, CS theory asserts that the signal can be accurately reconstructed by
taking m uniformly at random selected measurements, obeying

m>Cu(®,¥)slogn

where C is a positive constant.
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Backgrounds - the Fresnel approximation

e The Fresnel approximation is used for representing the complex values of a
propagating wave measured in a planer perpendicular to the direction of
propagation and separated by a distance z.

uz (X) = uin * exp{i_ﬂxz}

z

The term is related to

et

the Fourier transform

The one-dimensional

7
Fresnel approximation T J”m (5) CXp {Z ( X—¢ )2 }d 4

= exp{i—ﬂxz}'[um (f)exp{%§2

z

e Here, A is the wavelength of the light wave and u,,(&) is the input object.

® We refer the Fresnel approximation as the Fresnel transform.

3§ rroas7 3 /10

Backgrounds - the form of the Fresnel transform
depending on propagation distances.

® Let z be infinity.

® The Fresnel transform becomes the Fourier transform.

u(x)= exp{i—:xz}:um (é)exp{ﬁ—:?}exp{—%}df
~exp| 225 [ (£)exp {0} exp{ -2 L
~oxp| 2 | fu, (£)oxp| 2/ as

J7T >
=X —X

® The complex values of the propagating wave are easily obtained by using
the Fourier transform.

3§ rroas7 4 110




A problem statement

® Can we derive theoretical bounds on the performance of
compressive 1maging systems based on Fresnel wave
propagation?

® The authors presented theoretical bounds in terms of imaging sensor’s
physical attributes, illumination wavelength, and working distance.

S ¥ oAz 5 /10

The definition of far-field and near-field regimes

e [et n be the number of object and CCD pixels.

® Let Ax, be the object resolution element size, and Ax, be the output field’s
pixel size.

e [fthe distance z obeys
z>nAx; / A

then we say that the distance z belongs to far-field regime.
e Otherwise, the distance z belongs to near-field regime.
e Also, there is the relation between the input and output pixel sizes should

be The term can be considered as

Ax, = /IZI the length of an input object

(Here, we only consider the one
dimensional case.)

3§ TrmoAs 6 /10




The Fresnel transform for the far field regime — 1

® For the far-field regime, the Fresnel transform is given as

u, (rAx,) = exp {i—ﬁ(rAxZ )2}>< j{um (gAx, )exp{i—ﬂ(qAxo )2H

z z

® To comply with standard CS formulations, the Fresnel transform is
represented in a vector-matrix form:

INFONET, GIST S § rFoas7 7 /10

The Fresnel transform for the far field regime — 2

e Since the matrix ®FF is the Fourier transform matrix and remaining
matrices are phase matrices, the mutual coherence for the far-field case is
one.

® Thus, the number of measurements are represented by

m > Cslogn
® This results means that the distance has no effect on the sparse signal

reconstruction guaranties, and it behaves exactly as compressive Fourier
sensing.

INFONET, GIST PR Ivars) "o ol 8 /10




The Fresnel transform for the near field regime

® For the near field regime, the Fresnel transform is represented in a vector-
matrix form:

e For the one-dimensional case, the mutual coherence 1is
2
Ax;
Hip =N

Az
® The mutual coherence for the two-dimensional case 1s

2 A 2 A 2
~nt| 2o | — | 2o
Hap {/Izj (ﬂ.zj

® Then, the number of measurements are represented by
2 2

2
m> Cn[ixo jslogn orm> CN(%} slogN

z z

INFONET, GIST S § rmFoas7 9 /10

Conclusions

e For the far field case, the distance has no effect on the number of
measurements.
m>Cslog N

® For the near field case, the distance has effect on the number of
measurements. Also, the object resolution element size has effect on the
number of measurements.
2 2

2
m> Cn[%}slogn or m> CN(%} slog N

z z

e But, we remind that the object resolution element size must satisfy the
below relation

Ax_ = ﬂZ/(nAxo)

INFONET, GIST PR ivars) " ol 10 /10
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Introduction

* The stepped-frequency waveform consists of sequences of single-
frequency pulses

e The stepped-frequency waveform can be viewed as the frequency
sampling of the total bandwidth

® The advantages of a single frequency
— Simple hardware requirements
— High resolution

® The drawback is

— Along time period to transmit the signals, since the transmitter must scan
over the radar bandwidth using a sequence of discrete frequencies
® Therefore, this leads to many limitations for the application of the
stepped-frequency waveform in SAR.

® There has to be a tradeoff between the resolution and imaging range
width.

INFONET, GIST
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Introduction

¢ |[f the targets are sparse or compressible, the required frequencies in the
stepped-frequency SAR can be reduced significantly using a CS theory

® |n this paper, a random-frequency SAR imaging scheme based on CS is
proposed

— Reconstruction the 2-D image of the sparse targets by transmitting a small
number of random frequencies.

e A sparse transform structure is proposed for the reshaped 2-D reflectivity
map.

® The main advantages of the proposed imaging scheme

— 1) the available imaging range width can be enlarged significantly, while the
range and azimuth resolutions are both maintained
— 2) the required number of frequencies can be reduced

— 3) random undersampling is very easy to implement for both range and
azimuth

INFONET, GIST 3 /18

Stepped-Frequency Waveform (1/2)

® The stepped-frequency waveform uses a sequence of pulses to
achieve an ultrawide bandwidth

® Ve denote the transmitted waveform as

si(n,1) = rect (- ) exp 2, (o) 1)

P
¢ For a point reflector at range R, the echo signal is

Se(n,t) = g - rect (LR/C) exp [727 fe(n)(t —2R/c)]

Tp
(2)
— g is the reflectivity coefficient of the target

® The demodulation reference signal is
s(n,t) =se(n,t) - sies(n, t)

—g- (22 ) expliznt.n)(c ~ 2R/
exp[—j2n(n)

— g - rect <—t - 2R/C> exp [_j—élwfc(n)R] 4)
—NFoneT, cisT I T ‘
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Stepped-Frequency Waveform (2/2)

® \We consider that the frequency interval is equal to Af, so that
fe(n) = fo +nAf, n=12,...N (5)

® The demodulated signal can be rewritten as
t—2R/c) [ An(fe+ Afn)R
——— | exp | — :

s(n,t) = g - rect (

J
P C
(6)
INFONET, GIST 5 /18
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Fig. 1. Processing of stepped-frequency waveform. (a) Transmitted wave-
form. (b) Demodulated signal. (c¢) Extracted data points. (d) Range profile.
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Limitations of Stepped-Frequency Waveform
Applied to SAR (1/2)

® Sampling with Af results in periodic repetition in the time domain,
and the repetition period is 1/Af

® The corresponding repetition period for range is c¢/(24f), so the

nonaliasing range width is limited to
C

(&)
_ (2Af) _
e For a fixed pulse time interval, to avoid overlapping of the echoes,
the maximum range width is

R, <

Atc
D, = N )
® For a given frequency step, the maximum nonaliasing range width is
g Nc
Dy = 5~ 7= 38 (10)
¢ Therefore, the maximum available range width is
D zmin{Dl,Dg}. (12)
7118

Limitations of Stepped-Frequency Waveform
Applied to SAR (2/2)

® The equivalent azimuth sampling interval is NAtV, where V is the

radar velocity.
re = NAtV. (13)

® The range resolution is
&

® The available imaging range width and the range resolution and
azimuth resolution must be traded off against each other

(14)

Tr

® To let the available range width become wider, At and N should be
bigger, B should be smaller, but all of these requirements will
decrease the resolution in both the range and azimuth dimensions.

INFONET, GIST
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Random-Frequency SAR Imaging Based on
CS-SAR Imaging Model (1/3)

® The radar data are the superposition of the echoes of all scatterers
in the area illuminated by the radar’s beam (i.e., the scene)

® The received signal of the nth pulse in the mth sequence can be

expressed as
Arnf.(n)R(m,n,z,y)

s(m,n) = f f o(z,1) - exp [—; .
G ¥ i
- Y V

- xandy are the coordinates of the
target

} dxdy

The i target

The n™ pulse /

—_

[ N

~ R(m,n,i) : :
- R(m, n, X, y) is the range of the o
target at (x, y)

J
A

- g(x,y) is the reflectivity coefficient
of the target at (x, y)

20uanbas Ay,
—
\’\
\
\
\
\
\
\
\
\
'@
\
®
o000
(N N N ]
o000
o

L

.

- G s the area illuminated by the o -
beam g
INFONET, GIST Fig. 2. Geometry model for SAR imaging.

Random-Frequency SAR Imaging Based on
CS-SAR Imaging Model (2/3)

® The scene consists of a set of point scatterers on a grid, and the
interval of the grids should be smaller than the radar resolution

® The reflectivity coefficients of the scatterers can be denoted as a 2-
D matrix

g(1,1) -+ ¢(1,Q)
G — . : :

® The 2-D reflectivity coefficient matrix should be reshaped to a
column vector, i.e., g is a PQ X1 vector

& The discrete expression of the radar data of the nth pulse in the mth
sequence is

(m,n) Zg exp[ Anf.(n)R(m,n, i)

C

INFONET, GIST
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Random-Frequency SAR Imaging Based on
CS-SAR Imaging Model (3/3)
® The linear equation can be expressed in matrix form as
s=Ag-+n

— where s is an MNx1 vector, A is an MNxPQ matrix, g is a PQx1 vector, and
n is the noise term. M is the total number of sequences; N is the number of
frequencies in one sequence.

® The detailed form is

(s(1,1) ] Ta(1,1)T ]
s(1,N) a(l,N)*
s(2,1) a(2,1)T g(1)
I E _A B : 9(2)
=ls@ N [T lae )T | |: M
. 9(PQ)
s(M,1) a(M,1)T
| s(M,N) | | a(M,N)T | .
|_____INFONET,_GIST | 11 /18
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Random-Frequency SAR Imaging Based on
CS-CS Imaging Scheme

® |n order to apply a CS scheme, a reduced set of elements in s is
selected randomly, and a reduced set of rows in A is also selected
accordingly. It means that a small number of frequencies are
selected randomly.

® The CS measurement can be expressed as
/ / /
s =A'g+n

® The targets can be reconstructed as

min ||g]ly  s.t. [|[A'g — |2 <e.

& Assume that L samples are selected from the total of MN samples;
then, the uniform pulse time interval becomes (MN/L)At, so that the
maximum available range width becomes

_ MN Atc

L 2

DI

12 /18
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Random-Frequency SAR Imaging Based on
CS-Sparsity of Targets

e A Priori Sparse Targets: it means that the targets consist of a small
number of dominant scatterers

e Sparsely Representable Targets: we can find a transform to make
most of the coefficients in the transform domain

¢ The CS imaging scheme combined with the sparse transform (see
the appendix) can be expressed as

s =A'g+n =A'(0,0,) 0, T .g+n
® This equation can be rewritten as
s =A'(¥,¥,) 'x+n'

® \We can solve for the transform coefficients using

X = min ||x||; s.t. HA’(‘iJT\ilc)_lx — s , <e.
® Then, the reflectivity coefficients can be obtained by
g = (P, ¥.) 'k
13 /18
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Experimental Results

® |n order to show the validity, an experiment is carried out for
stepped-frequency and random-frequency SAR imaging

® A stepped-frequency radar is mounted on a rail to acquire data

e The rail is controlled by a microcomputer, and the radar can move
on the rail with a preset velocity

INFONET, GIST
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TABLE 1I
EXPERIMENT PARAMETERS
Bandwidth 512MHz
Pulse Time Interval le-3s
Radar Velocity 0.05m/s
Squint Angle 0°
Range Resolution 0.293m
Azimuth Resolution 0.05m
Number of Frequencies 512
Number of Sequences 480
Scene Azimuth Points 40
Scene Range Points 20
Selected Samples for CS 1024

INFONET, GIST

Fig. 12. Experimental results. (a) Position of the three corner reflectors.
(b) Imaging result of the full data using the Omega-K algorithm. (c) CS
reconstruction result of 1/240 data. (d) Imaging result of 1/240 data using the
Omega-K algorithm.
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Conclusions

® The theory of CS has been used to reduce the required frequencies
in a stepped-frequency SAR system

® Based on the theory of CS, the traditional sampling requirements
can be avoided, and the limitations of the stepped-frequency
waveform applied in SAR are overcome

® The available imaging range width can be enlarged significantly,
while the range and azimuth resolutions are maintained.

® The results of the CS imaging scheme are even better than the
traditional results of the fully sampled data

¢ Future work will include fast reconstruction strategies and detailed
investigations of the sparsity and compressibility of the targets

® Speckle noise will make the phase of the reflectivity map random,
and it is difficult to find an effective sparse transform for a complex
reflectivity map

INFONET, GIST 17 /18

Appendix — Transform of the 2D Matrix

e \We begin with the sparse transform for the 2-D reflectivity matrix.
The sparse transform can be applied to both the columns and rows
of the 2-D matrix, and it can be expressed as.

X=v .GV,

— where X contains the coefficients after the sparse transform, G is shown
in (29), W, is the sparse transform matrix for the columns, the size of ¥,
is PxP, ¥ is the sparse transform matrix for the rows, and the size of
W is QxQ. ¥, and Y¥r are full rank matrices.

¢ |n the imaging scheme based on CS, the 2-D reflectivity matrix G is
reshaped to a column vector g

v, ¥,
& = v, | B = ‘I’.rz
| v, ‘I’-ri
® The sparse transform of the reshaped reflectivity vector can be

expressed as ~  ~
x =V, ¥.g
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