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Background 

General US imaging use bandwidth and frequency to determine image resolution 
• High frequency –> narrower beam –> better resolution 
• High frequency –> higher beam attenuation –> lack of deep imaging 
 
Therefor present US technique turned to increasingly grows of frequency range. 
Current frequencies for medical imaging is 2-20 MHZ 
 
 

Introduction 
Technique should be turned from focused to unfocused to escape 
frequency grows 
• For each element randomly selected individual frequencies, resulting 

signal is includes large bandwidth.  
• Single point is used to record time history  
• Reconstruction of ROI is performed from analysis of acquired signal from 

single element 
• Process is repeated with different frequency patterns to increase 

performance of reconstruction 
• Signal analysis consists of a Fourier-based approach 

 



Theory 
• First emitter approximated as an array of simple sources radiating on 

unique frequency. 
• Another approximation that we can describe pressure at any point in a 

homogeneous space given by 
 
 

• Acoustic pressure for wave encounters a varying density may be described 
 
 
 

• To improve SNR process with new random frequency distribution can be 
repeated M-times. With M signal strength will increase linearly while noise 
N will further randomized  
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Simulation model 

• An operating frequency range between 0.1 – 1.25 MHz 
• Simulated array is 40 mm in length and 10 mm in width 
• Array segmented in to 202 linear sources with no kerf 
• A linear distribution of 202 frequencies between 0.1-1.25 MHz with a 

frequency resolution of 5.7 kHz 
• Each time randomly only one frequency assigned to element 
• Also randomly single element selected to record signal 
• Scattering field is placed within ROI 
• Scattering signal at the receiver is discrete approximation of Eq. (10) 

 
 

 
 
 

Results 
• Simulated B-scan via k-space 

projection algorithm using 200 
ns resolution. Simulation was 
repeated for each of 21 scan 
directions 

• ROI 40x40 mm 
• Two objects with diameter 

0.2mm was given sound speed 
of 3500 m/s 

• Only on 8mm separation 
objects are clearly separated 
 

Simulated B-scan images fc=0.67MHz. Two wires with (diam=0.2mm) 
separated by a) 2mm, b) 4mm, c) 6mm, d) 8mm. 



Results 

• Comparing with B-scan method 
with randomized frequencies has 
better performance. 

• Two objects can be imaged 
separately with 1.35 mm distance. 
Vertical 0.5mm 

• Simulation was repeated with 15 
randomized signals 
 
 

Comparison  a) random frequencies (top)  
B-scan (bottom) b) more magnified view 

Results 
 
 

Two reconstructed objects in the ROI with 
scattering strengths q1= 0.51 and q2=0.62 (top) 

Scattering ratio of q2/q1 is plotted as fn of 
frequencies (squares). Reconstructed values 

(cycles) 

• Object placed 4 mm apart and 17 
mm distance from transducer 

• The plot shows trend of increased 
distortion with higher sound speed. 
Corresponding error ranged from 
4.3% at 1857 m/s to 13% at 3000 
m/s 
 



Results 
 
 

Simulation with multiple scatters (left column) 
and their reconstructions (right column). 

Distance from transducer a) 3-14 mm b) 10-24 
mm c) 26-30 mm 

• Object placed 4 mm apart and 17 
mm distance from transducer 

• The plot shows trend of increased 
distortion with higher sound speed. 
Corresponding error ranged from 
4.3% at 1857 m/s to 13% at 3000 
m/s 

• Three scatterers placed diagonally 
in 8x8 ROI and additional object 4 
mm apart 

• Object as an inverted “V” was 
situated 18 mm from the 
ultrasound source. 
 

 
 

Conclusion 
• Large variation in image field makes it possible to localize the position of 

targets 
• In numeric investigation objects where better defined and more spatially 

localized 
• Small objects, which can be hard to detect, and even hard to localize 

using present methods may be both detected and localized. 
• Only single receive channel was used. 

 
 

 



Discussion 
 
 

 
 

 

Thank you 
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Short summary: In this paper, they present the probabilistic approach to reconstruction 

and discuss its optimality and robustness. And they detail the derivation of the message 

passing algorithm for reconstruction. Moreover, they further develop the asymptotic 

analysis of the corresponding phase diagrams with and without measurement noise, for 

different distribution of signals. 

 

I. INTRODUCTION 

The CS problem can be posed as follows: given an N − component signal s , one makes M  

measurements that are grouped into an M − component vector y , obtained from s  by a linear 

transformation using M N×  matrix F , given by 
1

N

i i
i

y F sµ µ
=

=∑  with 1,2,..., Mµ = .The aim is 

to reconstruct the signal s  from the knowledge of F  and y . This amounts to inverting the 

linear system y = Fs . However, we want to have M  as small as possible and when M N<  

there are fewer equations than unknowns. The system is under-determined and the inverse 

problem is ill-defined. However, CS deals with sparse signals. In the noiseless case, an exact 

reconstruction case, an exact reconstruction is possible for such signals as soon as M K> .         

Candes, Tao, Donoho and collaborators proposed to find the vector satisfying the constraints 

y = Fx  which has the smallest 1l norm. This optimization problem is convex and can be solved 

using efficient linear programming techniques. For any signal with density /K Nρ = , the 1l  

reconstruction gives indeed the exact result x = s  with probability one only if 

Probabilistic Reconstruction in Compressed Sensing : 
Algorithms, Phase Diagrams, and Threshold Achieving 

Matrices 
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1
/ ( )lM Nα α ρ= >  is, however, larger than ρ . The 1l  reconstruction is thus sub-optimal: it 

requires more measurements than theoretically necessary.  

 

 

II. PROBABILISTIC RECONSTRUCTION IN COMPRESSED SENSING 

The definition of the compressed sensing problem is as follows 

 

1

N

ui i u
i

y F sµ ξ
=

= +∑  1,..., Mµ = ,                       (1) 

 

Where is  are the signal elements, out of which only K  are non-zero. uiF  are the elements 

of a known measurement matrix, yµ  are the known result of measurements, and uξ  is 

Gaussian white noise on the measurement with variance µ∆ . The goal of CS is to find an 

approach that allows reconstruction with as low values of α  as possible. 

We shall adopt a probabilistic inference approach to reconstruct the signal.  
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Where Z , the partition function, is a normalization constant. Here we model the signal as 

stochastic with iid entries, the fraction of non-zero entries being 0ρ >  and their distribution 

being φ . 

We stress that in general the signal properties are not known and hence we do not assume that 

the signal model matches the empirical signal distribution, 0 0 0, ,ρ ρ φ φ= ∆ = ∆ = . One crucial 

point in our approach is using 1ρ <  which includes the fact that on searches a sparse signal in 

the model of the signal. 

 

A. The Bayesian optimality and the Nishimori condition 

The probabilistic approach can also be recovered from a Bayesian point of view. Indeed, given 

F and y , from Bayes theorem, we have 

 

( | ) ( )
( | , )

( )

P PP
P

=
x F y | F,x

x F y
y | F

                       (3) 

 

The value of measurements y  given the knowledge of the matrix F  and the signal x  is, 

by definition of the problem, given by 
11

( ) ( )
M N

i i
i

P y F xµ µ
µ

δ
==

= −∑∏y | F,x  in the noiseless case, 

and by 

 

2

1

1
( )

2

1

1
( | , )

2

N

i i
i

M y F x

P y F x e
µ µ

µ

µ µπ
=

− −
∆

=

∑
=

∆∏                    (4) 

 

With random Gaussian measurement noise of variance µ∆ , for measurement µ . To express 

the probability ( )P x | F  we consider that the signal dose not depend on the measurement matrix. 

And we model the signal as an iid: 

 

( )
1

( | ) 1 ( ) ( )
N

i i
i

P x F x xρ δ ρφ
=

= − +  ∏                    (5) 
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Thus the posterior probability of x  after the measurement of y  is given by 
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Where ( ) ( )Z P=y,F y | F  is again the normalization constant.  

  An estimator *x  that minimizes mean-squared error with respect to the original signal s , 

defined as 2

1

( ) /
N

i i
i

E x s N
=

= −∑ , is then obtained from averages of ix  with respect to the 

probability measure ( )P x | F,y , i.e., 

 

* ( ),i i i i ix dx x v x= ∫                               (7) 

Where ( )i iv x  is the marginal probability distribution of the variable i  

 

{ }
( ) ( )

j j i

i i
x

v x P
≠

≡ ∫ x | F,y .                           (8) 

 

III. THE BELIEF PROPAGATION RECONSTRUCTION ALGORITHM FOR COMPRESSED SENSING 

Exact computation of the averages * ( )i i i i ix dx x v x= ∫  requires exponential time and is thus 

intractable. To approximate the expectations we will use a variant of the belief propagation(BP) 

algorithm. Indeed, message passing has been shown very efficient in terms of both precision and 

speed for the CS problem.  

 

A. Belief Propagation recursion 

The canonical BP equation for the probability measure ( )P x | F,y  are expressed in terms of 

2MN  “messages”, ( )j jm xµ→  and ( )j jm xµ→ , which are probability distribution functions. 
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1

21
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≠
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Where iZ µ→ and iZ µ→  are normalization factors ensuring that ( ) 1i i idx m xµ→ =∫ , 

( ) 1i i idx m xµ→ =∫ . 

Using the Hubbard-Stratonovich transformation 
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For ( )j jj i
w F xµ≠
= ∑  we can simplify Eq.(9) as 
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The integration over scalar jx  takes the form of the moment generating function. Therefore, 

 
2

21
( ) ( )

2 21
( )

2

j j
i i i i

j

F x
F x y y F x i

i i Xi
j i

m x e d e E e
Z

µ
µ µ µ µ

µ µ µ

λ λ

µ µ
λ

π

− − − − +
∆ ∆ ∆

→ →
≠

 
 =

∆   
∏∫       (13) 

 

By assuming that each scalar jX  is Gaussian distributed, the moment generating function is 

expressed using means and variance. Thus, introducing means and variances as “messages” 

 

( )i i i i ia dx x m xµ µ→ →≡ ∫ ,                                (14) 

2 2( )i i i i i iv dx x m x aµ µ µ→ → →≡ −∫                             (15) 
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We obtain 

 

22
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Performing the Gaussian integral over λ , we obtain 
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Where  

2

2

i
i

j jj i
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µ

µ
µ µ µ
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                        (18) 
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                     (19) 

 

To close the equation on messages ia µ→  and iv µ→  we notice that  

 



2

2
1

( ) [(1 ) ( ) ( )]
i

i i i
x A x B

i i i iim x x x e
Z

γ γγ µ γ µ

µ µ ρ δ ρφ → →≠ ≠
− +

→ →
∑ ∑= − +         (20) 

 

Message ia µ→  and iv µ→  are respectively the mean and variance of the probability 

distribution ( )i im xµ→ . It also useful to define the local beliefs ia  and iv  as 

 

( )i i i i ia dx x m x≡ ∫                            (21) 

2 2( ) ,i i i i i iv dx x m x a≡ −∫                         (22) 
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Where  

( ) 

2

2
1

[(1 ) ( ) ( )]
i

i i i
x A x B

i i i iim x x x e
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Let us define the probability distribution  
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Where  2( , , )Z R x∑  is normalization. We define the average and variance of φΜ  as  

 

 2 2( , ) ( , , )af R dxx R x≡ Μ∑ ∑∫                        (25) 

2 2 2 2 2( , ) ( , , ) ( , )c af R dxx R x f R≡ Μ −∑ ∑ ∑∫                (26) 

 

The closed form of the BP update is 
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For a general signal model ( )ixφ  the functions af  and cf  can be computed using a 

numerical integration over ix . Eqs. (14-15) together with (18-19) and (20) lead to closed 

iterative message passing equation, which can be solved by iterations. There equation can be 

used for any signal s , and any matrix F . When a fixed point of the BP equations is reached, the 



 
 

8 

elements of the original signal are estimated as *
i ix a= , and the corresponding variance iv  can 

be used to quantify the correctness of the estimate. Perfect reconstruction is found when the 

message converge to a fixed point such that i ia s=  and 0iv = . 

IV. DISCUSSION 

After meeting, please write discussion in the meeting and update your presentation file. 
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DASHER – An Efficient Writing System for Brain 
Computer Interfaces? 

Sebastian A. Wills and David J. C. MacKay

IEEE Trans. Neural systems and 
Rehabilitation Engineering. (2006.06)

Presenter : Soogil Woo
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The P300 (P3) wave is an event related potential (ERP) component 
elicited in the process of decision making.

In neurology, Steady State Visually Evoked Potentials (SSVEP) are 
signals that are natural responses to visual stimulation at 
specific frequencies. When the retina is excited by a visual stimulus 
ranging from 3.5 Hz to 75 Hz, the brain generates electrical activity at 
the same (or multiples of) frequency of the visual stimulus.

Dasher is a computer accessibility tool which enables users to write 
without using a keyboard, by entering text on a screen using 
a pointing device such as a mouse, a touchpad, a touch screen, 
a roller ball, a joystick, a Push-button, or even mice operated by the 
foot or head.
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DASHER is a human computer interface for entering text using
continuous or discrete gestures.

DASHER efficiently converts bits received from the user into text,
and has been shown to be a competitive alternative to existing text-
entry methods in situations where an ordinary keyboard cannot be
used. (PDAs, mobile phones, for handicapped person)

DASHER is free, open-source software.

In DASHER, the size of each box within its parent box is determined
by the corresponding letter’s probability according to a language
model.

As result, sequences of characters that are well predicted by the
language model take less time to zoom into.

Improbable sequences of characters are always possible to write,
but take longer.

INFONET,   GIST         / 20

They first describe how Dasher is used to enter the word ‘the’.

Figure (a) show the initial configuration, with an alphabet of 27
characters displayed in a column.

There are 26 lower case letters and the symbol ‘_’(under bar)
represents a space.

The user writes the first letter by making a gesture towards the
letter’s rectangle.

The trails show the user moving the mouse towards the letter ‘t’.
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The point of view zooms towards this letter (figure (b)).

As the rectangles get larger possible extensions of the written string
appear within the rectangle that they are moving towards.

If they are moving into the ‘t’, rectangles corresponding to ‘ta’, ‘tb’,…,
‘th’,…,‘tz’ appear in a vertical line like the first line.

The heights of the rectangles correspond to the probabilities of
these strings, given the languages.

INFONET,   GIST         / 20

In English, ‘ta’ is quite probable; ‘tb’, is less so; ‘th’ is very probable.

It is easy to gesture our point of view into ‘th’ (figure (c)), and from
there into ‘the’ (figure (d)).
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In a given context, they display the alphabet of possible
continuations as a column of characters as shown in figure 2.

The division of the right-hand vertical is analogous to arithmetic
coding.

Let their alphabet be                          .

They divide the real line[0,1) into I intervals of lengths equal to the
probabilities                .

They subdivide the interval    into intervals denoted                       
such that the length of the interval        is

They use a language model. (PPM and PPM5D+)

<Figure 2>

1 2{ , ,..., }X IA a a a

( )i iP x a

ia 1 2 3, , ,...,i i i i Ia a a a a a a a

i ja a

1 1 2 2 1 2 1( , ) ( ) ( | )i j iP x a x a P x a P x a x a
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A. 2-D Continuous Input

DASHER was first developed to be driven by continuous two-
dimensional (2-D) gestures by directly controlling the position of a 
pointer on the screen. 

If the user moves the pointer away from the origin, the interface 
zooms in towards the location pointed to  by the vector from the 
origin to the pointer. 

2-D input devices used with DASHER include mouse, touch-screen, 
gaze tracker, and head mouse.

Under mouse control, novice users can reach writing speeds of 25
words/min after 1 h of practice; expert users can write at 35
words/min.

Under eye control alone users familiar with DASHER can write at 25 
words/min, faster than any other gaze-writing system they are aware 
of.
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A. 2-D Continuous Input (Example)
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B. 1-D Continuous Input

For input devices offering a single continuous dimension of control,
DASHER maps the one-dimensional (1-D) input onto a continuous
curve within the normal 2-D control space.

Midrange values of the input control the direction in which to zoom.

Values towards the extremes of the available range allow the user to
zoom out and pause the interface.

C. Discrete Inputs

Users who can activate buttons (virtual or physical) but cannot
reliably provide a continuous output can use one of DASHER’s
“button modes”. (The direct 2-button mode maps 1 button to the
action of zooming in one the top half of the visible DASHER land-
scape, and the second button to zooming in on the bottom half.)
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C. Discrete Inputs

In button mode, DASHER converts bits from the user into written
text at exactly the compression rate achieved by the language
model.

DASHER’s current language model PPMD5 compresses English
text to around 2 bits per character.

DASHER outputs one character for every two bits provided by the
user’s button presses.
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A. Motivation

Current brain computer interface (BCI) systems extract data from
the user at a lower information transfer rate than typical physical
user interfaces.

DASHER offers an efficient method for converting the output of a
BCI into text.

DASHER can also use information about the reliability if the signals
generated by the user.

DASHER’s language model can be initialized using text that is
biased towards a limited set of phrases and words that the user is
likely to wish to communicate.

The user will be able to write these phrases, or variants of them,
extremely quickly, while retaining the ability to write any other phrase
should they wish to.
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B. Continuous Control

Many BCI systems output a continuous 1- or 2-D signal which could
be used to drive DASHER directly.

DASHER is well-suited to a BCI signal which is likely to be under
imperfect control of the user.

In DASHER, users write by navigating to what they want to say, not
by selecting letters or words.

If the user accidentally steers in the wrong direction, they can
correct their mistake by subsequent compensatory action.

As with all navigation, all that matters is the final location arrived at.
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C. Discrete Control

BCI systems that emit discrete events fall into two categories.

The first category contains systems which internally convert a 
continuous variable into discrete outputs

Systems in which the user makes selections by driving a cursor to 
one of two or more on-screen targets fall into this category. 

They suggest that the best strategy for using DASHER with BCI 
systems in this category may be to use the continuous variable to 
drive DASHER directly, without an intermediate conversion into 
discrete options. 

The second category contains systems which are intrinsically
discrete in nature.

For example, both P300 and steady-state visually evoked potential
(SSVEP) interfaces determine which of several discrete visual
targets the user is attending to.
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C. Discrete Control

A natural way to use these techniques would be to paint P300
targets or SSVEP regions onto the DASHER landscape.

For example, in the case of SSVEP, the right-hand half of the
DASHER landscape could be covered by two or more regions
flickering at different frequencies (Fig. 3).

Depending on which region the user
attends to, DASHER zooms in on the top
or bottom half of the screen. <Figure 3>
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C. Discrete Control

To zoom into one of these regions, the user attends to that region.

The BCI system detects which region the user is attending to and
causes DASHER to zoom in appropriately, and the cycle repeats.
Likewise, P300 targets could be arranged down the right-hand side
of the DASHER landscape, instead of in the commonly used speller
grid.

If the accuracy of the BCI system is high, then the optimal strategy 
for dealing with the rare errors that do occur may be to simply 
provide an additional target which instructs DASHER to undo the 
previous action (i.e., zoom out). 

Such a target needs to be present anyway, in case the user makes a 
mistake in selecting which region of the DASHER landscape 
contains the text they are trying to write. 

This is similar to the strategy of adding a “delete” node to a binary 
decision tree.
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C. Discrete Control

However, if the BCI misclassification rate is high, they suggest that
the optimal strategy is to model the BCI system as a noisy
communication channel between the user and the computer, and to
use information theory to inform the choice of an error-correcting
code to use.

For example, instead of accumulating evidence that the user is
attending to a particular target over a single, long trial, it may be
more efficient to run several shorter trials, each one individually less
reliable.

By varying the SSVEP frequencies on each target in each trial
according to the coding scheme specied by the error-correcting
code, the overall information transfer rate may be improved.
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They wish to make the best possible use of the bits of information 
content that can be generated by severely disabled people.

DASHER offers a paradigm for efficiently converting these bits to 
communication symbols.

DASHER has proved its effectiveness for people able to use a gaze 
tracker or make other motor actions. 

DASHER will be equally useful to users who retain functioning vision 
but are limited to communication through a BCI.
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DASHER + SSVEP (Continuous Control) (Mouse Control)
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Speckle-field digital holographic microscopy 

Conventional Holographic phase microscopy (HPM) uses a plane wave illumination that has very limited 
aperture in a condenser lens. This leads to poor spatial resolution compared with diffraction-limited 
resolution of conventional bright field microscopy. 

Speckle field digital holographic microscopy (SFDHM), an interferometry-based light microscopic 
technique for sensing complex electric field (E-field) which utilizes the speckle field for illumination.  

Principle 

 

 

 

 

 

 

                                                                       Figure. 1                         

 

 

 

 

 

 

 

                                                                          Figure.2 

They generated a speckle field by illuminating a holographic diffuser with a He-Ne laser. The speckle 
field traveled through a microscope and was imaged on a detector. The hologram of the speckle field 
was generated by imposing a plane-wave reference beam on the detector. Using a heterodyne Mach-
Zehnder interferometer, a complex E-field of the speckle was retrieved, as shown in figure 1b-c. 

Then a sample was inserted on the sample stage with the same speckle field illumination. Introducing 
the sample modified the original speckle pattern. 
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Next, the E-field of the modified speckle was recorded in the same way as the recording of the original 
speckle pattern (Figs. 1d-e). The sample is almost invisible in these images since its image is overlapped 
with the complex pattern of the speckle field.  

The background speckle field can be removed and the sample-induced complex field image can be 
retrieved from the speckle field (Fig. 1b-c) by dividing it by the field without the sample (Fig. 1d-e). 

As a result, the sample becomes clearly visible, as shown in figs. 1f-g. 

Speckle illumination not only reduces diffraction noise but also enhances the resolution in comparison 
with conventional HPM. 

Holographic process 

 

 

 

 

 

 

 

  

Light with sufficient coherence length is split into two partial waves by a beam splitter (BS). One wave 
illuminates the object, is scattered and reflected to the recording medium, e.g. a photographic plate.  

The second wave, called the reference wave, illuminates the plate directly. Both waves are interfering. 
The recorded interference pattern is called hologram. 

The holographic process is described mathematically as follows: 

( , ) ( , ) exp( ( , ))oO x y o x y i x y           … (1.1)            

Is the complex amplitude of the object wave with real amplitude o and phase o  and 

( , ) ( , ) exp( ( , ))RR x y r x y i x y          … (1.2)      

Is the complex amplitude of the reference wave with real amplitude r and phase R  
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Both waves interfere at the surface of the recording medium (CCD). The intensity is calculated by 

2( , ) ( , ) ( , )I x y O x y R x y   

*( ( , ) ( , ))( ( , ) ( , ))O x y R x y O x y R x y    

* *( , ) ( , ) ( , ) ( , )R x y R x y O x y O x y   

* * ( , ) ( , ) ( , ) ( , )O x y R x y R x y O x y          … (1.3) 

Where *denotes the conjugate complex.  

The amplitude transmission h(x,y) of the developed photographic plate (or CCD) is proportional to I(x,y) : 

( , ) ( , )oh x y h I x y           … (1.4) 

Where   is a constant,  is the exposure time and oh is the amplitude transmission of the unexposed 

plate. ( , )h x y is also called the hologram function.  

In digital holography using CCD’s as recording medium oh can be neglected. 

For hologram reconstruction the amplitude transmission has to be multiplied with the complex 
amplitude of the reconstruction (reference) wave: 

2 2

2 2 *

( , ) ( , ) [ ( )] ( , )

                 ( , ) ( , ) ( , )
oR x y h x y h r o R x y

r O x y R x y O x y



 

  

 
      … (1.5) 

2 2 2 2 *

reconstructed object wave, distorted real image of the    
 forming the virtual image

reference wave 
multiplied by a factor

( , ) ( , ) [ ( )] ( , )  ( , )  ( , ) ( , )oR x y h x y h r o R x y r O x y R x y O x y      
 object

  

The first term on the right side of this equation is the reference wave, multiplied by a factor. It 
represents the un-diffracted wave passing through the hologram (zero diffraction order). 

The second term is the reconstructed object wave, forming the virtual image. The factor 2r only 

influences the brightness of the image. 

The third term produces a distorted real image of the object.  

For off-axis holography the virtual image, the real image and the un-diffracted wave are spatially 
separated. 
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Optical Path change 

The hologram is reconstructed by illumination with the reference wave. As a result of the superposition 
of the two holographic recordings with slightly different object waves only one image superimposed by 
interference fringes is reconstructed. 

The complex amplitude of the object wave in the initial state is 

1( , ) ( , ) exp[ ( , )]O x y o x y i x y         … (1.6) 

Where ( , )o x y is the real amplitude and ( , )x y  is the phase of the object wave. 

Optical path changes due to deformations of the object surface can be described by a variation of the 
phase from   to    .    is the difference between the initial and actual phase, and is called the 

interference phase. The complex amplitude of the actual object wave is therefore denoted by:

2 ( , ) ( , ) exp[ ( ( , ) ( , ))]O x y o x y i x y x y          … (1.7) 

The intensity of a holographic interference pattern is described by the square of the sum of the complex 
amplitudes. It is calculated as follows: 

2 *
1 2 1 2 1 2( , ) ( )( )I x y O O O O O O            … (1.8) 

Equation (1.8) describes the relation between the intensity of the interference pattern and the 
interference phase, which contains the information about the deformation. 

Several techniques have been developed to determine the interference phase by recording additional 
information. The most commonly used techniques are the various phase-shifting methods. 

The interference phase is the key to calculate quantities representing the object under investigation. 
These are the displacement vector field of the surface in the case of opaque bodies.  

The interference phase is the key to calculate quantities representing the object under investigation. 
These are the displacement vector field of the surface in the case of opaque bodies or refractive index 
changes within transparent media. 

 

                                                     Yet to explore 
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General Principles 

 

 

 

 

 

 

 

 

 

A general set-up for digital recording of off-axis holograms is shown in above above figure. A plane 
reference wave and the wave reflected from the object are interfering at the surface of a CCD. The 
resulting hologram is electronically recorded and stored.  

The object is, in general, a three-dimensional body with diffusely reflecting surface, located at a distance 
d from the CCD. 

In optical reconstruction the virtual image appears at the position of the original object and the real 
image is formed also at a distance d, but in the opposite direction from the CCD, see figure (b). 

The diffraction of a light wave at an aperture (in this case a hologram) which is fastened perpendicular 
to the incoming beam is described by the Fresnel-Kirchhoff integral 

2exp( ) 1 1( , ) ( , ) ( , )   ( cos )  
2 2

ii h x y R x y dx dy

 
  

 

 

 


         … (2.1) 

With    
2 2 2( ) ( )x y d                … (2.2) 

Where ( , )h x y is again the hologram function and  is the distance between a point in the hologram 

plane and a point in the reconstruction plane, see figure 5. 
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For a plane reference wave ( , )R x y is simply given by the real amplitude: 

                                                                0R r i r         … (2.3) 

The diffraction pattern is calculated at a distance d behind the CCD plane, which means it reconstructs 
the complex amplitude in the plane of the real image. 

Equation (2.2) is the basis for numerical hologram reconstruction. Because the reconstructed wave-field 
( , )  is a complex function, both the intensity as well as the phase can be calculated. 

Also the real amplitude ( , )O x y  of the object wave can be measured from the intensity by blocking the 

reference wave. 
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Example 

 

 

 

 

 

 

 

 

 

 

                        Figure 4 

Figure 4 illustrates the implementation of the numerical algorithms in the reconstruction of an ovarian 
cell.  

The area is 260 60 m with 424 x 424 pixels.  

Figure 4(a) is the holographic interference pattern recorded by the CCD camera, and its Fourier 
transform in figure 4(b) is the angular spectrum.  

A propagation phase factor ( 1.0 )z m is multiplied, and finally inverse-Fourier transformed to obtain 

the amplitude image in figure 4(c) and the phase image in figure 4(d). 

The physical thickness of the cell can be calculated from 

                                                       0( / 2 ) / ( )d n n          … (2.3) 

Where  is the wavelength,  is the phase step and 0( )n n is the index difference between the film 

and air. 

For example the layer of a cell is found to be about 110nm, assuming n=1.375. 


