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Outline  

 Compressive sensing  (CS) basics 
 

 Performance evaluation: Restricted Isometry constant 
 

 Random matrices in CS : Gaussian 
 

Wishart matrices: New probability distributions 
 

 Undersampling Analysis in CS 

2 



 Under-determined System:  
 Equations < unknowns 

 
 
 
 
 
 
 

 Problem: Find        given  
 

 Infinite number of solutions 
 

 Approx. solution: 
 

 Can we find an unique solution?  No.  
 

 YES!  says CS provided the signal or the vector x is sparse 
 
 
 
 

CS Basics 

and   YES  
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 A sparse signal has only a fewer non-zero components than zero 
components. 
– x= [ 0 1 0 0 0 -2 -1 0 0 7 0 0]  
– Length  N=12  
– No. non-zero components  K=4  (Sparsity is 4,  4-sparse signal) 
– Support set: Locations of non-zero components  
– No. of support sets is  

 
 x= [ 0 1 0 0 1] 

 
 x= [ -1 1 1 -2 1] 
 
 Non-sparse signal can be converted into a sparse signal  

 
 
 
 

2-sparse signal 

Not a sparse signal 
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CS Basics (contd.) 
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 F  is a sensing matrix 
– Deterministic matrices  
– Random matrices: Gaussian and Bernoulli 
– Structured matrices: Circulant matrices, Vandermonde 

 
 Two broad research questions in CS 

– What is a good sensing matrix?           (Such as Coherence & RIC) 
– What is a good recovery algorithm?    
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CS Basics (contd.) 



 
 To measure the goodness of sensing matrix for sensing and recovery of 

sparse signals [Candes05]  introduced Restricted Isometry Constant (RIC) 
of a sensing matrix, denoted by  
 

      takes values between 0 to 1. 
 

 If       is close to zero, then the matrix is good. 
 

 Restricted Isometry Constant (RIC): The RIC of a sensing matrix      is the 
smallest quantity such that following equation holds 
 
 
 
 

for all support sets     and for all values of  
 
 RIP of order K:  If  a sensing matrix F satisfies above equation 

with             , then F is said to satisfy RIP of order K  (Good matrix) 
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What is a good sensing matrix?  
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 Two ways to compute RIC 
– By direct numerical evaluation 
– Through eigenvalues of sensing matrices. 

 
Direct numerical evaluation 
 
 Evaluate the ratio              for           support sets and for all 
     signal  values and find minimum and maximum of the ratio.  
     (Not possible for large values of N and K) 

 
 For a given (deterministic) sensing matrix finding RIC is an NP- hard 

problem. 
 

 Constructing a matrix      for a given RIC is still an open problem. 
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Finding RIC  
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Definition by Candes [Candes05]  
 
 
 

 From Rayleigh quotient we know that  
 
 
 

Observation: 
Eigenvalues of the matrix          does not depend on signal. RIC is a 
property of a sensing matrix and not of the sparse signal or the recovery 
algorithm 
 

How eigenvalues related to       ? 
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Finding RIC (Contd.) –An easy way  
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 [Candes 05] showed that for “large size” Gaussian ensemble  
 
 
 

When      is an Gaussian matrix, then           is called Wishart 
matrix (popular in multivariate statistics [Murihead 1982] 
and MIMO communications [Verdu 2004]) 
 

Knowing eigenvalues of Wishart matrix guides us to say 
probabilistic statements about RIC [Candes 05]  

    [Baraniuk08] 
 
How does the above relation hold for Gaussian matrices of 

various sizes? 
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RIC  and Eigenvalues  

( ) ( ) ( ) ( )min max1 1T T
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  [Blanchand11a, Bah10] studied                            and  
 
 
 
 
 
 

   
 
 
 
 
 
 

 
 Observation 1. Values of RIC depends on the size of the sensing matrix! 
                      2. Minimum eigenvalue still confined between 0 and 1 

 
 

 
 
 

10 

RIC and Eigenvalues  
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An easy way to study performance of sensing matrix is 
via eigenvalues 
 
 

For Gaussian sensing matrices,   
 

  Using minimum eigenvalues we evaluate     as  
 
 

For a Gaussian matrix      , we can evaluate      via the 
minimum eigenvalue of the Wishart matrix 
 

We can state:  
 
 
 

L R
K Kδ δ≠

( ) ( ) ( ) ( )min max1 1L T T R
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( )min1 minL T
K F Fλδ− = K KK

L
Kδ

FK
L
Kδ
TF FK K

( ){ }minPr min TF F aλ >K KK



 If     is an           Gaussian matrix,         is a          Wishart 
matrix (real or complex) 
 

  The Wishart matrix has K eigenvalues 
 

  Eigenvalues of Complex Wishart matrices  
– [Khatri 1967]       - in terms of product of beta integrals.  
– [Krishnaiah 1971] - Zonal polynomials (available up to K = 6) 
– [Alouini 2004]  - CDF for K = 2 case 
– [Chinai 2009]   - in terms of matrix determinants 

 
 Eigenvalues of real Wishart matrices 

– [Sugiyama 1964]  - in terms of Zonal polynomials.  
– [Edelman  1989] -  Tricomi functions (no closed-form for K >25) 
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Eigenvalue distributions of Wishart 
Matrices 

M K× K K×FK
TF FK K



Aim: To determine new eigenvalue 
distributions, compact and tractable. 
Approach: Start with the joint eigenvalue 

distribution      , and find  
 For real Wishart matrix [Murihead 1982]  
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Eigenvalue distributions of Wishart 
Matrices 

 ρ -  Variance of  
Gaussian random 
variable 

Multivariate 
Gamma function 
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 Maximum eigenvalue is obtained by  

 
 

 Minimum eigenvalue is obtained by 

 
 

 Two key step in order to perform         
1. Expansion of the Vandermonde determinant along the desired 

eigenvalue.  
2. Multiple integration of sub-determinants using the theory of 

skew-symmetric matrices [Bruijn1955].  
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Maximum and Minimum eigenvalues 
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Maximum eigenvalue distribution 
 
 
– PF is a Pfaffian of skew-symmetric matrix (               )  
–   
– The (i,j)th entry of       for odd K is  

 
 

 
Minimum eigenvalue distribution 
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Plots of eigenvalues 
 Simulation results  
           K = 51 ,    M = 300, 500 and 700 
 

 
 
 
 
 
 
 Both eigenvalues move close to 1 as M increases 
 
 

 

 

Minimum eigenvalue of Wishart matrix Maximum eigenvalue of Wishart matrix 



Undersampling Analysis in CS 

 Aim: To determine the sufficient number of measurements needed for the 
exact recovery of K-sparse signal. 
 

 What literature says? If RIC of a sensing matrix satisfies a certain 
theoretical guarantee, then a recovery algorithm exactly recovers sparse 
signals 
 
 
 
 

  See [Mo11] for summary of theoretical guarantees 
 

 In practice, what does the theoretical guarantee translates to? 
 

 Way to interpret theoretical guarantees in practical terms is termed as 
undersampling analysis (UA). 
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Undersampling analysis suggest the number of 
measurements that are needed in order to satisfy a 
particular theoretical guarantee.  
 
 
 

Our result summary: 
For an RIC condition of the form            there exists a 
number       so that                  measurements are sufficient 
for any  matrix chosen at random from a  Gaussian 
ensemble of size            .  
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Undersampling Analysis in CS (Contd.) 



Eigenvalue-based Undersampling Analysis 

 Our approach 
– Start with an arbitrary condition            (Good matrix) 
– Evaluate  
– Find conditions at which  

RIC is related to minimum eigenvalue as     
 

 
 Definition: A matrix     satisfies the RIP of order K if 
 
 and we call such matrix as a well-conditioned matrix   

19 

( )min1 minL T
K F Fλδ− = K KK

( ){ }minPr min 1TF F aλ η> > −K KK

F

L
Kδ δ<

{ }Pr L
Kδ δ<

{ }Pr 1L
Kδ δ< →



Probability of Well-Conditioned Matrix 

 
 
 
 
 
    is the union bound,      an upper bound 
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Probability of Well-Conditioned Matrix 
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 The exponent                                              is a function sparsity 
ratio             and undersampling ratio  : K
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Undersampling Analysis 
 Under what condition Pr{ Well-conditioned matrix} 1 ? 

 
 

 
 For OMP,  [Davenport10] advised that a matrix with                 is good for 

sparse signal recovery.  
 
 
 

 We aim to find 

–  For fixed   , what values of     possible? 

– What happens as          ; 
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Undersampling Analysis (Contd.) 
 
 

 
 

 
 

  
 
 
 
 

 Thus,                 are sufficient for a Gaussian ensemble to recovery a sparse 
signal 
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Summary 

We have derived new eigenvalue distributions of Wishart 
matrices using the theory of skew-symmetric matrices. 

 
 Our distributions are exact, compact and  are useful for the 

eigenanalysis of small and large systems  
 

We have found a lower bound on the existence of a good 
Gaussian sensing matrix for the purpose of undersampling 
analysis 
  

We have shown that for every RIC condition there exists a 
threshold above which finding a Gaussian matrix is easy. 
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Introduction – Diversity Technique 

Channel fading is one of the underlying causes of performance degradation 

in wireless networks 

To combat fading, diversity techniques have been proposed and employed 

in the time, frequency, and space domains 

Cooperative networking is one of the current approaches that aim to utilize 

spatial diversity via user cooperation 

Each user participates collaboratively, and shares the benefit of a virtual 

antenna array in transceiver messages that are available through another 

user’s antenna 
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Introduction – Dynamic Network Codes (1/2) 

Dynamic Network Codes (DNC) proposed by Xiao and Skoglund 
[Xiao10] is to handle a dynamic network topology 

Wireless links are unreliable, and then link failures will occur 
randomly in the inter-user channels 

In the DNC scheme, multiple network code matrices are used; each 
one is designed to handle particular link outage occurrences 

A certain occurrence of link outages results in a particular 
restriction to the elements of the network code matrix 

Reblatto et al. [Rebelatto12] extended the two-phase transmission 
framework of the DNC to multiple phases in the   
Generalized Dynamic Network Code (GDNC) scheme to further 
enhance the transmission rate and the diversity order 

 [Xiao10] M. Xiao, M. Skoglund, “Multiple-User Cooperative Communications Based on Linear Network Coding,” IEEE Trans. 
Commu., vol. 58, no. 12, pp. 3345–3351, 2010. 

[Rebelatto12] J. L. Rebelatto, B. F. U-Filho, Y. Li, B. Vucetic, “Multiuser Cooperative Diversity through Network Coding Based on 
Classical Coding Theory,” IEEE Trans. Sig. Proc., vol. 60, no. 2, pp. 916–926, 2012. 
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Introduction – Dynamic Network Codes (2/2)  

|  Link Failure 

|  Linear combinations for outgoing messages 

1x

2x

3x

( )1 1 2 3, ,f x x x

( )2 1 2 3, ,f x x x

( )1 1 2 23 1 30, ,f x x x x xxα γ⋅= + +

( )2 1 3 1 322, , 0f x x x p rxxx + ⋅= +

An intermediate node fails to decode some of the messages received from 
the other nodes, and creates a linear combination of the messages it 
could successfully decode, and forwards it to the base station 
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Introduction – Motivation 

While a series of performance analyses for DNC and GDNC are provided, 
the authors rely on the exhaustive investigation of all the individual 
network code matrices to determine if the resultant transmission matrix is 
sufficiently able to decode the source messages 

The performance analyses to determine the probability of successful 
decoding are performed only for small and non-general networks 

A successful decoding is assumed to be achieved when the network code 
matrix at the base station has a sufficient number of linearly independent 
vectors which at least equals the number of unknown source messages 

Then, the success probability is obtained by adding all the individual 
probabilities of such events over all the possible link failures.  

To this end, the authors followed the approach of tracking down each 
network code matrix individually, and determining if each was full in rank.  

This is an exhaustive process. 
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Introduction – Research Goal 

Proposing an efficient evaluation framework of the system performance in 
cooperative wireless networking schemes 

Investigating impacts of the number of relays and the field size of network 
coding on the system performance 

|  Aim 
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Cooperative Network – Transmission Strategy 

An (N, M) cooperation scheme for wireless networks 

Two phase transmissions : broadcasting and relaying  

 

U1 

U2 

BS 

UN 

R1 

R2 

RM 

U1 

U2 

BS 

UN 

R1 

R2 

RM 

Broadcasting Relaying 

Transmitter Receiver 
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Cooperative Network – Received Signal 

1 1 1 1, , , ,u d u u d u d u dy P h x n= +

|  Broadcasting phase 

|  Relaying phase 

2 2 2 2, , , ,r d r r d r d r dy P h x n= +

{ }1 2, ,..., ,Nu U U U∈ { }1 1 2, ,..., ,Md R R R BS∈

|  Rayleigh fading channel 

{ }1 2, ,..., ,Mr R R R∈ { }2d BS∈

                               ,  
 

–        
–          and           are the distances, u-to-d1  and  r-to-d2      

 

( )2 2

2
, ,~ 0,r d r dh σ ( )1 1

2
, ,~ 0,u d u dh σ

1 1

2
, ,: ,u d u d

ησ ρ−=
2 2

2
, ,:r d r d

ησ ρ−=

1,u dρ
2,r dρ
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Cooperative Network – Outage Probability 

( ){ }1 1, ,Pr log 1 ,u d u d thRδ γ= + <

( ){ }2 2, ,Pr log 1 .r d r d thRδ γ= + <

 In Rayleigh fading channels, two outage probabilities are used as 

Each of the outage probabilities is a function of the instantaneous 
SNR and the distance between two nodes 

–  where         is the predefined threshold of the spectral efficiency thR

1 1

2

, , 0: ,u d u d uh P Nγ =
2 2

2

, , 0:r d r d rh P Nγ =

 The instantaneous SNRs of the two channels are denoted as  

All the channels are spatially and temporally independent 
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Modeling – Random Transmission Matrix   

A random transmission matrix can be used to represent a family of network 
coding matrices for an (N, M) cooperative scheme 

1,1 11

1

,1 2

1,2 11 1

,2 1

0

0N NN

N

N

M M MN

y
x

y x
y

x
y

α

α
β β

β β

   
               =                  

     




  



 


  



( ) ( ) ( ) ( )1 1 1=
N N

N M N M N N N
M N

×
+ × + × × ×

×

 
=  
  

D
y A x x

P

The vector     received at the BS is then given by y
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WHY NEW MODEL IS NEEDED?  
Performance evaluation : a transmission matrix has full rank or not    

For N = 2 and M = 1, there are 8 transmission matrices having full rank 

1 0
0 1
0 0

 
 
 
  

1 0
0 1
1 0

 
 
 
  

1 0
0 1
0 1

 
 
 
  

1 0
0 1
1 1

 
 
 
  

1 0
0 0
1 1

 
 
 
  

1 0
0 0
0 1

 
 
 
  

0 0
0 1
1 1

 
 
 
  

0 0
0 1
1 0

 
 
 
  

∑
The success probability is obtained by adding all the individual probabilities 
of such events over all the possible link failures 

This approach is exhaustive !!! This is intractable as the size of 
networks grows [Xiao10], [Rebelatto12]  
– # of random matrices with full rank for the binary field :  

We need an efficient and systematic performance evaluation 

Sum of individual probabilities 

( )1

1

2 2
N

N i

i

−

=

−∏

12/40 



HOW DOES THE TRANSMISSION MATRIX BECOME 
RANDOM (1/2) 

Consider an element of a transmission matrix as a random variable 

The main idea of the determination of random elements  
– A nonzero coefficient of network coding is chosen if the wireless link between two 

nodes is successful 
– Otherwise, the coefficient must be zero 

In this work, we use an outage probability as a link failure 

1,1
1

2,1
2

1,2

1 0
0 0
0 1

y
x

y
x

y

   
    =            

U1 

U2 

BS R1 

outage 

outage 
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HOW DOES THE TRANSMISSION MATRIX BECOME 
RANDOM (2/2) 

The relay combines successful decoded messages 

If the outage between the relay and the base station occurs, the 
corresponding row of a random transmission matrix becomes all zero 
elements  

The reason is that the relay cannot forward user’s messages to the base 
station 

1,1
1

2,1
2

1,2

1 0
0 0
0 0

y
x

y
x

y

   
    =            

U1 

U2 

BS R1 

outage 

outage 
1 2x x+ 1 2x x+
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Modeling – Example 1 

1,1 11
1

2,1 22
2

1,2 11 12

0
0

y
x

y
x

y

α
α

β β

   
    =            

U1-BS U2-BS D U1-R1 U2-R2 R1-BS P 

O O O O O 

O X O X O 

X O X O O 

X X X/- X/- O/X 

[ ]1 1
1 0
0 0
 
 
 

[ ]1 0

0 0
0 1
 
 
 

[ ]0 1

0 0
0 0
 
 
 

[ ]0 0

1 0
0 1
 
 
 

In a small example, N = 2, M = 1, q = 2,  

Determination of the transmission matrix (O : success, X : failure) 
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Conditional Probability Distribution 

Assume that all wireless links are independent 

Let       and      be the nonoccurrence  and occurrence of an outage event, relay Rj – 
to-BS 

If the outage event       occur, we set the conditional probability without the conditions 
of channel links between users and the relay as  

 

j

j

j

{ }Pr 0 1ji jβ = =

For the event     , each element        of              can be independently defined, 

 
j PM N×

jiβ

{ }Pr ,ji jβ θ=  qθ ∈

For nonzero values,                     we consider the uniform and MDS 
distributions                  

Using the outage probability, we set the conditional probability having zero 
value as 

{ } ,Pr 0
i jji j U Rβ δ= =

\ {0},qθ ∈
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Note that                           without the conditions of outages, (Ui-Rj) 

Consider two types for modeling the elements of P 
– Uniform distribution 

 
 
 
 

– MDS distribution 
 
 
 

 
 

Modeling – Probability Distribution (1/2) 
Modeling each diagonal element of D 

{ } ,

,

  ,       if 0 
Pr

1 ,    if 1  
i

i

U BS
ii

U BS

== =  − =

δ θ
α θ

δ θ

{ } ( ) ( )
,

,

           ,          if 0 
Pr

1 1 , if 0  

i j

i j

U R

ji j
U R q

δ θ
β θ

δ θ

== = 
− − ≠



{ }
,

,

   ,     if 0 

Pr 1 ,   if 

     0  ,       otherwise

i j

i j

U R

ji j U R

δ θ

β θ δ θ χ

=


= = − =





{ }Pr 0 1ji jβ = =
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Modeling - Probability Distribution (2/2)  

9 13 14 7 2 15 13 12
15 3 9 12 12 10 12 2
14 9 12 7 8 1 3 7
4 5 5 10 9 3 4 1

 
 
 
 
 
 

For  N = 8  and M = 4 , the (4ⅹ8) submatrix of the systematic MDS code is 

{ }
1 111 1 ,Pr 9 1 ,U Rβ δ= = − { } { }1 1611Pr 0, \ 0,9β θ θ ∈= = 

The conditional probability is defined as  

Investigating how much amount of improvement on the reconstruction 
performance is provided when using MDS codes in a cooperative wireless 
network 
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Upper Bound – Nullspace  

If a transmission matrix for a dynamic network topology has full rank, the BS 
can uniquely decode all messages from all sources 

Let       be an                     matrix over the finite field with size q as     .  A ( )N M N+ × q

Columns                   of         are linearly dependent if and only if a 
vector                              exists, with at least one nonzero     , such that 

1,..., NA A A
( )1= , , N

N qc c ∈c  ic

1
0

N

i i
i

c A
=

=∑

Definition 1. (Number of nonzero coefficient vectors) Let  L(A)  be the 

number of all such nonzero vectors  which belongs to the nullspace of the 

given matrix. Let the rank of a realized transmission matrix be R(A). Thus, 

L(A) can be represented as                             ( ) ( ) 1N RL q −= −AA

( ) ( ) ( )1 1=N M N M N N+ × + × ×y A x
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Upper Bound – Expectation of Nullity  

The rank-nullity theorem in linear algebra theory 

 

Using Jensen’s inequality and Definition 1, 

 

 

Proposition 3. For a random matrix A, the expectation of nullity of A  is 

upper bounded by                                                    .   ( ) ( )( )log 1qnullity L  ≤   +   A A 

( ) ( )
( )( )
( )( )

:

log 1

log 1

A A

A

A

q

q

nullity N R

L

L

  = −     
 = + 

≤   + 

 





( ) ( )A Anullity N R= −

Definition 2. (Nullity) Let                   be the dimension of the nullspace in 

the column space of the matrix A.                                                       
( )nullity A
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Upper Bound – Decoding Failure Probability  

The decoding failure probability is upper bounded by 

Theorem 4. Let  Pfail  be the decoding failure probability for the 

reconstruction of source messages. Then,                                   ( )1
1

AfailP L
q

≤   −


( ){ }

{ }
{ }

( )

1

\ 0

: Pr

Pr : 0

Pr 0

.

N T
q

fail

N

i i
i

T

P R N

c A

L

=

∈

= <

 
= ∃ = 

 

≤ =

=   

∑

∑
c

A

c

Ac

A





( )1 ,
1

AfailP L
q

≤   −


{ }
{ }

{ }
2

1

1
, ,...,

: 0 : 0
q

T T

θ θ −∈

= = =
c c c c

A Ac A Ac


The upper bound can be tighten as follows 

– using 
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Upper Bound – Performance Evaluation 

|  Expectation of Nullity 

|  Decoding Failure Probability 

( )1
1fail LP

q
≤

−
  A

( ) ( )( )log 1qnullity L  ≤    + AA 

|  Three Types of Network Connectivity 

Link Homogeneous Heterogeneous General 

User-Relay 

User-BS 

Relay-BS 

δ

δ

δ 2δ
1δ
1δ

,jR BSδ
,iU BSδ
,i jU Rδ
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Upper Bound – Homogeneous Connectivity 
(1/3) 

Assuming all the outage probabilities are the same as  

The probability      is given by  

δ

Consider a vector                                with the first k nonzero elements 

( ) { }
{ }

( )

\ 0

1

Pr 0

1

N T
q

T

N
k

k
k

N
q P

k

L
∈

=

= =

 
= − 

 

   ∑

∑

c

A Ac




( )1,..., N
N qc c= ∈c 

{ }1
: Pr 0k

k i ii
P c A

=
= =∑

kP

{ } { }11 1
Pr 0 Pr 0k M k

k ii jiii j

k M
k

P

S

α β

δ

== =
= = =

=

∑∏ ∏

– where  

– where  { }1
: Pr 0k

k jii
S β

=
= =∑
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Upper Bound – Homogeneous Connectivity 
(2/3) 

Lemma 5. For the homogeneous connectivity with the distributions, the 

probability      is given by 

   

 

kS

( ) ( )1 1
1

11 1 1
1

k

kS q q
q
δδ δ − −
−

  − = + − + − −  −  

The probability can be decomposed by the condition of the outage event 

{ } { }

( )

1 1

1
P

Pr Pr 0 Pr Pr 0

1 r 0

k k

k j ji j j ji j

k

j

i

i
i

i

j

S ε β ε β

δ βδ

= =

=

   
= = + =   

  
 

=



=  


−


+

∑ ∑

∑ 

 

– using { }Pr 0 1ji jβ = =
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Upper Bound – Homogeneous Connectivity 
(3/3) 

Let       be the probability,  kf { }1
: Pr 0k

k ji ji
f β

=
= =∑ 

{ } { }

{ }
{ }

{ }

( )

1

1

1

1
\ 0

1 1

Pr 0 Pr 0

Pr Pr

11 .
1

q

k
k ji j jk ji

k
ji j jk ji

k k

f

f f
q

θ

β β

β θ β θ

δδ

−

=

−

=
∈

− −

= = =

+ = = −

−
= + −

−

∑

∑ ∑

 

 


The probability  can be rewritten 

Let                       , substituting , we obtain,                        
1:=k kg f q−−

1 1

1= 1 .
1k kg g

q
δ

− −

 −
− − 

( )1 1
1

1= 1 1
1

k

kf q q
q
δ− −
−

 −
+ − − −  25/40 



Upper Bound – Heterogeneous Connectivity 

Consider the heterogeneous connectivity,  

Proposition 6. Given an (N, M) cooperative network with the homogeneous 

connectivity based on some outage probability    ,                of a  random 

transmission matrix     is 

   

 

δ ( )L  A

A

( ) ( ) ( ) ( )1 1
1

1

11 1 1 1 .
1

MkN
k k

k

N
L q q q

k q
δδ δ δ − −
−

=

     −    = − + − + − −     −      
∑A

Proposition 7. Given the heterogeneous  (N, M) cooperative network defined 

by the two outage probabilities     and     ,                 of a  random transmission 

matrix     is 

   

 

( )L  A

A

( ) ( ) ( ) ( )1 1 1
1 2 2 1

1

11 1 1 1 .
1

MkN
k k

k

N
L q q q

k q
δδ δ δ − −
−

=

     −    = − + − + − −     −      
∑A

1δ 2δ

1 , , ,
i i jU BS U Rδ δ δ= = 2 ,jR BSδ δ=
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Upper Bound – Results of Homogeneous 
Connectivity 

The nullity of  a random matrix for a homogeneous (10, M) cooperative 
wireless network with  N = 10 and M = 3, 10, and 20. 

For q = 2, identical rows appear in random matrices from 0.1 to 0.3 of the 
outage probability 

The increase of field sizes more generates independent columns   

q = 2 q = 4 
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Upper Bound – General Connectivity (1/3) 

Consider the general connectivity in which all outage probabilities are 
different  

Proposition 8. Given an  (N, M) cooperative network with the general 

connectivity,                of a  random transmission matrix     is 

 

 

where                      ,                      ,                , and          is the lth entry of a 

set      . Let        denote the collection of the sets of  k distinct indices among                                                                      

                       , i.e.,                                                                        .                          

 Let                                    . 

( )L  A A

( ) ( )
1

1 ,
N

k
k

k
L q Q

=

  = −  ∑A

,1
: k

k k ll
Q Q

=
=∑  { }1,2,.., kl∈  :k

N
k

 
=  
 

 ,k l

k k

{ } { }{ }1 2: , ,..., : 1,2,..., , ,k k i i jN i jλ λ λ λ λ λ= ∈ ≠ ≠[ ] { }: 1,2,...,N N=

{ }
,

, : Pr 0
k l

k l i ii
Q c A

∈
= =∑ 
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Upper Bound – General Connectivity (2/3) 

Consider a (2, 1) cooperative wireless network for q = 2, N = 2, and M = 2 

There are three nonzero vector     in      :  (10), (01), and (11) 2
2c

The probability       : 1,1Q { }
{ } { }

( )( )1 1 1 1 1

1,1 1 1

11 11

, , , ,

Pr 0

Pr 0 Pr 0

1 .U BS R BS R BS U R

Q c A

α β

δ δ δ δ

= =

= = =

= + −

The probability       : 1,2Q { }
{ } { }

( )( )2 1 1 2 1

1,2 2 2

22 12

, , , ,

Pr 0

Pr 0 Pr 0

1 .U BS R BS R BS U R

Q c A

α β

δ δ δ δ

= =

= = =

= + −

The probability       : 2,1Q { }
{ } { } { }

( ) { }( )1 2 1 1

2,1 1 1 2 2

11 22 11 12

, , , , 11 12 1

Pr 0

Pr 0 Pr 0 Pr 0

1 Pr 0 .U BS U BS R BS R BS

Q c A c A

α α β β

δ δ δ δ β β

= + =

= = = + =

= + − + = 

( ) 1,1 1,2 2,1AL Q Q Q  = + + Finally,  
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Upper Bound – General Connectivity (3/3) 

The proposed evaluation framework can be extended to cases where the 
outages between different links are not independent, but correlated 

(U1-R1, U2-R1) (        ,       ) 

(O, O)  (1, 1) 

(O, ⅹ)  (1, 0) 

(ⅹ, O)  (0, 1) 

(ⅹ, ⅹ) (0, 0) 

11β12β { }11 1 12 2 1Pr ,β γ β γ= = 

1,1Γ
1,0Γ

0,1Γ
0,0Γ

A pair of two outage events, U1-BS and U2-BS, makes a joint probability  
{ }

1 211 1 22 2 ,Pr , θ θα θ α θ= = = Θ

( ) ( )( )( )1 11,1 0,0 0,1 , , 0,0 0,11R BS R BSQ δ δ= Θ +Θ + − Γ + Γ

( ) ( )( )( )1 11,2 0,0 1,0 , , 0,0 1,01R BS R BSQ δ δ= Θ +Θ + − Γ + Γ

( )( )( )1 12,1 0,0 , 0,0 1,1 ,1R BS R BSQ δ δ= Θ + Γ + Γ −
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Upper Bound – Results of General Connectivity 
(1/3) 

(a) Location of 16 sources and 6 relays in a 2D space for a (16, 6) 
cooperative wireless network. (b) Results of upper bounds on  with differing 
network coding field sizes  q = 2, 4, and 8, (c) varying the number of relays at 
q = 4  

(a)                               (b)                                   (c) 
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Upper Bound – Results of General Connectivity 
(2/3) 

Comparison of upper bounds on                          for the uniform and MDS 
distributions 

( )nullity  A
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Upper Bound – Results of General Connectivity 
(3/3) 

Comparison of the decoding failure probabilities with the upper bound using 
Proposition 8 and the numerical simulation for q = 2  and 4 
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Upper Bound – Asymptotic Nullity (1/2) 

The homogeneous connectivity scheme is a specific case among general 
connectivity schemes 

( )L  A

The general form of         is given by  kQ

k
k k

N
Q S

k
δ

 
=  
 

( )
1

N
k

k
k

N
L S

k
δ

=

 
  =   

 
∑A

In this case,                  can be obtained  

In high SNR regions , assuming      is minimal, an approximation of               
is obtained as  

δ ( )L  A

( )
( )

1

2
1 21 2

N

k
k

a

L Q

N N
S Sδ δ

=

  = 

   
≈ +   
   

∑A

Consider                   for  q = 2 in the homogeneous connectivity  ( )L  A
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Upper Bound – Asymptotic Nullity (2/2) 

Corollary 9. Given an (N, M) cooperative network with general connectivity,      

                   is simplified in the high SNR regime 

 

 

( )L  A

( ) ( ) ( )2
1 21 1 .L q Q q Q  ≈ − + − A

For the computation of                   ,  two terms       and       are sufficient in 
high SNR regions 

1Q 2Q

Therefore, in high SNR regions,                converges to the second order 
of the transmit SNR 

( )L  A

( )L  A
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Upper Bound – Results of Asymptotic Nullity 
(1/2) 

(a) Locations of 100 sources and 10 relays in a 2D space for a (100, 10) 
cooperative wireless network. (b) Comparison of  with the numerically 
simulated result and the upper bound using Corollary 9 for q = 2 and the 
uniform distribution  

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

X-coordinate

Y-
co

or
di

na
te

 

 

source relay base station

(a)                                                (b) 

Asymptotic result 
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Upper Bound – Results of Asymptotic Nullity 
(1/2) 

Comparison of the decoding failure probabilities with the numerical 
simulation and the upper bound using Corollary 9 

37/40 



Who can use this work? (1/2) 

This work can be utilized in wireless sensor networks which aim to 
collect measured data using network coding [Wang10], [Yang13] 

< Wireless sensor networks > 

Using our proposed framework, a system performance can be 
analyzed in terms of the number of sensors, the total number of 
transmissions, and power consumption, etc. 
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Who can use this work? (2/2) 

The application of distributed data storage based on network coding can 
analyze its system performance [Dimakis10] 

Dimakis et al. addressed how to generate encoded packets while 
transferring as little data as possible across the network 

 

< Distributed data storages > 

In this example, three packets, d, b+d, and a+b+d,  are needed to recover 
failed data a and b  

The proposed framework can be connected to the performance evaluation of 
distributed data storage systems 
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Conclusions 

We considered a cooperative wireless network where N sources are 
assisted with M relays in two phase transmissions. 

Our main goal was to propose a new performance analysis 
framework for evaluating the reconstruction performance of source 
messages at the BS. 

We modeled the elements of the transmission matrix as random 
variables.  

We derived two tight upper bounds on the expected nullspace 
dimension of the random transmission matrix, as well as the 
decoding failure probability.  

The result is a framework that is more effective than the rank-based 
method proposed in the previous literature. 

Three types of connectivity schemes are considered in this paper, as 
they enhance the framework’s scalability and suitability for general-
purpose installations. 
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Performance limits on reconstructing the multiple sparse 
vectors in the joint sparsity model 

 Research Goal 
– Theoretical performance limits of compressive sensing problems in the joint sparsity model 

[Braniuk09].  

 Approaches 
– Defining the failure probability that we cannot reconstruct the joint support set of the multiple 

sparse vectors.   
– Derive an upper bound on the failure probability 
– Finding sufficient conditions for vanishing the upper bound.  

The ith measurement matrix 
𝐅𝒊 

= 

The ith 
measurement 

vector 𝐲𝒊  
The ith sparse vector 

𝐱𝒊 

× +

The ith noise vector 
𝐧𝒊 



 A failure event & a joint typical decoder 
– We define the failure probability based on a joint typical decoder   

 
 
 
 

– This decoder all possible subsets to find the joint support set. 
– If the output of the decoder satisfies the following inequality, then joint support set 

reconstruction is successful. 
 
 
 
 

 
where 𝐐 𝐅 ≔ 𝐈 − 𝐅𝐅 † and 𝐅𝑠,𝒥  is a matrix constructed by collecting column vectors of 𝐅𝑠 
corresponding to the indices of the output of the decoder. 

A failure event & a joint typical decoder 
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A failure probability 

 A failure probability  
– Let                    be an event that the output of the decoder is declared as the joint support set.  
– With this event, the failure event can be defined by 

 
 
 

where                  denotes the joint support set is not declared as the joint support set and                     
denotes the incorrect support set is declared as the joint support set.  
– The probability of the event is 

 
 
 
 
 
 

where the inequality appears due to the Union bound. 
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Random variable(1/4) 

 The properties of the random variable 
– The random variable in the event is 

 
 
 
 

 
where 𝐜𝑠 is the multivariate Gaussian with 
 
 

 
– Also, the projection matrix               can be decomposed  

 
 
 

where          is an  𝑀 × 𝑀 unitary matrix and         is an 𝑀 × 𝑀 diagonal matrix.  
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Random variable(2/4) 

– Continuously, we define a multivariate Gaussian vector 
 
 

 
where 

 
– Assume that the 𝑀 − 𝐾 non-zero diagonal elements of       are on the first M – K diagonals.  
– The random variable can be represented in terms of this multivariate Gaussian vector  
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Random variable(3/4) 

– Last, we define a                        vector 
 
 
 

– where  
– Then, the random variable finally can be rewritten as   
 
 
 
– It states that the random variable is a quadratic random variable [Scharf91]. 
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Random variable(4/4) 

 Lemma 1: Let M > K,                                       and     be the joint support set. For any real 

number t, we have  
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 Lemma 2: Let  M > K, and                                     for any                     Then, for any real number 

t, we have 
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Upper bounds on the failure probabilities(1/5) 

 Upper bounds  
– Remind  

 
 
 
 
 
 

– The properties the random variables of the events are given in Lemma 1 and Lemma 2 
respectively. 

– Hence, we can compute upper bounds on the failure probabilities.  
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Upper bounds on the failure probabilities(2/5) 

 An upper bound on 
 
 
 
 
 
 
 
 
 
 
 
– (a) : Union bound, (b) Chernoff bound, (c) due to the inequality  
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Upper bounds on the failure probabilities(3/5) 

 An upper bound on 
 
 
 
– Note that the function g(t) is convex. 
– Thus, we can find its minimum value by solving  

 
 

– Finally, the upper bound is  
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Upper bounds on the failure probabilities(4/5) 

 Lemma 3: Let   be the joint support set and M > K. Then, we have for any δ > 0, 
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 Lemma 4: Let  be not the joint support set and M > K. Then, we have  
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Upper bounds on the failure probabilities(5/5) 

– We have presented the upper bounds on the failure probabilities.  
– With these upper bounds, we finally have  

 
 
 
 
 
 

– The main results in this talk were obtained by finding conditions for vanishing the 
upper bound on                     
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Main results 

 Theorem 1: Suppose that both M > K and  
 
 

     are met. Then,                  linearly converges to zero as S goes to infinity. 
– a) It states that taking more measurement vectors can reduce effects of noises. 
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 Theorem 2: Suppose that both                                           and 
 
 

     are met. Then,                  converges to zero as N goes to infinity. 
– a) It shows an inversion relation between M and S.  
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Comparisons with other leading results 

  Model Random 
variables Sufficient conditions Necessary 

conditions 

ours ? 

[Baraniuk13] M > K M > K 

[Nehorai09] 

[Rao13] 
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a. We currently do not provide a necessary condition. 
b. The other sufficient conditions explicitly do not provide relations between M and S. 
c. The necessary and sufficient conditions by Baraniuk et al. are not asymptotical. 
d. The necessary and sufficient conditions by Nehorai et al. and Rao et al. are asymptotical with respect 

to N.  
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 Taking more measurement vectors can reduce effects of noises.  
– M > K measurements per each measurement vector are sufficient for joint support set 

reconstruction.  
– In particular, K + 1 measurements per each measurement vector are enough when the 

number of measurement vectors is sufficiently large.  

 
 

 The number of measurements can be inversely decreased as taking more 
measurement vectors. 
–                                   measurements per each measurement vector are sufficient for joint 

support set reconstruction. 
– In particular,                    measurements per each measurement vector are enough when  

 
 
 
 

( )log NK
S KM K= Ω +

( )M K= Ω
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Summary 



 Research Goal 
– Apply the theory of compressive sensing to radar problems where we aim to estimate the position, 

velocity, azimuth angle of multiple targets.  

 Approaches 
– Discretize a radar model. 
– Transformed this radar model to a linear model. 
– Use compressive sensing algorithms to this linear model. 

𝛥 

Rx 

Tx 

𝑥min,𝑦min  

𝑥max,𝑦max  

𝑛th grid point 𝑥𝑛,𝑦𝑛   

Compressive Sensing Radar 

 𝛥  denotes a range resolution 
 The number of targets is assumed to 

be less than the number of grid 
points 



 System model 
– Let 𝑥 𝑡  be the transmitted signal by Tx. 
– Let 𝑧𝑘 𝑡  be the reflected signal by the kth target. 
– The received signal by Rx can be expressed as 

 
 
 
 

 
where 𝛽𝑘 is a constant proportional to the radar cross section value of the kth target.  

Compressive Sensing Radar model (1/5) 
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– Rx demodulates the received signal.  
– Then, the demodulated signal can be expressed as  

 
 
 
 

Compressive Sensing Radar model (2/5) 
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 Notations Meaning 

𝑡𝑑𝑑𝑑𝑑𝑑 = 𝑑𝑘𝑟𝑟 + 𝑑𝑘𝑡𝑡 𝑐⁄  The delay of the transmitted signal 

𝑒 −𝑗𝑗𝑗 𝑑𝑘
𝑟𝑟+𝑑𝑘

𝑡𝑡 𝜆⁄  The phase delay 

𝑒𝑗𝑗𝑗𝑓𝑘𝑡 The Doppler term 



– Assume that the pulse width of the transmitted signal is Tp and the transmitted signal 
consists of L sequences.  
 
 
 
 
 
 

– Let 𝜏(𝑛)  = 𝑡𝑑𝑑𝑑𝑑𝑑 𝑛  be the time delay of the demodulated signal through the nth 
grid point. 

– Then, the discretized demodulated signal can be expressed as  

Compressive Sensing Radar model (3/5) 
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– To use the theory of compressive sensing, the discretized demodulated forms a matrix-
vector multiplication. 

– At time t, the discretized demodulated signal can be expressed as  
 
 
 
 
 

where 𝑠𝑛 = �𝛽𝑘 if the 𝑘th target is at 𝑥𝑛,𝑦𝑛
0 𝑜.𝑤.

. 

Compressive Sensing Radar model (4/5) 
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Size Meaning 

𝐬 𝑁 × 1 
1. The number of non-zero elements is equivalent to the number of targets.  

2. Suppose that the nth element is non-zero. It means that there is a target in the nth grid point.  

𝐟𝑡 1 × 𝑁 

1. Physical responses among Tx, Rx and the gird points at time t. 

2. In particular, the ith element is physical response among Tx, Rx and the ith grid point at 

time t. 



– Thus, the discretized demodulated signal at Rx can be expressed as  
 
 
 
 

 
where F is a 𝐿 + 𝜏max × 𝑁 matrix. 

Compressive Sensing Radar model (5/5) 
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Computer Simulation (1/2) 

𝑀𝑟 = 𝑀𝑡 = 1 𝑀𝑟 = 𝑀𝑡 =2 𝑀𝑟 = 𝑀𝑡 = 3 𝑀𝑟 = 𝑀𝑡 = 4 

Results failure failure Success Success 

the total 
number of 

samples 
128 256 384 512 

3𝑘𝑘,3𝑘𝑘  

4𝑘𝑘,4𝑘𝑘  

20x m∆ =

1. The number of targets is 20 

2. There  is no noise 

3. Each pulse consists of 128 sequences  

4. Ts = 5 × 10−8(bandwidth is 20MHz) 

5. fc = 10GHz 

1. 𝑀𝑟 : the number of Rx 

2. 𝑀𝑡 : the number of Tx 

20y m∆ =
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Computer Simulation (2/2) 

1. The number of targets is 20 

2. There  is no noise 

3. Each pulse consists of 128 sequences  

4. Ts = 5 × 10−8(bandwidth is 20MHz) 

5. fc = 10GHz 

6. 4 Tx and 4 Rx. 
3𝑘𝑘,3𝑘𝑘  

3.25𝑘𝑘, 3.25𝑘𝑘  

x∆ = ∆

x∆ = ∆

The range 
resolution 𝛥 = 𝟕.𝟓𝟓 𝛥 = 𝟓𝟓 𝛥 = 𝟑𝟑 𝛥 = 𝟏𝟏 

성공 여부 Success Success Success Failure 

– The range resolution by the matched filtered radar is 𝛥𝛥 = 𝑐
2𝐵

= 7.5𝑚. 

– The above results shows the superiority of the compressive sensing radar.  
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Compressive Sensing for Imaging through turbid 
media 

 See object hidden under turbid media [Mosk2012] 

– Turbid media: biological tissues, white paint 

– It may become possible to have an early disease diagnosis with optical imaging 

 

 

 

 

 

 

 

 Due to the multiple scattering, the outgoing object waves are spatially 

scrambled and become a speckle field (SF) at an observation plane 

 For image recovery, the multiple scattering should be suppressed; the 

object image should be recovered 
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Compressive Sensing for Imaging 
through turbid media 

 The wave propagation is a time reversible (TR) process [Mosk2012], 
[Yaqoob2008] 

 The multiple scattering in turbid media can be reversed by a TR operator 
 

 Phase conjugation (PC) is the monochromatic version of the TR operator 
– A de facto standard method to date for imaging through turbid media 
– PC compensates the phase variations due to multiple scattering in turbid 

media by recording the SFs and back-propagating the complex conjugates of 
them through the media so that the phase variations are cancelled; a 
photorefractive crystal is used as a phase conjugate mirror. 

 Computational PC 
– PC can be done virtually through computational estimation 

• This requires the so called transmission matrix (TM) of the medium [Popoff2010] 
• TM-based image recovery 

– SFs are recorded at the CCD array and the recovery is made in digital signal 
processing 

– A number of advantages over the optical PC for it has an image data format 
which is reproducible [Cui2010] 
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Compressive Sensing for Imaging through turbid 
media 

 TM acquisition: (a) and (b) 

– A collection of plane waves each with different incident angle is used as a basis 

– The SF for each plane wave is obtained and stored as a column in TM 

 Object speckle field acquisition: (c) and (d) 

– The object SF (OSF), which is the output SF of turbid medium with the object 
wave, instead of the plane wave, is then obtained 
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SP: sample plane, 
BS: beam splitter, 
SB: sample beam, 
RB: reference beam,  
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Compressive Sensing for Imaging 
through turbid media 

Object:  
 

where 𝑜(𝑥, 𝑦  is the object wave, 𝑎(𝑘𝑥 , 𝑘𝑦   and 
𝑝(𝑥, 𝑦; 𝑘𝑥 , 𝑘𝑦  are the angular spectrum and the plane wave, 
respectively, of the object wave with the propagation angle 
with kx and ky 

– kx and ky are the wave vector components of the wave in 
the x and y directions (𝑘𝑥 2 𝜋 = sin 𝜃𝑥 𝜆 ). 

TM 

– 𝑡(𝑥, 𝑦; 𝑘𝑥 , 𝑘𝑦 , the response of the medium to 
𝑝(𝑥, 𝑦; 𝑘𝑥 , 𝑘𝑦 , for all 𝑘𝑥 , 𝑘𝑦  are measured and recorded 
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Compressive Sensing for Imaging 
through turbid media 

Object SF: 
 
where 𝑛(𝑥, 𝑦  is the additive noise 
– The response of the medium to the object wave 

Estimate: 𝑎 (𝑘𝑥, 𝑘𝑦  

– With 𝑡(𝑥, 𝑦; 𝑘𝑥 , 𝑘𝑦  for all 𝑘𝑥 , 𝑘𝑦  considered, the 
estimate of the angular spectrum, 𝑎 (𝑘𝑥 , 𝑘𝑦 , is made for a 
given 𝑦(𝑥, 𝑦 . 

Recovery: 𝑜 (𝑥, 𝑦   
– Using the angular spectrum estimate, the recovery of the 

object image is made 
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Compressive Sensing for Imaging 
through turbid media 

System model 
𝐲 = 𝐓𝐚 + 𝐧 

where 𝐲 ∈ ℂ𝑀, 𝐚 ∈ ℂ𝑁, 𝐧 ∈ ℂ𝑀 are the vector 

representations of 𝑦(𝑥, 𝑦 , 𝑎(𝑘𝑥 , 𝑘𝑦 , 𝑛(𝑥, 𝑦 , and 

each column of 𝐓 ∈ ℂ𝑀×𝑁 is the vector 

representation of the for a given 𝑘𝑥 , 𝑘𝑦 . Each 

element of T is a CSCG random variable. 
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Compressive Sensing for Imaging 
through turbid media 

 The estimate by PC: 
 
 
 

 PC is not good 
– For correlated cases, each element of the estimated angular spectrum is contributed not only 

from the angular spectrum element with the considered angle but also from those with the 
other angles whose SFs are correlated to that with the considered angle.  

– Thus, erroneous estimation is made even in noiseless cases. 
– Note that turbid media do not provide orthogonal TMs for they have memory effects among 

the SFs of the input waves whose incident angles are not separated enough [Freund 1988] 

 It appears to have insufficient speckle suppression in the image recovered by PC 
[Popoff2010] 
– This requires an additional procedure such as temporal ensemble averaging over multiple 

exposures 
– In time-critical cases or in the case of imaging a moving object, its applicability can be limited 
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Compressive Sensing for Imaging 
through turbid media 

The recovered object wave  
 
 
 
where 𝑒(𝑘𝑥 , 𝑘𝑦 : = 𝑎 (𝑘𝑥 , 𝑘𝑦 − 𝑎(𝑘𝑥 , 𝑘𝑦  is the angular 
spectrum estimation (ASE) error for a given angle 𝑘𝑥 , 𝑘𝑦  
– the speckle in the recovered object image is made directly 

from the ASE error. 

With this finding, we come up with a new speckle 
suppression approach via reducing the ASE error rather 
than the ensemble averaging approach. 
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Compressive Sensing for Imaging 
through turbid media 

CS has received great deal of interests recently 
for it enables correct estimation of a signal even 
for underdetermined measurement systems (M 
≤N) [Bruckstein2009], [Candès2011] . 

For successful applications of CS, there are two 
key conditions to be met 
– Compressibility: the signal is well approximated with a 

small number of nonzero elements, say K where K ≪ 
N. 

– Isometry: the measurement matrix preserves the 
energy of a signal well after the signal is transformed 
by the matrix. 
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Compressive Sensing for Imaging 
through turbid media 

 CS framework is suitable for imaging through turbid media 
– Compressibility 

• Most natural object images are well approximated by only several 
terms in the Fourier domain [Bruckstein2009].  

• We see that the basis signals in TLI are plane waves with different 
angles and the image is an angular spectrum in the Fourier domain 

• Thus angular spectrum is expected to be well approximated by small 
number of elements 

– Isometry 
• Checking the isometry of a matrix is a NP hard problem. 
• But, the Gaussian distributed matrices are proven to have an optimal 

isometry [Bruckstein2009], [Candès2011]  
– Through the random walk analysis, it was found that the SF in the 

transmission geometry is complex-valued Gaussian distributed provided that 
the number of elementary contributions is large [Goodman1976] 
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Compressive Sensing for Imaging 
through turbid media 

 The K largest element approximation (K-LEA) 
– Optimal among all K element approximations in terms of the L1 norm and the 

L2 norm error senses [Candès2011] 
• The K -LEA can be made by an oracle estimator which is assumed to know all the 

coefficients of elements of the original signal exactly (by setting all elements to zero 
while keeping the K largest elements intact) 

 Sparse signal estimation (SSE) in the CS framework 
– It behaves like the oracle estimator [Candès2011] 
– For a Gaussian TM, about 𝑀 = 𝑂 𝐾log(𝑁 𝐾   number of measurements 

shall be good enough [Candès2011] 
• PC requires at least M=N for this estimation 

– This means that the SSE offers the perfect ASE in the TM-based recovery when 
the angular spectrum of object wave has K or less nonzero elements; with 
𝑀 = 𝑂 𝐾log(𝑁 𝐾   

– For object waves with more than K nonzero angular spectrum elements, if the 
angular spectrum elements other than the K largest elements are insignificant, 
the ASE error of SSE is negligible. 
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Compressive Sensing for Imaging 
through turbid media 

The SSE, an oracle-like estimation, can be made 
by solving the following L1 norm minimization 
problem [Bruckstein2009], [Candès2011] 
 

 
– The SSE aims to find the solution which has the 

smallest number of nonzero elements, ‖𝐚‖0, (with a 
compact representation) 
• This is NP hard problem 

– But, the L1 norm minimization  promotes the estimate 
to be close to a compressible signal which has a 
compact representation.  
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Compressive Sensing for Imaging 
through turbid media 

Angular spectrum estimation 
 
 
 
 
 
 
 
 
 Most error terms in the estimated angular spectrum by SSE are 

reduced considerably 
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Estimated angular spectra using (a) PC, (b) PINV, and (c) SSE, respectively. Here, M = 
4389, N = 20000. All angular spectra are represented in log scale for better visibility. 



 Image recovery 
– Recovered amplitude 

images averaged over 
one, three, five, and 
seven samples 

– Cross sections of them 
averaged over seven 
samples 

– Constrast-to-noise 
ratios (CNRs) are 
calculated in the 
subsets (red arrow 
lines) of the cross 
sections. 
• Here, M = 4389, N = 

20000 and K is less 
than 147. 

• Scale bar: 10 μm. 
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Miniature Spectrometers 

  We have achieved resolution improvements beyond the 
resolution limit by 
– Digital Signal Processing (2012)  

– Filters having random transmittance (2013) 

 

 

2 



Prototype spectrometer 

  Prototype using random scattering filter (2012~2013) 
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Future works 
 Implementing random filters with thin-film technology varying thickness 

and reflective indices 

 Ultimate Goal: Smartphone attachable high resolution spectrometers 
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Hemispherical Apposition Compound 
Eyes 

  Implemented by strechable microlens array and photodiodes 

 

  Limitation: 180 pixels (16x16 photo diodes) 
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Optical Design 
  Key parameters:  

– Acceptance angle 

– Inter-ommatidial angle 
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Operating Principle 
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Sensors on the plane 

 5x5 Sensors with acceptance angle =9.7 and 35 

 Distance from Image plane and sensor plane is 10mm 
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Sensors on the hemisphere 
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 5x5 sensors with acceptance angle =9.7 and 35 

 Distance between Image plane and center of the hemisphere 
is 10mm 
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Future works 

 Resolution Improvements 

 Depth estimation 
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Agenda 
 EEG based BCI system 

 Sparse Representation based Classification [Shin 2012 JNE]  
– Introduction 

– Motivation and purpose 

– Methods 

– Results 

– summary 

 Evaluation of SRC method [current work] 
– Motivation and purpose 

– Methods 

– Results 

– Discussions 

– Summary 

 Future work 
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EEG based BCIs 
 

 

 

 

 

 

 

 

 

 

 

 

– BCI is a novel communication and control channel between person and external 
world. 

– The BCIs allows communication only using user’s intention or imagination instead 
brain’s normal output pathways of peripheral nerves and muscle 

– In the BCIs, classification is needed to transform the extracted feature of a user’s 
intention into a computer command to control the external device. 

– However, EEG signals are very noisy and have non-stationarity characteristics. 
Therefore, powerful signal processing methods are needed.  

– In this study we focus on BCI classification method. 
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Sparse Representation based 
Classification 
 



Sparse Representation (SR) 
 Recently, Sparse Representation has received a lot of attention in 

signal processing and machine learning field. 

 The problem of SR is to find the most compact representation of a 

signal in terms of linear combination of atoms in an over-complete 

dictionary [Huang 2006]. 

 

   

                                   

 

5 

Dictionary Input 

Sparse coefficient 
y = A x 

My M NA

1Nx

Introduction 



Sparse Representation (SR) 
The problem of SR is to find the coefficient                   :  

 

     where,                 is known over-complete dictionary   

                                 is  measured signal           denotes the L0 norm.  

Solving this under-determined problem is NP hard. 

Recently developed Compressive Sensing theory [Donoho 2006] 

reveals that if a solution is sparse enough, L1 norm solution is 

equivalent to the L0 norm solution.  
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Sparse representation for brain signal 
processing [Yuanqing 2014, ieee sig. proc. magazine] 

 Blind source separation  

– EEG signals can be considered as the linear mixtures of unknown sources with 
an unknown mixing matrix. 

– The brain sources can be assumed to be sparse in a domain such as the time 
domain or the time-frequency domain 

– The true sources can be obtained through sparse representation-based BSS 

– The mixing matrix is estimated using, e.g., a clustering algorithm. 
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Sparse representation for brain signal 
processing [Yuanqing 2014, ieee sig. proc. magazine] 

 EEG inverse imaging 

– The brain sources can be obtained and localized by sparse representation-
based EEG inverse imaging 

– where the mixing matrix A is first estimated based on a head model, and the 
brain sources are then separated and localized 
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Sparse representation for brain signal 
processing [Yuanqing 2014, ieee sig. proc. magazine] 

 Feature selection and classification 

– Sparse representation-based classification (SRC) can be conducted as shown 
below [see Figure 1(d)].  

– The target function is a test sample/feature vector and each column of the 
data matrix is a training sample/feature vector of a certain class 

– These problems in brain signal processing can be solved under the framework 
of sparse representation. 
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Motivation and Purpose 
 Sparse representation can be used for a number of applications 

including noise reduction, source localization, and pattern recognition.  

 Recently, classification based on Sparse Representation has received 

a lot of attention in face recognition and image processing [Wright 2009]. 

 This SR based classification shows satisfactory classification 

performance in many applications.  

 In this study, we firstly apply SR to the motor imagery based BCI 

classification. 

 Using Mu and Beta rhythms as a feature of MI BCI, we aim to develop 

a new Sparse Representation based Classification (SRC) method. 

 

Motivation and purpose 
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We use two different datasets 

– INFONET dataset 

• Five healthy subjects(average age = 22±6.85) 

• Right hand and left hand imaginations 

• 16 EEG channels 

• 80 trials per class 

 

 

 

– Berlin dataset 

• BCI competition dataset (Data set IVa)  

• Five healthy subjects 

• Right hand and right foot imaginations 

• 118 EEG channels 

• 140 trials per class 

   

                                   

 

Data acquisition 
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Methods 



Proposed SRC scheme 
Methods 
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We use a band pass filtering as a preprocessing method. 

We designed dictionary A using CSP filtering.  

To use a mu rhythm as a BCI feature, we compute the power of mu 
band.   

To find coefficient vector x, we use the L1 minimization tool for test 
signal y. 

 

 

 

 



Incoherent Dictionary 
 

 

 

 

 

 

 

 

M is the measure of mutual coherence of two component dictionaries; when 

M is small, we say that the dictionary is incoherent . 

The incoherent dictionary promotes the sparse representation of the test 

signal under the L1 minimization [Donoho 2003]. 

We use the CSP filtering to design an incoherent dictionary. 

When a dictionary is incoherent, a test signal from one particular class can 

be predominantly represented by the columns of the same class. 
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CSP(Common Spatial Pattern) filtering 
CSP filtering is a powerful signal processing technique suitable for EEG-

based BCIs [Blankertz 2008]. 

CSP filters maximize the variance of the spatially filtered signal for one 

class while minimizing it for the other class. 

The CSP filtering was used to produce high incoherence between the two 

group of columns in the dictionary. 

Using the CSP filter, we form maximally uncorrelated feature vectors 

between the two classes.  
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Sparse Representation and Classification 
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Methods 

 

 

 

 

 

 

 

 

The sparse representation can be solved by L1 minimization [Candès 2006]. 

For example, a test signal y of the right class can be sparsely represented 

as the training signals of the right class. 

However, EEG signals are very noisy, nonzero coefficients may appear in 

the indices corresponding to the left class.  

We use a minimum residual classification rule.  



Sparse representation results 
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 EEG Sparse representation 

– Sparse representation of real EEG signals for one subject. 

– X-axis represents the number of total training trials (the number of 

columns of dictionary A).  

– Y-axis represents the recovered coefficients x in             . 

– The class of the test trial is the right hand imagery 

– The test signal of right class sparsely represented with some training 

signals of the right class 
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Classification accuracy of INFONET dataset 

We use 2 CSP filters out of 16. 

For all subjects, the accuracy of the proposed SRC is better than 

conventional LDA method.  
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Subject 
SRC 

Accuracy [%] 
LDA 

Accuracy [%] 

A 95.63 93.13 

B 63.75 61.87 

C 68.14 67.50 

D 80 76.25 

E 71.25 68.12 

Mean (SD) 75.75 (12.60) 73.37 (12.18) 

Results 



Classification accuracy of Berlin dataset 
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Subject 
SRC 

Accuracy [%] 
LDA 

Accuracy [%] 

al 98.93 96.43 

ay 100 97.14 

aw 95.71 95.36 

aa 97.86 94.64 

av 91.79 87.86 

Mean (SD) 96.85 (3.25) 94.29 (3.72) 

We use 32 CSP filters out of 118. 

For all subjects, the accuracy of the proposed SRC is better than 

conventional LDA method.  

 

 

 

 

Results 



Classification results 
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Berlin dataset  

– We examine classification accuracies of SRC and LDA as a function of 

the number of CSP filters (feature dimensions) for each subject.  

 

Number of CSP filters Number of CSP filters 

Results 



Summary  
 We propose a sparse representation based classification (SRC) 

method for the motor imagery based BCI system. 

 The SRC method needs a well-designed dictionary matrix made of a 

given set of training data.  

 We use the CSP filtering to make the dictionary uncorrelated for two 

different classes. 

 The SRC method is shown to provide better classification accuracy 

than the LDA method. 

Summary  
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Evaluation of SRC method 
 
 



 Compare classification performance of SRC with that of SVM, which 

is a widely known for providing the best performance in many 

studies.  

– We use large BCI data set (20 subjects) 

 Evaluate noise robustness of SRC method 

– Test signal will be changed and contaminated by noise.  

– Therefore, position of test feature is shifted from that of training feature. 

– We compare the noise robustness results of SRC and that of SVM. 

– We use two types of noise such as white Gaussian and resting state 

noise. 

 Data classification using training data 

– Classifier will be self tested with training data which is used for 

designing classifier. 

– If classifier perfectly classify the training data itself, it will be powerful for 

testing data. 

 

 

 

Motivation and purpose  

22 

Motivation and purpose 



We use two-class MI dataset obtained from 20 subjects. 

Right hand and Left hand of motor imagery movements  

64 EEG channels and 512 sampling rate 

100 trials per class 

We also record the resting state for each subject to estimate the 

resting noise.  

For the resting state, subject just open their eyes.  

 

 

Data acquisition 

23 

Methods 



Support vector machine (SVM) 
The idea of SVM is proposed by Vapnik aimed to find decision hyperplane 

with maximum margin which is the distance between the hyperplane and 

the nearest training feature vectors (support vectors).  

 

 

 

 

 

 

 

 

 

 

In the BCI field, SVM has shown the robust classification performance in 

many experiments. 
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Classifier algorithm comparison 
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Training feature 

SVM 
training 

Training feature 

L1 minimization 

SVM: Maximizing margin 
SRC: Solving  

sparse representation 
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We use 9 CSP filters for all subjects. 

SRC shows higher classification accuracy than SVM for 18 subjects.  

Average difference between SRC and SVM is statistically significant            
(p < 0.001). 

 

Comparison of classification results 
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Results  



Classification accuracy as a function of the number of CSP filters. 

Regardless of feature dimension, SRC outperforms SVM. 

 

Comparison of classification results 
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Noise robustness (Gaussian noise) 
We generate white Gaussian noise based on mean and standard 

deviation. 

mu=0; std=100; noise=random('norm',mu,std,64,512); 

We add Gaussian noise to the original test signal while increasing 

noise level. 

           

Results  
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Noise robustness (Gaussian noise) 
Accuracy more than 70% allows communication and device control 

[Kübler 2001].  

Over 70% SVM SRC 

# of subjects 4 12 

Results  
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SVM_LIN 0.61 0.615 0.625 0.505 0.545 0.525 0.64 0.615 0.56 0.695 0.655 0.595 0.735 0.79 0.805 0.735 0.665 0.66 0.535 0.66

SRC_BP 0.64 0.72 0.65 0.705 0.605 0.63 0.565 0.675 0.705 0.72 0.73 0.665 0.795 0.81 0.765 0.765 0.815 0.75 0.62 0.725

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

SVM_LIN

SRC_BP



Noise robustness (resting noise) 
We generate noisy signal using resting state signal:  

 Noisy test signal = test signal + (noise level * resting noise) 

We compute classification accuracy while increasing noise level. 

           

Results  
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Noise robustness (resting noise) 
2D example, SNR = 4dB 

SVM SRC 

SNR=4dB 55.5% 64.5% 

Results  
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Noise robustness (resting noise) 

Over 70% SVM SRC 

# of subjects 6 17 

Results  
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

SVM_LIN 0.67 0.58 0.705 0.5 0.67 0.65 0.525 0.655 0.55 0.77 0.66 0.645 0.725 0.705 0.74 0.69 0.69 0.655 0.615 0.72 0.656

SRC_BP 0.75 0.585 0.72 0.715 0.665 0.785 0.535 0.755 0.7 0.775 0.735 0.765 0.805 0.75 0.845 0.73 0.815 0.73 0.745 0.765 0.734

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

A
cc

u
ra

cy
 

SVM_LIN

SRC_BP



Data classification using only training data which is used for classifier 

design. 

 

Training data classification  
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CSP = 9 

Results  

Training error 

Acc.  
/ Sub.  

Acc. /  
CSP filter  

SRC shows superior performance than 
conventional classifiers for training data! 



In the SVM, the classifier is trained (learned) using training data. Then, this fixed 

classification rule is applied to test data. 

However, in SRC, the design of classification rule is not needed. For each test signal, 

using direct training signal, independent classification task(i.e., sparse representation) 

is performed. 

In third case, based on the decision rule obtained from training data, SVM always 

wrongly classify. On the other hand, SRC has still chance to correct sparse 

representation with same class training data  

 

A new concept of classification 
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Discussions  

Training feature 

SVM training 

Dictionary 

SVM 

SRC 

Sparse Representation 
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③ 

③ 

Training Testing 
Training data – class1 

Training data – class2 
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Noisy test data – class1 

Noisy test data – class2 



The computation time of SRC method increase by the number of test trials. 

Thus, the robust classification performance of the SRC involves the cost of 

computation time at each test trial. 

For a single test trial, SVM and SRC take 12.1 and 16.7msec average 

computation time respectively. 

We compute the average computation time of SRC as the function of 

number of training trials. 

The difference of computation time is just few milliseconds.  

 

Computation time 
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 We compare the classification accuracy of SRC with that of SVM 

using large datasets. 

 SRC shows better classification accuracy than SVM.  

 We evaluate the noise robustness of SRC using Gaussian and 

resting state noise.  

 SRC shows more robust performance than SVM for both Gaussian 

and resting noise.   

 The improved performance of SRC might be caused by the different 

classification approach with conventional classifiers. 

 Computation time for each testing is cost of the robust classification 

accuracy. 

Summary  
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Summary  



Future work 

Real time online classification 

– Simulate the SRC using online feedback dataset.  

– Apply SRC to online BCI experiment. 

Adaptive classifier 

– Develop dictionary adaptation technique for long time use.  

– Apply dictionary learning techniques 

Multi-class performance  

– Apply SRC scheme to the multi-class BCI applications. 
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Thank you for 

attention! 
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Background (1/3)
 Piecewise‐constant Recovery (PcR) Problem
 The signal ഫܺ ∈ Թே consists of K+1(<<N) 

different constant values. 
 Our aim is to “fast reconstruction of ഫܺ from 

the compressive measurements ഫܻ ∈ Թெ

under a noisy CS framework”. 

 Examplary piecewise‐constant signals

3
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Background (2/3)
 Fixed‐point solvers for the PcR Problem

4

Year Name Complexity Description Publication

M
ile
st
on

es 1992 TV/ROF 
denoising ‐ ‐First work to proposed TV‐penalty for the 

PcR image denoising

Physica D 
nonlinear 
phen. 1992

1996 LS‐TV ‐ ‐ Solving TV‐penalized least square using 
Newton‐method

SIMA J. Sci. 
Comput 1996

2005 Fused Lasso ‐ ‐ Solving Lasso problem including the TV‐
penalty term

J.R. statist. 
2005

Re
ce
nt

2008 TVAL3 O(MN)

‐Variable splitting approach (alternating‐
direction approach)
‐ Accelerating convergence
‐ Not good PTC

SIMA J. imag. 
2008

2009 Split
Bregman O(MN)

‐ Further developing the variable 
splitting approach

‐ Not good PTC

SIMA J. imag. 
2009

2011 Champolle‐
Pock (CP) O(MN)

‐ Solving the primal‐dual problem 
simultaneously
‐Reducing the duality gap, convergence 
guarantee 

J. Math. Imag. 
2011
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Background (3/3)
 AMP solver has got attention for high‐dimensional CS problems !!
 Reason 1) LASSO‐optimal performance in high‐dimensional setting 

 Showing phase transition curve equivalent to Lasso. [PNAS’09:Donoho et.al] [TIT’13:Donoho et.al]

 Reason 2) Low‐computational nature of AMP iteration. 
 Handling only O(M+N) message per iteration. [PNAS’09:Donoho et.al],[PhysRev’12:Krzakala et.al]

 Reason 3) MSE prediction via state evolution. 
 MSE of the AMP estimate is deterministically predictable over iteration  

[PNAS’09:Donoho et.al],[TIT’11:Bayati et.al]

 Several extension of AMP to various types of signals

5

Year Name Description Publication

2011 GAMP Generalized input/output distribution  ISIT 2011,  ArXiv2010

2013 BAMP Block sparsity  (Group Lasso) TIT 2013,  ArXiv2013

2013 CAMP Complex sparsity TIT 2013

2013 TV‐AMP Piecewise‐constancy (TV Lasso) TIT 2013

2013 GrAMPA A variation of GAMP to the analysis‐CS framework 
(Generalized Lasso)

ArXiv 2013
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Motivations (1/2) 
 Existing AMP for the PcR problem (1): TV‐AMP [TIT13:Donoho et. al]

 TV‐AMP operates iteratively according to:

where ߤപ ௧ ∈ Թே and ݎപ ௧ ∈ Թெ are a signal estimate and residual at the t‐th iteration 
respectively.

 Contribution) TV‐AMP is the first extension of AMP to the PcR problem. 
 Limitation 1)   TV‐AMP has shown limited success in practice due to its denoiser which is 

solved by an external optimization package.

 Complexity of TV‐AMP highly depend upon that of the external package. 

 Limitation 2) The TV‐AMP denoiser is not scalarwise, leading to difficulty in the MSE 
prediction via the SE framework of [TIT’11:Bayati et.al].

6
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Motivations (2/2) 
 Existing AMP for the PcR problem (2): GrAMPA [ArXiv13:Schniter et al.]

 GrAMPA is a variation of GAMP to the analysis‐CS problem [ACHA’13:Nam et.al], solving

 Where the function ݃ሺ. ሻ is called the analysis function. 
 When ષ ൌ ۲(a finite‐difference matrix),                  becomes the PcR problem.
 In Bayesian viewpoint, the choice of the function ݃ሺ. ሻ	is determined by the prior for ષഫܺ.

 Contribution) GrAMPA operates with a scalarwise MMSE denoiser for the PcR problem, 
which is given as

 The denoiser, ߟGrAMPA ⋅ , selects a sparse support of difference  ௜ܺ െ ௜ܺିଵ with a Bernoulli‐Uniform 
prior, where the input ߩ௜ is a noisy observation of  ௜ܺ െ ௜ܺିଵ.

 Limitation) In the GrAMPA iteration, the residual calculation for  ௜ܺ െ ௜ܺିଵ is based on not 
real measurements but the estimate by ߟGrAMPA ⋅ . 
 This may lead to ineffective convergence of the recovery  when the sampling rate M/N is very low.

7
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Contributions
 Contributions
 The present work proposes an alternative AMP solver for the PcR problem called, 

“spike‐and‐slab Approximate Message‐Passing (ssAMP)”.

 Contribution 1) ssAMP includes a novel scalarwise denoiser satisfying the Lipschitz continuity. 
 Which can be an alternative of the TV‐AMP denoiser using the external package. 
 Which can be applized to the SE framework of [TIT’11:Bayati et.al] for MSE prediction. 

 Contribution 2) ssAMP shows phase transition curve (PTC) covering that of the two existing 
AMPs for the PcR problem: TV‐AMP and GrAMPA.

 Contribution 3) Computational advantage of ssAMP is remarkable compared to the other 
solvers for the PcR problem in a high‐dimensional setting. 

 Related Publications
 1) Jaewook Kang, Hyoyoung Jung, Heoun‐No Lee, Kiseon Kim, "Spike‐and‐Slab Approximate Message‐Passing for High‐

Dimensional Piecewise‐Constant Recovery,"  submitted to IEEE  Journal of selected topics in Signal processing July 1st.
 2) Jaewook Kang, Heung‐No Lee, and Kiseon Kim, "Piecewise‐Constant Recovery via Spike‐and‐Slab Approximate 

Message‐Passing using a Scalarwise Denoiser,"  to appear in proc. of the 48th Asilomar Conference (Asilomar, CA), Nov. 2014.

8
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The ssAMP algorithm (1/2)

9

 Algorithm construction approach
 Step I) Drawing a joint PDF from a factor graph model

 Step II) Assigning potential function for the piecewise‐constancy
 We go with Spike‐and‐slab potential function.

 Step III) Developing classical MP rule
 Measurement fidelity: the mF2V and V2mF update
 Piecewise‐constant pursuit:  the sF2V and V2sF update

 Step IV) MP rule to AMP rule 
 1) Parameterization step: Density‐passing to parameter‐passing
 2) First‐order approximation step: handling O(MN) meg. to O(M+N) meg.
 3) Simplification step: handling the sF2V and V2sF upate
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The ssAMP algorithm (2/2)

10

 ssAMP Iterations [JSTSP14:Kang et. al]
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What’s NEW in ssAMP? (1/2)
 Comparison of Piecewise‐constant pursuit task

11

ssAMP TV‐AMP GrAMPA

 The R2P/L2P update provides
information on the two 
neighbor  ௜ܺିଵ,  ௜ܺାଵ to the 
estimation of   ௜ܺ via the 
denoiser ߟ ⋅ .

 The external denoiser TVࣁ ⋅
performs the picewise‐
constant pursuit task.

 The denoiser GrAMPAࣁ ⋅
provides an sparse estimate of  
௜ܺ െ ௜ܺିଵ. 

 The info. is given to the 
estimation of  ௜ܺ in a form of 
residual.
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 The ssAMP denoiser ߟ ⋅
 A scalarwise denoiser produces an AMMSE estimate of 	 ௜ܺ in the ssAMP iteration.

 The ssAMP denoiser is Lipschitz continuous (omitting proof here) such that we 
can predict MSE of the ssAMP iteration using the Bayati’s SE framework 
[TIT’11:Bayati et.al]. 

The input parameter  ,ሽ࢒ഫࢇ ሼ࢈ഫ࢒ሽ, ሼࢉപ࢒ The input parameter ࣂ	

Re
m
ar
ks

 Delivering the information on	 ௜ܺିଵ,  ௜ܺାଵ
 which are functions of the R2P/L2P 

parameters
 The element index ݈ indicates the four 

different situations: 

 Determining the denoising threshold

 When ߠ → ∞, the denoiser should 
generate a constant output for all ߩ௜.

 When ߠ → 0, the denoiser simply 
passes the input ߩ௜ such that 
denoising is not necessary.

What’s NEW in ssAMP? (2/2)

12
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Performance Validation

14

 Phase transition Characteristic (PTC)

PTC for Gaussian piecewise‐constancy:
N=500, Noiseless, maxiter=500

 ssAMP outperforms TV‐AMP and 
GrAMPA in terms of PTC.
 In the region of low sampling ratio 

(0 ൏ M/N ൑ 0.1)
 In the region of high sampling ratio 

(0.6 ൏ M/N ൑ 1.0)
 Unsuccessful recovery of GrAMPA

due to its residual update

 1) The residual update relies on not 
real measurements but the estimate 
of  ௜ܺ െ ௜ܺିଵ by ߟGrAMPA ⋅ .

 2) The onsager term cannot properly 
cancel cross‐interference among the 
signal elements. 
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Performance Validation

15

 Algorithm runtime over N
 ssAMP has computational advantage over recent TV 

solvers, TVAL3, TV‐AMP, CP, and GrAMPA, in algorithm 
runtime. 

 Total complexity of all the algorithms scales as 
O(MN) since the matrix multiplications, ۶ഫ࢞ or 
പݕ۶் , dominate the complexity. 

 In such a situation, ssAMP retains its place as the 
fastest algorithm when ܰ ൒ 10ଷ.

 When ܰ ൌ 160ଶ, the ssAMP runs more than 10 
times faster than CP and GrAMPA.
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MSE convergence over iterations
 The computational advantage of ssAMP is mainly 

from its fast MSE convergence. 

 TV‐AMP: The most competitive wrt. per‐iteration 
runtime, No deep convergence in MSE.

 GrAMPA: Slow convergence, high per‐iteration 
runtime, Deep MSE convergence. 

 CP: The most high per‐iteration runtime due to many 
matrix multiplications in its processing. 

 TVAL3: variable per‐iteration runtime, the worst 
convergence characteristic

Runtime (in sec) per iteration in the experiment (ܰ ൌ 100ଶ, ߂ ൌ 10ିହ)
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 Conclusions
 The ssAMP algorithm operates with a scalarwise denoiser generating AMMSE 

estimate and holding the Lipschitz continuity. Low complex, Being applicable to 
the SE framework.

 PTC of ssAMP covers that of two existing AMPs for the PcR problem. 
 ssAMP has computational advantage over the recent TV solver in runtime. 

 Further works
 A simplification work of the denoiser and all embedded functions in the ssAMP

iteration (Looking for a co‐working master student)

 2D extension of ssAMP algorithm by applying the tree‐reweighted approach 
(An ongoing work with Hyoyoung Jung since June 2014)
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