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2012-11-08
Fair  Bandwidth  Allocation  in  Wireless  Mesh  Networks  With
Cognitive Radios 

 
 
 
 
 

Muhammad
Asif Raza 

In this paper authors discuss about fair bandwidth allocation issue in 
wireless mesh networks with cognitive radios. In order to achieve 
fairness they define the two allocation problems based upon a simple 
max-min  fairness  model  and  lexicographical  max-min  fairness 
model. They solve the allocation problems by using linear 
programming based heuristic algorithms. The proposed algorithms 
ensure both fairness and throughput. The presented algorithms are 
evaluated for their effectiveness and fairness based upon extensive 
simulations. 
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2012-11-15
On  the  Recovery  Limnit  of  Sparse  Signals  Using  Orthogonal
Matching Pursuit 

 
 
 

Sangjun 
Park 

In  the  paper,  the  authors  give  a  sufficient  condition  of  the 
Orthogonal matching Pursuit (OMP) algorithm. In [2], Wakin and 
Davenport inisted that OMP can reconstrcut any K sparse signal if 
delta_(K+1) < 1/(3*sqrt(K)). However, in this talk, an improved 
sufficient condition that guarantees the perfec recovery of OMP is 
presented. 
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2012-11-22
Capacity  of  OFDM  Systems  over  Fading  Underwater  Acoustic
Channels 

 
 
 
 
 
 
 

Zafar Iqbal

This paper derives the upper and lower bounds for channel capacity 
of the OFDM systems over underwater acoustic channels as a 
function of distance between the transmitter and the receiver. It 
incorporates frequency dependent path loss at each arrival path at 
the receiver due to acoustic propagation. This leads the UW channel 
to be modeled as wide sense stationary and correlated scattering 
(WSS-non-US) fading channel. Results from both Rayleigh and 
Rician  fading show  a  gap  between  the  upper  and  lower bounds 
which depends, not only on the ranges and shape of the scattering 
function of the UW channel but also on the distance between the 
transmitter and the receiver. 
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2012-11-29
Compressive sensing and its application in wireless sensor network
& correlated signal recovery method 

 
 
Jaegun Choi

The thesis of master degree: In this paper, we discuss the application 
of a new compression technique called compressive sensing (CS) in 
wireless sensor networks (WSNs). CS is a signal acquisition and 
compression framework recently developed in the field of signal



 

    processing and information theory. We applied this CS technique to 
WSN which consists of a large number of wireless sensor nodes and 
a central fusion center (FC). This CS based signal acquisition and 
compression is done by a simple linear projection at each sensor 
node. Then, each sensor transmits the compressed samples to the 
FC. The FC which collects the compressed signals from the sensors 
jointly reconstructs the signals in polynomial time using a signal 
recovery algorithm. The distributed sensors observe similar event in 
designated region. Therefore, the observed signals have considerable 
correlation each other. We pay some effort in modeling correlation 
between the signals acquired from the sensors. After modeling the 
correlated signals, we propose POMP (Phased-OMP) which can 
recover any type of correlated signals stably and effectively. We 
introduce the idea of our proposed algorithm in detail and then 
compare the reconstruction performance of POMP with previous 
algorithms 
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2012-12-13
Multiuser Cooperative Diversity Through Network Coding Based on
Classical Coding Theory 

 
 
 

Jintaek 
Seong 

To increase the diversity order of cooperative wireless 
communication systems without sacrificing the system’s rate, they 
propose the generalized dynamic-network code (GDNC). They 
showed that the problem of designing network codes that maximize 
the diversity order is related to that of designing optimal linear block 
codes, in the Hamming distance sense, over a nonbinary finite fields.
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2013-01-24
A fast approach for over-complete sparse decomposition based on 
smoothed L0 norm 

 

 
 
 

Oliver 

This paper proposes a fast algorithm for overcomplete sparse 
decomposition.The algorithm is derived by directly minimizing the 
L0 norm after smoothening. Hence, the algorithm is named as 
smoothed L0 (SL0) algorithm.  The authors demonstrate that their 
algorithm is 2-3 orders of magnitude faster than the state-of-the-art 
interior point solvers with same (or better) accuracy. 
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2013-01-10 Statistical physics-based re construction in compressed sensing 
 
 
 
 
 
 

 
Jaewook 

Kang 

In  this  report,  the  author  introduces  a  expectation  maximization 
(EM) based belief propagation algorithm (BP) for sparse recovery, 
named  EM-BP.  The  algorithm  have  been  mainly  devised  by 
Krzakala et al. from ParisTech in France. The properties of EM-BP 
are as given below:1) It is A low-computation approach to sparse 
recovery, 2) It works well without the prior knowledge of the signal,
3)  It  overcomes  the  l1  phase  transition  given  by  Donoho  and 
Tanner  under the noiseless setup, 4) It is further improved in 
conjunction with seeding matrices (or spatial coupling matrices). 

 
 

The main purpose of this report regenerates a precise description of
EM-BP derivation from the reference paper. It might be very helpful



 

    for  understanding  of  EM-BP  algorithm,  and  an  answer  for  such 
a question: How and why does the algorithm work ? Therefore, we 
will focus on the explanation of 1) and 2) in the properties, and just 
show the result of the paper with respect to that of 3) and 4). 
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2013-02-07
Performance   Analysis   of   Iterative   Decoding   Algorithms   with
Memory over Memoryless Channels 

 
 
 

 
Jeongmin 

In this work, they propose a model for iterative decoding algorithms 
with memory which covers successive relaxation (SR) version of 
belief propagation and differential decoding with binary message 
passing (DD-BMP) algorithms. Based on this model, they derive a 
Bayesian network for iterative algorithms with memory over 
memoryless channels and use this representation to analyze the 
performance of the algorithms using density evolution. 
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2013-02-14 Faster STORM using compressed sensing 
 
 
 
 
 
 

Eunseok 

In super-resolution microscopy methods based on single-molecule 
switching,  the  rate  of  accumulating  single-molecule  activation 
events often limits the time resolution. Here we developed a sparse-
signal recovery technique using compressed sensing to analyze 
images with highly overlapping fluorescent spots. This method 
allows  an  activated  fluorophore  density  an  order  of  magnitude 
higher than what conventional single-molecule fitting methods can 
handle. Using this method, we demonstrated imaging microtubule 
dynamics in living cells with a time resolution of 3 s. 
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2013-02-21
A  Node-Based  Time  Slot  Assignment  Algorithm  for  STDMA 
Wireless Mesh Networks 

 

 
 
 
 

Muhammad
Asif Raza 

In this paper authors present a link capacity model for spatial time-
division multiple access (STDMA) mesh networks. It makes use of a 
simplified transmission model that also considers channel fading. 
The model then forms the basis of a node-based slot-assignment and 
scheduling algorithm. This algorithm enables the user to exploit 
multiuser diversity that results in optimizes network throughput. The 
presented  algorithm  shows  significant  improvement  in  the 
throughput when compared with existing slot-assignment methods 
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2013-02-28
A New TwIST: Two-Step Iterative Shrinkage/Thresholding
Algorithms for Image Restoration 

 
 

Hwanchol 
Jang 

In this paper, the authors introduces TwIST algorithms, exhibiting 
much faster convergence rate than IST for ill-conditioned problems. 
For a vast class of nonquadratic convex regularizers, they show that 
TwIST converges to a minimizer of the objective function, for a 
given range of values of its parameters. 
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2013-03-21
Scaling Up MIMO: Opportunities and challenges with very large 
arrays 



 

   
 
 

 
Woongbi 

Very large MIMO systems, also known as massive MIMO, multiuser 
MIMO systems, or large-scale antennas systems is an emerging 
research area in antenna systems, electronics, and wireless 
communication systems. A base station with an antenna array serves 
a multiplicity of single-antenna terminals. In this presentation, the 
fundamental principle of massive MIMO technology and several 
issues are introduced. 
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2013-03-28 Shrinkage methods to linear regression problems 
 
 
 
 
 

Jaewook 

In this chapter, we are interested in the linear regression with 
shrinkage  methods.  The  shrinkage  method  have  got  attention  to 
solve the problem of linear systems y=Ax because the method 
provides very flexible solver from dense signals to sparse signals. 
First, we will introduce basic concept of two shrinkage methods in 
the linear regression, Ridge and Lasso. Then, we move the focus to 
sparse recovery with Lasso and its variants for different problem 
setting such as Fused lasso and Elastic net. 
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2013-04-11 Efficient Design and Decoding of Polar Codes 
 
 
 
 
 
 
 

Jeongmin 

Polar codes are shown to be instances of both generalized 
concatenated  codes  and  multilevel  codes.  It  is  shown  that the 
performance of a polar code can be improved by representing it as a 
multilevel code and applying the multistage decoding algorithm with 
maximum likelihood decoding of outer codes. Additional 
performance improvement is obtained by replacing polar outer codes 
with other ones with better error correction performance. In some 
cases this also results in complexity reduction. It is shown that 
Gaussian approximation for density evolution enables one to 
accurately predict the performance of polar codes and concatenated 
codes based on them. 
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2013-04-18
Aliasing-Free Wideband Beamforming Using Sparse Signal
Representation 

 
 
 

 
J. Oliver 

This paper considers the use of sparse signal representation for the 
wideband direction of arrival (DOA) or angle of arrival estimation 
problem.   In   particular,   this   paper   discusses   about   the   two 
ambiguities, namely, spatial and algebraic aliasing that arise in 
wideband-DOA.  The  authors  of  the  paper  suggest  procedures  to 
avoid the aliasing using multiple measurement vector and multiple 
dictionaries. 
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2013-05-09 Turbo Reconstruction of Structured Sparse Signal 
 
 
 

 
Hyeongho 

This paper considers the reconstruction of structured-sparse signals 
from  noisy  linear  observations.  In  particular,  the  support  of  the 
signal coefficients is parameterized by hidden binary pattern, and a 
structured probabilistic prior (e.g., Markov random chain/field/tree) 
is assumed on the pattern. Exact inference is discussed and an 
approximate inference scheme, based on loopy belief propagation 
(BP),   is   proposed.   The   proposed   scheme   iterates   between



 

    exploitation of the observation-structure and exploitation of the 
pattern-structure, and is closely related to noncoherent turbo 
equalization, as used in digital communication receivers. An 
algorithm  that  exploits  the  observation  structure  is  then  detailed 
based on approximate message passing ideas. 
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2013-05-16
Compressive fluorescence microscopy for biological hyperspectral 
imaging 

 

 
 
 
 
 
 
 
 
 
 
 
 

Eunseok 

The mathematical theory of compressed sensing (CS) asserts that 
one can  acquire signals  from  measurements  whose rate is  much 
lower than the total bandwidth. Whereas the CS theory is now well 
developed, challenges concerning hardware implementations of CS-
based acquisition devices—especially in optics—have only started 
being addressed. This paper presents an implementation of 
compressive sensing in fluorescence microscopy and its applications 
to biomedical imaging. Our CS microscope combines a dynamic 
structured wide-field illumination and a fast and sensitive single-
point fluorescence detection to enable reconstructions of images of 
fluorescent beads, cells, and tissues with undersampling ratios 
(between the number of pixels and number of measurements) up to
32. We further demonstrate a hyperspectral mode and record images 
with 128 spectral channels and undersampling ratios up to 64, 
illustrating the potential benefits of CS acquisition for higher-
dimensional signals, which typically exhibits extreme redundancy. 
Altogether, our results emphasize the interest of CS schemes for 
acquisition at a significantly reduced rate and point to some 
remaining challenges for CS fluorescence microscopy. 
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2013-05-30
Simplified  Relay  Selection  and  Power  Allocation  in Cooperative
Cognitive Radio Systems 

 

 
 
 

Muhammad
Asif 

In this paper authors propose solution of a combined problem; relay 
selection  and  power  allocation  to  secondary  users  under  the 
constraint of limited interference to primary users in cognitive radio 
(CR)  system.  Objective  of  the  joint  problem  was  to  maximize 
system throughput. A high complexity optimal solution and a low 
complexity suboptimal solution are proposed. The presented 
solutions show over 50% improvement in system throughput. 
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2013-06-13
Signal  Recovery  From  Random  Measurements  Via  Orthogonal
Matching Pursuit 

 

 
Sangjun 

This paper is to show that a sufficient condition on the number of 
measurements for a successful greedy algorithm called Orthogonal 
Matching  Pursuit.  We  understand  how  the  authors  of  this  paper 
derive their sufficient condition. 
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2013-06-27 Link Status Monitoring Using Network Coding 
 

 

Jin-Taek 
This work has presented a novel approach to link status monitoring 
based  on  a  deterministic  approach  that  exploits linear  network 
coding  at  the  internal  nodes  in  a  network. The  key  problem  of



 

    identifiability  for  such  approaches  was highlighted  and  various 
insights provided regarding this concept. New sufficient conditions 
were derived for successfully identifying a congested link in any 
logical network, and tradeoffs between length of training slots and 
size of the network coding alphabet established. 
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2013-07-11
A sparse signal reconstruction perspective for source localization 
with sensor arrays 

 

 
 
 
 
 

J.Oliver 

In this paper, the authors present a source localization method based 
on sparse representation of sensor measurements. In particular, they 
use SVD of the data matrix obtained from the sensors to summarize 
the multiple measurements. The SVD summarized data is then 
sparsely represented in order to detect the sources. The authors also 
proposed grid refinement in order to mitigate the effects of limiting 
estimates  to  a  grid  of  spatial  locations.  They  demonstrate  the 
superior resolution ability with limited time samples of their method 
over the existing methods via various experiments 
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2013-07-18
Enhancing Iterative Decoding of Cyclic LDPC Codes Using Their
Automorphism Groups 

 
 
 
 
 
 
 
 

Jeongmin 

In this paper they focus on cyclic LDPC codes defined by a circulant 
parity-check matrix and consider two known subgroups of the 
automorphism group of a cyclic code. For the large class of 
idempotent-based cyclic LDPC codes in the literature, they show 
that   the   two   subgroups   only  provide   equivalent   parity-check 
matrices and thus cannot be harnessed for iterative decoding. 
Towards exploiting the automorphism group of a code, they propose 
a new class of cyclic LDPC codes based on pseudo-cyclic MDS 
codes with two information symbols,for which nonequivalent parity-
check matrices are obtained. Simulation results show that for our 
constructed codes of short lengths, the automorphism group can 
significantly enhance the iterative decoding performance 
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2013-07-25 Multiuser detection of sparsely spread CDMA 
 
 
 
 
 
 
 
 
 
 

Jaewook 

Abstract: This paper has discussed about design and analysis of 
multiuser detection (MUD) using sparsely spread CDMA systems. 
The objective of the MUD problem is how to detect multiple user 
signals simultaneously at the low computational cost. The main 
obstacle is multiple-access interference (MAI). These multiple user 
signals are interference for each user detection one another. The 
MAI problem arise in most CDMA systems, and optimal detection 
in such systems requires exponentially growing computation as the 
number of user increases. But a good news is that the simultaneous 
users in time is very few. Therefore, this paper investigates a 
suboptimal MUD detection using sparse CDMA systems. The key 
idea of the proposed system is to encode the transmitted waveforms 
using  sparse  spread  CDMA codes  and  detect  the  signal  using  a 
linear-complexity belief propagation (BP) algorithm. We summarize 
the contributions of this work is following: 



 

    - Description the sparse CDMA system 
- Properties of the sparsly spread CDMA codes for the convergence 

of the BP algorithm 
- Design of the BP algorithm for the MUD problem 
- Asymptotic analysis of performance of the BP algorithm based

MUD detection 
In this report, we aim to sketch the key point of each contribution 
of this paper. 

 
 
 
 

 
24 

2013-08-01 Compressive Sensing for Spread Spectrum Receivers 
 
 
 

 
Hyeongho 

This paper investigates the use of Compressive Sensing(CS) in a 
general  Code  Division  Multiple  Access  (CDMA)  receiver.  They 
show that when using spread spectrum codes in the signal domain, 
the CS measurement matrix may be simplified. Furthermore, they 
numerically evaluate the proposed receiver in terms of bit error rate 
under different signal to noise ratio conditions and compare it with 
other receiver structures. 
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2013-08-08
Active  illumination  single-pixel  camera  based  on  compressive 
sensing 

 
 
 
 
 
 
 
 

Eunseok 

This  paper  is  organized  as  follows.  After  a  brief  introduction 
(Section 1), some mathematical back- ground essential to the 
understanding of CS is shown (Section 2). Then, in Section 3, CS is 
presented along with some of its principal properties. Section 4 
explains why the ℓ1-norm is such a good option for com- pressive 
sensing. Some insights about the robustness of CS in the presence of 
noise are given in Section 5. Next, in Section 6, the single-pixel 
camera developed at Rice University is discussed. Subsequently, the 
innovative active illumination single-pixel camera developed in the 
scope of the current work is described. Following that, experimental 
results from the single-pixel cameras are presented. In the end, the 
main conclusions of this work are exposed. 
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2013-08-29 Resource Allocation in Cognitive Radio Relay Networks 
 
 
 
 
 

Muhammad
Asif 

In this paper authors formulate the problem of Resource Allocation 
(RA) in Cognitive Radio (CR) networks with relay stations. The 
problem takes into account the issues like: fluctuations of usable 
spectrum resource, channel quality variations caused by frequency 
selectivity,  and  interference  caused  by  different  transmit  power 
levels. They propose easy to implement heuristic algorithms. The 
simulation results reveal that presented solutions show good 
proportional fairness among CR users and improvement in system 
throughput by power control. 

 
 

 
27 

2013-09-16 Multipath Matching Pursuit 
 

 

Hwanchol 
Jang 

In this paper, they propose an algorithm referred to as multipath 
matching pursuit that investigates multiple promising candidates to 
recover   sparse   signals   from   compressed   measurements. Their 
method is inspired by the fact that the problem to find the candidate



 

    that minimizes the residual is readily modeled as a combinatoric tree 
search problem and the greedy search strategy is a good fit for 
solving this problem. In the empirical results as well as the restricted 
isometry property (RIP)  based  performance  guarantee, they show 
that the proposed MMP algorithm is effective in reconstructing 
original sparse signals for both noiseless and noisy scenarios. 
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2013-10-14
The  Exact  support  recovery  of  sparse  signals  with  noise  via 
orthogonal matching pursuit 

 

 
 
 

Oliver 

This letter derives sufficient conditions for the OMP to recover the 
support set of a sparse vector from noise corrupted measurements. In 
particular,  the  conditions  are  given  in  terms  of  the  minimum 
absolute values of the signal amplitudes. That is, if the minimum 
values of the non-zero coefficient of the signal satisfies certain 
conditions then OMP guarantees exact support recovery. 
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2013-10-21 Hierarchical and High-Girth QC LDPC codes 
 
 
 
 
 
 
 
 

Jeongmin 
Ryu 

They present an approach to designing capacity approaching high-
girth low-density parity-check (LDPC) codes that are friendly to 
hardware implementation, and compatible with some desired input 
code structure defined using a protograph. The approach is based on 
a mapping of any class of codes defined using a protograph into a 
family of hierarchical quasi- cyclic (HQC) LDPC codes. Next, they 
present a girth-maximizing algorithm that optimizes the degrees of 
freedom within the family of codes to yield a high-girth HQC LDPC 
code, subject to bounds imposed by the fact that HQC codes are still 
quasi-cyclic. Finally, they discuss how certain characteristics of a 
code protograph will lead to inevitable short cycles and show that 
these short cycles can be eliminated using a “squashing” procedure 
that results in a high-girth QC LDPC code. 
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2013-10-26 Ultra-Wideband Compressed Sensing : Channel Estimation 
 

 
 
 
 
 
 
 
 
 
 

JuSung 
Kang 

In this paper, they have introduced two novel ultra-wideband (UWB) 
channel estimation approaches based on compressive sensing (CS). 
The proposed approach relies on the fact that transmitting an ultra-
short pulse through a multipath UWB channel leads to a received 
UWB signal that can be approximated by a linear combination of a 
few atoms from a pre-defined dictionary which means sparse 
representation of the received signal. The key in the proposed 
approach   is   in   the   design   of   a   dictionary   of   parameterized 
waveforms (atoms) that closely matches the information-carrying 
pulse shape leading thus to higher energy compaction and sparse 
representation, and, therefore higher probability for CS 
reconstruction. In the first approach, the CS reconstruction 
capabilities are exploited to recover the composite pulse-multipath 
channel  from  a  reduced  set  of  random  projections.  This 
reconstructed signal is subsequently used as a referent template in a 
correlator-based detector. In the second approach, from a set of 
random projections of the received pilot signal, the Matching Pursuit



 

    algorithm is used to identify the strongest atoms in the projected 
signal that are related to the strongest propagation paths that 
composite the multipath UWB channel. 
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2013-11-18
Missing-Area  Reconstruction  in  Multispectral  Images  Under  a
Compressive Sensing Perspective 

 

 

Hyeongho 
Baek 

The intent of this paper is to propose new methods for the 
reconstruction of areas obscured by clods. They are based on 
compressive sensing theory, which allows finding sparse signal 
representations in underdetermined linear equation systems. 
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2013-11-25 Power and Channel Allocation for Cooperative Relay in Cognitive
Radio Networks 

 
 
Muhammad 

asif 

In this paper authors mention that cognitive radio relay channels can 
be divided into three categories: direct, dual-hop, and relay channels. 
The relay node involves both dual-hop and relay diversity 
transmission.  They  develop  power  and  channel  allocation 
approaches for cooperative relay networks. They also develop a low 
complexity  approach  that  can  obtain  most  of  the  benefits  from 
power and channel allocation with minor performance loss. 
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2013-12-09 Robust Compressive Data Gathering in Wireless Sensor Networks 

 
 
 

Jongmok 
 

Shin 

In this paper, authors investigate the impact of outlying sensor readings 
and broken links on high-fidelity data gathering, and propose approaches
based on the compressive sensing theory to identify outlying sensor 
readings and derive the corresponding accurate values, and to infer 
broken links in Wireless Sensor Networks. 
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Short summary: In this paper authors present a link capacity model for spatial time-division 

multiple access (STDMA) mesh networks. It makes use of a simplified transmission model that 

also considers channel fading. The model then forms the basis of a node-based slot-assignment 

and scheduling algorithm. This algorithm enables the user to exploit multiuser diversity that 

results in optimizes network throughput. The presented algorithm shows significant 

improvement in the throughput when compared with existing slot-assignment methods. 

I. INTRODUCTION 

In STDMA network the transmission time of a channel is divided into slots where multiple slots 

constitute a frame. These slots are assigned to potential users of the network. The goal of slot assignment 

scheme is to maximize network throughput. Existing assignment algorithms in STDMA make use of 

simplified transmission model which do not consider the time-varying fading behavior of a wireless 

channel. This results in slot wastage when link is in deep fade. The slot is also wasted if scheduled link 

has no traffic to transmit. This degrades the STDMA network throughput. Therefore a dynamic slot-

assignment with that should exploit multiuser diversity is required. However sheer complexity involved 

in coordinating with all nodes and generating scheduling map in a reasonable time makes this approach 

impractical. In order to fix these issues the authors present a node-based slot-assignment scheme in which 

scheduling in each slot is done for nodes not for links. Their contributions include: 

 Defining link capacity: a model that includes channel fading. It ensures that whichever link is 

used by a node will not change the interference profiles on the links selected by other users. 

 Node-based time-slot assignment and scheduling algorithms. 

II. SYSTEM MODEL 

Wireless STDMA mesh network with fixed routers. 

Transmissions are organized in frames. 

Synchronization among nodes provided through GPS. 

A Node-Based Time Slot Assignment Algorithm 
for STDMA Wireless Mesh Networks 



 
 

2 

Set of nodes are identified and assigned to a slot for their transmission. 

Each node maintains a separate queue for each outgoing link and performs scheduling without 

coordination with other nodes. 

Multiprotocol Label Switching (MPLS) multipath routing is used for routing however packets are 

transmitted in sequence.  

Adaptive modulation and time varying fading channels are considered. It is also assumed that wireless 

channels undergo slow fading. Due to fading channel an instant channel gain will be fed back to 

transmitter. The duration for feedback is no longer than coherence time (the time for which channel 

conditions remain same) 

Adaptive modulation is implemented that each data packet can be fragmented into multiple segments 

and each segment can be transmitted in with lowest data rate. If high data rate is available then multiple 

segments can be transmitted per slot duration. 

III. LINK CAPACITY MODELING 

Each node has multiple links and it can exploit multiuser diversity i.e. different links have different 

traffic and fading conditions. A channel model is presented that includes shadowing and slow fading. 

A. Signal to interference and noise ratio (SINR) Formulation 

ℎ�,�: Channel response function from transmitter ‘t’ and receiver ‘r’  

��: Signal from ‘t’ 

��, ��,
'
it : Set of transmitters causing interference to ‘r’, number of transmitters and ith transmitter in Ir 

respectively. Power control is not considered therefore transmission power of ‘t’ is  2

tpt E x . Let 

�� be thermal noise with power equal to k then received power at ‘r’ is  
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SINR at receiver ‘r’ is expressed as: 
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s h p and s h p  . The Channel response function consists of three parts:  

 Path loss 

 Shadowing 

 Fading 
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Where ,r tl is distance between ‘t’ and ‘r’, [2 4]  (constant), 

,

1010
r tf

is shadowing effect and it is 

modeled as a log-normal distributed random variable. ,r t is fading effect and it is defined as complex Gaussian 

RV with mean and variance equal to 0 and 1 respectively. PDF of s0 and si are defined as: 
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B. PDF of SINR 

Case 1: no interference is observed by receiver ‘r’ i.e. (Ir=0, nI=0) then PDF of ,r t , is defined as: let 0
     

, 0

1( ) ( )
z

r t sp z p z e 
 


   (5) 

Probability that ,r t is smaller than w is defined as: 

 
,, ( )

w

r tr t

w

Pr w p z dz e 





    (6) 

Case 2: unit interference is observed by ‘r’ i.e. (Ir>0, nI=1) then PDF of term (si+k i.e. denominator of 

equ.2) is defined as: 

1

1 1

1( )
v

sp v e




 



    (7) 

Finally PDF of ,r t is defined as: 

 1
10 1

, 0 1 0 1 0 1

1( ) ( ) ( )
vz v

u

r t

u
v

s s up z vp vz p v dv e e dv e

 



     

 


 

  

     (8) 

Probability that ,r t is smaller than w is defined as: 

 
,

0
,

0 1

( )
w

r tr t

w

Pr w p z dz e
w







 




  
   (9) 
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Case 3: more than one interferers are present in Ir i.e. (nI > 1) then PDF of 
1

nI

i
i

s

 can be defined as: 

1

( ) ( )

1

( )
I v

i i
n sI n iI

i

i

n
b

v p vI
s i

p v P e 






 






  (10) 

Here  1,
1

1
I

I i

i j

n
n

i j j i i
i

b and b
  



   . The PDF of term (si+k i.e. denominator of equ.2) is defined 

as:  ( )I Ip v p v    . Finally the PDF of ,r t : 

 2
, 0

1

( ) ( ) ( )
I

i

r t i i

n
q

s I i q q
i

p z vp vz p v dv d e  
 









     (11) 

Here    
0

1
i

z
iq     and  

0

ii

i

qb
id e 

 
 .  Probability that ,r t is smaller than w is defined as: 

 
, 0, 0

1

( )
Iw

i

r t i

n
b

r t w
iw

Pr w p z dz e 
   







      (12) 

Finally Link Capacity can then be determined as: 

     
1

1
, , ,

1

i i
r t r i thr r t thr r t thr

i

c I c Pr c Pr



    






     � �  

Where cr,t(Ir) is average data rate between ‘t’ and ‘r’, given interference set Ir cr,t(Ir)) cr,t(Ir) 

IV. PROPOSED TIME-SLOT ASSIGNMENT ALGORITHM 

TDMA frame consists of a fixed number of slots is considered. The set of transmitting links that are 

activated in a given slot is called a link pattern, and the set of nodes activated in a given slot is called a 

node pattern. 

A. Formulation of Node-Based Time-Slot Algorithm 

Notations: 

 V: set of nodes 

 E: set of links 

 NP: Node Pattern 

 , ;e etx rx e E  transmitter and the receiver of link e, respectively, 

 , | , , ,s p eE e e E p s s NP tx p      set of links that can be used at node p, where      

p∈s i.e p is activated in node pattern s); 



 
 

5 

portion of time that is assigned to node pattern (s) in a frame, where,

 1

s

s

s NP










 , , ,|s p e s pe Eò :portion of time that is assigned to each link of node p in node pattern s 

 F: set of flows in the system; where flow defines all traffic that belongs to (S, D) pair 

 fh : traffic demand for flow f, where f F  

 fS : source of flow f 

 fD : destination of flow f 

 ,f ex : percentage of traffic that flow f passes through link e, 

Calculations 

Link congestion: it is total amount of traffic routed through the link ‘e’ over its average capacity 

(ce) i.e. 
,f e

e

x

e c
f F

r


 
  
 
  where link capacity (data rate between transmitter ‘t’ and receiver ‘r’ is 

defined as: 

 ,

,

|

,

,

,

, s p

e s e

s s NP p s e

s p

E

ec c
  

  ò .  

Thus network congestion ratio ‘r’ is the maximum of all link congestion ratios, i.e. max e
e E

r r


  

Optimal node-based slot assignment scheme is one which minimizes congestion ‘r’: 

 

 

 

 

   

 

,

,

| ,

, ,

, ,

,

,

, ,

, ,

,

|

| , ,

, ,

| |

, ,

,

|

min (13 )

. (13

0,

)

(13 )

(13 )

1 (13 )

0, (13 )

0 (13 )

0

f e f

f F

s e

e s NP p s e Es p

s p

s p e

e e

s p e

e f

x h

c

s

e e E

s

e p s e E rx q

s

s NP

s

f e f e

e tx v e rx v

f e f e

e tx S e

s p e

s p e

s p e

r a

s t r b

c

d

e

f

x x g

x x

r











  



  



 
































 



ò

ò

ò

ò

 |

,

1(13 )

0 (13 )

e frx S

f e

h

x i








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Problem 13 is the optimization problem, whose purpose is to find the set of , ,s p eò  that will 

lead to the optimal objective function. Constraint 13c represents that in node pattern s, for any 

node p∈s, p can transmit to only one node at one time. 13d ensures that a node q can receive 

from only one node at one time while q s and p∈s. 13f and 13i ensures non-negativity 

constraints. Constraint 13b is non-linear therefore sr  and , ,s p erò  are replaced by 

, ,s s p eand   respectively. Therefore final formulation is defined as: 

 

 

 

   

   

,

,

,

, ,

| , ,

|

| , ,

, ,

|

, ,

, ,

, ,

, ,

|

, ,

| |

min (14 )

. (14 )

(14 )

(14 )

0, (14 )

0 (14 )

1

0

(14

s p

s p

s p e

e e

e f e f

s

s p e

s p e s

s p e s

s NP

f e f s e

f F e s NP p s e E

e e E

e p s e E rx q

f e f e

e tx v e rx v

f e f e

e tx S e

s s p

rx S

e

a

s t x h c b

c

d

e

x x f

x x



 

 

 



   



  

 

 









 

 



 





 

 

ò

,

)

0 (14 )f e

g

x h

 

 

Authors describe that the presented formulation can handle scheduling of node patterns by using Linear 

Programming approach. However for link based approach, listing all link patterns does not work by using 

LP formulation. Therefore column generation method is used to tackle the problem. 

B. Frame Construction and Throughput Loss due to Frame Quantization 

Frame is constructed as:  f s
s NP

n z


   here z is frame length and function [x] rounds ‘x’ to nearest 

integer.  

The frame quantization will change the portion of time assigned to all patterns ( s ). Therefore 

parameters like minimum congestion ratio rz, the optimal link capacities (ce) and the routing scheme xf,e 
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will change. These parameters need to be recomputed as follows. let zs be number of slots assigned to 

node pattern ‘s’ in a frame. 

 

 

 

   

   

,

,

,

, ,

| , ,

|

| , ,

, ,

, ,

, ,

| |

, ,

| |

,

, ,

min (15 )

. (15 )

(15 )

(15 )

0 (15 )

(15 )

s p

s

s

s NPs p

s

s

s NPs p e

e e

e f e f

z

f e f s e

f F s s NP p s e E

z

z
e e E

z

z
e p s e E rx q

f e f e

e tx v e rx

s p e

s p e

s p e

v

f e f e f z

e tx S e rx S

f e

a

s t y h c b

c

d

y y e

y y h f

y









   



  

 

 









 

 

 





 

 

ò

ò

ò

, ,0, (0 15 )s p e g ò

 

Here  ,1
, ,, , f es

z zs
s NP

xz
r rz s f e f e zz

y x  


 
    

 
  

C. Column Generation Method 

Column generation is an algorithm for solving large LP problems. Most of the variables are usually 

non-basic and assume zero values in the optimal solution, only a subset of variables are needed for 

solving the problem. Column generation method considers only the variables which have potential to 

improve the objective function. It splits the problem into master problem and subproblem. Master 

problem is the original problem with subset of variables being considered. In subproblem it uses duality 

approach to select new variables to be added to master problem to improve its result.  

Master Problem: it is same as defined in problem 14 except that NP is replaced with NP (subset of 

NP which is feasible for 14). Solution of master problem shall provide a routing and slot-assignment 

scheme. 

Subproblem: is a new problem created to identify a new node pattern to add to master problem and it 

is defined as: 

min s
s NP

rp
 NP

 (15) 

Here srp is reduced cost of node pattern ‘s’ in the column generation algorithm and it is optimal value 

of following problem: 
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   ,

, ,

| | , ,

, , ,

max 1

. 0

s p e

s p s q

p p s q p s e E rx q

s p s p e s es t c

 

  

   

 

  

 
  
 

 
 (16) 

Here , ,s p s qand  are variables that are associated with the transmitter p and the receiver q in node 

patterns s. Well the question is which node pattern should be included into NP ?  

According to duality theory if master problem is optimal then srp is always non-negative for any 

pattern in NP. The node patterns with negative srp can improve the result if they are added into NP . So 

algorithm will iterate between two phases until no more patterns can be added to NP .  

Algorithm steps are defined as follows: 

 

 

 

 

 

 

 

 

V. SCHEDULING ALGORITHMS 

Two scheduling algorithms are proposed in which each node will locally schedule its link transmissions 
without inter-node coordination and without disturbing interference profiles of other nodes.  

A. Scheme 1 

Every node ‘t’ in node pattern ‘s’ assigns a transmission probability to every link associated with ‘t’. The 

set of transmission probabilities is then defined as: 

 , ,

, , , , , ,| , s t

s

e

s t s t e s t s t eP p e E p   
ò

  (17) 

The region [0,1] is then divided into subregions, one for each link in ,| |s tE , and length of  regions is set 

according to ,s tP . The algorithm works as follows; Suppose a node pattern ‘s’ is activated in slot x . 

Each node t s  will generate a RV w , uniformly distributed within [0, 1]. The node will then schedule 

Step 1: Set node pattern A=  and Arp =0,  

Step 2: Identify 
cA v and compute 

vArp  for node pattern  . ,v vA s t A A v   . 

Step 3: select v from 
cA with minimum 

vArp   and compute Arp  of A. 

Step 4: If  
vA Arp rp  , node v will be deleted from 

cA  and add it A. 

Step 5: If 
cA  stop else go to step 3. 
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link into which subregion w falls. If selected link (e) is not usable (either  due to fading or no traffic) the 

scheduler will check link next to ‘e’ one by one until a usable link is found. 

B. Scheme 2 

Scheme 1 does not consider link quality while scheduling the links. Therefore authors presented another 

scheduling mechanism.  

Selection criteria = (queue length * link capacity) 

Each node maintains two queues for each of its link:  

1) a real data queue  to store packets and  

2) A shadow queue for scheduling. 

These queues of link ‘e’ whose transmitter can be activated in slot ‘x’, are defined as:   

( ) ( 1) ( ) ( )

( ) ( 1) ( ) ( )

e e e e

e e e e

q x q x a x d x

q x q x a x d x

   

      
 

Here qe(x) and ( )eq x are lengths of the real queue and shadow queue respectively. ae(x), ( )ea x , de(x) 

and ( )ed x  are the number of arrivals and departures for the two queues in ‘x’, respectively. In shadow 

queue the term ( )ea x is defined as:  
0

( ) 1 ( )
x

v
xe e

t

a x a t


    i.e. it is used to smooth the incoming 

traffic from source or previous hop.  

Packets departing from link ‘e’ are defined as:  ( ) min ( ), ( )e e ed x c x q x  . Here ( )ec x  is instant 

capacity of link ‘e’ in slot ‘x’. Thus scheduling, in slot ‘x’, the scheduler in node t∈s will select the link 

from all its associated links with a maximum value of ( ) ( )e eq x c x  . In doing so, it tries to strike the 

optimal balance between link quality and traffic backlog. 

VI. SIMULATION AND RESULTS 

A. Simulation Environment and Settings 

Linear optimization toolbox of MATLAB is used for proposed routing and slot-assignment algorithm. 

C++ program is then used to inspect maximum achievable throughput for different scheduling schemes.  

The physical-layer parameters are summarized as follows: 

• Transmission power: 20 dBm. 

• Thermal noise:−90 dBm. 

• Path loss(α):3.5. 

• Variance of shadow fading: 4 dBm. 
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• Minimal distance of two nodes: 15 m. 

• Slot duration: 0.22 ms. 

• Frame size: 100 slots. So frame length = 22 ms. 

The mapping between the following data rates and SINR threshold is summarized as follows. 

• 54 Mb/s: 24.56 dBm. 

• 48 Mb/s: 24.05 dBm. 

• 36 Mb/s: 18.80 dBm. 

• 24 Mb/s: 17.04 dBm. 

• 18 Mb/s: 10.79 dBm. 

• 12 Mb/s: 9.03 dBm. 

• 9 Mb/s: 7.78 dBm. 

• 6 Mb/s: 6.02 dBm. 

Network Topology: two networks 15-node and 30-node with two gateway nodes and three gateway nodes 

are considered, respectively. 

The traffic load of each flow is assumed to be the same i.e.,hf =1Mb/s, 

Throughput loss due to Frame Quantization:  

  

Fig. 1. Achievable throughput after frame generation for (a) 15- and (b) 30-node networks.  

The solid (
*
node ), dashed (

*
link ) and dashed–dotted (

* ) lines indicate the achievable throughput in 

node-based, link based and before frame construction (I.e. upper bound on throughput) respectively. The 

flat area represents the range where the performance does not improve. Note that (
*
node ) and (

*
link ) are 

function of ‘z’ and are not always monotonically increasing due to the quantization involved in the 

process, and small oscillation occurs within a short range of z. This is why, in Fig. 1(a) and (b), the curves 

move up in steps.  
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From the table it is clear that 
*
node approaches 

* much faster than 
*
link . Moreover difference in throughput 

between 
*
node and 

*
link is also significant as shown in table 1.  

The optimal scaling factors of the 
*
node for schemes 1 and 2 under the Poisson and a deterministic arrival 

process are denoted as shown by 
* * * *
exp,1 exp,2 det,1 det,2, , ,     respectively.  

{the 
*
node is derived from problem 14 and it does not include multi-user diversity gain. Therefore, it can 

be viewed as a lower bound of the two proposed scheduling schemes 1 and 2 As shown in the Table I.  

It is also clear from the table that , both (posisson and deterministic arrival rates )
*
exp,1, *

det,1 are only 

slightly larger than 
*
node for the 15- and 30-node networks. The difference is only about 3%. This is 

because scheme 1 tries to follow , ,s p eò i.e. portion of time that is assigned to each link of node p in node 

pattern s and does not select a link with the best quality. However, the situation is different in scheme 2, 

because link quality is part of the selection criteria. With scheme 2, 
*
exp,1, *

det,1 are about 26% larger 

than 
*
node for the 15-node network and 30% larger for the 30-node network. 
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Short summary: In the paper, the authors give a sufficient condition of the Orthogonal Matching Pursuit 

(OMP) algorithm. In [2], Wakin and Davenport insisted that OMP can reconstruct any K  sparse signal if 

 1 1 3K K   , where 
K  is the restricted isometry constant. However, in this talk, an improved sufficient 

condition that guarantees the perfect recovery of OMP is presented 

I. FINAL SUMMARY OF THE PAPER 

a. A strategy of the proof of Theorem 1. 

1) We aim to find a condition such that the OMP algorithm selects a correct index in the 

first iteration. 

=> We need to show that min , max ,i j
i j 

a y a y . (e.g., see from (7) to (10).) 

2) Let us suppose that the initial k  iterations of the OMP algorithm are successful, and 

that k  is the estimated support set after the initial k  iterations. Now, the OMP 

algorithm selects a correct index, which belongs to k , in the 1k   iteration. 

=> Clearly, 
k  , therefore  ˆk k k

k span   r y A x P y A  can be considered 

as a linear combination of the K  columns of A . Thus, k r Ab , where 
0

Kb , and 

   supp supp b x .  

=> Again, we find a condition such that the OMP algorithm selects a correct index 1kt   

which belongs to  supp b . 

=> Furthermore, for any ki , we have , 0k

i r a . Thus, 1k kt   . 

3) Thus, we conclude that the OMP algorithm can reconstruct K  sparse signal provided 

that the condition of 1) and the condition of 2) are satisfied 

 

b. Comparison between the result by the authors in this paper and the result by 

Davenport and Wakin. 

On the Recovery Limit of Sparse Signal Using Orthogonal 

Matching Pursuit 
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According to the authors, the improvement is possible due to 1) contradiction based 

construction of the success condition in the first iteration ( min , max ,i j
i j 

a y a y ) , and 

2) observation that the residual in the general iteration preserves the sparsity level of the 

input signal. ( k r Ab , where 
0

Kb , and    supp supp b x ). 

In fact, the authors again improved the result by Davenport and Wakin. 

The more detailed explanations are referred to the paper. 

 

c. Future Works 

1) Can we apply the techniques, which are used in the proof, to find a sufficient condition 

of an algorithm based from the OMP algorithm? For example, the SOMP algorithm selects 

a index i such as 
 

arg max
kT

i
qi

a R , where 
     

1

k k k

S
 
 

R r r , 
 

,
ˆk k

k

i i i
 r y A x , 

and 1 or 2q  . Can we find a condition such that the SOMP algorithm selects a correct 

index? 

II. HISTORY OF SUFFICIENT CONDITIONS OF THE OMP ALGORITHM 

In the below table 1, sufficient conditions that the OMP algorithm reconstructs a K  spars signal from a set of 

linear measurements y Ax , where 
M NA ( N M ), are given. 

 

Year A sufficient condition 

2007[1]   1 2 1K    

2010[2]   1 1 3K K    

 

Besides, there are many theoretical papers which analyze algorithms based on the OMP algorithm. In here, it is 

not scope of this seminar. Therefore, we do not care about them. 

 

III. SYSTEM MODEL 

Let us consider the below equation: 

 ,y Ax  (1) 

where 
M NA ( N M ), and 

Nx  is a K  sparse signal, and My  is a set of linear measurements. 

The smallest constant K  called “the restricted isometry constant” satisfies 
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    
2 2 2

2 2 2
1 1K K    x Ax x  (2) 

for any K  sparse signal x . 

IV. MAIN RESULTS 

A. Improved Recovery Bound of the OMP algorithm 
Theorem 1: For any K  sparse signal x , the OMP algorithm perfectly reconstructs x  from y  if the isometry 

constant 
1K 
 satisfies  

 1

1
.

1
K

K
  


 (3) 

In this talk, we try to understand a proof of Theorem 1. 

Before we study the proof, let us consider whether the OMP algorithm perfectly reconstructs x  or not if 

1 1K K   . 

B. The OMP algorithm can fail under 1 1K K   . 

Example 1: Let us consider the problem of reconstructing a K  sparse signal 
1Kx  such as 

1 0Kx   , and 

1ix   for 1, ,i K  from y Ax , where 

    1 1

1

1
.

1

K KT

b b

b

b

b b

  

 
 
  
 
 
 

A A  

Obviously, all the Eigen values of T
A A  are 1 2 11 , and 1 .K Kb Kb            (See Example 1 on 

Appendix). When we assume  1b K K  , T
A A  becomes 

 

   

 

 

   

   1 1

1 1 1

1 1
,

1

1 1 1

K KT

K K K K

K K

K K

K K K K

  

  
 
 

 

  
 

 
  
 

A A  (4) 

and the smallest and biggest Eigen values are  

  min max1 1 , and 1 1 .K K K      
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Therefore, we have 1 1K K   (In fact, all the Eigen values of T
A A  must be contained in the interval 

1 ,1   
 

, Thus,     1 max minmax 1,1T T

K     A A A A ). Now, we investigate a quantity ,ia y  

for 1, , 1i K  . For the OMP algorithm to reconstructs x , 
1,Ka y  must be less than any ,ia y  for 

1, ,i K . This is reason that we investigate the quantities. First, for  1, ,i K , we have 

 

 

 

 

, ,

          ,

1
          1 ,

a

i i

b
T

i

c K

K K






 

a y a Ax

A a x  (5) 

where  a  from the fact y Ax ,  b  from the fact , ,T T T T

i i i i  a Ax a Ax x A a x A a , and  c  from the 

fact that T

iA a  is the i
th

 column of T
A A  presented in (4), and x  such as 1 0Kx   , and 1ix   for 1, ,i K . 

Second, for 1i K  , we have 

 

1 1

1

, ,

              ,

1
              .

K K

T

K

K

 









a y a Ax

A a x  (6) 

Obviously, the OMP algorithm must fail in the first iteration if an inequality 
1, ,K i a y a y  for all 

 1, ,i K . The inequity becomes 

 
1 1

1
K

K K K


   

which is always true if 2K  . Thus, the OMP algorithm in the first iteration selects an incorrect index. 

V. PROOF OF THEOREM 1 

A. Notations 

The below notations will be used throughout the rest of this presentation.    supp : 0ii x  x  is the set of 

indices corresponding to non-zero coefficients of x .  is the cardinality of , and  is the set of 

elements belonging to  but not to . 
M

A  is a sub-matrix of A  which contains columns 
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corresponding to indices of . x  is a restriction of x  to the elements indexed by .  span A  is 

the span of columns in A , T
A  is the transpose of A , and  

1
† T T



A A A A  is the pseudo inverse of 

A . †P A A  is the orthogonal projection onto  span A , and   P I P  is the orthogonal projection 

onto the orthogonal complement of  span A . 

B. Lemmas 

We need the below lemmas to prove Theorem 1. 

Lemma 1: For a set , if 1  , then  

    2 22
1 1T    v A A v v  

holds for any v  supported on . 

Lemma 2: For disjoint sets , , if 1


 , then  

 
22 2

T T 


 A Av A A v v  

holds for any v  supported on . 

Lemma 3: If the sensing matrix satisfies the RIP of both orders 1K  and 2K , then 
1 2K K   for any 1 2K K  

All proofs of the above lemmas are given in [3].  

C. Proof of Theorem 1 

1) We provide a condition under which the OMP algorithm selects a correct index in the first iteration. 2) We 

show that the residual in the general iteration preservers the sparsity of a K  sparse signal. 3) The condition for the 

first iteration can be extended to the general iteration. 4) Theorem 1 is established from the conditions. The 

statements are an overall strategy of Proof of Theorem1. 

First, we need investigate the condition when the OMP algorithm selects a correct index in the first iteration. Let 

us denote 
kt  be the index of the column maximally correlated with the residual 1k

r . In the first iteration, we have  

 
1 0arg max , arg max , .i i

i i
t  a r a y  (7) 

Now, let us suppose that 
1t  always belong to the support set  of x . From (7), we have 
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 

1

( )

2

( )

2

,

1
            

1
            1 ,

T

t

a
T

b

K

K

K







 

a y A y

A y

x

 (8) 

where  a  from the norm inequalities, and  b  from the fact that y  A x  and Lemma 1.Suppose that 
1t  

does not belong to the support set , then  

 

 

1 1

( )

1 2

,

            1 ,

T

t t

a

K 



 

a y a A x

x

 (9) 

where  a  from Lemma 2. Clearly, 
1t  must belong to the support set . Thus, if  

    12 2

1
1 1K K

K
    x x  (10) 

then, the OMP algorithm selects a correct index in the first iteration. The equation (10) becomes 1 1K KK    . 

From Lemma 3, the inequality becomes 1 1 1K KK     which leads to 

 1

1

1
K

K
  


 (11) 

In short, if (11) is true, then the OMP algorithm always selects a correct index in the first iteration. 

Now, we investigate a condition such that the OMP algorithm selects a correct index in the  1k  th
 iteration. 

Let us suppose that initial k  iterations of the OMP algorithm are successful. Namely,  1, ,k kt t  . Then, 

 ˆk k

k span  r y A x A  because y A x  and kA  is a sub-matrix of A . Thus, k
r  can be expressed 

as k kr Ax  ( i.e., k
r  is a linear combination of the K  columns of A ), where the support set of k

x  belongs 

to the support set of x . If the OMP algorithm selects a correct index belonging to the support set of k
x , then the 

OMP algorithm also selects a correct index belonging to the support set of x . Clearly, if 1 1 1K KK     is 

satisfied, then the OMP algorithm success in the  1k  th
 iteration. 

Last, we need to show that the index 
1kt 
 selected at the  1k  th

 iteration of the OMP algorithm does not 

belong to kT . First, we have 
†ˆ k kx A y , and ˆk k k

k   r y A x P y . Second, for all 
ki , we have  
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  
†

ˆ, ,

ˆ, ,

0.

k k

k k

k k

k

i i

i i

T T

i iA x

 

 

 



a r a y A x

a y a A x

a a A A y

 

Therefore, we conclude that k
r  is orthogonal to the columns 

ia  for all 
ki T . It leads to 

1k kt   . 

Furthermore, if 
k r 0  and  k spanr A , then there exists i  such as , 0k

i a r . Therefore, the OMP 

algorithm selects ki . 

Now, we apply the mathematical induction. First, we proved that the OMP algorithm selects a correct index if 

1

1

1
K

K
  


. Second, when we assume that the initial k  iterations of the OMP algorithm are successful, the 

OMP algorithm selects a correct index in the  1k  th
 iteration if 1

1

1
K

K
  


. Thus, the OMP algorithm will 

terminate after the K th
 iteration if 1

1

1
K

K
  


. 

VI. DISCUSSION ON THEOREM 1 

It is hard for us to determine 1K   from a sensing matrix because we need to examine all possible K sparse signal. 

However, the below result is known 

Result [4]: If an M N  sensing matrix A  whose entries are i.i.d.  0,1 M , then A  obeys the RIP 

condition K   with high probability under  

 
2

log
N

K
K

M





 
 
 

  (12) 

where   is a positive constant. When we utilize the above inequalities, we indirectly compare the result obtained 

by [2]. 

 

 A sufficient condition A sufficient condition on M  

[1]  1 1 3K K     9 1 log
1

N
M K K

K


 
   

 
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The paper  1 1 1K K       
2

1 1 log
1

N
M K K

K
  


 

 

Appendix 

Example 1) computing all the Eigen values of 

1

1

1

b b

b

b

b b

 
 
 
 
 
 

.  

 

 

 

 

 

 

 

   
2

1 1 1 0 1

1 0 1 1 0 1 1

1 1 1

1 0 1 1 0 1

0 1 1 0 1 1

0 1 0 0 1 2

1 1 2

b b b b b b

b b b b b b

b b b b b b

b b b b

b b b b

b b b

b b

   

    

  

   

   

 

 

     

          

  

       

         

   

    

 

 Therefore, 
1 2 1 b    , and 

3 1 2b   . 

   

 

 

 

 

 

 

 

 

1 1 1

1 0 1 1 0 0 1 1 0

1 1 0 0 1 1

1 1 1

1 0 0 1 1 0 0 1

0 1 1 0 0 1 1 0

0 0 1 1 0 0 1 1

1 0 1

1 0 0 1

0 1

b b b b b b b b b

b b b b b b b

b b b b b b b b

b b b b b b b b b

b b b b

b b b b

b b b b

b b b b b b

b b

b b

  

    

   

  

   

   

   

 

 



  

        
 

     

  

       

       
 

       

  

   

 


 

 

 

 

 

   
3

1 0 0 1

1 0 0 1 1 0

0 0 1 1 0 0 1 1

0 0 2 1 0 0 0 1 3

1 1 3

b b

b b

b b b b

b b b

b b

 

  

   

 

 

   

     


       

   

    

Therefore, 1 2 3 1 b      , and 4 1 3b    

Thus, we concluded all the Eigen values of a    1 1K K  

1

1

1

b b

b

b

b b

 
 
 
 
 
 

 are 

1 11 ,  and 1K Kb Kb         . 
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Short Summary:  

This paper derives the upper and lower bounds for channel capacity of the OFDM systems 

over underwater acoustic channels as a function of distance between the transmitter and the 

receiver. The upper bound is obtained using perfect CSI at the receiver while the lower bound is 

obtained by assuming that the input is drawn from a PSK constellation which results in 

non-Gaussian distribution of the output signal and no CSI. It incorporates frequency dependent 

path loss at each arrival path at the receiver due to acoustic propagation. This leads the UW 

channel to be modeled as wide sense stationary and correlated scattering (WSS-non-US) fading 

channel. Results from both Rayleigh and Rician fading show a gap between the upper and lower 

bounds which depends, not only on the ranges and shape of the scattering function of the UW 

channel but also on the distance between the transmitter and the receiver. 

I. INTRODUCTION 

Recently, OFDM has been applied to the UWA communications and yields high data rate with 

strong bit error rate performance [2-5]. 

Time and frequency spreading are the main challenges for data transmission through UW 

channels. Several attempts have been made to characterize the UW channel, most of which view 

the UW channel as a linear time-varying channel with wide sense stationary and uncorrelated 

scattering (WSSUS) [8-10]. However, this approach treats the entire frequency band as a whole 

and neglects the frequency dependent path loss. This model is acceptable for transmissions at 

low bandwidth (<10 kHz) [9]. 

Channel capacity over WSSUS fading channel has been studied [12-15] under these 

assumptions: 1) no CSI is available at the transmitter or receiver, and 2) peak power constraints. 

It is shown that channel capacity is achieved at capacity maximizing bandwidth, which depends 

Capacity of OFDM Systems over Fading Underwater 

Acoustic Channels 
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on the ranges and shape of the scattering function of the fading channel. These studies are 

conducted over wireless fading channels which assume constant power spectral density (PSD) 

and AWGN noise. There has been some research on the capacity of UW channels [6, 16, 17] but 

all assume no fading in their UW channels. 

This paper investigates the capacity of OFDM systems over the UW fading channels with no 

CSI at the transmitter or the receiver. The UW channel is modeled by taking into account 

frequency-dependent path loss. This invalidates the assumption of stationarity in frequency of 

the WSSUS model and leads to a frequency-dependent doubly spread (DS) fading channel 

characterized by the WSS-non-US [18] assumptions. The conventional WSSUS model is 

uncorrelated in both delay and Doppler domains but the proposed model is uncorrelated in the 

Doppler domain and correlated in the delay domain. 

Using this channel model and assuming that the acoustic propagation and ambient noise PSD 

are available at both the transmitter and receiver, capacity upper and lower bounds are derived. 

Capacity upper bound is derived by assuming perfect CSI at the receiver, while lower bound is 

obtained by the mutual information rate whose input is an i.i.d. random variable and is drawn 

from a PSK modulation [12,19], which results in a non-Gaussian distribution of the output signal. 

Results are obtained for both Rayleigh and Rician fading of the UW channel. Simulation results 

show a gap between the upper and lower bounds which depends not only on the ranges and 

shape of the scattering function of the UW channel, but also on the distance between the 

transmitter and receiver. Results are confirmed with the scattering function obtained from the 

2008 rescheduled Acoustic Communications Experiment (RACE08) experimental data. 

II. OFDM SYSTEM AND UW CHANNEL MODEL 

In this section, an OFDM system model for UW acoustic communications is developed. 

Physical and statistical properties of the channel as well as PSD of the ambient noise are 

investigated and a frequency-dependent UW DS fading channel has been proposed. 
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A. OFDM System 

A conventional CP-OFDM system is considered as shown in Fig. 1. Let 
,0 , 1...

T

n n Kn
X X 
   X

and 
,0 , 1...

T

n n Kn
Y Y 
   Y be the sent and received block of data at the nth OFDM symbol duration, 

respectively. 

 

Fig. 1.  System model 

Assuming the guard interval Lcp is longer than the channel length L to avoid the interblock 

interference (IBI), the input/output relationship can be written as, 

 , , , ,( )n k n k n k n kY G d X N   (1)  

where  0,..., 1k K  is the subcarrier index and  0,..., 1n N  , while d is the distance 

between transmitter and receiver. Gn,k(d) denotes the channel transfer function at the kth 

subcarrier. Nn,k is the ambient noise in the ocean. This simplifies the fading effect into 

multiplicative coefficient, which is the basis for analysis of the UW channel in this paper. The 

impact of ICI is assumed to be negligible through appropriate parameter settings (Justified in 

App. I). For simplicity, the overall system input/output of the entire N OFDM transmissions is 

characterized by a vector of size NK × 1, as follows. 

 diag( ) ( ) diag( ( ))d d   Y X G N G X N  (2) 

where 

 0 1 ,0 , 1...  and ...
T TT T

N n n Kn
Y Y 

       Y Y Y Y  (3) 

 0 1 ,0 , 1...  and ...
T TT T

N n n Kn
X X 

       X X X X  (4) 

 0 1 ,0 , 1...  and ...
T TT T

N n n Kn
N N 

       N N N N  (5) 

 0 1 ,0 , 1( ) ( )... ( )  and ( ) ( )... ( )
T TT T

N n n Kn
d d d d G d G d 

       G G G G  (6) 
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B. Characterization of Approximate DS Fading Channels 

UW channel is modeled using both the physical property, which is the attenuation depending 

on the propagation distance and bandwidth of the transmitted signal, and the statistical property 

for which the channel is usually assumed WSSUS. 

1)  Frequency-dependent Path Loss 

For the signal propagated through UW medium, the attenuation or path loss, which is a 

function of distance and signal frequency, is a combination of geometric spreading and 

absorption, written as, 

 
2 2( , ) ( ( ))sp dQ d f d q f   (7) 

where d is the propagated distance in meter and f is the frequency in kilohertz. d
-sp

 represents the 

spreading loss and sp is the spreading factor which is set to 1.5. q
2
(f) is the absorption coefficient 

in seawater which is given by, 

 
2 2

2 4 2

2 7 2 4

1.23 10 1.522
10log( ( )) 2.49 10 0.99 1.48 10  dB/m

f f

f f
q f f 

  
      (8) 

Eq. (8) is calculated when the salinity S is 35 parts per thousand (ppt), gauge pressure Pa is 1 atm, 

temperature T=14 
ο
C, and the relaxation frequency is 111 kHz. 

2) Conventional Statistical Model 

The CIR is modeled by a sum of several multipath components [9], [10]. Let h(t, τ) denote a 

continuous-time CIR of linear time-variant (LTV) UW channels and its corresponding transfer 

function H(t, f) is, 

 

1 1
2

0 0

( , ) ( ) ( ),   ( , ) ( ) i

I I
j f

i i i

i i

h t h t H t f h t e
    

 


 

     (9) 

where I is the number of arrival paths. WSSUS is commonly assumed to characterize the channel, 

i.e.,         , * , ,
chE h t h t R t t            where  ,

chR t t   is the autocorrelation 

function of the delay τ between time t and t’. Its corresponding scattering function is 

   ( , ) , exp 2
cc hS v R t j tv d t       where  0, m  . For a bandwidth of less than 10 kHz, 

let τm and fd denote the maximum channel delay spread and 3-dB Doppler spread of Sc(τ,v), 

respectively. 

3) Frequency-dependent DS Fading Channels 

Conventionally, UW models use WSSUS properties to characterize LTV UW channels, 

assuming equal attenuation across all the signal bandwidth, treating the entire frequency band as 
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flat and neglecting frequency-dependent parameters of the individual arrival path. In reality, 

various factors from channel physics such as the attenuation, reflection loss, or tx/rx operating 

ranges influence frequency dependency on the path loss. In this paper, the impact of channel 

physics is limited to only the attenuation Q
2
(di, f) (7) where di is the propagation distance of ith 

delay path. 

Let ( )
id  denote a CIR of the ith delay path corresponding to Q(di, f) i.e., 

 ( , ) ( )exp 2
ii dQ d f j f d       where 2( , ) ( , ) *( , ).i i iQ d f Q d f Q d f  Taking into account 

( )
id   yields a modified CIR, gd(t, τ) 

  
1

0

( , ) ( ) ( )
i

I

d i d i

i

g t h t     




    (10) 

 

2

1
2

0

1
2

1

0

( , ) ( , )

( ) ( , )

( 0, ) ( )  ( , ) ( , )

( , ) ( , )

i

i

j f

d d

I
j f

i i

i

I
j f

i I

i

G t f g t e d

h t Q d f e

Q d f h t e Q d f Q d f

Q d f H t f







 

















 









 (11) 

 d0 is the distance between transmitter and receiver and the subscript of d is neglected for 

simplicity. Hence the modified CIR is 

 

1

0

( , ) ( ) ( ) ( )
I

d d i i

i

g t h t     




    (12) 

From the sampling theorem, the Ts-spaced discrete time CIR is, 

 

     

 

0,

0

, , sinc

,   is large

[ ] [ , ]

d l d s l

d s l s

d l

g m p g mT B p d

g mT p T B

l h m p



  



 



 



 (13) 

where B=1/Ts. From (13) the channel transfer function can be written as 
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 
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2 / 2 /

, 0,
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0
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2 /

,

0 0

,
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1
[ ] ,

[0]
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j p m l Kn j m k K
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m l p

K L K
n j m p k K j pl K

d cp

p l m

K L
d j kl K

n l

p l

k n k

G d g m L l e e
K

l h m L l e e
K

G e

Q d f H

 

 





  
 

  

  
  

  

 


 

 
     

 

 
      

 





  

 



 (14) 

where / ( )k c sf f k KT   and fc is the center frequency corresponding to the zeroth subcarrier. 

   0, 0, 0, ,n

d d s lg m l g nN p m p    and  0 0[ , ] ,n

s lh m l h nN p m p    where s cpN L K  is the 

OFDM symbol length and p0 is the arrival time of the first arrival path. Eq. (14) is derived under 

negligible ICI. Moreover, 

 

1 1
2 /

, 0

0 0

1
2 /

,

0

1
,

[0]

L K
n j lk K

n k cp

l m

L
j lk K

n l

l

H h m L l e
K

h e





 


 






 
    

 



 



 (15) 

 

1
2 /

0

( , ) [ ]
L

j lk K

k d

l

Q d f l e 






  (16) 

and  

  
1

2 ( )/

, 0

0

1
[ ] [ ] ,

K
d n j m p k K

n l d cp

m

G p k l h m L l e
K




 



       (17) 

Gn,k(d) is the fading gain encountered by the signal transmitted on the kth subcarrier. Q(d, fk) is 

assumed constant within a subcarrier with center frequency fk. Hn,k[0] is the approximate CIR. Eq. 

(14) simplifies the transfer function of frequency-dependent UW DS channel into a 

multiplication of the attenuation Q(d,fk) and statistical part Hn,k governed by the scattering 

function S[l, λ]. Assuming  [ , ] , /c s bS l S lT T  when the variation of h0[m, pl] within 

Tb(Tb=NsTs) is negligible [32]. Tb is the OFDM symbol interval λ∈[-0.5,0.5]. Its range (L, λd) is 

related to (τ,fd) of Sc(τ,v) through mL B    and λd=fdTb. This leads Gn,k(d) to be a WSS but 

non-US fading channel [18]. 

    *

, ,( ) ( ) ( , ) *( , ) ,n k n k k k HE G d G d Q d f Q d f R n n k k  
     (18) 

where   *

, ,,H n k n kR n n k k E H H        . Compared to the conventional WSSUS model 

(uncorrelated in both delay and Doppler domains), the proposed model is still uncorrelated in 
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Doppler but correlated in the delay domain because of attenuation. To be consistent, a vector 

form for Gn,k(d) from (14) is 

 ( ) ( )n nd dG Q H  (19) 

where   0 1( ) diag ( , )... ( , )Kd Q d f Q d f Q and 
,0 , 1...

T

n n n KH H 
   H from (15). Fig 2 shows a 

realization of 
2

, ( )n kG d when d=5 and 20 km. Hn,k is assumed zero-mean complex Gaussian 

random variable with exponentially decaying PDP with 20-dB power difference between the first 

and last paths. Transmit bandwidth is 51.2 kHz. Channel delay length is 5 ms which corresponds 

to L=256. The number of subcarriers K is 512. We can see that the propagation distance and 

signal frequency have a significant impact on the realization of 
2

, ( )n kG d . 

 

Fig. 2.  Impact of attenuation on CIR 

C.  Ambient Noise 

Nn,k in (1) is assumed the ambient noise in the ocean which consists of four sources [6]: 

turbulence At(f), shipping As(f), waves Aw(f), and thermal noise Ath(f), described by Gaussian 

statistics with a continuous PSD in dBre/μPa per hertz, 

 

( ) 17 30log

( ) 40 20( 0.5) 26log 60log( 0.03)

( ) 50 7.5 20log 40log( 0.4)

( ) 15 20log

t

s

w

th

A f f

A f s f f

A f w f f

A f f

 

     

    

  

 (20) 

where f is the frequency in kilohertz, s ∈ [0,1] is the shipping activity, w is the wind speed in 

meters per second, and overall noise PSD is 

  ( )/10 ( )/10 ( )/10 ( )/10
( ) 10log 10 10 10 10t s w thA f A f A f A f

A f      (21) 
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III. CAPACITY OF THE UW CHANNELS 

The upper bound Uc(d) and lower bound Lc(d) are derived as a function of distance d between 

the transmitter and receiver. The capacity C(d) is given in bits per second by 

 
( )

1
( ) lim sup ( ; )

N pb

C d I
NT


X

Y X  (22) 

where the maximization is over the set p(X) of all input distributions that satisfy a given 

average-power constraint. Uc(d) is obtained when the input vector follows a join complex 

Gaussian distribution. Lc(d) is obtained under imperfect CSI whose reduction from Uc(d) comes 

from limited mutual information from PSK constellation and the MMSE prediction error related 

to channel uncertainty [12], [14]. This bounding technique is used in [12] for wireless fading 

channels while this paper uses it for UW channels. The bounds are derived under the following 

assumptions: 

 Information of attenuation (7) and ambient noise PSD (21) of UW channels are available 

at both the transmitter and receiver. 

 For statistical part [Hn,k (15)] of UW channels, its approximate CIR hn,l[0] is assumed a 

WSSUS random process with variance 2

l where 
22

, 1l n kl
E H   
   . Rayleigh and 

Rician fading are also considered. A scattering function which characterizes Hn,k is 

available at the receiver. 

 The noise vector  , ( )diagN 0 ACN . Where  0 1...
T

NA A A and 

 0 1( ),..., ( )
T

n KA f A f A . 

 The impact of ICI is negligible compared to A(fk). 

Let F denote the subcarrier spacing and B=KF, the signal bandwidth. P is the signal transmit 

power in dBre/μPa. 

A. Upper Bound Uc(d) 

To bound 
( )

sup ( ; )
p

I
X

Y X , we use the chain rule ( ; ) ( ; , ( )) ( ; ( ) | )I I d I d Y X Y X G Y G X . The 

output vector Y depends on the input vector X through b=daig(X)G(d), so I(Y;X,G(d))=I(Y;b). 

The upper bound of I(Y;b) is achieved when the input ( , ( ) ( ))d d X Gb 0 I R RCN . Where 
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( ) [ ( ) ( )]Hd E d d
G

R G G .  
0 1

( ) diag ( ),..., ( )
N

d d d


   X X X
R R R where 

 2 2

0 1( ) diag ( , )... ( , )
n x x Kd d f d f  

   X
R  and 

22

,( , )x k n kd f E X  
  

.  

The upper bound Uc(d) is [27], 

 

  

2

1

( )

21 1
2

,
( ) 0 0

21
2

( , )0

1
( ) lim sup log det ( ) ( ) diag( )

( , )1
lim sup log 1

( )

( , )1
sup log 1 ( , )

( )

( )

x k

N db

N K
k

n k
N d n kb k

K
k

x k
d fkb k

c

C d d d
NT

Q d f
E X

NT A f

Q d f
d f

T A f

U d









 


 





 

       

 
  

 







X

X

X G
R

R

I R R A

 (23) 

where the inequality follows from Hadamard’s inequality [11]. This result is similar to [6] which 

is the capacity of time-invariant UW channels but is scaled by a factor of FTb which is greater 

than 1 to avoid IBI. 2 ( , )x kd f  is subject to the source power constraint 

 

1
2

0

( , )
K

x k

k

F d f P




  (24) 

Uc is obtained when energy allocation across all subcarriers satisfies 

 
  2

( )

2 ( , )
max ,0

( , )

0

k

k

A f

kQ d f
x k

Th f B
d f

otherwise


  

 


 (25) 

where Th is chosen so that (24) is satisfied according to the water-filling algorithm [11]. 

B. Lower Bound Lc(d) over Rayleigh Fading Channels 

For lower bound, channel fading statistics are assumed available at the receiver, not the 

transmitter. Our results show, for the first time, that decrease in Lc(d) depends not only on the 

channel variations but also on the propagation distance d between the transmitter and receiver.  

Consider I(Y;X) where each entry of X, Xn,k is an i.i.d r.v. drawn from PSK modulation whose 

amplitude ,n k xX  and phase ,n kX has a uniform discrete distribution across a circle. I(Y;X) 

can be written as, 

 
   

   

( ; ) ; , ( ) ; ( ) |

; | ( ) ; ( ) |

I I d I d

I d I d

 

 

Y X Y X G Y G X

Y X G Y G X
 (26) 
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The inequality is due to the non-negativity property of mutual information. Exact calculation of 

the mutual information is infeasible due the non-Gaussian distribution of Y [28]. Note that [29] 

 ( ; | ( ))  ( ; | ( ))N N NI d N I dY X G Y X G  (27) 

where ( ) ( ),  ,  and N n N n N nd d  G G X X Y Y since the input Xn,k has an i.i.d. distribution and 

every block of the channel coefficients Gn(d) has the same distribution. 2 ( , )x kd f  is set 

according to (25) under constraint (24) and apply it to ( ; | ( ))N N NI dY X G . This water-filling 

policy is suboptimal for PSK constellation [30]. I(Y;G(d)|X) is calculated in App. II which yields 

   
1

0

( ; ( ) | ) log det ( )diag ( )
N

n

n

I d d d




 Y G X I B S  (28) 

where S(d) is the K×1 vector whose kth entry is 2 2( , ) ( , ) / ( )x k k kd f Q d f A f . Bn(d) is the linear 

MMSE prediction error matrix which depends on both the transmission distance d and channel 

variation RH[m,k]. Substituting (27) and (28) into (26), the mutual information is 

     
1

0

( ; )  ; | ( ) logdet ( )diag ( )
N

N N N n

n

I N I d d d




  X Y Y X G I B S  (29) 

Finally, the lower bound Lc(d) of the capacity C(d) can be written as, 

     

1
( ) lim ( ; )

1 1
; | ( ) log det ( )diag ( )

( )

N
b

b b

c

C d I
NT

I d d d
T T

L d



   



  



Y X

Y X G I B S  (30) 

where ( )dB is calculated given infinite past channel symbols. From (30), unlike [12] and [19], 

channel scattering function is not explicit but lies within ( )dB . 

C. Lower Bound Lc(d) over Rician Fading Channels 

Let ρ denote a Rician fading parameter which is the ratio of the fixed to a scatter part. ρ is 

assumed independent of the transmission distance d and identical for every delay path. The 

approximate CIR hn,l[0] of the lth path is modeled as 

  , ,[0] lj

n l l l n lh Ae s
   (31) 
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2

2

,

22

,

where  

1
and  ,

1 1

l

n l

l n l

A

E s

A E s





 


 
  

  
   

 (32) 

2 2

, [0]n l lE h   
  

. l is assumed uniformly distributed from –π to π and uncorrelated across 

different delay paths. For h(Y) , using (31), Hn,k is 

 

1 1
2 / 2 /

, ,

0 0

l

L L
j j lk K j lk K

n k l l l n l

l l

H Ae e s e
   

 
 

 

    (33) 

From (33), sum of scatter part follows  0,1/ ( 1) CN . This causes  , ,1/ ( 1)n k kH D  CN

where 
1

2 /

0

l

L
j j lk K

l l

l

Dk Ae e
 






 . 

For h(Y|X), we assume that the receiver can successfully track the fixed part lj

lAe


and the 

autocorrelation function of the approximate CIR is 

     * 2 2

, ,[0] [0] ,n l n l l s lE h h A R n n l l l  
         (34) 

Where   *

, ,,s n l n lR n n l E s s 
      . Apply (34) to calculate Bn(d) and obtain h(Y|X). 

 

IV. SIMULATION RESULTS 

The UW fading channel is modeled by two parts, attenuation and statistical as explained 

earlier. The delay profile is assumed exponentially decaying whose maximum delay spread τm is 

set where the first and last arrival paths have 10-dB power difference. The range of the Doppler 

profile scattering function is determined by fd, the 3-dB bandwidth of the frequency response. 

For A(fk), the shipping activity s = 0.5 and wind speed w = 10 m/s. OFDM symbols are 

transmitter at frequency beyond 1 KHz. Energy allocation across transmit bandwidth Bc(d) is 

implemented using (25) subject to power constraint (24). P=145 dBre/μPa and Rayleigh fading is 

assumed unless stated otherwise. 

1) Limitations due to the ICI 

Because of the attenuation, the variance of ICI is frequency dependent. This model assumes 

the ICI variance is negligible compared to that of the ambient noise. In simulation, the ICI 

variance is limited to at least 3 dB lower than ambient noise variance. The ICI variance depends 
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on attenuation, 2 ( )x kf , and shape of the scattering function. Two scattering functions, AR-1 

and uniform scattering are considered whose 3 dB bandwidth is equal to λd. Let S1[l, λ] and S2[l, 

λ] denote these scattering functions of hn,l[0], respectively, given by 

 

 

2

2

1 2
2

2

2

[ , ] ,  0.5,0.5
1

,
[ , ]

0, 0.5

l

d

l

j

l

d

d

S l
e

S l








 



 


 


  



 
 

 

 (35) 

These scattering functions are assumed unchanged over the transmission ranges of interest. 

Fig. 3 displays variance of the ICI at their widest spread of both scattering functions when d=5 

km such that its variance is at least 3 dB lower than that of the ambient noise for most of the 

transmission bandwidth. For the AR-1 model, τm =1 ms and fd =1 Hz. For the uniform model, 

τm=5 ms and fd =7 Hz. We notice that the 3-dB gap is violated when signal bandwidth is greater 

than 31 kHz. These account for only 0.39% of the total signal energy and have negligible impact 

on the capacity as justified in Appendix I. 

 

Fig. 3.  PSD of the received signal, ambient noise, and the ICI variance at d=5 km 

2) Impact of Signal Bandwidth 

From Fig. 4, we can see that both Uc(d) and Lc(d) increase as a function of signal bandwidth B 

and remain fixed when B is greater than a certain value. We define this value as the 

capacity-maximizing bandwidth Bc(d) which is a signal bandwidth that maximizes both Lc(d) and 

Uc(d). The gap beyond Bc(d) is rather wide due to the limited mutual information that can be 

conveyed by the PSK constellation. 



 

 

13 

 

Fig. 4. Uc(d) and Lc(d) versus bandwidth for AR-1 model at d=5km 

 

3) Impact of Ranges and Shape of the Scattering Function 

Figs. 5 and 6 show the impact of the ranges of (fd,τm) on Lc(d) over the distance for S1[l, λ] and 

S2[l, λ], respectively. 

 

Fig. 5. Impact of (a) Doppler spread and (b) delay spread on Lc(d) for AR-1 scattering function 

As expected, the ratio between Lc(d) and Uc(d) increases as either fd or τm increases. This is 

due to the higher prediction error influenced by stronger channel variations. 
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Fig. 6. Impact of (a) Doppler spread and (b) delay spread on Lc(d) for uniform scattering 

The impact of the shape of the scattering function is compared in Fig. 7 when fd=1 Hz and 

τm=1 ms. We set F=500 kHz and Tb=15 ms. From the figure, Lc(d) from S1[l, λ] is lower than that 

of S2[l, λ] as shown in Fig. 7(a). Fig. 7(b) shows the ratio of Lc(d)/ Uc(d). 

 

Fig. 7. Impact of the shape of scattering function on (a) Lc(d) and (b) Lc(d)/ Uc(d) 
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4) Impact of Over Rician Fading Channels 

The Ricean fading parameter ρ is set to -5, 0, 5, and 10 dB, identical for every path and 

independent of the distance. The Doppler spread profile of the scatter part (34) is assumed 

uniformly distributed. The fixed part is perfectly known at the receiver. From Fig. 8, the gap 

between the upper and lower bounds decreases as ρ increases which is due to the reduced power 

in the scatter part of the channel. 

 

Fig. 8. Uc(d) and Lc(d) to the channel capacity over (a) Rician fading channel, (b) Lc(d)/ Uc(d). Uniform Doppler spread profile 

 

5) Impact of the Transmission Distance 

From Figs. 5 and 6, both Lc(d) and Uc(d) decrease at longer distance owing to strong channel 

attenuation which determines Bc(d). The gap at a short transmission distance is due to the energy 

wasted because of the PSK constellation while the gap at a very long distance is due to the higher 

prediction error because of the stronger attenuation. 

6) Impact of Transmit Power 

Fig. 9 shows the impact of transmit power on Lc(d) and Bc(d) for AR-1 scattering. A 

significant decrease in Lc(d) and Bc(d) occurs especially at long distance. This shows that for data 

transmission at low power, a short distance or multiple short hops across the transducers are 

preferred to one long transmission. 
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Fig. 9. Impact of transmit power on (a) Lc(d) and (b) Bc(d) for AR-1 scattering 

V. EXPERIMENTAL DATA 

The capacity of OFDM systems is investigated using the scattering function from real UW 

environments measured from the RACE08 experiment. Data is selected from the receiving arrays 

which are 1000 m from the transducer. The array is a 12-element vertical array with 12-cm 

spacing between elements. 8-PSK signals are upsampled by a factor of ten and filtered by a 

square root raised-cosine filter with a rolloff factor 0.25. A block of data which contain 64 data 

symbols are transmitted every 28.7 ms. A guard period is inserted between blocks to avoid the 

IBI. The bandwidth is 4.8 kHz at 12-kHz carrier frequency. Fig. 10(a) shows a contour plot of 

the estimates of the scattering function and Fig. 10(b) shows their corresponding PDP of process 

I–IV obtained from four different measurement periods. 

Fig. 11(a) shows Lc(d) and Uc(d) from process I–IV over a range of the distance. Their 

corresponding Lc(d) / Uc(d) are displayed in Fig. 11(b). From the results, process II yields the 

best performance while process IV yields the worst. This is due to high Doppler spread at the 

dominant arrival paths in process IV while process II experiences smallest Doppler spread for 

almost every arrival path as shown in Fig. 10. Processes I and III exhibit similar results although 

process III is slightly worse since more dominant paths experience stronger Doppler spread 

compared to process I. 
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Fig. 10. (a) Scattering function estimates and (b) corresponding normalized PDP 

 

 

Fig. 11. (a) Lc(d) Uc(d) and (b) corresponding Lc(d)/ Uc(d) over experimental UW fading channels 

VI. DISCUSSION 

After meeting, please write discussion in the meeting and update your presentation file. 

 



 

 

18 

 

Appendix 

A. ICI Justification 

To investigate the ICI impact, a simulation is run assuming that the ICI behaves as an 

independent complex Gaussian r.v. Therefore, the total noise accumulated in the simulation is 

the ICI plus the ambient noise. From (1), by including the ICI, the received signal can be written 

as 

 
, , , , ,

, , ,

( )

( )

n k n k n k n k n k

n k n k n k

Y G d X C N

G d X Z

  

 
 (36) 

where Zn,k is the complex Gaussian noise consisting of the ambient and ICI noise whose variance 

is 
2

, ( )n k kE C A f  
  

. Using this assumption, Fig. 12 shows the Uc(d) and Lc(d) bounds at 5 km 

distance between transmitter and receiver. This distance gives highest ICI variance since longer 

distance means higher attenuation resulting in lower ICI. 

In conclusion, it is shown that by taking into account the ICI as an additive complex Gaussian 

noise, Uc(d) is reduced by at most 5.89% while Lc(d) is reduced by at most 3.03%. This 

reduction is quite small and has little impact on the overall performance, and justifies our ICI 

setting. 

 

Fig. 12. Impact of ICI on Lc(d) and Uc(d) for AR-1 scattering function 
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B. I(Y;G(d)|X) Derivation 

To calculate I(Y;G(d)|X), use the chain rule of differential entropy [11], 
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where 

        0 1 0 1| ... , log det Cov | ... ,
K

n n n nh e Y Y Y X Y Y Y X  (38) 

To calculate  0 1Cov | ... ,n nY Y Y X , we begin with mean 
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Where (39) is obtained using (2) and (19).  0 1
ˆ ( ) ( ) | ,..., ,n n nd E d H H Y Y X is the MMSE 

channel estimate given the current and past detected symbols and can be written as the 1-step 

output of the linear K×K MIMO predictor filter of length J 
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,0 , 1( ) ( )... ( )
T

n n n Kd H d H d
   H and Ej(d) is the predictor coefficient of size K×K. With (1), the 

observation , 1( )n KH d is obtained by 
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Then from (39),  0 1Cov | ... ,n nY Y Y X is 
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 (42) 

Where Bn(d) is the linear MMSE prediction error matrix obtained using the orthogonality 

principles. 

Substituting (42) into (38) and into (37), I(Y;G(d)|X) is given as 
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The kth entry of the K×1 vector S(d) is 2 2( , ) ( , ) / ( )x k k kd f Q d f A f . 
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Abstract 

 

In this paper, we consider the application of compressive sensing (CS) in wireless sensor networks 

(WSNs). CS is a signal acquisition and compression framework recently developed in the field of 

signal processing and information theory. We applied this CS technique to WSN which consists of a 

large number of wireless sensor nodes and a central fusion center (FC). This CS based signal 

acquisition and compression is done by a simple linear projection at each sensor node. Then, each 

sensor transmits the compressed samples to the FC. The FC which collects the compressed signals 

from the sensors jointly reconstructs the signals in polynomial time using a signal recovery algorithm. 

 The distributed sensors observe similar event in designated region. Therefore, the observed 

signals have considerable correlation each other. We make some effort in modeling correlation 

between the signals acquired from the sensors and analyze the component in observed signals. After 

modeling the correlated signals, we propose POMP (Phased-OMP) which can recover any type of 

correlated signals stably and effectively. We introduce the idea of our proposed algorithm in detail and 

then compare the reconstruction performance of POMP with previous algorithms ReMBo, MEM, 

SOMP, etc.  
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 1. Introduction 

In this paper, we discuss the application of a new compression technique called compressive sensing 

(CS) in wireless sensor networks (WSNs). The objective of a WSN which we assume in this paper is to 

collect information about events occurring in a region of interest. This WSN consists of a large number 

of wireless sensor nodes and a central fusion center (FC). The sensor nodes are spatially distributed 

over the said region to acquire physical signals such as sound, temperature, wind speed, pressure, and 

seismic vibrations. After sensing, they transmit the measured signals to the FC. In this paper, we focus 

on the role of the FC which is to recover the transmitted signals in their original waveforms for further 

processing. By doing so, the FC can produce a global picture that illustrates the event occurring in the 

sensed region. Each sensor uses its onboard battery for sensing activities and makes reports to FC via 

wireless transmissions. Thus, limited power at the sensor nodes is the key problem to be resolved in the 

said WSN. 

CS is a signal acquisition and compression framework recently developed in the field of signal 

processing and information theory [1],[2]. Donoho [1] says that “The Shannon–Nyquist sampling rate 

may lead to too many samples; probably not all of them are necessary to reconstruct the given signal. 

Therefore, compression may become necessary prior to storage or transmission.” According to 

Baraniuk [3], CS provides a new method of acquiring compressible signals at a rate significantly below 

the Nyquist rate. This method employs non-adaptive linear projections that preserve the signal’s 

structure; the compressed signal is then reconstructed from these projections using an optimization 

process. 

We applied this CS technique to WSN. One of our aims in this paper is to determine whether the CS 

can be used as a useful framework for the aforementioned WSN to compress and acquire signals and 
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save transmittal and computational power at the sensor node. This CS based signal acquisition and 

compression is done by a simple linear projection at each sensor node. Then, each sensor transmits the 

compressed samples to the FC; the FC which collects the compressed signals from the sensors jointly 

reconstructs the signal in polynomial time using a signal recovery algorithm. Illustrating this process in 

detail throughout this chapter, we check to see if CS can become an effective, efficient strategy to be 

employed in WSNs, especially for those with low-quality, inexpensive sensors. 

The distributed sensors observe similar event in designated region. Therefore, the observed signals 

have considerable correlation each other. In this paper, as we assume a scenario in which a WSN is 

used for signal acquisition, we intend to pay some effort in modeling correlation between the signals 

acquired from the sensors. Then, we divide the correlated signals to three parts for example, common 

sparsity, innovation sparsity, and total sparsity. Those terminologies give more easy understanding to 

solve multiple measurement vector (MMV) modeled from WSN structure. 

If we will use the correlated information to recover signals transmitted from each sensor, its 

reconstruction performance will increase over that not using correlated information. We demonstrated 

this assumption by showing a simulation result. Finally, we proposed advanced algorithm to recovery 

the correlated signals effectively. The proposed algorithm is called phased advanced orthogonal 

matching pursuit (POMP). POMP has better performance about reconstruction probability than 

previous algorithms, for examples, SOMP, ReMBo etc. We will introduce the idea of our proposed 

algorithm in detail and then compare the reconstruction performance of our algorithms with previous 

algorithms 
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 2. Wireless sensor network 

2.1. Network structure 

We consider a WSN consisting of a large number of wireless sensor nodes and one FC (Figure 1). The 

wireless sensor nodes are spatially distributed over a region of interest and observe physical changes 

such as those in sound, temperature, pressure, or seismic vibrations. If a specific event occurs in a 

region of distributed sensors, each sensor makes local observations of the physical phenomenon as the 

result of this event taking place. An example of sensor network applications is area monitoring to 

detect forest fires. A network of sensor nodes can be installed in a forest to detect when a fire breaks 

out. The nodes can be equipped with sensors to measure temperature, humidity, and the gases 

produced by fires in trees or vegetation [7]. Other examples include military and security applications. 

Military applications vary from monitoring soldiers in the field, to tracking vehicles or enemy 

movement. Sensors attached to soldiers, vehicles and equipment can gather information about their 

condition and location to help planning activities on the battlefield. Seismic, acoustic and video sensors 

can be deployed to monitor critical terrain and approach routes; reconnaissance of enemy terrain and 

forces can be carried out [8]. 

 

 . Wireless Sensor Network (WSN)Figure 1  
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 After sensors observe an event taking place in a distributed region, they convert the sensed 

information into a digital signal and transmit the digitized signal to the FC. Finally, the FC assembles 

the data transmitted by all the sensors and decodes the original information. The decoded information 

at the FC provides a global picture of events occurring in the region of interest. Therefore, we assume 

that the objective of the sensor network is to determine accurately and rapidly reconstruct transmitted 

information and reconstruct the original signal.  

 We discuss the resource limitations of WSNs in the next section. 
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2.2. Resource limitations in WSNs  

In this section, we describe the assumptions made in the sensor network we are interested in. We 

assume that the sensors are distributed and supposed to communicate with the FC through a wireless 

channel. Because each sensor is important components of WSN which observes event, they should 

typically be deployed in a large volume over the region of interest. Therefore, they are usually 

designed to be inexpensive and small. For that reason, each sensor operates on an onboard battery 

which is not rechargeable at all; thus, for simplicity, the hardware implementation of sensor nodes can 

provide only limited computational performance, bandwidth, and transmission power. As a result of 

limitations on the hardware implementation in sensor nodes, the FC has powerful computation 

performance and plentiful energy which naturally performs most of the complex computations.  

 Under the limited conditions stated above for a WSN, CS can substantially reduce the data 

volume to be transmitted at each sensor node. With the new method, it is possible to compress the 

original signal using only   log /O k n k  samples without going through many complex signal 

processing steps. These signals can be recovered successfully at the FC. All these are done under the 

CS framework. As the result, the consumption of power for transmission of signal contents at each 

sensor can be significantly reduced thanks to decreased data volume. Moreover, this data reduction 

comes without utilizing complex signal processing. Namely, the sensor nodes can compress the signal 

while not spending any power for running complex compression algorithms onboard.  

 We discuss the new technique CS in the next section and check how CS can get the 

advantages like data reduction and simple data compression.  
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3. Compressive sensing (Literature survey) 

In a conventional communication system, an analog-to-digital converter based on the Shannon–

Nyquist sampling theorem is used to convert analog signals to digital signals. The theorem says that if 

a signal is sampled at a rate twice, or higher, the maximum frequency of the signal, the original signal 

can be exactly recovered from the samples. Once the sampled signals are obtained over a fixed 

duration of time, a conventional compression scheme can be used to compress them. Because the 

sampled signals often have substantial redundancy, compression is possible. Several compression 

schemes follow this approach, e.g., the MP3 and JPEG formats for audio or image data. However, 

conventional compression in a digital system is sometimes inefficient because it requires unnecessary 

signal processing stages, for example, retaining all of the sampled signals in one location before data 

compression. According to Donoho [1], the CS framework, as shown in Figure 2, can bypass these 

intermediate steps, and thus provides a light weight signal acquisition apparatus which is suitable for 

those sensor nodes in our WSN. 

 

 

 . Conventional compression and compressive sensingFigure 2  
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 The CS provides a direct method which acquires compressed samples without going through 

the intermediate stages of conventional compression. Thus, CS provides a much simpler signal 

acquisition solution. In addition, the CS provides several recovery routines which the original signal 

can be regenerated perfectly from the compressed samples.  
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3.1 Theoretical background 

Let a real-valued column vector s  be a signal to be acquired. Let it be represented by 

 

 s x  (1) 

 

,where x  and 
ns R , and x  is also a real-valued column vector. The matrix n nR  is an 

orthonormal basis, i.e., T T

nI    , the identity matrix of size n n
R . The signal s  is called 

k -sparse if it can be represented as a linear combination of only k  columns of  , i.e., only the k  

components of the vector x  are nonzero as represented Eq.Error! Reference source not found. .  

. 

1

,  where  is a column vector of .
n

i i i

i

x 


 s  (2) 

 

 A signal is called compressible if it has only a few significant (large in magnitude) 

components and a greater number of insignificant (close to zero) components. The compressive 

measurements y (compressed samples) are obtained via linear projections as follows (Figure 3): 

 

  y s x Ax  (3) 

 

where the measurement vector is ,  with m m n y R , and the measurement matrix 
m nA R . Our 

goal is to recover x  from the measurement vector y . We note that Eq. 

Error! Reference source not found. is an underdetermined system because it has fewer equations 

than unknowns; thus, it does not have a unique solution in general. However, the theory of CS asserts 
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that, if the vector x  is sufficiently sparse, an underdetermined system is guaranteed with high 

probability to have a unique solution.  

 In this section, we discuss the basics of CS in more detail. 

 

 

 . The summary of compressive sensingFigure 3  

 

)i  k -sparse signal x  in orthonormal basis 

The k -sparse signal, s  in Eq. Error! Reference source not found., has k  nonzero components 

in x . The matrix   is, again, an orthonormal basis, i.e., T T

nI    , the identity matrix of 

size n n
R .  

 

)ii  Measurement vector y and underdetermined system  

The sensing matrices are   and A  in Eq. Error! Reference source not found., where its 

dimension m n
R , m n . When m  is closer to k  than n  is, sufficient conditions for good signal 

recovery are satisfied. Then a compression effect exists. Note that Eq. 
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Error! Reference source not found. appears to be an ill-conditioned equation. That is, the number of 

unknowns n is larger than m the number of equations, m n . However, if x  is k -sparse and the 

locations of the k  nonzero elements are known, the problem can be solved provided m k . We can 

form a simplified equation by deleting all those columns and elements corresponding to the zero-

elements, as follows: 

 

 y A x  (4) 

 

where  1,2, ,n   is the support set, which is the collection of indices corresponding to the 

nonzero elements of x. Note that the support set  can be any size- k subset of the full index set, 

 1,2,3,...,n . Eq. Error! Reference source not found. has the unique solution x  if the columns of 

A are linearly independent. The solution can be found using pseudo inverse easily as Eq. 

Error! Reference source not found. 

 

 
1

T T

   



x A A A y  (5) 

 

Thus, if the support set  can be found, the problem is easy to solve provided the columns are linearly 

independent.  

 

)iii  Incoherence condition 

The incoherence condition is that the rows of   should be incoherent to the columns of  . If the 

rows of   are coherent to the columns of  , the matrix A cannot be a good sensing matrix. In the 

extreme case, we can show a matrix A  having m  rows of   that are the first m columns of  .  
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 1: ,:

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

T

m

 
 
      
 
 
 

A  (6) 

 

 If A  of Eq. Error! Reference source not found. is used as sensing matrix, the 

compressed measurement vector y  captures only the first m  elements of the vector x , and the rest 

of the information contained in x  is completely lost.   

 

)iv  Designing a sensing matrix   

One choice for designing a sensing matrix   is Gaussian. Under this choice, the sensing matrix   

is designed as a Gaussian, i.e., matrix elements are independent and identically distributed Gaussian 

samples. This choice is deemed good since a Gaussian sensing matrix satisfies the incoherence 

condition with high probability for any choice of orthonormal basis  . This randomly generated 

matrix acts as a random projection operator on the signal vector x . Such a random projection matrix 

needs not depend on specific knowledge about the source signals. Moreover, random projections have 

the following advantages in the application to sensor networks [5]. 

 

1) Universal incoherence: Random matrices   can be combined with all conventional sparsity basis 

 , and with high probability sparse signals can be recovered by an 1L  minimum algorithms from the 

measurements y . 
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2) Data independence: The construction of a random matrix does not depend on any prior knowledge 

of the data. Therefore, given an explicit random number generator, only the sensors and the fusion 

center are required to agree on a single random seed for generating the same random matrices of any 

dimension.  

 

3) Robustness: Transmission of randomly projected coefficients is robust to packet loss in the network. 

Even if part of the elements in measurement y  is lost, the receiver can still recover the sparse signal, 

at the cost of lower accuracy.  
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3.2 System equations 

We knew the method how to find a unique solution of CS problem in previous section. In this section, we 

discuss various equations which are handled in CS theory as single measurement vector (SMV) and 

multiple measurement vector (MMV). The SMV is a basic equation for CS. It is expressed as Eq. 

Error! Reference source not found.. Many CS paper about this SMV problem is researched in 

[Ref],[Ref]. 
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   (7) 

Otherwise, the MMV has multiple measurement vectors and sparse matrix as Eq. 

Error! Reference source not found.. The sparse vector in each SMV results in MMV. It has much 

unknowns compared with SMV. The many number of unknowns may make the MMV to be solved hard. 

To solve this equation effectively, some algorithms are proposed as SOMP, ReMBo, M-FOCUSS. If each 

column of sparse matrix X  has similar support set, the priori information about support location can be 

used to get exact solution easily.  

 



INFONET, GIST 
Journal Club 

 

 

 

 - 20 - 

            

1 , 1 1 , 2 1 ,

1 , 1 1 , 2 1 ,

1 , 1 1 , 2 1 , 2 , 1 2 , 2 2 ,

2 , 1 2 , 2 2 ,

2 , 1 2 , 2 2 ,

, 1 , 2 ,

, 1 , 2 ,

, 1 , 2 ,

J

n

J J

n

J

m m m J

m m m n

n n n J

x x x
a a a

y y y x x x
a a a

y y y

y y y
a a a

x x x



 
   

     
     
     
      
     
     
      

    
 

Y AX

 (8) 

 The MMV equation can have the more number of equations by transforming Eq. 

Error! Reference source not found.. It means that the MMV equation has more information to solve 

underdetermined equation. The modified MMV equation is expressed as below Eq. 

Error! Reference source not found.. Furthermore, infinite measurement vector (IMV) consists of an 

infinite set of jointly sparse vectors.  
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Therefore, we can draw the relationship among the SMV, MMV and IMV as Figure 4. As the Figure 

4 shows, the MMV includes all of the SMV. It means that the MMV has all the information of the 

SMV. Therefore, if we solve the MMV equation exactly, it results the solution of each SMV also.  

 

      

 . The relationship among SMV, MMV and IMVFigure 4  
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3.3. Unique solution condition of SMV and MMV 

In CS, a core problem is to find a unique solution for an underdetermined equation. This problem is 

related to the signal reconstruction algorithm, which takes the measurement vector y  as an input and the 

k -sparse vector x  as an output. To solve an underdetermined problem, we consider minimization 

criteria using different norms such as the 
2L , 

1L , and 
0L  norms. The 

pL  norm of a vector x  of 

length n  is defined as 

 

1

1

,   0
n pp

ip
i

x p


 
  
 
x  (10) 

 .  

 Although we can define the 
2L  and 

1L  norms as 

1

22

2
1

n

i

i

x


 
  
 
x  and 

1
1

n

i

i

x


x , 

respectively, using the definition of pL  norm, 
0L  norm cannot be defined this way. The 

0L  norm is a 

pseudo-norm that counts the number of nonzero components in a vector as defined by Donoho and Elad 

[6]. Using this definition of norms, we will discuss the minimization problem to get solution x .  

 

)i  The minimization problem in SMV 

1) 2L  norm minimization in SMV 

 

   

 

2 2

1

ˆ arg min   subject to ,  where R ,  

          

m n

T T

L rank m



   



x x y Ax A A

A AA y
 (11) 

  

However, this conventional solution yields a non-sparse solution, so it is not appropriate as a solution to 

the CS problem. Thus, we do not consider this method for finding solution. 
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2) 
0L  norm minimization in SMV 

 

   0 0
  Minimize   subject to ,  where R ,  m nL rank m  x y Ax A A  (12) 

 

The 
0L  norm of a vector is, by definition, the number of nonzero elements in the vector. In the CS 

literature, it is known that the 
0L  norm problem can be solved by examining all the possible cases. Since 

this process involves a combinatorial search for all possible 
n

k

 
 
 

 support sets, it is an NP-complete 

problem. Thus, we cannot solve it within polynomial time. Therefore, we consider 
1L  norm 

minimization as an alternative. In literature [Ref], the unique solution of the 
0L  minimization is known 

as following, 

 

      
 s p a r k

2
k 

A
  (13) 

 

 The  spark A  is the smallest number n  such that there exists a set of n  columns in A  

which are linearly dependent. In summary, if the above equation is satisfied, then the unique solution of 

the Eq. Error! Reference source not found. is guaranteed.  

 

3) 1L  norm minimization in SMV 

 

   1 1
  Minimize   subject to ,where R ,  m nL rank m  x y Ax A A  (14) 
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This 
1L  norm minimization can be considered as a relaxed version of the 

0L  problem. Fortunately, the 

1L  problem is a convex optimization problem and in fact can be recast as a linear programming problem. 

For example, it can be solved by an interior point method. Many effective algorithms have been 

developed to solve the minimum 
1L  problem, and it will be considered later in this chapter. Here, we 

aim to study the sufficient conditions under which Eq. Error! Reference source not found. and 

Error! Reference source not found. have unique solutions. We provide a theorem related to this issue.  

 

0 1/L L  equivalence condition in SMV: 

Let m nA R be a matrix with a maximum correlation definition  ,   max , ,i j
i j




A a a  where 
ia  

is the i th column vector of A  with 1,2,...,i n , and x is a k -sparse signal. Then, if 
1 1

1
2

k


 
  

 
 

is satisfied, then the solution of 
1L  coincides with that of 

0L  [6] . 

Table 1. 
0 1/L L  Equivalence condition. 

 

)ii  The minimization problem in MMV 

To get the unique solution of MMV, it can be considered similar method with that of SMV. We introduce 

theorems from references [Ref]. To explain the uniqueness condition for MMV, we introduce the 

following definitions  R X  and  relax X . 

 

    
1 0i n

R m


X x  (15) 
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where L

ix R  is the transpose of the i th row of matrix X , ie  1 2, ,...,
T

nx x xX ,  m   is any 

vector norm in 
LR . Therefore,  R X  is the number of rows which have nonzero element in matrix X . 

When norm of  
1i n

m


x  is one, then it is defined as  relax X . 

 

     
1 1

i n
relax m


X x  (16) 

1) 
0L  norm minimization in MMV 

 

               0 1 0
  M i n i m i z e    s u b j e c t  t o  ,  w h e r e  R ,  m n

i n
L R m rank m


   X x Y AX A A  (17) 

 

In literature [Ref], the MMV unique solution of the 0L  minimization is known as following, 

 

       
    s p a r k 1
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r a n k C o l s
R

 
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A Y
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 The   rank Cols Y  is the column rank of matrix Y . If the above equation is satisfied, then 

the unique solution of the Eq. Error! Reference source not found. is guaranteed.  

 

2) 1L  norm minimization in MMV 

 

             1 1 1
  M i n i m i z e    s u b j e c t  t o  ,  w h e r e  R ,  m n

i n
L relax m rank m


   X x Y AX A A  (19) 

 

A sufficient condition to be the unique solution to 2) of MMV is that 
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 †

1
1,  S j j S  A A  (20) 

. 

SA  is reduced matrix of A  corresponding to indices from support location of  R X . So, we can write 

S SY A X , where matrix 
SX  is made by nonzero rows of X . SA  is of full column rank. †

SA  is 

pseudo-inverse which is defined by  
1

† T T

S S S S



A A A A . Because SA  is of full column rank, the 

generalized inverse is well defined. The above is the Exact Recovery Condition (ERC) in Tropp’s “Greed 

is good: Algorithmic results for sparse approximation” 

 

0 1/L L  equivalence condition in MMV: 

If  
 

2

spark
R 

A
X  is satisfied, then the solution of 1L  in MMV coincides with that of 0L  [Ref] . 

Table 1. 
0 1/L L  Equivalence condition. 
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 4. Compressive sensing and its application in WSN 

4.1 The usefulness of CS in WSNs 

In this section, we provide a brief comparison of using CS and using the conventional compression in a 

WSN. This comparison illustrates why CS could be a useful solution for WSNs.  

 

)i  Sensor network scheme with conventional compression 

For a conventional sensor system, the distributed sensors observe physical changes in designed area. 

Since each sensor observes similar physical changes, the signals observed from each sensor have much 

correlation. The correlated signal can be compressed for reducing data. The conventional compression for 

WSN requires exchanging information between distributed sensors in order to exploit inter-sensor 

correlation. Such a transmission strategy makes the network system complex below Figure 9. 

 The conventional compression needs to get together redundant data for compression as Figure 

10. At the collection point, joint compression can be made and compressed information can be sent to the 

FC. This option has a couple drawbacks. First, gathering the samples from all the sensors and jointly 

compressing them cause a transmission delay. Second, a lot of onboard power should be spent at the 

collaboration point. Third, each sensor should be collocated so that the transmitted information can be 

gathered at collaboration location.  

 . Conventional sensor network structureFigure 9  . Conventional sensor network structureFigure 10
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 Now, we may suppose that the joint compression is not aimed at and each sensor compresses 

the signal on its own. First, the data reduction effect with this approach will be limited because inter-

sensor correlation is not exploited at all. The total volume of the independently compressed data is much 

larger than that of jointly compressed data. This may produce a large traffic volume in the WSN and a 

large amount of transmission power will be wasted from the sensor nodes which transmit essentially the 

same information to the FC. Thus, this is an inefficient strategy as well. 

 

)ii  Sensor network scheme with compressive sensing 

In contrast to the conventional schemes considered in the previous paragraph, the CS method aims to 

acquire compressed samples directly. If a high-dimensional observation vector x  exhibits sparsity in a 

certain domain (by exploiting intra-sensor correlation), CS provides the direct method for signal 

compression as discussed in Figure 2. To compress the high-dimensional signal x  into a low-

dimensional signal y , as Eq. Error! Reference source not found., it uses a simple matrix 

multiplication with an m n  projection matrix  ,  1,2,...j j JA , where j  is the sensor index, as 

depicted in Figure 12.  

 In the CS-based sensor network scheme, each sensor compresses the observed signals using a 

simple linear projection and transmits the compressed samples to the FC. Then, the FC can jointly 

reconstruct the received signals (by exploiting inter-sensor correlation) using one of the CS algorithms. 

Therefore, each sensor does not need to communicate with its neighboring sensors for joint compression. 

Our method is distributed compression without having the sensors to talk to each other; only the joint 

recovery at the FC is needed. Thus, no intermediate stages are required which are to gather all of the 

samples at a single location and carry out compression aiming to exploiting inter-sensor correlation. This 

free of intermediate stages allow us to reduce time delay significantly as well. Therefore, if the original 
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data are compressed by CS, each sensor node produces much smaller traffic volume which can be 

transmitted to the FC at a much lower transmission power and with a smaller time delay. The CS sensor 

network structure applied for WSN is as below (Figure 11). You can check the simplicity of transmission 

strategy of CS based WSN compared with conventional network. 

  

 

 

 

 . CS sensor network schemeFigure 11  . CS sensor network structureFigure 12
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4.2 Distributed compressive sensing 

Each sensor can observe only the local part of an entire physical phenomenon, and a certain event of 

interest is measured by one or more sensors. Therefore, the sensed signals are often partially correlated. 

These measured signals have two distinct correlations: intra-sensor correlation and inter-sensor 

correlation. Intra-sensor correlation exists in the signals observed by each sensor. Once a high-

dimensional sensed signal has a sparse representation in a certain domain, we can reduce its size by using 

CS. This process exploits the intra-sensor correlation. In contrast, inter-sensor correlation exists between 

the signals sensed by different sensors. By exploiting inter-sensor correlation, further reduction in 

transmitted signals can be made.   

 These two correlations can be exploited to improve the system performance. As the number of 

sensors in a region becomes dense, each sensor has a strongly correlated signal that is similar to that of 

neighboring sensors. In contrast, if we decrease the density of sensors distributed in a given region, the 

sensed signals will obviously be more weakly correlated with each other. In this section, we discuss two 

strategies for transmitting signals in a multi-sensor CS-based system. One strategy uses only intra-sensor 

correlation, and the other uses both types of correlation. We illustrate that CS-based system in WSN 

exploits the inter-sensor correlation more effectively and simply than that of conventional sensor network.  

 

)i  Exploiting only intra-sensor correlation 

In Figure 13, each sensor observes the source signal and independently compresses it to a low-

dimensional signal. After compression, each sensor transmits the compressed signal to the FC. Without 

exploiting inter-sensor correlation between transmitted signals, the FC recovers these signals separately. 

In this case, even if there exists correlation among the sensed signals, because only intra-sensor 
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correlation is exploited, we cannot gain any advantages from joint recovery. This method has the 

following characteristics: 

1) Independent compression and transmission at each sensor 

2) Signal recovery by exploiting only intra-sensor correlation at the FC 

 

)ii  Exploiting both intra- and inter-sensor correlation 

Figure 14 shows the same process as in situation )i  above, except that the FC exploits the inter-sensor 

correlation among sensed signals at signal reconstruction stage. In conventional sensor network system as 

shown in Figure 10, the sensor nodes communicate with their neighboring sensors to take advantage of 

joint compression by exploiting inter-sensor correlation. However, in the CS-based system, a stage for 

exploiting inter-sensor correlation is achieved at FC. It means that if inter-sensor correlation exists within 

the sensed signals, and the FC can exploit it. This is done with sensors communicating with the FC but 

not among the sensors themselves. We refer to this communication strategy as the Distributed 

Compressive Sensing (DCS). Exploitation of inter-sensor correlation should be manifested with the 

reduction of the measurement size m  of matrix m nA R , where y Ax , required for good single 

recovery. The characteristics of our DCS sensor network are: 

1) Independent compression and transmission at each sensor 

2) Exploitation of inter-sensor signal correlation with the joint recovery scheme at the FC 

3) Variation of the per sensor CS measurements to manipulate the level of signal correlation 
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     .  I n t r a - s e n s o r  c o r r e l a t i o n  s c h e m eF i g u r e 1 3        . Intra/Inter-sensor correlation schemeFigure 14  
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4.3. Correlated signal models 

We assumed the WSN which consists of large number of sensor with a built-in CS and one fusion center. 

Because of the feature of considered WSN, the observed signals have inter-sensor correlation. We can 

model this WSN as Eq. Error! Reference source not found. or Eq. 

Error! Reference source not found.. Those two equations have sparse signal matrix X  which consists 

of signals transmitted from each sensor.  

 In this section, we introduce how the signal matrix with different degrees of correlation can be 

generated as sparse signal models. The sparse signal matrix in WSN has correlated properties. The degree 

of sparseness which is called the sparsity, is proportional to the amount of correlation. More correlated 

signal means sparser in terms of intra-sensor correlation. In addition, inter-sensor signal correlation can 

be modeled )i  by the degree of overlaps in the support sets of any two sparse signals, and )ii  by the 

correlation of non-zero signal values. By using those two properties, we can model correlated sparse 

signal matrix X  as below examples Figure 15.   
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 . The examples of correlated signalsFigure 15  
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 We can divide those correlated signals in Figure 15 as three components; common sparsity 

part, innovation sparsity part, and total sparsity part. The common sparsity part has one more nonzero 

value in the row of sparse signal matrix X . The Innovation sparsity part has only one nonzero value in 

the row of signal matrix. Lastly, the total sparsity part is the total number of rows which have nonzero 

elements. The common sparsity is a correlated part. Therefore, if we find the location of common part, we 

can also use it to solve another SMV. The innovation sparsity is a uncorrelated part. Even if we find the 

location of innovation part, we cannot use it to solve other SMV equations. Finally, the total sparsity is 

related with the degree of correlation among observed signals. We re-expressed the correlated signals as 

following Figure 16 by using three terminologies mentioned. 
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* * *

* * * * *

   * * * * * * * *

* * * * * * * *

   
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

* * *

* * *

* * * *

* * *

* * * * * * * *

            * * * * * * *

* * * * * * * *

* * *

* * * *

* * *

* * *

*:  Unknown nonzero va

     
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      

lue

 

 

 

 . The components of correalted signalsFigure 16  

 

 The first and second correlated signals of Figure 16 have only common sparsity part. The 

third signal consists of only innovation sparsity. Therefore, there is no common part which has one 
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more nonzero element in same row. The 4) , 5)  signals have both common part and innovation part. 

If we know the prior information of the heuristic signal X  about support location, we can use it to 

find solution effectively. We can use those correlated properties to recover signals transmitted from 

each sensor, and its reconstruction performance will increase over that not using correlated information. 

We discuss the ideas for recovering those correlated signals in next section. 



INFONET, GIST 
Journal Club 

 

 

 

 - 36 - 

 5. The recovery ideas for correlated signals 

5.1 Joint decoding and separate decoding 

We discussed the correlated signals which consist of common, innovation, and total parts in the previous 

section. The understanding of various correlated signal models gives more clues to get solution. In this 

section, we argue ideas using correlated information to get solution effectively.  

 Some specific correlated signals also are handled in [Ref],[Ref]. In those references, the 

correlation signals are referred to as JSM-1 (joint signal model) or JSM-2 depending on the correlation 

type. In JSM-1, all of the signals share exactly the same common nonzero components that have the same 

values, whereas each signal also independently has different nonzero components, which is called 

innovation. In JSM-2, it shares same support location that has different value. Those two signals is 

expressed below, Figure 17. In [Ref],[Ref], they proposed methods which find the solution of the 

correlated signals consisting of those specific pattern in Eq. Error! Reference source not found..  

 

1) JSM-1                       2) JSM-2

    

:  Same nonzero value

: Different nonzero value
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 7. Joint signal models, JSM-1, JSM-2Figure 1  
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 The JSM-1 is expressed as 

 

 ,  1,2,..., ,   is the index of the sensorsj c j j J j  x z z  (21) 

 

where 
0c ckz (Common part), and 

0j jkz (Innovation part) in each sensed signal. Obviously, 
cz  

appears in all the columns of the correlated signals. It can be recognized as the inter-sensor correlation. 

We note that the intra-sensor correlation is that all of the signals are sparse. The j th sensor transmits 

j j jy A x  to the FC. After all the sensed signals are transmitted to the FC, the FC aims to recover all the 

signals. Because inter- sensor correlation exists in the sensed signals, we can obtain several benefits by 

using the correlated information in the transmitted signals. For ease of explanation, suppose that the WSN 

contains J  sensors, and its sensed signal follows JSM-1 pattern. Then, the FC can exploit both intra- 

and inter- sensor correlation by solving Eq. Error! Reference source not found. as described below. 

 

)i  Joint recovery scheme for JSM-1 (Modified equation method) 

The sensed signals from j  sensors can be expressed as follows. 

 

1 1

2 2

n

c

n

c

n

J c J

  

  

  

x z z R

x z z R

x z z R

, 

where the sparsity of vectors cz  and jz  are ck  and jk , respectively and each sensor has same 

spasity c jk k k  . Then, the transmitted signal jy  can be divided into two parts as follows.  

 

( )j j c j j c j j   y A z z A z A z  
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 If the FC received all the signals transmitted from J  sensors, it then concatenates the used 

sensing matrix and received signal using Eq. Error! Reference source not found.. Therefore, the sensed 

signal in JSM-1 is transformed into Figure 18. This idea is handled in [Ref],[Ref]. 

1 1 1

1

2 2 2

2

3 3 3

3

c

J JJ

J
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  

z
y A A 0 0 0

z
y A 0 A 0 0

z
y A 0 0 A 0

z
0

A 0 0 0 0 Ay
z

 (22) 

 

1) Using correlation information   2) Not using correlation information
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 . Concatenating JSM-1 to a column signalFigure 18  

ck : 3 
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n : Signal length 

s : The number of nonzero  
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Because JSM-1 shares common part 
cz  in the equation, we can reduce the number of nonzero value as 

1) of Figure 18. In conclusion, the total number of nonzero in matrix X  is 12, but in transforming 

equation, it is 6 only. Thus, the total number of nonzero, s  is reduced from  c jJ k k   to 

 c jk J k  . The total number of sparsity affects the probability of exact reconstruction. By solving this 

equation, the FC can take advantage of exploiting inter-sensor correlation. However, if the FC recovers 

the received signals independently without using any correlation information, separate recovery is done. 

Even if the sensed signals are correlated, separate recovery offers no advantages for signal reconstruction 

because it does not exploit inter- sensor correlation.  

 

)ii  Separate recovery scheme for JSM-1 

Even if a common correlated element exists in the sensed signals, separate recovery does not use that 

correlation information as before example. Therefore, the received signals are recovered as follows and 

its concatenated signal is express as 2) of Figure 18. 

 

1 11

2 2 2

JJ J
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    
    
    

    

y xA 0 0 0

y 0 A 0 x

0

0 0 0 Ay x

 (23) 

 

 To solve Eq. Error! Reference source not found. and Error! Reference source not found., 

we use the primal-dual interior point method (PDIP) in Appendix 7.1, which is an 1L  minimization 

algorithm, and compare the results of the two types of recovery, joint decoding and separate decoding 

respectively. Using the comparison results, we can confirm that the measurement size required for perfect 

reconstruction is smaller for joint recovery than for separate recovery. 
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 Now, we introduce JSM-2, which is simpler than JSM-1. All the signal coefficients are 

different, but their indices for nonzero components are the same. Suppose that there exist two signals, 
1x  

and 
2x . The i th coefficient for 

1x  is nonzero if and only if the i th coefficient for 
2x  is nonzero. 

This property represents inter-sensor correlation, because if we know the support set for 
1x , then we 

automatically know the support set for 
2x .  

 

)iii  Joint and separate decoding scheme for JSM-2 

The prior inter-correlation becomes relevant when the number of sensors is more than two. To get the 

advantages of exploiting inter-sensor correlation about JSM-2, we should solve the Eq. 

Error! Reference source not found. and Eq. Error! Reference source not found. jointly. Like the FC 

in JSM-1, the FC in JSM-2 can exploit the fact that the support set is shared. By solving the MMV jointly, 

we obtain several benefits as high reconstruction probability on same number of measurement. If we 

solve those two equations separately, but not jointly, it is separate recovery. As an algorithm for solving 

the equation of the JSM-2 signal, we use a simultaneous OMP (SOMP) modified from an OMP algorithm 

for joint decoding and apply OMP for separate decoding. These algorithms are introduced in Appendix 

7.2 and 7.3 correspondingly.  

 

)iv  Joint vs. separate recovery performance for JSM-1 and JSM-2 

Now, we compare the results of joint recovery and separate recovery. In joint recovery, if a correlation 

exists between the signals observed from the distributed sensors, the FC can use the correlated 

information to recover the transmitted signals. In separate recovery, correlated information is not used 

regardless of whether a correlation pattern exists between the observed signals. In Figure 19, solid lines 

were obtained from joint reconstructions, whereas dotted lines are the results of separate reconstructions.  
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Figure 19. Joint (solid line) and separate (dotted line) reconstruction using PDIP 

algorithm for JSM-1. System parameters: 50N  , 2J  . The benefits of joint 

reconstruction depend on the common sparsity
ck . 

 

When we use separate reconstruction, we cannot obtain any benefits from correlated information. 

However, when we use joint reconstruction, we can reduce the measurement size. For example, in Figure 

20, the required number of measurements is almost 40 (dashed line and circles, 6k  ) for perfect 

reconstruction when we use separate reconstruction. On the other hand, when we use joint reconstruction, 

it decreases to around 30 (solid line and circles, 6k  ). Furthermore, as the common sparsity increases, 

the performance gap increases. For example, when the common sparsity is 9, joint reconstruction has a 

90% probability of recovering all the signals at 30m  . However, the probability that separate 

reconstruction can recover all the signals is only 70%. Figure 19 also shows that joint reconstruction is 

superior to separate reconstruction. For example, we need at least 30 measurements for reliable recovery 
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using separate reconstruction. However, we merely need at least 25 measurements for reliable recovery 

using joint reconstruction.  
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Figure 20. Joint (solid line) and separate (dotted line) reconstruction using SOMP 

for JSM-2. System parameters: 50N  , 2J  . Joint reconstruction has a higher 

probability of success than separate reconstruction.  
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5.2 Phased-Orthogonal matching pursuit (POMP)  

In previous section, we discussed joint decoding methods for specific correlated signal, JSM-1 and 

JSM-2. The joint decoding method for JSM-1 cannot apply for JSM-2 which shares same support 

location only, since JSM-2 does not have same nonzero value. Therefore, if we use same idea for JSM-

2, we cannot get the advantages of exploiting inter-sensor correlation. In reverse, SOMP, joint 

decoding algorithm for JSM-2, cannot apply for JSM-1 which has a large number of innovation 

sparsity. If we use SOMP algorithm for JSM-1, it may not find solution exactly. In summary, those two 

methods cannot apply all of the correlated signals which have various correlated pattern. To get exact 

solution of various correlated signals, we proposed joint decoding algorithm. The proposed algorithm 

is called phased orthogonal matching pursuit (POMP). POMP has better performance about the exact 

reconstruction probability of correlated signals than previous algorithms, for examples, PDIP, SOMP, 

ReMBo, etc. We will introduce the idea of our proposed algorithm in detail and then compare the 

reconstruction performance of our algorithms with previous algorithms. 

 

i ) Previous algorithm for MMV 

1) One-step greedy algorithm 

Figure 21 plots the probability of success in recovering the support set by using the one-step greedy 

algorithm (OSGA). OSGA finds common support location by using method described in Table 9, for the 

JSM-2 signal. In comparison with other greedy algorithms, it finds all the nonzero location at once so its 

performance is lower than that of SOMP.  

The result of Figure 21 suggests that the number of required measurements decreases for the same 

probability of exact reconstruction as the number of sensors increases. The OSGA works for a small 
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number of measurements m  if the number of sensors is sufficiently large. Therefore, if many 

distributed sensors observe a correlated signal, each sensor is enough to send only a small number of 

compressed signals to achieve perfect reconstruction probability. Consequently, the transmission power 

of each sensor can be reduced because only the traffic volume required for exact reconstruction, which 

decreases significantly, must be transmitted. However, OSGA works poorly when there are fewer sensors, 

so it is not good method finding correlated signals. The OSGA is described in more details in Error! 

Reference source not found.. 

 

The one-step greedy algorithm (OSGA): 

1. Make greedy choice: Given all of the measurements, compute the test statistics 

2

,

1

1
,

J

n j j n

j

y
J

 


   

for  1,2,...,n N and estimate the common coefficient support set by  

 ˆ  having one of the  largest nn k   . 

Table 9. The one-step greedy algorithm (OSGA). 
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Figure 21. Reconstruction using OSGA for JSM-2. Experimental probability of 

success in recovering the support set in JSM-2. Signal length and sparsity are 

50n   and 5k  , respectively.  

2) Reduced and boost algorithm 

The Reduced and boost algorithm (ReMBo) is introduced in [Ref]. They reduce the correlated signal 

matrix X  to one column signal and then solve reduced SMV problem by using greedy or gradient 

algorithm. The algorithm is summarized in Appendix 7.4. To get solution of MMV, ReMBo makes 

Y AX  to y Ax  by multiplying randomly generated vector a as Figure 22.  
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           : Different value   

 . Reduce MMV to SMV in ReMBoFigure 22  

 

 The reduced SMV can be solved by using any one of SMV algorithm and then ReMBo 

algorithm saves the support location of SMV solution. From the information of support set, they can 

get the exact solution of matrix X . This algorithm has easy stage for understanding and its algorithm 

speed is fast and effective. However, it is possible to apply only Eq. 

Error! Reference source not found. not Error! Reference source not found., and if the original 

matrix X  has much number of distributed innovation part as Figure 23, it cannot find solution. In 

the case of Figure 23, it makes the reduced signal x  which is not sparse. The transformed equation 

y Ax from the signal of Figure 23 cannot be solved. Therefore, it has limitations to apply various 

correlated signals.  
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                        : Different value  

 . The limition of ReMBo algorithmFigure 23  

 

 ii ) Phased-OMP algorithm 

Until now, we discussed various methods for recovering correlated signals. They are modified equation 

method, SOMP, OSGA, ReMBo. Those methods can apply only specific correlated signals as JSM-1, 

JSM-2 which have fixed pattern. If those methods are applied to other various signal models, it would 

not work properly. Thus, we proposed one method for any kind of correlated signals. It is called to 

phased-OMP (POMP). In this section, we explain how the algorithm works to recover various 

correlated signals. To help understanding algorithm, we will use the terminologies which are 

mentioned in previous section.  

 

1) Basic idea of correlated signal recovery  

We already talked about the unique solution of SMV problem before. The condition satisfied for 

solving SMV equation is
 

2

spark A
k  . It is proved in [Ref]. We used this proof as an idea for making 
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our proposed algorithm. If the total sparsity made from matrix X satisfies
 

2

spark
T 

A
, it guarantees 

each column has unique solution. Otherwise, even though each column satisfies
 

2

spark A
k  , it 

doesn’t mean that 
 

2

spark
T 

A
 is satisfied due to distributed innovation part  
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 . Total sparsity of MMV equationFigure 24
 

 

 Consider this specific signal which has only common sparsity and its total sparsity satisfy 

 
2

spark
T 

A
. Because each column in MMV also satisfies

 
2

spark A
k  , and then we can get 

unique solution and its support location by using separate decoding. From the support set information 

of first SMV problem, we can also solve next SMV problem easily by using pseudo-inverse, if the next 

support set also has same support set. Therefore, it is important to know common part information 

since exact common part can reduce calculation time and complexity.  

 

1  2  3  4  5     T   
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The idea for proposed algorithm follows. Common sparsity is a correlated part. Therefore, if we find 

the location of common part, we can also use it to solve another SMV. Innovation sparsity is an 

uncorrelated part. Therefore, even if we know the location of innovation part, we cannot use it to 

recover the innovation of other signals. In SMV problem, if we want to find the unique solution, each 

SMV should satisfy the unique condition. However, if we use correlated sparsity information in MMV 

equation, each SMV problem can get more guarantee for exact solution by using correlated 

information. 

 To use correlated information in POMP, we will find the common support location at first 

by using joint decoding. Then, by using separate decoding, we will find the remaining support location 

for each SMV problem. Therefore, we use the specific characters of both the joint decoding and 

separate decoding for effective reconstruction. Although the proposed algorithm works with easily 

understanding, its performance is better than previous methods (Modified equation method, POMP, 

SOMP) for correlated signal reconstruction. In addition, it doesn’t be related with the number of total 

sparsity.  
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2) Pseudo-code of POMP 

POMP uses the method which finds support set at every iteration. It is similar with the OMP method 

about finding support set, but we applied many ideas different with original OMP. We illustrate the 

pseudo code of POMP algorithm as following table. 

 

Input Output 

A  measurement matrix 

A dimensional data vector 

The sparsity level  of the ideal signal

The estimate number of common sparisty 

Stop conditon 

j

j

m n

m

k

C







A

y

 
 ,

,

, ,

ˆAn estimate  in  for the ideal signal.

A set  containing  elements from 1,...,

ˆAn dimensional approximation  of the data 

ˆAn dimensional residual 

n

j

j k

j k j

j k j j k

k n

m

m





  

x R

y y

r y y

 

Table 4. Inputs and outputs of SOMP algorithm. 

 

The POMP algorithm: 

Phase 1: For find common sparsity 

1. Initialize:  

Let the residual matrix be ,0 ,0j jr y . The sparse set ,0 {}j  , and iteration number 1t  . 

 

2. Find the common sparsity index ,j t  for each j :  

, , 1 ,
1,..., 1

arg max ,
J

j t j t j i
i n j

 
 

  r a . The ,j ia  is the i th column vector of matrix jA . 

 

3. Update set:  

 , , 1 ,j t j t j t    .  

 

4. Signal estimate:  

  †

, , , tj t j t j j x A y  and  , ,

C

j t j t x 0 , where  , ,j t j tx  is the set of elements whose indices are 

corresponding to the sparse set. 

 

5. Get new residual:  

, , , , ,
ˆ ˆ,  j t j t j t j t j j t  y A x r y y . 

 

6. Increment t : 

Increase iteration number 1t t  , and  

if t C  return to Step 2 of Phase 1 
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otherwise, t C  go to Phase 2 

 

Phase 2: For find innovation sparsity for each j  

7. Find the index 
,j t  for each j :  

, , 1 ,
1,...,

arg max ,j t j t j i
i n

 


 r a  for every j . The 
,j ia  is the i th column vector of matrix jA . 

 

8. Update set:  

 , , 1 ,j t j t j t     for each j . 

 

9. Signal estimate:  

  †

, , , tj t j t j j x A y  and  , ,

C

j t j t x 0 , where  , ,j t j tx  is the set of elements whose indices are 

corresponding to the sparse set. 

 

 

10. Get new residual:  

, , , , ,
ˆ ˆ,  j t j t j t j t j j t  y A x r y y . 

 

11. Increment t :  

Increase iteration number 1t t  , and  

return to Step 7 of phase 2 if 
2

1

J

j j j

j




  y A x  

otherwise stop the algorithm.  

Table 5. POMP algorithm. 

 

For Phase 1, it is a stage for finding common sparsity Because the common sparsity is the correlated 

part of the signal matrix X , we use joint decoding method for finding the location of common part. 

The joint decoding method is able to find support location successfully. We already knew the 

advantages of joint decoding from the comparison of joint decoding and separate decoding in Section 

5.1. Therefore, if it is possible to use joint decoding for MMV equation, we should use it for 

advantages about signal reconstruction. It results in better performance for solving MMV equation. 

According to pseudo-code of POMP, it finds the location of common part in Phase 1 and memorizes 

the index as Figure 26. After the stage of Phase 1 is finished, POMP algorithm tries to find the 
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remaining support set by separate decoding. Due to separate decoding of Phase 2 for remaining 

support set, POMP can find the missed common sparsity in previous stage.  

 We draw Figure 26 which expresses the movement of POMP algorithm. The nonzero 

values in red box are common sparsity which is exploited in Phase 1 and then the remaining nonzero 

values in green box can be exploited in Phase 2. The index of row having nonzero values is added to 

  at every iteration until the criteria 
2

1

J

j j j

j




  y A x  is satisfied. After finishing the movement 

of POMP, we can get the original solution by using pseudo-inverse based on the estimated support set.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  

                                : Different value  

 . The movement of POMP algorithmFigure 25  

 

Moore-Penrose pseudo inverse: 

If we define that j  is the support set of the j th column in matrix X , we can reduce the sensing 

matrix jA  to 
jA  corresponding to the nonzero elements of jx .  If the columns of the reduced 

matrix 
jA  are linearly independent, Moore-Penrose pseudo inverse equation is accepted.  

 

Phase 1: Correlated part  

Phase 2: Innovation part   

   

Phase 2: Innovation part   

 

Phase 2: Innovation part   

Phase 1: Correlated part    

 

Support set in Phase 1: 

j = 1, {3, 5, 6, 7} 

j = 2, {3, 5, 6, 7} 

j = 3, {3, 5, 6, 7} 

j = 4, {3, 5, 6, 7} 

j = 5, {3, 5, 6, 7} 

j: 1   2   3   4   5      

Support set in Phase 2: 

j = 1, {3, 5, 6, 7, 8} 

j = 2, {3, 4, 5, 6, 7} 

j = 3, {3, 5, 6, 7, 9} 

j = 4, {1, 2, 3, 5, 6, 7} 

j = 5, {3, 5, 6, 7, 10} 
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 
†

j j  A A I , where  
1

†

j j j j

T T


   A A A A  

 

Therefore, if we know the support set and the reduced matrix 
jA  are linearly independent, then the 

original signal 
jx  can be found by using pseudo-inverse. 

 

 
1

j j j j

T T


   x A A A y  

 

Table 9. Moore-Penrose pseudo inverse. 
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5.3 The properties of POMP algorithm 

)i  The advantages of using prior correlation information 

If we know the prior information of correlated signal like the number of common sparstiy, innovation 

sparsity, or the distribution of support location, we can use that information for signal recovery. If we 

know the number of common sparsity as prior information, we can choice parameter C as the number 

of iteration used for finding common part exactly. To select the number of iteration exactly in POMP 

affects the reconstruction performance as Figure 25. The parameters of simulation are 150N  , 

10C  , 10I  . Even though the value of estimated C  is not exact correct as red and or blue, its 

performance is stable. However, it requires much number of measurements for perfect signal recovery.  
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 . The advantages of using prior informationFigure 25
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)ii  The complexity of POMP 

1) The complexity of Moore-Penrose pseudo inverse 

We express how POMP works for MMV equation throughout pseudo-code. According to POMP 

algorithm, it requires pseudo-inverse calculation to get unique solution when we know the support set 

of original signal. In general, the calculation of matrix multiplication and inverse matrix require high 

complexity respectively  2O n  and  3O n  respectively. However, we already know that the 

number of sparsity k  is very short in comparison with the length of signal n  as k m n   so, the 

complexity of those calculations is simple as below Table.  

 

The complexity of pseudo-inverse: 

By using pseudo-inverse, we can get the nonzero values corresponding to support set. The pseudo 

inverse complexity is not high. From the relation k m n  , we can get the complexity. 

 

       

1

1

2 2

3 3 2 2

Multiplication: 1 2

Inverse: . Therefore, total:  

T T

S S S S

mk m m k k m

A A A y x

k m k k k m k m k m km O mk

O k O k O mk O mk k m



  

 
 

 
 

          

  

 

Table 9. Pseudo-inverse in MMV. 

 

2) The complexity of POMP algorithm in terms of sparsity. 

POMP algorithm has two stages for find support location which consists of common sparsity and 

innovation sparsity. In this section, we analyze the complexity of POMP algorithm related with 

sparsity and the number of sensors J . We assumed that the observed signal has both the C  number 

of common sparstiy and the I  number of innovation sparsity. In Phase 1, it will find the C  number 

of sparsity and it requires such as calculations, for examples , , 1 ,
1,..., 1

arg max ,
J

j t j t j i
i n j

 
 

  r a  and 
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  †

, , , tj t j t j j x A y . After finishing the calculations of Phase 1, it starts the calculation of Phase 2  

for finding innovation sparsity. We consider 
, , 1 ,

1,...,

arg max ,j t j t j i
i n

 


 r a  and   †

, , , tj t j t j j x A y  in 

Phase 2. The complexity of POMP algorithm is below.  

 

The complexity of POMP 

Phase 1 

Considered parameter: signal length n , measurement m , sparsity k , the number of sensors J , 

common sparstiy C , innovation sparsity I . We already know the relationship ( )C I k m n     

1) , , 1 ,
1,..., 1

1 1

 times summation

arg max ,
J

j t j t j i
i n j

m m

J

 
 

 

  r a  

Inner product and sigma summation:      O m O J O m   In general J m  

By J n  iteration:    JnO m O Jnm  

2)   †

, , , tj t j t j j x A y  

Pseudo-inverse:  2O mk  

3) The number of iteration: C  

Therefore,       2C O Jmn O mk O CJmn   In general 2k n  

In conclusion, the complexity of Phase 1 is  O CJmn  

 

Phase 2 

1) , , 1 ,
1,...,

arg max ,j t j t j i
i n

 


 r a  

Inner product :  O m  

By J n  iteration:    JnO m O Jnm  

2)   †

, , , tj t j t j j x A y  
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Pseudo-inverse:  2O mk  

3) The number of iteration: I  

Therefore,       2I O Jmn O mk O IJmn   In general 2k n  

In conclusion, the complexity of Phase 2 is  O IJmn  

 

By Phase 1 + Phase 2,   

In conclusion, the complexity of POMP is         O CJmn O IJmn O Jmn C I O Jmnk    . 

The complexity of POMP algorithm is affected by the parameters , , ,J m n k . 

Table 9. The complexity of POMP algorithm 

 

)iii The recovery condition of POMP
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 6. Performance evaluation  

In previous section, we already discuss the various correlated signals which are handled with 

references. For distinguishing those correlated signals, we named it correlated signal model (CSM) as 

following Figure 27 and then we solved MMV equation Error! Reference source not found. and 

Error! Reference source not found. by using algorithms like modified equation method (MEM), 

SOMP, ReMBo, POMP. All of the algorithms are handled in previous section.  

1) CSM-1                        2) CSM-2                       3) CSM-3                       4) CSM-4                    

    

  
 
 
 
 
 
     
 
     
     
 
 
 
 
 
 
  

        

    

    
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     

    

 
 
 
 
 
 
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 

  
   
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 
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:  Unknown nonzero value
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     
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     



 

 . Correlated signal model (CSM)Figure 27  
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In Figure 27, we define correlated signal model which has various kinds of pattern. Most of the signal 

pattern can be defined by our CSM. CSM-1 and CSM-2 is similar with JSM-1 and JSM-2 which are 

handled in [Ref] but we consider the case that has some vacancies in common part and innovation part 

is also same signal model and we changed the definition of innovation part. In our case, innovation 

sparsity exist only one nonzero value in same row in different with [Ref]. CSM-1 and CSM-3 have 

common part and innovation part together but CSM-1 has same value for common part. CSM-2 has 

only common part and CSM-4 has only innovation part. Other case which does not exist in Figure 27 

will not be considered in this paper. Now, we simulate the performance POMP algorithm compared 

with other methods as ReMbo, SOMP, MEM.  

   

1) CSM-1 and Different matrix A  

We generated the CSM-1 which has common and innovation part. Its common part has same values. 

We observed the reconstruction performance for MEM, SOMP, and POMP algorithm when the signal 

has CSM-1 pattern and each sensing matrix is different.  
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 7. Conclusion  

In this chapter, we discussed the application of compressive sensing (CS) for wireless sensor networks 

(WSNs). We assumed a WSN consisting of spatially distributed sensors and one fusion center (FC). 

The sensor nodes take signal samples and pass their acquired signal samples to the FC. When the FC 

receives the transmitted data from the sensor nodes, it aims to recover the original signal waveforms, 

for later identification of the events possibly occurring in the sensed region. (Section 2.1)  

 We discussed that CS is the possible solution which provides simpler signal acquisition and 

compression. CS is suitable for the wireless sensor networks since it allows removal of intermediate 

stages such as sampling the signal and gathering the sampled signals at one collaboration point which 

would usually be the case in a conventional compression scheme. Using CS, the amount of signal 

samples that need to be transferred to the FC from the sensors can be significantly reduced. This may 

lead to reduction of power consumption at the sensor nodes, which was discussed in Section 4.1. In 

summary, each sensor with CS can save power by not needing to run complex compression operations 

on board and by cutting down signal transmissions.  

 Distributed sensors usually observe a single globally occurring event and thus the observed 

signals are often correlated with each other. We considered two types of correlations: intra- and inter-

sensor signal correlation. We provided the sparse signal models which encompass both types of 

correlation in Sections 4.2 and 4.3.  

 The FC receives the compressed signals from the sensors. The FC then recovers the original 

signal waveforms from the compressed signals using a CS recovery algorithm. We considered two 

types of algorithms. One is a greedy algorithm type, which includes the orthogonal matching pursuit 

(OMP) and the simultaneous orthogonal matching pursuit (SOMP) algorithms, discussed in Section 
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Error! Reference source not found.. The other is a gradient type for which we used the primal-dual 

interior point (PDIP) method, in Section Error! Reference source not found.. 

 Finally, we presented simulations results in which the CS based WSN system parameters 

such as the number of measurements, the sparsity, and the signal length were varied. We discussed the 

use of a joint recovery scheme at the FC. A CS recovery algorithm is referred to as the joint recovery 

scheme when it utilizes inter-sensor signal correlation as well. In contrast, when the inter-sensor signal 

correlation is not utilized, it is referred to as the separate recovery scheme.  In the joint recovery 

scheme, inter-sensor signal correlation information is incorporated in the formation of recovery 

equation as shown Eq. Error! Reference source not found. and 

Error! Reference source not found.. In the separate recovery scheme, a sensor signal recovery is 

done individually and independently from the recovery of other sensor signals. We compared the 

results of the joint recovery with those of the separate recovery scheme. We have shown that 

correlation information can be exploited and the number of measurements needed for exact 

reconstruction can be significantly reduced as shown in Figure 14. It means that the traffic volume 

transmitted from the sensors to the FC can decrease significantly without degrading the quality of the 

recovery performance. (Section Error! Reference source not found.)  

 We have shown that the CS is an efficient and effective signal acquisition and sampling 

framework for WSN which can be used to save transmittal and computational power significantly at 

the sensor node. This CS based signal acquisition and compression scheme is very simple, so it is 

suitable for inexpensive sensors. The number of compressed samples required for transmission from 

each sensor to the FC is significantly small, which makes it perfect for sensors whose operational 

power is drawn from onboard battery. Finally, the joint CS recovery at the FC exploits signal 

correlation and enables Distributed Compressive Sensing.  
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 . Summary of CS application in WSNFigure 16  
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8. Appendix  

8.1. Primal-dual interior point method (PDIP)  

The 
1L  minimization in Eq. Error! Reference source not found. can be recast as linear programming. 

Here we examine this relationship. Clearly, the 
1L  minimization problem in Eq. 

Error! Reference source not found. is not linear programming because its cost function is not linear. 

However, by using a new variable, we can transform it to linear programming. Thus, the problem that we 

want to solve is  

 

  

 

 

,
min

subject to 

i
x u

i

i i

u

x i u 





Ax b

 (24) 

  

 

 The solution of the above equation is equal to the solution of the 1L  minimization problem. 

Many approaches to solving Eq. Error! Reference source not found. have been studied and developed. 

Here, we discuss the primal-dual interior point (PDIP) method, which is an example of gradient-type 

algorithms. First, we have the Lagrangian function of Eq. Error! Reference source not found., as 

follows: 

 

    T T T T

1 2, ,L
   

            

e e
t λ v 0 1 t v A 0 t b λ t

e e
 (25) 
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where e  is the n n  identity matrix, 
10  is the zero vector, 

20  is the m n  zero vector, and 1  is 

the 1n  vector whose elements are all one, 2 1: n 
  
 

x
t R

u
, 1mv R , and 2 1 0n λ R . From the 

Lagrangian function, we have several KKT conditions,  

 

 

 

 

T

* *

3T

*

2 4

*

1

T
* * *

30,

    
      

     

 

 
 

  

 
  

  

0 e eA
v λ 0

1 e e0

A 0 t b 0

e e
t 0

e e

e e
λ t λ 0

e e

 (26) 

 

where 
30  is the 2 1n  zero vector, and 

40  is the 1m  zero vector. The main point of the PDIP is to 

seek the point  * * *, ,t λ v  that satisfies the above KKT conditions. This is achieved by defining a 

mapping function      2 1 2 1
F , , :

n m n m   
t λ v R R , which is  

 

  

   

 

 

T

T

T 2 1* * * *

4 1 3

2

F , , , ,
n m 

     
      

      
                    
 

 
 
 

0 e eA
v λ

1 e e0

e e e e
t λ v λ t 0 R t 0 λ 0

e e e e

A 0 t b

 (27) 
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where 
40  is the  2 1 1n   zero vector. Now, we would like to find the point  * * *, ,t λ v  satisfying 

 * * *

4F , , t λ v 0 . Here, we use a linear approximation method. From the Taylor expansions of the 

function  F , ,t λ v , we have  

 

        , ,
F , , F , , F , ,

 
 

        
 
  

t λ v

t

t t λ λ v v t λ v t λ v v

λ

 (28) 

 

Thus, solving the above equations yields the direction  , ,  t v λ . Next, we seek the proper step length 

along the direction that does not violate *

1

 
 

  

e e
t 0

e e
 and *

3λ 0 . The pseudo code for the PDIP 

algorithm is shown in Table 6. 

 

The primal-dual interior point method algorithm: 

1. Initialize:  

Choose 0 1mv R , 0

3λ 0 , and 
T

0 0 0   t x u , where †x A b , and 0 0 0 u x x  and iteration 

number 1k  . (The  
1

† T T


A A A A  is the Moore-Penrose pseudo-inverse of A  and T
A  denotes 

the transpose of A .) 

2. Find the direction vectors  , ,  t v λ : 

 
     

1

, ,
F , , F , ,k k k

k k k k k k


 
      
    
  

t λ v

t

v t λ v t λ v

λ

. 

3. Find the proper step length:  

Choose the largest   satisfying    
2 2

2 2
F , , F , ,k k k k k k     t λ v t λ v . 

4. Update parameters:  

1 1 1,  ,  k k k k k k            t t t v v v λ λ λ . 

5. Update the signal:  

 1 1:k k n  x x t . 
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6. Increment the iteration number k :  

Increase iteration number 1k k  , and return to Step 2 if 
2

2

k eps y Ax . 

Table 6. Primal-dual interior point method algorithm. 
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8.2 Orthogonal matching pursuit (OMP) 

The orthogonal matching pursuit (OMP) is a famous greedy-type algorithm Error! Reference source not 

found.. OMP produces a solution within k  steps because it adds one index to the sparse set   at each 

iteration. The strategy of OMP is outlined in Tables 2 and 3. 

 

Input Output 

A  measurement matrix 

A dimensional data vector 

The sparsity level  of the ideal signal

m n

m

k





A

y  
 

ˆAn estimate  in  for the ideal signal.

A set  containing  elements from 1,...,

ˆAn dimensional approximation  of the data 

ˆAn dimensional residual 

n

k

k

k k

k n

m

m





  

x R

y y

r y y

 

Table 2. Inputs and outputs of OMP algorithm. 

 

The OMP algorithm: 

1. Initialize: 

 Let the residual vector be
0 r y , the sparse set 

0 {}  , and iteration number 1t  . 

2. Find the index 
t : 1

1,...,

arg max ,t t i
i n

 


 r a . The 
ia  is the i th column vector of matrix A .  

3. Update set:  1t t t    . 

4. Signal estimate:   †

tt t  x A y  and  C

t t x 0 , where  t tx  is the set of elements whose 

indices are corresponding to the sparse set. 

5. Get new residual: ˆ ˆ,  t t t t t  y A x r y y . 

6. Increment t : Increase iteration number 1t t  , and return to Step 2 if t k . 

Table 3. OMP algorithm. 

 

 Let us examine the above OMP algorithm. In step 2, OMP selects one index that has a 

dominant impact on the residual vector r . Then, in step 3, the selected index is added to the sparse set, 

and the sub matrix 
t

A  is constructed by collecting the column vectors of A  corresponding to the 

indices of the sparse set t . OMP estimates the signal components corresponding to the indices of the 
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sparse set and updates the residual vector by removing the estimated signal components in steps 4 and 5, 

respectively. Finally, OMP finishes its procedures when the cardinality of the sparse set is k .  

 OMP is a greedy-type algorithm because it selects the one index regarded as the optimal 

decision at each iteration. Thus, its performance is dominated by its ability to find the sparse set exactly. 

If the sparse set is not correctly reconstructed, OMP’s solution could be wrong. Because OMP is very 

easy to understand, a couple of modified algorithms based on OMP have been designed and developed. 

For further information on the OMP algorithm and its modifications, interested readers are referred to two 

papers [13][14].  
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8.3 Simultaneous orthogonal matching pursuit (SOMP) 

We introduce another greedy-type algorithm based on OMP as an example: simultaneous orthogonal 

matching pursuit (SOMP) Error! Reference source not found.. This greedy algorithm has been 

proposed for treating multiple measurement vectors for JSM-2 when the sparse locations of all sensed 

signals are the same. Namely, SOMP algorithm handles multiple measurements 
jy  as an input, when 

j  is the index of distributed sensors,  1,2,...,j J . In a later section, we use this algorithm to recover 

JSM-2. The pseudo code for SOMP is shown in Table 4 and 5.  

 

Input Output 

A  measurement matrix 

A dimensional data vector 

The sparsity level  of the ideal signal

j

j

m n

m

k





A

y  
 

,

, ,

ˆAn estimate  in  for the ideal signal.

A set  containing  elements from 1,...,

ˆAn dimensional approximation  of the data 

ˆAn dimensional residual 

n

j

k

j k j

j k j j k

k n

m

m





  

x R

y y

r y y

 

Table 4. Inputs and outputs of SOMP algorithm. 

 

The SOMP algorithm: 

1. Initialize:  

Let the residual matrix be ,0 ,0j jr y . The sparse set 0 {}  , and iteration number 1t  . 

2. Find the index t : , 1 ,
1,..., 1

arg max ,
J

t j t j i
i n j

 
 

  r a . 

 The ,j ia  is the i th column vector of matrix jA . 

3. Update set:  1t t t    .  

4. Signal estimate:   †

, , tj t t j j x A y  and  ,

C

j t t x 0 , where  ,j t tx  is the set of elements 

whose indices are corresponding to the sparse set. 

5. Get new residual: , , , , ,
ˆ ˆ,  j t j t j t j t j j t  y A x r y y . 

6. Increment t : Increase iteration number 1t t  , and return to Step 2 if t k . 

Table 5. SOMP algorithm. 
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8.4 Reduce and boost (ReMBo) 

ReMBo algorithm is for recovering correlated signals. The authors in [Ref] insisted that the algorithm 

improves the recovery probability of any suboptimal methods for signal matrix X . Its idea is simple and 

effective. They transformed the matrix X  to a single vector x  and do Y  to a single measurement 

vector y . After modifying MMV equation to SMV, they apply any algorithm for SMV. We attached 

ReMBo algorithm from [Ref]. 

Input Output 

A  measurement matrix 

A dimensional data vector 

The sparsity level  of the ideal signal

j

j

m n

m

k





A

y  

ˆAn estimate  in  for the ideal signal.

ˆSupport set 

flag

n

j

S

x R

 

Table 4. Inputs and outputs of ReMBo algorithm. 

 

The ReMBo algorithm: 

Control parameters : k ,  , Maxiters 

1. Initialize:  

Set iter = 1, flag = false.  

2. while (iter   Maxiter) and (flag is false) do 

Draw a random vector a  of length j  according to randomly generated distribution. 

y Aa  

Solve y Ax  using SMV algorithm and save the solution x . 

 Ŝ I x  

If  Ŝ K  and  2
 y Ax  then 

flag = true 

else 

flag = false 

end if 

Construct X  using Ŝ  and pseudo inverse 

iter = iter + 1 

end while 

return X , Ŝ , flag 

Table 5. ReMBo algorithm. 
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Short summary: To increase the diversity order of cooperative wireless communication 

systems without sacrificing the system’s rate, they propose the generalized dynamic-network 

code (GDNC). They showed that the problem of designing network codes that maximize the 

diversity order is related to that of designing optimal linear block codes, in the Hamming 

distance sense over finite fields. 

 

I. INTRODUCTION 

In the network coding schemes, each user linearly combines the messages coming from other 

users, and generates a new message, and then forwards it to the destination. 

    

 
The contributions of this paper are: 

i) they investigate another relationship between network codes and classical 

error-correcting codes. They explain on the dynamic-network coding (DNC) scheme 

by first recognizing the associated network code design problem as equivalent to that 

Multiuser Cooperative Diversity Through Network 
Coding Based on Classical Coding Theory 



 
 

2 

of designing linear block codes over for erasure correction. In particular, for perfect 

interuser channels, we note that the diversity order equals the minimum Hamming 

distance of the block code, so the network transfer matrix should correspond to the 

generator matrix of an optimal block code under the Hamming metric. The Singleton 

upper bound for the minimum Hamming distance of a linear block code appears as a 

natural limit to the diversity order, and this bound is achieved with a sufficiently 

large field size. The codes that achieve the Singleton bound are called maximum 

distance separable (MDS) codes. 

ii) Regarding the GDNC network code design, they show that if a generator matrix of a 

MDS code is used as the GDNC network code, the maximum diversity order is 

guaranteed. They also show that a much better tradeoff between rate and diversity 

order can be achieved, e.g., it is possible to improve both rate and diversity order 

over the DNC scheme. 

 

II. SYSTEM MODEL 

A. System Model 

The received baseband codeword at User i  at time t  is given by 

 , , , , , , ,y x nj i t j i t j t j i th= +  (1) 

where { }1,...,j M∈  represents the transmit user index and { }0,1,...i M∈  the receive user 

index (0 corresponds to the BS). 

The mutual information , ,j i tI  between ,x j t  and , ,y j i t  is 

 ( )2

, , 2 , ,
1 log 1j i t j i tI h SNR
M

= +  (2) 

where the factor 1 M  follows form the division of the channel’s resources among the M  

users. 

For Rayleigh fading, the outage probability is calculated as 

 { }2

, ,Pr 1 g
e j i tP h g e g−= < = − ≈  (3) 

The diversity order D  is defined as 



 
 

3 

 0loglim
logSNR

PD
SNR→∞

−
  (4) 

 

B. Binary vs. Nonbinary Network Coded Cooperation 

 
 

The network codes for both schemes are 

 1

2

Binary

1 0
0 1
1 1
1 1

I
I

 
         
 
 

 (5) 

and 

 1

2

4

1 0
0 1
1 1
1 2 ary

I
I

−

 
         
 
 

 (6) 

For the binary and 4-ary network coding schemes, the general and exact form of the outage 

probability of the 1I  message at the BS are obtained as follows [1] 

 31 2
,4 2 2 3

1 2 1 2 1
o ary

AA AP
P P P P P− ≈ + +  (7) 

and 

 31 2 4
, 2 2 3

1 2 1 2 1 2 1
o binary

BB B BP
PP P P PP P

≈ + + +  (8) 

where the constants cA  and cB  are determined by the variances of channel gains and 

transmission rates. 
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III. GENERALIZED DYNAMIC-NETWORK CODES 

In the DNC scheme [2], [3], the diversity order is related to the minimum number of correctly 

received packets at the BS from which the information packets from all users can be recovered. 

A packet which is not received correctly may be thought of as an erasure, and is discarded by the 

receiver. The receiver’s ability to recover the information packets from the non-erased packets is 

thus equivalent to the erasure correction capability of the associated (network) block code. It is 

well-known that the transmitted codeword of a linear block code with minimum Hamming 

distance can be recovered if no more than of its positions have been erased by the channel. 

 

 
For example: Each user broadcasts three packets of its own in the broadcast phase, and then 

each user transmits two nonbinary linear combinations (of the six previously broadcasted packets) 

over in the cooperative phase, where is an integer greater than zero. The receiver collects the 10 

packets, which can be seen as a codeword of a systematic 6/10 linear block code. 

In this case, the outage probability of ( )1 1I  message can be approximately derived, 

 ( ) 4
,1 ,1 ,11o e f e p eP P P P P P= + − ≈  (9) 

where the outage probability 3
,1f eP P≈  is from fact that the 3 outage events (direct transmission 

and two parity messages) occur when User 2 cannot correctly decode ( )1 1I , the outage 

probability 5
,1p eP P≈  is obtained from that when User 2 can decode ( )1 1I , one direct 
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transmission plus four parity messages are erased in the worst case. We can also verify that the 

outage probability is dominated by the term related to the interuser channel being in outage, 

when User 2 cannot help User 1. 

 

The GDNC overall rate is given by  

 1 1

1 2 1 2
GNDC

k M kR
k M k M k k

= =
+ +

 (10) 

In general, for a rate /k n  linear block code, the minimum Hamming distance is upper 

bounded by the Singleton bound, 

 min 1d n k≤ − +  (11) 

Thus, we can see that the diversity order of the GDNC scheme is upper bounded by 

 2 1GDNCD k M≤ +  (12) 

However, due to outages in interuser channels, this upper bound cannot be achieved. 

 

IV. ON THE NETWORK CODE DESIGN 

Theorem 1: The diversity order of the GDNC scheme for an appropriately designed network 

code with sufficiently large field size is 2GDNCD M k= + .  

Proof: Let { }, 1,..,j tD M⊆  be the index set corresponding the users that correctly decoded  

the information packet ( )jI t . We define a new set ( ),j t I  as the set of all messages correctly 

decoded by the users in ,j tD  in the broadcast phase, including ( )jI t  itself. There are at least 

( ), , 2j t j tI D k+  packets containing messages of ( ),j t I . For a fixed ,j tD , the message 

( )jI t  is declared and erased at the BS only if the direct transmission ( )jI t  and the at least 

, 2j tD k  out of the remaining ( ), , 2 1j t j tI D k+ −  received packets are not correctly decoded 

by the BS which occurs with probability 
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( ) ( ) ( ) ( )( )
( )

( )

( ) ( ) ( )
( )

, , 2
, , 2

, 2

, 2

, 2

1
1, , 2

, ,

, , 2

, 2

, , 21
1 2 , 1 2 ,

, 2

1
1

1

1
, , ,      , ,

j t j t
j t j t

j t

j t

j t

I D k
I D k Fj t j t F

o j j t e e e
F D k

j t j t D k
e e

j t

j t j tM D k
j t e j t

j t

I D k
P D P P P

F

I D k
P P

D k

I D k
k k D P k k D

D k
γ γ

+ −
+ − −

=

− +

  + −
= −      

  + −
  ≈
  
  

 + −
= =


∑






 


 


 (13) 

 The outage probability of the information message ( )jI t  is given by 

 

( )( ) ( )

( ) ( )

( ) ( )

,,

,

, 2 ,

,

* *
, 2 ,

1
, , ,

1
1 2 ,

1 *
* 1 2 ,

,

1

, ,

1
, ,

j tj t

j t

j t j t

j t

j t j t

M DD
o j e e o j j t

D

M D k D
e j t

D

M D k D

e j t
j t

P P P P D

P k k D

M
P k k D

D

γ

γ

− −

− + +

− + +

= −

≈

− 
 ≈
 
 

∑

∑  (14) 

For 2 2k ≥ , 
*

, 1j tD M= −  since the lowest exponent achieves. Thus, the exponent of (14) is 

2M k+ . 

 

Theorem 2: An ( )min, ,n k d  code   with generator matrix G I P=    , is minimum distance 

separable (MDS) if and only if every square submatrix of P  is nonsingular. 

 

We consider network codes in the light of classical coding theory. Let   be an ( )min, ,n k d  

linear block code over GF(q) with systematic generator matrix G  given by 

 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

1 0 0
0 1 0

  

0 0 1

G I P

n k

n k
k k n k

k k k n k

p p p
p p p

p p p

−

−
× −

−

 
 
 = =    
 
  







   
   




 (15) 
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A. A Theory of Faulty Generator Matrices 

We study some properties of new block codes obtained from systematic MDS codes by 

zeroing some entries of its generator matrix, and we refer to the obtained generator matrix as 

faulty generator matrix.  

 

Theorem 3: Let   be an ( )min, ,n k d  MDS code with systematic generator matrix 

G I P=    . The replacement by zeros of δ  entries in any row of the matrix P  gives rise to

( )min, ,n k d δ−  code  . 

 

 

Theorem 4: If a systematic generator matrix of a MDS code   with minimum Hamming 

distance min 2 1d Mk= +  is used as a transfer matrix of the GDNC scheme, the diversity order 

2GDNCD M k= +  is guaranteed. 

Proof: One fault corresponds to one interuser channel being in outage. When that happens, the 

user’s receiver cannot correctly decode its partner’s information, so, when forming 2k  linear 

combinations to generate its 2k  parity-check packets, this user replaces this erroneous packet 

with an all-zero packet, or equivalently, sets to zero the 2k  coefficients associated with this 

partner. This amounts to replacing by zeros the 2k  corresponding entries (in same row) of the 

parity matrix P , i.e., 2A k= . Since each user knows its own information, 2k  entries in each 

row of P  are immune to faults, while the other ( )2 1k M −  entries are subject to faults. In the 

worst scenario, when all the possible faults happen, the generator matrix takes the form 

 
1

  G

M

P
I

P

 
 =  
  

  (16) 

where the ( )1 2k k×  submatrix iP  contains the immune entries associated with User i . From 

Theorem 2, we know that every submatrix of iP  is nonsingular. Thus, the least minimum 

Hamming distance of a block code obtained from the original MDS code   due to the 

occurrence of faults is 2 1k + . Nevertheless, the same minimum Hamming distance can be 
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achieved with a much lower number of faults. We can see that the minimum number of faults for 

a code with minimum distance 2 1k +  is 1M − , when all of these faults occur in the same row 

of P , for example. 

For all the possible minimum distances in the range 2 min 21 1k d Mk+ ≤ ≤ + , a sufficient 

condition for the worst possible scenario (the lowest number of faults that result in this minimum 

distance) is when all the faults are located in the same row of P . Thus, we can observe that the 

larger the number of faults in a given row (and consequently the lower the minimum distance of 

the resulting code), the lower the composite minimum distance. This assures that the code with 

minimum distance 2 1k +  is the one that generates the least composite minimum distance, with 

is then given by, see the Appendix in detail, 

 

( )( ){ }
( ) ( )

min min

2

2

min

1 1

comp

B
d d B B A

k M
M k

χ
χ χ∈

= +

= + + −

= +




 (17) 

It is easy to see the connection between the two terms in the composed minimum distance and 

the exponents of eP . 
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V. SIMULATION RESULTS 
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VI. DISCUSSION 

After meeting, please write discussion in the meeting and update your presentation file. 
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VII. APPENDIX 

 

When a set of entries of the generator marix P  of the MDS code   is replace by zeros, the 

new code ′  produced is no longer MDS. Let ( ) ( ){ }1 1 2 2, , , ,...A a b a b=  be a subset of entries 

of P  that are replaced by zeros, where ( ),a b  is the entry in row a  and column b  of the 

matrix P . We call A  as a fault. Let  ={ }0 1 1, ,..., fA A A −  be a collection of f  faults. We 

consider that two different faults iA  and jA  cannot contain a common entry of the matrix P . 

That is, i jA A∩ =∅ . It is also considered that every fault has fixed cardinality, i.e., 

iA A i= ∀ . 

Let ( )0 1 1, ,..., fχ χ χ χ −=  be the binary indicator vector associated with the occurrence of 

faults, where 

 
1,    if  occurs
0,   if  does not occurs

i i

i i

A
A

χ
χ
=

 =
 (18) 

For a nonnegative integer i , let ( )b i  denote the binary (vector) representation of i . We 

denote the collection of all possible combinations of faults by ( ) ( ) ( ){ }0 1 2 1
, ,..., fb b b

B B B
−

= , with 

( ) ( ){ }: 1
, ,

i
ii

B a b a b Aχ χ =
= ∈



. Each event χ , which consists of the occurrence of Aχ  , 

gives rise to a new generator matrix of a block code ( )Bχ  with minimum Hamming distance 

( )( )mind Bχ . We also define the minimum composite distance of the code ( )Bχ  as 

 ( )( ) ( )( )min min
compd B d B B Aχ χ χ+   (19) 

which is composed of its minimum Hamming distance ( )( )mind Bχ  plus a “compensation” 

term related to the number of faults in the combination Bχ . 

A parameter of fundamental importance to indicate the performance of a MDS code subject to 

a set of faulty generator matrices is the least minimum composite distance of any possible 
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combination of faults. In particular, given a MDS code   and a collection of f  faults  , 

this distance is defined as 

 ( ) ( )( ){ }min min, mincomp comp

B
d d B

χ
χ∈

    (20) 

where, when there is no confusion, it is simply called minimum composite distance. 
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Short summary:  

This paper proposes a fast algorithm for overcomplete sparse decomposition. The 

algorithm is derived by directly minimizing the L0 norm after smoothing. Hence, the 

algorithm is named as smoothed L0 (SL0) algorithm. The authors demonstrate that their 

algorithm is 2-3 orders of magnitude faster than the state-of-the-art interior point solvers with 

same (or better) accuracy. 

 

I. INTRODUCTION 

o To introduce the algorithm the authors have used the context of source component analysis 

(SCA). SCA is a method to achieve separation of sparse sources. 

  

o Suppose that m source signals are recorded by a set of n sensors each of which records a 

combination of all sources. In linear instantaneous (noiseless) model, it is assumed that 

( ) ( )x t As t in which ( )s t and ( )x t  are 1m  and 1n  vectors of source and recorded 

signals, respectively, and 
n mA R   is a mixing matrix.  

 

o The goal of blind source separation (BSS) is then to find ( )s t  only by observing ( )x t . 

The general BSS problem is impossible for the case n<m. However, if the sources are 

sparse then this problem can be solved (using L1 minimization). 

 

o We have the problem of finding sparse solutions of the undetermined system of linear 

equations (USLE) As=x. To obtain the sparsest solution of As=x, we may search for a 

solution with minimal L0 norm. (Intractable problem, sensitive to noise) 

 

o Hence, researchers consider L1 approaches such as basis pursuit (BP), LP-norm 

approaches such as IRLS, and greedy approaches such as matching pursuit (MP). 

 

o In this paper, authors present an approach for solving USLE by direct minimization of the 

L0 norm after smoothing (approximating with smooth functions). 

 

o Performance of the algorithm is equal to (or better than) the interior point based 

algorithms with 2 to 3 orders of magnitude faster. 

 

 

 

 

 

 

A fast approach for overcomplete sparse decomposition 

based on smoothed L0 norm 
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II. APPROACH 

o L0 norm of a vector  mx R is a discontinuous function of that vector.  

 

0
1

1 0

0 0

m
i

i i

i i

if x
x I I

if x


  


  

 

o The idea then is to approximate the discontinuous function with a continuous function. 

The continuous function has a parameter (say ) that determines the quality of the 

approximation. 
 

o For example, consider the (one-variable) family of Gaussian functions 
 

  2

22
( ) exp sf s 

  

and note that  

0

1 0
lim ( )

0 0

if s
f s

if s





 


 

or approximately  

1
( )

0

if s
f s

if s







 


 

o Now define 

1

0

( ) ( )

( )

m

i

i

F s f s

s m F s

 







 


 

o For small values of , the approximation tends to equality. Hence, we can define the 

minimum L0 norm solution by maximizing ( )F s . 

o The value of  determines how smooth the function ( )F s  is: the larger value of  , 

the smoother ( )F s  (but worse approximation to L0-norm); and the smaller value of  , 

closer the behavior of ( )F s to L0-norm. 

o However, for smaller values of , ( )F s is highly non-smooth and contains a lot of local 

maxima, and hence its maximization is not easy. On the other hand, for larger values of

 , ( )F s is smoother and contains less local maxima (in fact, no local maxima for large

 ). 

o “Basic idea”: In order to find an s that maximizes ( )F s , the authors start with maximum

 . For this maximum , they find the maximizer of ( )F s . Then they decrease  and 

again find the maximizer of ( )F s . 

o They claim that eventually this process (decreasing  and maximizing ( )F s ) results in 

the maximization of ( )F s  or equivalently minimization of the L0 norm. 
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o Other family of functions that approximates the Kronecker delta functions like family of 

triangular functions, 

 
o or truncated hyperbolic functions 

 
o or functions of the form  

 
o For sufficiently large values of  the maximizer of ( )F s subject to As=x is the 

minimum L2-norm solution, i.e.,  
1

ˆ T Ts A AA x


 . 

Justification of the statement for Gaussian family: 

 

We want to maximize 

2

22

1 1

( ) ( )

s
im m

i

i i

F s f s e


 

 
 
 

 

   subject to As=x 

The Lagrangian is ( ) ( )TF s As x   . Differentiating the Lagrangian w.r.t s and and 

setting the result to zero gives the following KKT systems of m+n non-linear equations 

of m+n unknowns.  

 

 

2 2 2
1 2

2 2 22 2 2 2

1 2 1 1, , , 0

0

s s sm

T

T

ms e s e s e A

As x

      
   

    
 

 

 

 

Now, let us look at this problem:   
2

2
min . .s s t As x .  Again using Lagrange 

multipliers this minimization results in the system of equations 

 

 1 2, , , 0

0

T T

ms s s A

As x

 

 
 

Authors claim that for a larger  these two systems of equations are identical and hence 

the maximizer of ( )F s  for larger  is the minimum L2 norm solution. 

 

o Hence, the authors start with large and maximize the corresponding ( )F s . They then 

decrease   and repeat the maximization of ( )F s again. They repeat the process for a 

few sequences of  and shown that the subsequent maximization of ( )F s leads to L0 

solution. Their algorithm is based on the principles of graduated non-convexity. 

 

From Wikipedia: 

 

o Graduated non-convexity is a global optimization technique that attempts to solve a 

difficult optimization problem by initially solving a greatly simplified problem, and 

progressively transforming that problem (while optimizing) until it is equivalent to the 

difficult optimization problem. 

http://en.wikipedia.org/wiki/Global_optimization
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o Graduated optimization is an improvement to hill climbing that enables a hill climber to 

avoid settling into local optima. It breaks a difficult optimization problem into a 

sequence of optimization problems, such that the first problem in the sequence is convex 

(or nearly convex), the solution to each problem gives a good starting point to the next 

problem in the sequence, and the last problem in the sequence is the difficult 

optimization problem that it ultimately seeks to solve. Often, graduated optimization 

gives better results than simple hill climbing [1]. 

 

 

 
 

 

 

 

 

 

III. THE SL0 ALGORITHM 

 

The algorithm consists of 2 loops: the outer and inner loops. 

In the outer loop, they vary the values of  . 

In the inner loop, for a given   they use a steepest ascent algorithm for maximizing ( )F s . 

 

 

 

 

 

http://en.wikipedia.org/wiki/Hill_climbing
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Remark 1:  The internal loop is repeated for a fixed, say L, and small number of times. In 

other words, we do not wait for the steepest ascent algorithm (SAA) to converge. That is, we 

do not need the exact maximizer of ( )F s . We just need to enter the region near the (global) 

maximizer of for escaping from its local maximizer. 

 

Remark 2:  The SAA consists of update step ( )js s F s   . Here, j s are step size 

parameter and they should be chosen such that for decreasing values of , j should be 

smaller. In the algorithm, they let 
2

j  for some constant  . Then, 

( )js s F s s      where 

2 2 2
1 2

2 2 22 2 22

1 2, , ,
s s sm

T

mF s e s e s e  

 
   

     
 

.  

Remark 3:  Each iteration of the inner loop consists of gradient ascent step, followed by a 

projection step.  

If we are looking for a suitable large  (to reduce the required number of iterations), a 

suitable choice is to make the algorithm to force all those values of is satisfying is 

toward zero. For this aim, we should have  
2

22
exp 1,is





 and because  

2

22
exp 1is




 for

is  , the choice 1   seems reasonable. 
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Remark 4:   The algorithm may work by initializing to an arbitrary solution. However, as 

discussion before the best initial value of is the minimum L2 solution. In fact, calculating 

minimum L2norm is one of the earliest approaches used for estimating the sparsest solution 

called the method of frames [4].  

 

Remark 5:  After initiating with minimum L2 solution, the next value for   may be 

chosen about two to four times of the maximum absolute value of the obtained solution 

( max i
i

s ). For example, if we take 4maxi is  , then  
2

22
exp 0.96 1 1,2, ,is i m




   . This 

value of   acts virtually like infinity for all values of is .   

 

Remark 6:  The term ( )F s  (
0

( )s m F s  ) simply counts the number of zero 

components of s. However, instead of hard-thresholding that is “zero is   ” and 

“non-zero is   ” 
1

( )
0

if s
f s

if s







 


uses a soft-thresholding, for which   is a 

rough threshold.  

Remark 7: 

o If s is an exactly K-sparse signal, then can be decreased to arbitrarily small values. In 

fact, in this case, the minimum value of  is determined by the desired accuracy (as will 

be discussed in Theorem 1).  

o If s is an approximately K-sparse signal (say the source vector is noisy), then the smallest 

 should be about one to two times of (a rough estimation of) the standard deviation of the 

noise (in the source vector). This is because, while is in this range, ( )f s shows that the 

cost function treats small (noisy) samples as zeros (i.e., for which ( ) 1f s  ). 

o However, below this range, the algorithm tries to ‘learn’ these noisy values, and moves 

away from the true answer. (According to the previous remark, the soft threshold should 

be such that all these noisy samples be considered zero).  

o Restricting  to be above the standard deviation of the noise, provides the robustness of 

this approach to noisy sources, which was one of the difficulties in using the exact L0 

norm. 

 

 

IV. ANALYSIS OF THE ALGORITHM 

A. Convergence analysis  

In this section, we try to answer two questions for the noiseless case (the noisy case will be 

considered in Section IV-C):  

 

 

a) Does the SL0 solution converges to the actual minimizer of the L0 norm?  

b) If yes, how much should we decrease to achieve a desired accuracy? 
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Assuming the maximization of ( )F s for fixed is perfectly done (and we obtain the 

maximizer s ). The authors show that the sequence of ‘global’ maximizers of ( )F s ’s will 

converge to the sparsest solution. That is we need to prove  

 
0

0
lim s s


  

For proving the above statement the authors have introduced three intermediate results via 

lemmas. 

 

Lemma 1: Assume a matrix 
n mA R  has the property that all of its n n sub-matrices are 

invertible, which is called the unique representation property (URP) in [3]. For any

( )s N A   if the m-n elements of s have absolute values less than s   . 

 

Proof: We have to show that  

 

0, 0, . ( ) :s t s N A        

m-n elements of s have absolute values less than s        . stands for L2 norm 

 

Let ( )s N A and assume that the absolute values of at least m-n elements of it are smaller 

than . Let I be the set of all indices i, for which is  .Consequently, I n  . Then we 

write 

 

 

1

1

0 0

( )

m

i i i i i i

i i I i I

i i i i i i

i I i I i I

i i

i I

s a s a s a

s a s a s a

s a

m I m

 

  

 

  

  

  


 

   

  



  

  

  



 

Let Â be the submatrix of A containing only those columns of A that are indexed by the 

elements of I . Thus, Â has at most n columns, and the columns of Â are linearly 

independent, because of the URP of A. Therefore, there exists a left inverse 1Â for Â .  

Let s and s denote those sub-vectors of s which are, and which are not indexed by I , 

respectively. Then 
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 

1

1

1 1

1

ˆ ˆAs s A

ˆs A

ˆ ˆs A A

s ( )

ˆs s s 1 A

i i i i

i I i I

i i

i I

i i

i I

i

i I

s a s a

s a

s a m

s m I m

m

 











 





 





 







   
     

   

 
  

 

 

   

   

 







 

 

Now, let Mbe the set of all submatrices Â of A, consisting of at most n columns of A. Then,

M is clearly a finite set (in fact 2M m ).  

Let  1ˆ ˆmax A AM  M then 

   1ˆs 1 A 1 .m M m      

 

M is a constant and its value depends only on the matrix A. Thus, for each  it is suffice to 

choose / ( 1)m M    

 

Corollary 1: If 
n mA R  satisfies the URP, and ( )s N A has at most n elements with 

absolute values greater than , then  s 1 M m  .  

 

Lemma 2:  

 

Let a function ( )f s  have the properties (0) 1f  and 0 ( ) 1s f s   , and let

1

( ) ( )
m

i

i

F s f s 



 . Assume A satisfies the URP, and let  |S s As x  . Assume that there 

exists a (sparse) solution 
0s S  for which 

20

ns k  (such a sparse solution is unique). 

Then, if for a solution  1 2
ˆ ˆ ˆ ˆ, , ,

T

ms s s s S  , ˆ( ) ( )F s m n k    and if 0  is chosen such 

that the ˆ 'is s with absolute values greater than  satisfy ˆ( ) 1/if s m  , then 

 0ˆ 1s s M m    

 

 

Proof: Let I be the set of all indices i, for which îs  , then  
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   

   

1

(1/ ) 1

.(1/ ) 1

ˆ ˆ

ˆ ˆ

1

m

i

i

i i

i I i I
m

m Im m

F s f s

f s f s

m I

 



 

 





 
 

  



 

  



   

 

We assume that we have chosen ( )f s  such that ˆ( ) ( )F s m n k    . (We prove this next) 

 

Now, we get ˆ( ) ( ) 1m n k F s m I       , from which we can get I n k   .  

 

As a result, at most n-k elements of ŝ have absolute values greater than .  

 

Since 0s has exactly k non-zero elements, we conclude that 0ŝ s has at most (n-k)+k=n 

elements with absolute values greater than . 
 

Moreover, 0ˆ ( )s s N A   and hence by Corollary 1 we have  0ˆ 1s s M m   . 

 

Corollary 2: For the Gaussian family  2

22
( ) exp sf s 

 , if ˆ( ) ( )F s m n k     holds for a 

solution ŝ , then 

 

 0ˆ 1 2lns s M m m    

 

Proof:   
 

For the Gaussian family  2

22
( ) exp sf s 

 ,   required for lemma 2 can be chosen as 

2lnm  . Because for ˆ 2lnis m , 

 

   
2 2

2 2

ˆ 2 ln 1

2 2
ˆ( ) exp expis m
i m

f s 
  

     

 

Moreover, Gaussian family satisfies the other condition required in lemma 2. 

 

Lemma 3: Let f , F , S and 
0s be as in Lemma 2, and let s be the maximizer of ( )F s on 

S, then s satisfies ˆ( ) ( )F s m n k    . 

Proof: We write  

 

   

   

0

2
n

F s F s

m k

m n k k



 

 

   

 

Note that Lemma 3 and Corollary 2 prove together that for the Gaussian family

 2

22
( ) exp sf s 

    0argmax 



As x

F s s as 0  .This result can however be stated for a 

larger class of functions, as done in Theorem 1 (next page). 
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Theorem 1: Consider a family of univariate functions f , indexed  R satisfying the 

following set of conditions: 

1.  
0

lim 0; 0


  f s s  

2.  0 1;    f R  

3. 0 ( ) 1;      f s R s R  

4. For each positive values of  and  , there exists 0
R that satisfies 

   0;       s f s  (1) 

 

Assume A satisfies the URP, and let F , S and 
0s be defined as in Lemma 2, and 

 1 2, , ,    
T

ms s s s S be the maximizer of F on S. Then: 

 
0

0
lim 


s s  

 

 

Working definition of limit of a sequence 

 

We say that lim n
n

a L


 if we can make na as close to L as we want for sufficiently large n. 

 

Precise definition of the limit 

 

We say that lim n
n

a L


 if for some positive error term  the distance of the sequence at n 

from L must be less than the allowed error  , that is, na L   . But, it is important to 

remember that it is not enough that our sequence does converge once or twice; it must be 

within the error for all values from some point onwards, that is, na L   , n N  . 

 

Analytically,  0, , .nN n N a L          

 

 

Proof: To prove
0

0
lim 


s s , we have to show that  

      0

0 00, 0, .           s s  (2) 

 
 

For each 0  , let / ( 1)m M   .Then for this  and 1/  m , condition 4 of the 

theorem gives a 0  for which the (1) holds. We show that this is the 0 we were seeking for 

in (2).  

 

Note that 0   , (1) states that for 


is ’s with absolute values greater than  we have 

( ) 1/

 if s m . Moreover, Lemma 3 states that 
s satisfies ( ) ( )

   F s m n k . 

Consequently, all the conditions of Lemma 2 have been satisfied, and hence it implies that
0 ( 1)     s s M m .  
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Remark 1: The Gaussian family  2

22
( ) exp sf s 

 satisfies conditions 1 through 4 of 

Theorem 1. Other Families of functions also satisfy the conditions of Theorem 1. 

 

 

Remark 2: Using Corollary 2, where using Gaussian family, to ensure an arbitrary accuracy 

in estimation of the sparse solution 0s , it suffices to choose  

 
( 1) 2 ln


 

m M m
    and do the optimization of ( )F s subject to As=x. 

 

 

Remark 3:  Consider the set of solutions in ˆs in S, which might not be the absolute maxima 

of functions F  on S, but satisfy the condition  

 ˆ( ) ( )

   F s m n k  

By following a similar approach to the proof of Theorem 1, it can be proved that 
0

0
lim 


s s  . In other words, for the steepest ascent (internal loop), it is not necessary to 

reach the absolute maximum. It is enough reach a solution in which is F large.  

 

 

Remark 4: The previous remark proposes another version of SL0 in which there is no need to 

set a parameter L: Repeat the internal loop until  F s exceeds m-n/2[the worst case of the 

limit given by ˆ( ) ( )F s m n k    ] or ( ) m n k  if k is known a priori. The advantage of 

such a version is that if it converges, then it is guaranteed that the estimation error is bounded 

as  0ˆ 1 2lns s M m m   , in which  is replaced with J , the last element of the 

sequence of  . 

 

It has, however, two disadvantages: first, it slows down the algorithm because exceeding the 

limit ( ) m n k for each  is not necessary (it is just sufficient); and second, because of the 

possibility that the algorithm runs into an infinite loop because  F s cannot exceed this 

limit (this occurs if the chosen sequence of  has not been resulted in escaping from local 

maxima). 

 
 

Remark 5:  As another consequence, Lemma 1 provides an upper bound on the estimation 

error 
0ˆ s s , only by having an estimation ŝ  (which satisfies ˆ As x ): Begin by sorting 

the elements of ŝ in descending order and  let be the absolute value of the 
2  
n +1’th 

element. Since 
0s has at most n/2 nonzero elements, 

0ˆ s s has at most n elements with 

absolute values greater than . Moreover, 0ˆ ( ) s s N A and hence Corollary 1 implies that 

 0ˆ 1   s s M m . This result is consistent with the heuristic that “if ŝ has at most n/2 

‘large’ components, the uniqueness of the sparsest solution insures that ŝ  is close to the true 

solution.” 
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B. Relation to minimum norm 2 solution 

Kindly refer the paper for proof of   ˆlim argmax 
 


As x

F s s , where ŝ is the minimum L2 

norm solution. 

C. Noisy case  

As shown in the proof of Theorem 1 (noiseless case), a smaller value of  results in a more 

accurate solution and it is possible to achieve solutions as accurate as desired by choosing 

small enough values of  . However, this is not the case in the presence of additive noise, 

that is, if  x=As+n. In fact, the noise power bounds the maximum achievable accuracy. 

 

V. NUMERICAL RESULTS 

The performance of the SL0 algorithm is experimentally verified and is compared with BP 

(FOCUSS) and LP (L1 magic). The effects of the parameters, sparsity, noise, and dimension 

on the performance are also experimentally discussed (Please refer the paper). 

 

In experiments, sparse sources are artificially created using a Bernoulli–Gaussian model: 

each source is “active” with probability p, and is “inactive” with probability (1-p). If it is 

active, each sample is a zero-mean Gaussian random variable with variance 
2

on ; if it is not 

active, each sample is a zero-mean Gaussian random variable with variance 
2

off , where
2 2

off on   .  

 

Each column of the mixing matrix is randomly generated using the normal distribution and 

then is normalized to unity. 

 

To evaluate the estimation quality, signal-to-noise ratio (SNR) and mean-square error (MSE) 

are used. SNR (in dB) is defined as  ˆ
20log



s

s s
and MSE as 

2
1 ˆ
m

s s   
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VI. CONCLUSIONS 

In this paper, authors showed that the smoothed L0 norm can be used for finding sparse 

solutions of an USLE. They also showed that the smoothed version of the L0 norm results in 

an algorithm which is faster than the state-of-the-art algorithms based on minimizing the L1 

norm.  

 

Moreover, this smoothing solves the problem of high sensitivity of L0 norm to noise. In 

another point of view, the smoothed L0 provides a smooth measure of sparsity. 

 

The basic idea of the paper was justified by both theoretical (convergence in both noiseless 

and noisy case, relation to the L2 norm solution) and experimental analysis of the algorithm. 

 

Appendix (Not available in the paper) 

 

The following are taken from [5]  

 

Consider the following problem of the Euclidean orthogonal projection of a point to an affine 

set: For the given m nA R  , 
mb R and np R , find a vector 

* nx R satisfying 

 

 *

*

min
Ax b

Ax b

p x p x




  
 

 

The solution to the above problem exits and it is unique and it is 

 

 

* *

*

( )

[ ( )]

N A

x p A Ap A b x p A Ap b

I A A p A b

x P p A b

  

 



     

    

 
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I. INTRODUCTION

In this report, the author introduces a expectation maximization (EM) based belief propagation algo-

rithm (BP) for sparse recovery, named EM-BP. The algorithm have been mainly devised by Krzakala et

al. from ParisTech in France [1]. The properties of EM-BP are as given below:

1) It is A low-computation approach to sparse recovery,

2) It works well without the prior knowledge of the signal,

3) It overcomes the l1 phase transition given by Donoho and Tanner [11] under the noiseless setup,

4) It is further improved in conjunction with seeding matrices (or spatial coupling matrices).

The main purpose of this report regenerates a precise description of EM-BP algorithm construction

from the reference paper [1]. It might be very helpful for understanding of EM-BP algorithm, and an

answer for such a question: How and why does the algorithm work ? Therefore, we will focus on the

explanation of 1) and 2) in the properties, and just show the result of the paper with respect to that of

3) and 4).

In addition to EM-BP, the belief propagation approach to the sparse recovery problem has been widely

investigated in [2],[3],[4],[5],[6],[7].

II. PROBLEM SETUP

In the sparse recovery problem, the aim is to recovery a sparse signal X ∈ RN whose elements have

nonzero value independently each other, with a probability rate q called sparsity rate. Therefore, the q

determines the density of signal X. Then, the algorithm performs the recovery from the measurements

Y ∈ RM , given as

Y = ΦX + N, (1)
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where Φ ∈ RM×N is a fat measurement matrix with M < N , and N ∈ RM denotes a additive Gaussian

noise vector following N (0, Iσ2
N ).

III. ALGORITHM CONSTRUCTION OF EM-BP

Krzakala et al. has taken a probabilistic approach to devise EM-BP. From the Bayesian point of view,

the posterior density of the signal X is represented in the form of Posterior = Prior× Likelihood
Evidence as

fX(x|y,Φ) = fX(x|Φ)× fY(y|Φ,X)

fY(y|Φ)
. (2)

Then, using the knowledge of z and Φ, the signal posterior is given as

fX(x|y,Φ) =
1

C
fX(x)×

M∏
j=1

1√
2πσ2

N

exp

[
− 1

2σ2
Nj

(yj −
∑N

i=1
φjixi)

2

]
, (3)

where C is a normalization constant for
∫
fX(x|y,Φ) dx = 1. In addition, we consider a mixture type

prior density function represented as

fX(x) :=

N∏
i=1

[(1− q)δ0 + qθ(xi)], (4)

where θ(xi) is a Gaussian PDF with mean x̄ and variance σ2
X .

Exact finding of the signal posterior is computationally infeasible. Therefore, researchers have employed

BP as a standard approach to approximate the signal posterior where BP finds marginal posterior density

of each signal element Xi. In addition, Guo et al. showed that the marginal posterior finding is exact if

the matrix Φ is a sparse matrix and N → ∞ [8],[9],[10]. BP seeks the signal posterior by iteratively

exchanging probabilistic messages over the signal elements, where the messages are classically described

as

Measurement to signal (MtS) message :

mj→i(xi) :=
1

Cj→i

∫
{xk}k 6=i

∏
k 6=i

mk→j(xi)× exp

− 1

2σ2
N

(
∑
k 6=i

φjkxk + φjixi − yj)2

 ∏
k 6=i

dxi

 , (5)

Signal to measurement (StM) message :

mi→j(xi) :=
1

Zi→j
[(1− q)δ0 + qθ(xi)]×

∏
k 6=j

mk→i(xi), (6)

where Cj→i and Zi→j are normalization constants to make the messages as PDFs. Then, the marginal

posterior approximately is obtained as

fXi(x|y,Φ)
BP
=

1

Ci
[(1− q)δxi + qθ(xi)]×

∏
k

mk→i(xi). (7)
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However, the message update rule in (5) and (6) is practically intractable because each BP message

is probability density function (PDF). Therefore, we need to convert the density-passing procedure to a

parameter-passing procedure using some relaxation techniques.

Using Hubbard-Stratonovich transformation (HST) from spin glass theory which is

exp

(
− w2

2σ2

)
=

1√
2πσ2

∫
exp

(
− λ2

2σ2
+
iwλ

σ2

)
dλ, (8)

the exponent in (5) can be rewritten as

exp

[
− 1

2σ2
Nj

(yj −
∑N

i=1
φjixi)

2

]
= exp

−
(∑
k 6=i

φjkxk

)2

2σ2
Nj︸ ︷︷ ︸

Here, HST applied

−

∑
k 6=i

φjkxk(φjixi − yj)

σ2
Nj

− (φjixi − yj)2

2σ2
Nj


=

1√
2πσ2

Nj

∫
λ

exp

− λ2

2σ2
Nj

+

∑
k 6=i

φjkxk(φjixi − yj + iλ)

σ2
Nj

− (φjixi − yj)2

2σ2
Nj

 dλ. (9)

By applying (9) to (5), we have

mj→i(xi) =
exp

(
− (φjixi−yj)

2

2σ2
Nj

)
Cj→i

√
2πσ2

Nj

∫
λ

exp

(
− λ2

2σ2
Nj

)
×

 ∫
{xk}k 6=i

∏
k 6=i

mk→j(xi) exp

( ∑
k 6=i

φjkxk(φjixi−yj+iλ)

σ2
Nj

) ∏
k 6=i

dxi

 dλ

(10)

In (10), we observe that the integration over {xk}k 6=i can be decomposed into integration over each

scalar xk. In addition, the integration over scalar xk takes the form of the moment generating function.

Therefore,

mj→i(xi) =
exp

(
− (φjixi−yj)

2

2σ2
Nj

)
Cj→i

√
2πσ2

Nj

∫
λ

exp

(
− λ2

2σ2
Nj

)
×
∏
k 6=i

 ∫
{xk}k 6=i

mk→j(xi) exp

(
xkφjk(φjixi−yj+iλ)

σ2
Nj

)
dxi

 dλ

=
exp

(
− (φjixi−yj)

2

2σ2
Nj

)
Cj→i

√
2πσ2

Nj

∫
λ

exp

(
− λ2

2σ2
Nj

)
×
∏
k 6=i

EXk

[
exp

(
xkφjk(φjixi−yj+iλ)

σ2
Nj

)]
dλ

(11)

By assuming that each scalar Xk is Gaussian distributed during the BP-iteration with mean µi→j and
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variance σ2
i→j , we can approximate the MtS message expression as

mj→i(xi) ≈
exp

(
− (φjixi−yj)2

2σ2
Nj

)
Cj→i

√
2πσ2

Nj

×

×
∫
λ

exp

(
− λ2

2σ2
Nj

)∏
k 6=i

exp

µk→jφjk(φjixi − yj + iλ)

σ2
Nj

+
σ2
k→j
2

(
φjk(φjixi − yj + iλ)

σ2
Nj

)2
 dλ.

(12)

By evaluating the Gaussian integration over λ, the expression in (12) becomes

mj→i(xi) '
√
Aj→i/2π

φjiCj→i
× exp

(
−x

2
i

2
Aj→i + xiBj→i +

B2
j→i

2Aj→i

)
. (13)

where

Aj→i :=
φ2
ji

σ2
Nj

+
∑
k 6=j

σ2
k→jφ

2
jk

, (14)

Bj→i :=

φji(yj −
∑
k 6=j

µk→jφjk)

σ2
Nj

+
∑
k 6=j

σ2
k→jφ

2
jk

. (15)

Then, the expression of the StM message is rewritten as

mi→j(xi) :=
1

Z̃i→j
[(1− q)δ0 + qθ(xi)]× exp

−
x2
i

2

∑
k 6=j

Ak→i + xi
∑
k 6=j

Bk→i +
1

2

(∑
k 6=j

Bk→j

)2

∑
k 6=j

Ak→j

 ,

(16)

where we use an approximation
∑
k 6=j

B2
k→j ≈

(∑
k 6=j

Bk→j

)2

. The exponent can be rewritten as

−x
2
i

2

∑
k 6=j

Ak→i + xi
∑
k 6=j

Bk→i +
1

2

(∑
k 6=j

Bk→j

)2

∑
k 6=j

Ak→j

= − 1

2 1∑
k 6=j

Ak→i

x2
i − 2

∑
k 6=j

Bk→i∑
k 6=j

Ak→i
+


∑
k 6=j

Bk→i∑
k 6=j

Ak→i


2 = −

(
xi −

∑
k 6=j

Bk→i∑
k 6=j

Ak→i

)2

2 1∑
k 6=j

Ak→i

(17)
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Hence, equations (14) and (15) together with (19) fully describe the iterative BP-process. We define

two variable given as

Σ2
i :=

1∑
k 6=j

Ak→i
, Ri :=

∑
k 6=j

Bk→i∑
k 6=j

Ak→i
, (18)

Using the notations, we rewrite the expression of the StM message given as Then, the expression of the

StM message is rewritten as

mi→j(xi) :=
1

Z̃i→j
[(1− q)δ0 + qθ(xi)]× exp

(
−(xi −Ri)2

2Σ2
i

)
, (19)

Then, the mean µk→j and variance σ2
k→j of the StM message are calculated as

µi→j :=

∫
Xi

ximi→j(xi)dxi

=
q

Z(Σ2
i , Ri)

∫
Xi

xiθ(xi) exp

(
−(xi −Ri)2

2Σ2
i

)
dxi

=
q

Z(Σ2
i , Ri)

×
Σi(xΣ2

i +Rσ2
X)

(Σ2
i + σ2

X)
3/2

exp

(
− (R− x)2

2(Σ2
i + σ2

X)

)
, (20)

and

σ2
i→j :=

∫
Xi

x2
imi→j(xi)dxi − µ2

i→j

=
q

Z(Σ2
i , Ri)

∫
Xi

x2
i θ(xi) exp

(
−(xi −Ri)2

2Σ2
i

)
dxi − µ2

i→j

=
q(1− q) exp

(
− R2

i

2Σ2
i
− (R−x)2

2(Σ2
i+σ

2
X)

)
Σi

(Σ2
i+σ

2
X)5/2

(
σ2
XΣ2

i (Σ
2
i + σ2

X) + (xΣ2
i +Rσ2

X)
2
)

Z(Σ2
i , Ri)

2

+
q2 exp

(
− (R−x)2

2(Σ2
i+σ

2
X)

)
σ2
XΣ4

i

(Σ2
i+σ

2
X)2

Z(Σ2
i , Ri)

2 , (21)

where the normalization constant is

Z(Σ2
i , Ri) : = (1− q)

∫
Xi

δ0 exp

(
−(xi −Ri)2

2Σ2
i

)
dxi + q

∫
Xi

θ(xi) exp

(
−(xi −Ri)2

2Σ2
i

)
dxi

= (1− q) exp

(
− R2

i

2Σ2
i

)
+ q

Σi√
Σ2
i + σ2

X

exp

(
− (R− x)2

2(Σ2
i + σ2

X)

)
. (22)

The authors stated that the parameters x̄, σ2
X , and q of the prior density fX(X) can be learned and

updated at every iteration. A statistical approach for the parameter learning is the use of EM. For the object
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function in EM, they used Bethe free-entropy. It is known that BP algorithm is constructed by applying

Lagrange multipliers to Bethe entropy [12]. Therefore, the fixed point of BP-iteration corresponds to the

stationary points of the Bethe free-entropy minimization, in the signal posterior finding problems. For

details about the relationship between Bethe free-entropy and BP, please see Yedidia’s paper.

The Bethe entropy is defined as

HBethe := −
N∑
i

H(Zxi)−
M∑
j

H(Zyj ) +

M∑
j

∑
i∈N(j)

H(Zxi), (23)

where the concept of free-entropy, defined as H(Z) := logZ, is used and Zxi and Zyj are an approximated

marginal partition function of x, that is,

Zxi =

∫
[(1− q)δxi + qθ(xi)]×

∏
j

mj→i(xi)dxi, (24)

Zyj =

∫ ∏
i

mi→j(xi)× exp

[
− 1

2σ2
N

(
∑
i

φjixi − yj)2

]∏
i

(dxi) . (25)

Thus, the parameters (x̄, σX , q) are learned by seeking the stationary point of the Bethe free-entropy

function given in (23). We update the parameter for the prior knowledge from

x =

∑
i
µi

Nq
(26)

σ2
X =

∑
i

(σ2
i + µ2

i )

Nq
− x2 (27)

q =

∑
i

1/σ2
X+

∑
j Aj→i∑

j Bj→i+x/σ
2
X
µi∑

i

(
1− q + q

σX
√

1/σ2
X+

∑
j Aj→i

exp
(

(
∑
j Bj→i+x/σ

2
X)2

2(1/σ2
X+

∑
j Aj→i)

− x2

2σ2
X

))−1 . (28)

I implemented the EM-BP algorithm using the equations of (14), (15), (20), (21), (22), (26), (27) in C

language. I did not update the sparsity rate q in the BP-iteration. The performance is not working well

as shown in Fig.1. I need to check my implementation by translating the code to MATLAB. I think the

EM update not much improve the performance. So, we need to modify the update rule to elementwise

update rule like SuPrEM Algorithm.
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Short summary:  

In this work, they propose a model for iterative decoding algorithms with memory which 

covers successive relaxation (SR) version of belief propagation and differential decoding with 

binary message passing (DD-BMP) algorithms as special cases. Based on this model, they derive 

a Bayesian network for iterative algorithms with memory over memoryless channels and use this 

representation to analyze the performance of the algorithms using density evolution. 

I. INTRODUCTION 

 

Iterative decoding algorithm  Decoding algorithm of LDPC codes 

Low-density parity-check (LDPC) codes are known to have good performance when decoded 

with iterative decoding algorithms, also known as message-passing algorithms.  

 

Density Evolution  An analytical tool of LDPC codes 

An analytical tool called density evolution can be used to find the threshold of a particular 

code ensemble under a given iterative decoding algorithm. The threshold is an asymptotic 

measure of performance and is defined as the worst channel parameter (e.g., largest noise 

variance) for which the probability of error still converges to zero as the number of iterations 

tends to infinity 

 

Density Evolution  A technique for constructing irregular LDPC codes 

Density evolution is also a powerful technique for constructing irregular LDPC codes through 

the optimization of the degree distributions. 

Performance Analysis of Iterative Decoding Algorithms 

with Memory over Memoryless Channels 

 



 

 

2 

All message-passing algorithms analyzed by density Evolution  Memoryless 

To the best of our knowledge however, all the message-passing algorithms analyzed by 

density evolution in the literature are memoryless, i.e., the output message of a variable node 

(check node) at iteration l is only a function of the input messages to that node at iteration l (l -1) 

and also of the initial message of the channel in the case of variable nodes. 

 

Iterative decoding algorithms with memory  Exist 

There exist however a number of iterative decoding algorithms, such as successive relaxation 

(SR) variants of BP and MS and DD-BMP (differential decoding with binary message-passing), 

that have memory. 

 

The presence of memory in algorithms  Improves the performance but makes the 

density evolution analysis much more complex. 

 

In this paper, they develop the framework for the density evolution analysis of iterative 

extrinsic message-passing algorithms with memory which includes DD-BMP and SR algorithms. 

 

They employ the Bayesian network representation via a directed acyclic graph (DAG), to 

capture the dependences among different messages and memory contents in a space with two 

dimensions: iteration l and the depth of the decoding tree d. 

 

Independent 

Incoming messages to a node along different edges 

 

Dependencies 

A message passed along a given edge at iteration l 

All the messages passed along that edge at previous iteration l’<l. 

 

Such dependencies cause the complexity of density evolution to grow at least exponentially 

with l. They derive the density evolution equations and use techniques to make them tractable. 



 

 

3 

II. ITERATIVE DECODING ALGORITHMS WITH MEMORY 

 

A. General Model 

 

1) Memoryless decoding algorithm 

 

 

 

The figure (a) shows a snapshot of the Tanner graph of an LDPC code at iteration l for a 

memoryless decoding algorithm, where variable and check nodes are represented by circles and 

squares, respectively. 

 

Under cycle-free assumption and based on the principle of extrinsic message passing, 

∙ Incoming messages    
1 1, ,

v

l l

dM M   to node V are independent of each other and of 

the channel message 0M . 

∙ The outgoing message 
 l
V CM   of node V to node C at iteration l is a function of 

1vd   i.i.d. random variables and the channel message. 

∙ The outgoing message of a check node is a function of 1cd   i.i.d. random variables 

corresponding to the extrinsic incoming message. 

 

 The distribution of a function of independent random variables is relatively easy to find since 

the joint distribution of these variables is the product of their marginal distribution. In this case, 

one can recursively derive the distribution of messages at iteration l as a deterministic function of 

the distribution at iteration l-1 with a complexity that is independent of l. 
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2) Memory decoding algorithm 

 

Similar to figure (a), we have a set of i.i.d. extrinsic incoming messages to a variable node V. 

The outgoing message from V :  l
X  

Memory units: 
 

, , ,
l

B M B D  . 

 l
B  is updated by 

    1
,

l l

B X B


 , where B  is a deterministic function of  l
X  and the 

content of the memory at iteration l-1. 

The incoming message 
 l
V CM   to node C from V is obtained by 

  l

M B  

Note that while the message  l
X  is a function of independent random variables, the outgoing 

messages, 
 l
V CM  , is a function of dependent random variables  l

X  and  1l
B


. 

Our focus will be on the link from variable nodes to check nodes and on finding the 

distribution of  l
B  and 

 l
V CM  . 

 

B. SR and DD-BMP Algorithms 

 

1) SR Algorithms: Any standard memoryless iterative algorithm, such as BP or MS, can be 

turned into an SR algorithm by proper introduction of memory. SR algorithms can be performed 

in different message domains. In this work, we assume log-likelihood ratio (LLR) domain for 

messages (SRLLR). Based on the model of Fig. 1(b), the SR version is defined by the following 

variable node map 

            

      

1 1
, 1 ,

,

l l l l l

B

l l l

V C M

B B X B X

M B B

 
 



    

  
(1) 
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where 
      0 1 1, ,...,

v

l l l

V dX M M M   . In (1),   is called the relaxation factor, and can be 

optimized for the best performance. The optimal value of   is usually in the interval (0, 1). 

 

2) DD-BMP: Differential decoding with binary message passing (DD-BMP) was introduced 

as an attractive alternative to purely hard-decision algorithms. This algorithm combines the 

simplicity of binary message-passing with the good performance of soft-decision algorithms, 

where the soft information is stored in edge- or node-based memories. In the former case, studied 

in this paper, the variable node map, following the model of Fig. 1(b), is defined by 

          

       

1 1
, ,

sgn ,

l l l l l

B

l l l

V C M r

B B X B X

M B B

 



   

  
(2) 

where  sgn 1r x   for 0x  , and 1   for 0x  . For 0x  ,  sgnr x  takes +1 or -1 

randomly with equal probability. In (2), 
      0 1 1, ,...,

v

l l l

V dX M M M   , which for the BIAWGN 

channel reduces to    1

1

vdl l

ii
X M




 . 

Both the variable and the check node operations (particularly the latter) are simpler for 

DD-BMP compared to BP and MS algorithms. 

 

C. Symmetry of the Decoder and Error Probability 

 

The analysis of iterative decoders is greatly simplified assuming that both the channel and the 

decoder are symmetric. 

In particular, the variable node symmetry condition has some implications on the choices of 

the mappings B  and M : B  should be sign inversion invariant, and    M Mx x    . 

As it can be seen in (1) and (2), both conditions are satisfied for SRLLR and DD-BMP 

algorithms. 

With both the channel and the decoder being symmetric, we can assume, without loss of 

generality, that the all-zero codeword is transmitted. In this case, the average fraction of incorrect 

messages passed at iteration l from variable nodes to check nodes is calculated by 
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       1
0 0

2

l l l

eP P B P B    .(3) 

We refer to 
 l

eP  in (3) as the probability of bit error at iteration l. 

 

III. BAYESIAN NETWORK REPRESENTATION OF ITERATIVE DECODING ALGORITHMS WITH 

MEMORY 

A. Bayesian Networks and Conditional Independence 

In this work, they use a Bayesian network to represent the dependencies among different 

messages and memory contents of an iterative algorithm with memory. 

The conditional independence between two sets of random variables  and  given a 

third set  is defined by 

     | , | | |    

where    and  |  are the marginal distribution of  and the conditional 

distribution of  given , respectively. 

 

B. Bayesian Networks of Iterative Decoders with Memory 

 

Based on the principle of extrinsic message-passing, one can see that  l
X  is a deterministic 

function of 
 1

1

l
B


 and 0M . Moreover, as it can be seen in Fig. 1(b),  l

B  is a function of 
 1l

B


 

and  l
X . In addition, 

 l
iB  depends on 

 1l

iB


 and 
 1

1

l

iB


 . 
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IV. DENSITY EVOLUTION 

 

Based on (3), to obtain the error probability  l
eP  at each iteration l, we need to compute 

  k
B . 

A efficient approach is to compute 
  k

B  is: 

       
   

1

', : ',

', ,
B X B

l l l

B

b x S S b b x

P B b P B b X x b S


  

      . 

where BS  is sample space of  l
B  and 

    1
,

l l
B X


 is 

              
 

  

       
 

1 1

1 1

1 1 1 1 1 1 1 1

1 1 1 1

,
l

l

l l l l l l l

x

l l l

x

B X B X X X X

B X X

 

 

       

   








 

where 
        1 1 2

, , ,
k k

X X X X


  for 1k  . 

 Calculation of     1l l
B X


 

∙ 

                
 

           
 

1

1

1 1 1 1 1

1 1 1 1

,

, , 2

l

l

l l l l l l l

b

l l l l l

b

B X B X B B X

B X B B X l





    

   



 




 

 Calculation of 
  1 l

X


 

The variables 
 l
iM  are i.i.d.. Since 

        1 2 1, , ,
v

l l l l

v dX M M M   ,  l
X  is conditionally 

independent of all other random variable given  
1 1v

l

dM   . We thus have 

          
 

       
 

1

1 1

1

1 1

1 1 1 1

1 1 1 1

1
1

1 1

1 1

v v
l

dv

v

v
l

dv

l l l l

d d

m

dl
i i l

d j

i jm

X X M M

X M M



 



 

   

   




 

 







  
(4) 
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V. MEMORY TRUNCATION 

A. Main Idea 

 

To explain the approximation, we consider the calculation of the joint distribution 

    1l l
B X


. This computation uses the fact that 

     1 1 1
|

l l l
B X X

  
 . The problem lies in 

the fact that the size of the sample space of the conditioning set  1 1l
X

 
 grows exponentially 

with l. Now consider making the following approximation: 

 

     1 1 1
| , 2

l l l n l
B X X n

    
  . (5) 

Regardless of l, the conditioning set in (5) will always have a sample space with size 
1n

XS


. 

Consider the sequence  0 l
B


. This sequence, in general, is not a Markov process of some finite 

order. The memory truncation approximates  0 l
B


 by a Markov process of order n, n . 

This is represented by the following: 

             1 0 1
, , , ,

n k n k n k n k k
B B B B B B

     
 (6) 

and corresponds to removing the edges between  i
X  and  i

B  for 1,...,i k , in the Bayesian 

network of Fig.3. 

We refer to the approximation of (6) as memory truncation of order  nn MT .  
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B. Analysis 

We consider a memory truncation of order n, and assume that we have already calculated 

(approximated) 
  k

B , k n . For 1,...,k n , we have the following distributions available: 

∙     1
,

k k
B X


 

∙     1 1 1k k n k
B X

    
 

∙   1k n k
X

  
 

 

We now derive 
  1k

B


. To perform this, we will use the calculation of the joint 

distribution 
    1

,
k k

B X


. 

 

              
 

  
    

 

  

2

2

1 2 1 2 2

2 2 1

, | |

|

k n k

k n k

k k k k n k k k n k k n k

x

k k n k k n k

x

B X B X X X X

B X X

  

  

          

      








(7) 

In (7), the distribution 
    2

|
k k n k

B X
  

 is calculated by  

                
 1

2 1 1 2
| | , | ,

k

k k n k k k k k k n k

b

B X B X B B X


       
  

where  

    
         

 

  
       

 

    
  
  

1

1

1 2

1 1 1 2

1

1 1 1 1 1 2

2 2

|

| |

1
| |

k n

k n

k k n k

k k n k k n k n k

x

k n k

k k n k k n k k n k n k

k n k k n k
x

B X

B X X X

X
B X X X X

X X

 

 

   

        

  

            

     



 




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VI. SIMULATION RESULTS 

 

In general, the accuracy of 
  l

B  increases with increasing the memory truncation order n, 

and so does the complexity. It is however expected that after increasing n beyond a certain order 

0n , the accuracy improvement would be negligible. The goal is thus to find 
0n . 

 

 

In Fig. 4, we have shown 
 l

eP  of the (3, 6) LDPC code ensemble for 200l   vs. 0/bE N  

for different values of memory truncation order n. The curves demonstrate a convergence 

behavior as n is increased. In particular, the two curves for n = 4 and n = 5 are very close. We 

have also tried a number of other ensembles and observed a similar trend 
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For the ensemble of (4, 5) codes, we have plotted 
 l

eP  vs. l for truncation orders 3, 4 and 5, 

and for 0/bE N  values 4.34 dB and 4.14 dB in Figures 5 and 6, respectively. The figures 

suggest that the ensemble threshold is between the two SNR values. 
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To clearly see the effect of memory truncation on the calculated thresholds, in Fig. 7, we show 

the threshold values of the (3, 6) ensemble for different memory truncation orders n. The 

thresholds for each truncation order are plotted versus the quantization step   for q = 8.the 

calculated thresholds for n = 4 and n = 5 are practically identical for different values of  . From 

Fig. 7, the optimal threshold of the (3, 6) ensemble (as a function of  ) is seen to be about 3.26 

dB. Based on the above results, in the following, we use 
0n  = 4 to derive the thresholds. In all 

cases, we use q = 8 and the optimal value of   that minimizes the threshold. 
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To verify the calculated threshold, for the (5, 10) ensemble, we compare the performance of 

randomly constructed (5, 10) codes of large block length (N = 300, 000; 400, 000 and 500, 000) 

with the threshold value of the ensemble (3.18 dB) in Fig. 8. 
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These results show that for a fixed dv, the threshold gap between DD-BMP and BP decreases 

with increasing the rate. As it can be seen, at higher rates the performance gap is less than 1 dB. 

In comparison with MS, for codes with larger degrees, DD-BMP outperforms MS 

 

These results show that by increasing the degrees, the performance gap between MS and 

DD-BMP, which is to the advantage of MS for smaller degrees, disappears and then reverses to 

the advantage of DD-BMP. 

These performance results for DD-BMP are impressive considering that both the check node 

operations and the message-passing for DDBMP are much simpler than those of BP and MS. 

They also demonstrate the potential of iterative decoding algorithms with memory in achieving 

better performance/complexity tradeoffs compared to memoryless algorithms. 
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Faster STORM using compressed sensing
Lei Zhu et al.

Nature method. (2012.04)

Presenter : Eunseok Jung

GIST, Dept. of Mechatronics , Bioscopy Lab.

1
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STORM (Stochastic optical reconstruction microscopy)

Background 

2

• STORM is a super-resolution optical microscopy 
technique based on stochastic switching of single-molecule fluorescence signal.

• STORM utilizes fluorescent probes that can switch between fluorescent
and dark states so that in every snapshot, only a small, optically resolvable fraction 
of the fluorophores is detected.

• This enables determining their positions with high precision from the center positions
of the fluorescent spots.

Cited form : http://huanglab.ucsf.edu
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Matrix(A)
Optic system - LTI

Original 
Image(X)

Microscope image
-Blurred picture

Fluorephore(Yes)

Fluorephore(No)

From : http://www.ruf.rice.edu/
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Matrix(A)
Optic system - LTI

Original 
Image(X)

Microscope image
-Blurred picture

Fluorephore(Yes)

Fluorephore(No)

From : http://www.ruf.rice.edu/
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Point spread function(PSF)

Background 

5

• The point spread function (PSF) describes the response of an imaging system to 
a point source or point object.

• A more general term for the PSF is a system's impulse response, the PSF being the 
impulse response of a focused optical system.

From : http://en.wikipedia.org
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Introduction & Motivation 
Super resolution microscope overcome traditional optical 

microscope limit.(According to Abbe’s theory :                                           )

The super resolution microscope and fluorescence technique make  
spatial resolution closer to the molecular scale.(Approximately : 30nm)

Now we can see a ten nanometer scale cell structure.

6
From : Imaging Intracellular Fluorescent Proteins at Nanometer 
Resolution, E. Beitzig, science, 2006

݄ݐ݈݃݊݁	݁ݒܽݓ	ݐ݄݃݅ܮ
2

≈200nm
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Introduction & Motivation  
Benefit of compressed sensing in fluorescence imaging.

7

C.S.

Algorithm

High resolution
result

Microsocpe image
32*32 pixel

Reconstruction
256*256 pixel

Conventional fluorescence image Compressed sensing image
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Oversampling

8

For increasing spatial resolution, the author used grid method.

According to the nyquist theorem, we need 2 times more sampling for 
reconstruct singal. In here, 21nm*2=42nm.

Finally, the reconstruction image can get a 42nm spatial resolution.

1      :      64
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Measurement matrix (1) 

9

• Measure the PSF of optic system.
• Fit the Gaussian function. 

• Optic system is LTI system.
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A∈ ܴெ௑ே
x∈ ܴே(M<N)

A = Measurement matrix x = Reconstruct image

b∈ ܴெ

Measurement matrix (2) 

10



gJournal Club Meeting, Feb. 14, 2013

INFONET,   GIST / 24

A∈ ܴெ௑ே
x∈ ܴே(M<N)

A = Measurement matrix x = Reconstruct image

b∈ ܴெ

- Measurement matrix A

Measurement matrix (3) 

11
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A∈ ܴெ௑ே
x∈ ܴே(M<N)

A = Measurement matrix x = Reconstruct image

b∈ ܴெ

- Measurement matrix A

Measurement matrix (4) 

12
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A∈ ܴெ௑ே
x∈ ܴே(M<N)

A = Measurement matrix x = Reconstruct image

b∈ ܴெ

64 : 1

Measurement matrix (5) 

13
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Matrix(A)
Optic system - LTI

Original 
Image(X)

Microscope image
-Blurred picture

Fluorephore(Yes)

Fluorephore(No)

From : http://www.ruf.rice.edu/

14
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Reconstruction

15

• The matrix A is determined by the point-spread function (PSF) 
of the imaging system.

• The i th column of A corresponds to the acquired raw image 
if only one molecule emits fluoroscopic photons at the position index i of x.

• The weight vector c is to account for the difference of the total contribution 
to the camera image from one fluorescent molecule at different locations.

• The value of the i th element of c equals the summation of the i th column of A.
• The minimization term cTx is equivalent to a weighted L1 norm of x

because x is non-negative.
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Reconstruction

16

• CVX converts the above problem to an 
SOCP (Second-order cone programming), 
and solves it.
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Scale bar : 300nm
FOV : 4um*4um
Pixel : 32*32

Scale bar : 300nm
FOV : 4um*4um
Pixel : 256*256
The pixel size of 166nm, the 21nm grid size should be able 
to support a final image resolution of 42nm.

C.S.

Algorithm

Results

17
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Results

• Conventional fitting

18
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Results 

19
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Results

20
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Data Analysis and Discussions

21

• The red-cross is the 
reconstructed image using 
compressed sensing

• The white one is 
fluorescence position 
(original image).

• The maximum difference 
between two positions is 
60nm.

• Scale bar is 300nm.
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• Conclusion
1) This journal has potential benefit. It was first step of compressed sensing 

with super resolution microscope.

2) It had not been impossible to taking a living cell image without compressed 
sensing.

3) Now, it could be done with compressed sensing.

4) The author spent 3sec for taking living cell photo. And they get a same 
result when they spent over 30sec. They decrease experiment time 
10times more.

5) According to this, now we can get a living cell image.

Conclusions

22
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Improvement

23

• Algorithm

1) If we make measurement matrix A using difference method, we can 
decrease error and also increase spatial resolution.

2) The other reconstruction method, instead of SOCP, can decrease error.

• Hard ware

1) The author used EM-CCD camera, it is very expensive detect device.

2) But if we can make same result using cheap detect device like a sCMOS or 
CMOS, the system cost is more cheaper than before.

gJournal Club Meeting, Feb. 14, 2013
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Short summary: In this paper authors present a link capacity model for spatial time-division 

multiple access (STDMA) mesh networks. It makes use of a simplified transmission model that 

also considers channel fading. The model then forms the basis of a node-based slot-assignment 

and scheduling algorithm. This algorithm enables the user to exploit multiuser diversity that 

results in optimizes network throughput. The presented algorithm shows significant 

improvement in the throughput when compared with existing slot-assignment methods. 

I. INTRODUCTION 

In STDMA network the transmission time of a channel is divided into slots where multiple slots 

constitute a frame. These slots are assigned to potential users of the network. The goal of slot assignment 

scheme is to maximize network throughput. Existing assignment algorithms in STDMA make use of 

simplified transmission model which do not consider the time-varying fading behavior of a wireless 

channel. This results in slot wastage when link is in deep fade. The slot is also wasted if scheduled link 

has no traffic to transmit. This degrades the STDMA network throughput. Therefore a dynamic slot-

assignment with that should exploit multiuser diversity is required. However sheer complexity involved 

in coordinating with all nodes and generating scheduling map in a reasonable time makes this approach 

impractical. In order to fix these issues the authors present a node-based slot-assignment scheme in which 

scheduling in each slot is done for nodes not for links. Their contributions include: 

 Defining link capacity: a model that includes channel fading. It ensures that whichever link is 

used by a node will not change the interference profiles on the links selected by other users. 

 Node-based time-slot assignment and scheduling algorithms. 

II. SYSTEM MODEL 

Wireless STDMA mesh network with fixed routers. 

Transmissions are organized in frames. 

Synchronization among nodes provided through GPS. 

A Node-Based Time Slot Assignment Algorithm 
for STDMA Wireless Mesh Networks 
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Set of nodes are identified and assigned to a slot for their transmission. 

Each node maintains a separate queue for each outgoing link and performs scheduling without 

coordination with other nodes. 

Multiprotocol Label Switching (MPLS) multipath routing is used for routing however packets are 

transmitted in sequence.  

Adaptive modulation and time varying fading channels are considered. It is also assumed that wireless 

channels undergo slow fading. Due to fading channel an instant channel gain will be fed back to 

transmitter. The duration for feedback is no longer than coherence time (the time for which channel 

conditions remain same) 

Adaptive modulation is implemented that each data packet can be fragmented into multiple segments 

and each segment can be transmitted in with lowest data rate. If high data rate is available then multiple 

segments can be transmitted per slot duration. 

III. LINK CAPACITY MODELING 

Each node has multiple links and it can exploit multiuser diversity i.e. different links have different 

traffic and fading conditions. A channel model is presented that includes shadowing and slow fading. 

A. Signal to interference and noise ratio (SINR) Formulation 

ℎ�,�: Channel response function from transmitter ‘t’ and receiver ‘r’  

��: Signal from ‘t’ 

��, ��,
'
it : Set of transmitters causing interference to ‘r’, number of transmitters and ith transmitter in Ir 

respectively. Power control is not considered therefore transmission power of ‘t’ is  2

tpt E x . Let 

�� be thermal noise with power equal to k then received power at ‘r’ is  

' ', , 0,
1

I

i i

n

r t r t t r t t
i

y h x h x n


    (1) 

SINR at receiver ‘r’ is expressed as: 

2 2

, , 0

2 2

' ' ' ', ,
1 1 1

,
r t t r t t

n n nI I I

ir t t r t ti i i ii i i

h x h p s

r t
h x h p s  



  

  

  
  

  (2) 

Here ' '

22

0 , , i i
r t t i r t t

s h p and s h p  . The Channel response function consists of three parts:  

 Path loss 

 Shadowing 

 Fading 
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,

,

10
, ,10

r t

r t

f

r t r th l    (3) 

Where ,r tl is distance between ‘t’ and ‘r’, [2 4]  (constant), 

,

1010
r tf

is shadowing effect and it is 

modeled as a log-normal distributed random variable. ,r t is fading effect and it is defined as complex Gaussian 

RV with mean and variance equal to 0 and 1 respectively. PDF of s0 and si are defined as: 

0

0

0 0

1
0( )sp e








   (4a) 

1( )
i

i

i is ip e







   (4b) 

Here  
,

,

10
0 0 10

r t

r t

f

tE s l p    and  
',

'
',

1010
r ti

ir ti

f

i i t
E s l p    

B. PDF of SINR 

Case 1: no interference is observed by receiver ‘r’ i.e. (Ir=0, nI=0) then PDF of ,r t , is defined as: let 0
     

, 0

1( ) ( )
z

r t sp z p z e 
 


   (5) 

Probability that ,r t is smaller than w is defined as: 

 
,, ( )

w

r tr t

w

Pr w p z dz e 





    (6) 

Case 2: unit interference is observed by ‘r’ i.e. (Ir>0, nI=1) then PDF of term (si+k i.e. denominator of 

equ.2) is defined as: 

1

1 1

1( )
v

sp v e




 



    (7) 

Finally PDF of ,r t is defined as: 

 1
10 1

, 0 1 0 1 0 1

1( ) ( ) ( )
vz v

u

r t

u
v

s s up z vp vz p v dv e e dv e

 



     

 


 

  

     (8) 

Probability that ,r t is smaller than w is defined as: 

 
,

0
,

0 1

( )
w

r tr t

w

Pr w p z dz e
w







 




  
   (9) 
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Case 3: more than one interferers are present in Ir i.e. (nI > 1) then PDF of 
1

nI

i
i

s

 can be defined as: 

1

( ) ( )

1

( )
I v

i i
n sI n iI

i

i

n
b

v p vI
s i

p v P e 






 






  (10) 

Here  1,
1

1
I

I i

i j

n
n

i j j i i
i

b and b
  



   . The PDF of term (si+k i.e. denominator of equ.2) is defined 

as:  ( )I Ip v p v    . Finally the PDF of ,r t : 

 2
, 0

1

( ) ( ) ( )
I

i

r t i i

n
q

s I i q q
i

p z vp vz p v dv d e  
 









     (11) 

Here    
0

1
i

z
iq     and  

0

ii

i

qb
id e 

 
 .  Probability that ,r t is smaller than w is defined as: 

 
, 0, 0

1

( )
Iw

i

r t i

n
b

r t w
iw

Pr w p z dz e 
   







      (12) 

Finally Link Capacity can then be determined as: 

     
1

1
, , ,

1

i i
r t r i thr r t thr r t thr

i

c I c Pr c Pr



    






     � �  

Where cr,t(Ir) is average data rate between ‘t’ and ‘r’, given interference set Ir cr,t(Ir)) cr,t(Ir) 

IV. PROPOSED TIME-SLOT ASSIGNMENT ALGORITHM 

TDMA frame consists of a fixed number of slots is considered. The set of transmitting links that are 

activated in a given slot is called a link pattern, and the set of nodes activated in a given slot is called a 

node pattern. 

A. Formulation of Node-Based Time-Slot Algorithm 

Notations: 

 V: set of nodes 

 E: set of links 

 NP: Node Pattern 

 , ;e etx rx e E  transmitter and the receiver of link e, respectively, 

 , | , , ,s p eE e e E p s s NP tx p      set of links that can be used at node p, where      

p∈s i.e p is activated in node pattern s); 
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portion of time that is assigned to node pattern (s) in a frame, where,

 1

s

s

s NP










 , , ,|s p e s pe Eò :portion of time that is assigned to each link of node p in node pattern s 

 F: set of flows in the system; where flow defines all traffic that belongs to (S, D) pair 

 fh : traffic demand for flow f, where f F  

 fS : source of flow f 

 fD : destination of flow f 

 ,f ex : percentage of traffic that flow f passes through link e, 

Calculations 

Link congestion: it is total amount of traffic routed through the link ‘e’ over its average capacity 

(ce) i.e. 
,f e

e

x

e c
f F

r


 
  
 
  where link capacity (data rate between transmitter ‘t’ and receiver ‘r’ is 

defined as: 

 ,

,

|

,

,

,

, s p

e s e

s s NP p s e

s p

E

ec c
  

  ò .  

Thus network congestion ratio ‘r’ is the maximum of all link congestion ratios, i.e. max e
e E

r r


  

Optimal node-based slot assignment scheme is one which minimizes congestion ‘r’: 

 

 

 

 

   

 

,

,

| ,

, ,

, ,

,

,

, ,

, ,

,

|

| , ,

, ,

| |

, ,

,

|

min (13 )

. (13

0,

)

(13 )

(13 )

1 (13 )

0, (13 )

0 (13 )

0

f e f

f F

s e

e s NP p s e Es p

s p

s p e

e e

s p e

e f

x h

c

s

e e E

s

e p s e E rx q

s

s NP

s

f e f e

e tx v e rx v

f e f e

e tx S e

s p e

s p e

s p e

r a

s t r b

c

d

e

f

x x g

x x

r











  



  



 
































 



ò

ò

ò

ò

 |

,

1(13 )

0 (13 )

e frx S

f e

h

x i








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Problem 13 is the optimization problem, whose purpose is to find the set of , ,s p eò  that will 

lead to the optimal objective function. Constraint 13c represents that in node pattern s, for any 

node p∈s, p can transmit to only one node at one time. 13d ensures that a node q can receive 

from only one node at one time while q s and p∈s. 13f and 13i ensures non-negativity 

constraints. Constraint 13b is non-linear therefore sr  and , ,s p erò  are replaced by 

, ,s s p eand   respectively. Therefore final formulation is defined as: 

 

 

 

   

   

,

,

,

, ,

| , ,

|

| , ,

, ,

|

, ,

, ,

, ,

, ,

|

, ,

| |

min (14 )

. (14 )

(14 )

(14 )

0, (14 )

0 (14 )

1

0

(14

s p

s p

s p e

e e

e f e f

s

s p e

s p e s

s p e s

s NP

f e f s e

f F e s NP p s e E

e e E

e p s e E rx q

f e f e

e tx v e rx v

f e f e

e tx S e

s s p

rx S

e

a

s t x h c b

c

d

e

x x f

x x



 

 

 



   



  

 

 









 

 



 





 

 

ò

,

)

0 (14 )f e

g

x h

 

 

Authors describe that the presented formulation can handle scheduling of node patterns by using Linear 

Programming approach. However for link based approach, listing all link patterns does not work by using 

LP formulation. Therefore column generation method is used to tackle the problem. 

B. Frame Construction and Throughput Loss due to Frame Quantization 

Frame is constructed as:  f s
s NP

n z


   here z is frame length and function [x] rounds ‘x’ to nearest 

integer.  

The frame quantization will change the portion of time assigned to all patterns ( s ). Therefore 

parameters like minimum congestion ratio rz, the optimal link capacities (ce) and the routing scheme xf,e 
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will change. These parameters need to be recomputed as follows. let zs be number of slots assigned to 

node pattern ‘s’ in a frame. 

 

 

 

   

   

,

,

,

, ,

| , ,

|

| , ,

, ,

, ,

, ,

| |

, ,

| |

,

, ,

min (15 )

. (15 )

(15 )

(15 )

0 (15 )

(15 )

s p

s

s

s NPs p

s

s

s NPs p e

e e

e f e f

z

f e f s e

f F s s NP p s e E

z

z
e e E

z

z
e p s e E rx q

f e f e

e tx v e rx

s p e

s p e

s p e

v

f e f e f z

e tx S e rx S

f e

a

s t y h c b

c

d

y y e

y y h f

y









   



  

 

 









 

 

 





 

 

ò

ò

ò
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C. Column Generation Method 

Column generation is an algorithm for solving large LP problems. Most of the variables are usually 

non-basic and assume zero values in the optimal solution, only a subset of variables are needed for 

solving the problem. Column generation method considers only the variables which have potential to 

improve the objective function. It splits the problem into master problem and subproblem. Master 

problem is the original problem with subset of variables being considered. In subproblem it uses duality 

approach to select new variables to be added to master problem to improve its result.  

Master Problem: it is same as defined in problem 14 except that NP is replaced with NP (subset of 

NP which is feasible for 14). Solution of master problem shall provide a routing and slot-assignment 

scheme. 

Subproblem: is a new problem created to identify a new node pattern to add to master problem and it 

is defined as: 

min s
s NP

rp
 NP

 (15) 

Here srp is reduced cost of node pattern ‘s’ in the column generation algorithm and it is optimal value 

of following problem: 
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s p s p e s es t c
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  

   

 

  

 
  
 

 
 (16) 

Here , ,s p s qand  are variables that are associated with the transmitter p and the receiver q in node 

patterns s. Well the question is which node pattern should be included into NP ?  

According to duality theory if master problem is optimal then srp is always non-negative for any 

pattern in NP. The node patterns with negative srp can improve the result if they are added into NP . So 

algorithm will iterate between two phases until no more patterns can be added to NP .  

Algorithm steps are defined as follows: 

 

 

 

 

 

 

 

 

V. SCHEDULING ALGORITHMS 

Two scheduling algorithms are proposed in which each node will locally schedule its link transmissions 
without inter-node coordination and without disturbing interference profiles of other nodes.  

A. Scheme 1 

Every node ‘t’ in node pattern ‘s’ assigns a transmission probability to every link associated with ‘t’. The 

set of transmission probabilities is then defined as: 

 , ,

, , , , , ,| , s t

s

e

s t s t e s t s t eP p e E p   
ò

  (17) 

The region [0,1] is then divided into subregions, one for each link in ,| |s tE , and length of  regions is set 

according to ,s tP . The algorithm works as follows; Suppose a node pattern ‘s’ is activated in slot x . 

Each node t s  will generate a RV w , uniformly distributed within [0, 1]. The node will then schedule 

Step 1: Set node pattern A=  and Arp =0,  

Step 2: Identify 
cA v and compute 

vArp  for node pattern  . ,v vA s t A A v   . 

Step 3: select v from 
cA with minimum 

vArp   and compute Arp  of A. 

Step 4: If  
vA Arp rp  , node v will be deleted from 

cA  and add it A. 

Step 5: If 
cA  stop else go to step 3. 



 
 

9 

link into which subregion w falls. If selected link (e) is not usable (either  due to fading or no traffic) the 

scheduler will check link next to ‘e’ one by one until a usable link is found. 

B. Scheme 2 

Scheme 1 does not consider link quality while scheduling the links. Therefore authors presented another 

scheduling mechanism.  

Selection criteria = (queue length * link capacity) 

Each node maintains two queues for each of its link:  

1) a real data queue  to store packets and  

2) A shadow queue for scheduling. 

These queues of link ‘e’ whose transmitter can be activated in slot ‘x’, are defined as:   

( ) ( 1) ( ) ( )

( ) ( 1) ( ) ( )

e e e e

e e e e

q x q x a x d x

q x q x a x d x

   

      
 

Here qe(x) and ( )eq x are lengths of the real queue and shadow queue respectively. ae(x), ( )ea x , de(x) 

and ( )ed x  are the number of arrivals and departures for the two queues in ‘x’, respectively. In shadow 

queue the term ( )ea x is defined as:  
0

( ) 1 ( )
x

v
xe e

t

a x a t


    i.e. it is used to smooth the incoming 

traffic from source or previous hop.  

Packets departing from link ‘e’ are defined as:  ( ) min ( ), ( )e e ed x c x q x  . Here ( )ec x  is instant 

capacity of link ‘e’ in slot ‘x’. Thus scheduling, in slot ‘x’, the scheduler in node t∈s will select the link 

from all its associated links with a maximum value of ( ) ( )e eq x c x  . In doing so, it tries to strike the 

optimal balance between link quality and traffic backlog. 

VI. SIMULATION AND RESULTS 

A. Simulation Environment and Settings 

Linear optimization toolbox of MATLAB is used for proposed routing and slot-assignment algorithm. 

C++ program is then used to inspect maximum achievable throughput for different scheduling schemes.  

The physical-layer parameters are summarized as follows: 

• Transmission power: 20 dBm. 

• Thermal noise:−90 dBm. 

• Path loss(α):3.5. 

• Variance of shadow fading: 4 dBm. 
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• Minimal distance of two nodes: 15 m. 

• Slot duration: 0.22 ms. 

• Frame size: 100 slots. So frame length = 22 ms. 

The mapping between the following data rates and SINR threshold is summarized as follows. 

• 54 Mb/s: 24.56 dBm. 

• 48 Mb/s: 24.05 dBm. 

• 36 Mb/s: 18.80 dBm. 

• 24 Mb/s: 17.04 dBm. 

• 18 Mb/s: 10.79 dBm. 

• 12 Mb/s: 9.03 dBm. 

• 9 Mb/s: 7.78 dBm. 

• 6 Mb/s: 6.02 dBm. 

Network Topology: two networks 15-node and 30-node with two gateway nodes and three gateway nodes 

are considered, respectively. 

The traffic load of each flow is assumed to be the same i.e.,hf =1Mb/s, 

Throughput loss due to Frame Quantization:  

  

Fig. 1. Achievable throughput after frame generation for (a) 15- and (b) 30-node networks.  

The solid (
*
node ), dashed (

*
link ) and dashed–dotted (

* ) lines indicate the achievable throughput in 

node-based, link based and before frame construction (I.e. upper bound on throughput) respectively. The 

flat area represents the range where the performance does not improve. Note that (
*
node ) and (

*
link ) are 

function of ‘z’ and are not always monotonically increasing due to the quantization involved in the 

process, and small oscillation occurs within a short range of z. This is why, in Fig. 1(a) and (b), the curves 

move up in steps.  
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From the table it is clear that 
*
node approaches 

* much faster than 
*
link . Moreover difference in throughput 

between 
*
node and 

*
link is also significant as shown in table 1.  

The optimal scaling factors of the 
*
node for schemes 1 and 2 under the Poisson and a deterministic arrival 

process are denoted as shown by 
* * * *
exp,1 exp,2 det,1 det,2, , ,     respectively.  

{the 
*
node is derived from problem 14 and it does not include multi-user diversity gain. Therefore, it can 

be viewed as a lower bound of the two proposed scheduling schemes 1 and 2 As shown in the Table I.  

It is also clear from the table that , both (posisson and deterministic arrival rates )
*
exp,1, *

det,1 are only 

slightly larger than 
*
node for the 15- and 30-node networks. The difference is only about 3%. This is 

because scheme 1 tries to follow , ,s p eò i.e. portion of time that is assigned to each link of node p in node 

pattern s and does not select a link with the best quality. However, the situation is different in scheme 2, 

because link quality is part of the selection criteria. With scheme 2, 
*
exp,1, *

det,1 are about 26% larger 

than 
*
node for the 15-node network and 30% larger for the 30-node network. 
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Summary: 

 It happens that the convergence rate of IST algorithms depends heavily on the linear observation 
operator, becoming very sow when this operator is ill-conditioned or ill-posed. 

 In this paper, the authors introduce two-step IST (TwIST) algorithms, exhibiting much faster 
convergence rate than IST for ill-conditioned problems. They showed that TWIST converges to a 
minimizer of the objective function, for a given range of values of its parameters. 

 

I. Introduction 

Many approaches to LIPs define a solution x̂  as a minimizer of a convex objective function f: 

21
( ) ( )

2
f    x y Kx x                                  (1) 

In a regularization framework, minimizing f is seen as a way of overcoming the ill-conditioned, or singular, 
nature of K which precludes inverting it. In this context,   is called the regularizer and   the regularization 

parameter. 

 

The current state-of-the-art regularizers for image restoration are nondifferentiable. 

Examples of such choices are total-variation (TV) regularization and wavelet-based regularization. 

The nondifferentiable nature of f, together with the huge dimension of its argument, place its minimization 
beyond the reach of standard off-the-shelf optimization methods. 

 

Contribution 

This paper is strictly concerned with algorithms for minimizing (1). 

This paper introduces a new class of iterative schemes, bringing together the best of IRS and IST. For ill-
conditioned (but invertible) linear observation operators, they prove (linear) convergence of TwIST to minima of 
the objective function f, for a certain range of the algorithm parameters, and derive bounds for the convergence 
factor. 

 

II. Regularizers and Denoising 

 

Denoising with convex regularizers 



Denoising problems are LIPs in which K is the identity, Kx=x. 

21

2den yf d    . where 
22

yd  y x                            (2). 

With several standard assumptions about the regularizer : R   (convex, lower semi-continuous (lsc), 

proper), its minimizer is unique; refer to Theorem 5 and Theorem 7 in appendix I. This allows defining the 
denoising function. 

21
( ) arg min ( ) ( )

2 yd     
 x

Ψ y x x                             (3). 

 

Denoising with l-Homogeneous Regularizers 

Let ( )  denote the set of functions : R   that are convex, lsc, proper, and phd-1. 

An important recent result states that denoising with regularizers from ( )  corresponds to the residual of the 

projection onto a convex set, as formalized in the following theorem. 

Theorem 1: If ( ) , then the denoising function Ψ  defined in (3) is given by 

( ) ( )CP  Ψ y y y                                     (4) 

Where C   is a closed convex set depending on the regularizer  , and :AP    denotes the 

orthogonal projection operator onto the convex set A  . 

 

Total variation 

, ( )m
iTV niTV R    

 

Weighted lp norm 

1/

,
( )p

w

p
p

i ip wl
i

w x
     
 
x x  

Being a norm, p
wl

  clearly belongs to  . 

The denoising function Ψ  under a p
wl

  regularizer cannot be optained in a closed form, except in some 

particular cases, the most notable of which is p=1; in this case, Ψ  is the well known soft-thresholding 

function, that is ˆ( ) Ψ z x  with 

 ˆ ( ) max 0,i i i ix sign z z w                               (8). 

Orthogonal representations 



21
( ) ( ) ( )

2
p
wl

f d   yx HWx x                              (9). 

 

III. Existence and uniqueness of solutions 

 

Proposition 1: Let :f X R  be defined as in (1), where operator K is linear and bounded, and   is a 

proper, lsc, convex function. Let G denote the set of minimizers of f. Then: 

i) If   is coercive, then G is nonempty; 

ii) If   is strictly convex or K is injective, then G contains at most one element; 

iii) If K is bounded below, then G contains exactly one element. 

 

Application of Proposition 1 to the several regularization function. 

Weighted l-p norm and its p-th power 

If all the weights are strictly positive, both are coercive; this ensures existence of minimizers of f. If K is 

injective, the minimizer is unique; otherwise, the minimizer is unique with p
w

p

l
 , with p>1 (which is strictly 

convex). 

Finite-dimensional cases. 

Injectivity of K is sufficient to guarantee existence and uniqueness of the solution (under any convex regularizer, 
strictly or not, coercive or not). It is because any finite-dimensional injective operator is bounded below. 

 

 

IV. Previous algorithms 

 

Iterative shrinkage/thresholding (IST) 

1 (1 ) ( ( ))T
t t t t      x x Ψ x K y Kx                       (13) 

Each iteration of the IST algorithm only involves sums, matrix-vector products by K and TK , and the 

application of the denoising operation Ψ . 

Theorem 2: Let f be given by (1), where   is convex (and lsc) and 
2

2
2K . Let G be nonempty. Fix some 

x1 and let the sequence be produced by (13), with [0,1]  . Then the sequence converges to a point Gx . 

 

Iterative Re-Weighted Shrinkage (IRS) 



The IRS algorithm was specifically designed for wavelet-based problems of the form (9), where W contains an 
orthogonal or redundant wavelet basis and the regularizer is not necessarily a weighted lp norm. 

   1 solution solution ( )T T
t t t     x A x b D K K x K y  

tD  is a diagonal matrix (of non-negative elements) that depends on tx  and  . Observe that matrix tD  

shrinks the components of 1tx , thus the term iterative reweighted shrinkage. 

The huge size of ( )T
t t A D K K  forces the use of iterative methods to implement. This is done with a two-

step stationary iterative method, which we will next briefly review. 

 

Two-Step Methods for Linear Systems 

Considering the linear system Ax b , with A positive definite; define a so-called splitting of A as A=C-R, 

such that C is positive definite and easy to invert (e.g., a diagonal matrix). A stationary two-step iterative 
method (TwSIM) for solving Ax=b is defined as 

Two-step iterative method (TwSIM) 

1
1 0 0 0+ ( )  x x C b Ax  

1
1 1(1 ) + + ( )t t t t   
   x x x C b Ax                           (15). 

 

Theorem 3: Let { , }tx t  be the sequence produced by (15), with arbitrary x0. Let 1  and m  denote the 

smallest and largest eigenvalues of matrix 1C A , and 1 / mk   . Then, { , }tx t  converges to the solution 

of Ax=b if and only if 0 2   and 0 2 / m    . The optimal asymptotic convergence factor is 

(1 ) / (1 )k k    . 

 

Comparing IST with IRS 

For ill conditioned systems, IRS is much faster than IST. On the other hand, when noise is the main factor, and 
the observation operator is not too ill-conditioned, IST outperforms IRS because it uses a closed-form denoising 
step in each iteration. 

 

V. Two-Step IST (TwIST) 

 

The TwIST method aims at keeping the good denoising performance of the IST scheme, while still being able to 
handle ill-posed problems as efficiently as the IRS algorithm. 

Taking t C I D  and T R I K K  in the splitting A=C-R of matrix T
t A D K K , the two-step 

iteration (15) for the linear system TAx K y  becomes 



 

Equation

the denoi

for 1t 

 

A key ob

 

VI. 

 

 

n (13) can be 

ising operator

, where :Γ

bservation is th

Experim

tx

obtained from

r Ψ . This sim

m mR R  is 

hat TwIST and

mental Results 

1 1(1 ) t   x

m (16) by sett

milarity sugge

1 (1 )t   x

defined as 

( ) Γ x Ψ

d IST all have

+( ) +t   x

ting  =1 an

ests a two-step

1 0(x Γ x

1) +( )t   x x

( (T
 Ψ x K y

e the same fixe

 

1( (T
t  C x K

d replacing th

p version of IS

)          

+ ( )t tx Γ x  

))Kx     

ed points. 

( ))ty Kx    

he multiplicat

ST (TwIST) a

           

           

           

           

tion by matrix

as 

           

           

           

   (16) 

x 1C  by 

   (17) 

    (18) 

   (19). 



INFONET, GIST 
Journal Club (2013. 03. 21) 

 
 

 
Authors: Fredrik Rusek, Thomas L. Marzetta, et al. 
Publication: IEEE Signal Processing Magazine 

Speaker: Woongbi Lee 
 
 

Short summary: Very large MIMO systems is an emerging research area in antenna systems, 

electronics, and wireless communication systems. A base station with an antenna array serves a 

multiplicity of single-antenna terminals. In this presentation, the fundamental principle of 

massive MIMO technology and several issues are introduced. 

 

I. INTRODUCTION 

Multiple-Input, Multiple-Output (MIMO) technology is becoming mature, and incorporated 

into emerging wireless broadband standard like LTE. Basically, the more antennas the 

transmitter/receiver is equipped with, and the more degrees of freedom that the propagation 

channel can provide, the better performance in terms of data rate or link reliability. However, 

MIMO technology requires increased complexity of the hardware, the complexity and energy 

consumption of the signal processing, and the physical space for accommodating antennas 

including rents of real estate. 

Today, as mobile data traffic exponentially increases, further capacity enhancement is needed. 

As a solution for the high capacity demand, Massive MIMO (very large MIMO, Large-Scale 

Antenna System, Full Dimension MIMO) technology has been widely studied for last few years. 

Massive MIMO adopts hundreds of antennas at base station (BS) serving a much smaller number 

of terminals. The number of terminals that can be simultaneously served is limited, not by the 

number of antennas, but rather by inability to acquire channel-state information for an unlimited 

number of terminals. With an unlimited number of antennas, the transmit power can be made 

arbitrarily small and the uncorrelated interference and noise can be vanished. But, the 

performance is limited by pilot contamination. 

Scaling Up MIMO: Opportunities and challenges with 
very large arrays 
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This paper approaches to Massive MIMO according to three directions: Information-theoretic 

performance limit, and antennas and propagation aspects of large MIMO, and transmit and 

receive schemes. 

 

II. INFORMATION THEORY FOR VERY LARGE MIMO ARRAYS 

According to the noisy-channel coding theorem in information theory, for any communication 

link, there is a capacity or achievable rate, such that for any transmission rate less than the 

capacity, there exists a coding scheme that makes the error-rate arbitrarily small. 

A. Point-to-point MIMO 

1) Channel model 
Transmitter has an array of nt antennas and a receiver has an array of nr antennas. The simplest 

narrowband memoryless channel has the following mathematical description, 

 x Gs w  

where s is the nt component vector of transmitted signals, x is the nr component vector of 

received signals, G is the r tn n  propagation matrix of complex-valued channel coefficients, 

and w is the nr component vector of receiver noise. The components of the additive noise vector 

are i.i.d. zero mean and unit-variance circular-symmetric complex-Gaussian random variables 

(  0,1CN ). The scalar   is a measure of the Signal-to-Noise Ratio (SNR) of the link. 

 

2) Achievable rate 
With the assumption that the receiver has perfect knowledge of the channel matrix, G, the 

mutual information between the input and the output of the point-to-point MIMO channel is 

  2; log det
r

H
n

t

C I x s
n

 
   

 
I GG  

where 
rnI  denotes the r rn n  identity matrix. The propagation matrix can be decomposed by 

H
G ΦD Ψ , 
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where Φ  and Ψ  are unitary matrices of dimension r rn n  and t tn n  respectively, and D  

is a r tn n  diagonal matrix whose diagonal elements are the singular values, 

  1 2 min ,, , ,
t rn n   . The achievable rate can be written as 

 min , 2

2
1

log 1
t rn n

l

l t

C
n




 
  

 
  

With the decomposed propagation matrix,  

 

 
min ,

2

1

Tr
t rn n

H
l

l




 GG  

where “Tr” denotes “trace”. There can exist two extreme cases: the worst case when all except 

one of the singular values are equal to zero and the best case when all of the  min ,t rn n  

singular values are equal. The two cases bound the achievable rate as follows, 

     
 2 2

Tr Tr
log 1 min , log 1

min ,

H H

t r
t t t r

C n n
n n n n

     
       
   
   

GG GG
 

The rank-1 (worst) case occurs either for compact arrays under Line-of-Sight (LOS) 

propagation conditions such that the transmit array cannot resolve individual elements of the 

receive array and vice-versa, or under extreme keyhole propagation conditions. The equal 

singular value (best) case is approached when the entries of the propagation matrix are IID 

random variables. Under favorable propagation conditions and a high SNR, the achievable rate is 

proportional to the smaller of the number of transmit and receive antennas. 

 

3) Limiting cases 

a) Low SNRs 

Low SNRs can be experience by terminals at the edge of a cell. For low SNRs, only 

beamforming gains are important and the achievable rate becomes 

 
0

Tr

ln 2

ln 2

H

t

r

C
n

n














GG
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which is independent of nt, and thus, even under the most favorable propagation conditions the 

multiplexing gains are lost, and multiple transmit antennas are of no value under low SNRs. 

 

b) Number of transmit antennas grow large 

It is assumed that the row-vectors of the propagation matrix are asymptotically orthogonal. 

Then, 

r

t r

H

n
t n n

n


 
 

 

GG
I  

and the achievable rate becomes 

 
 

2

2

log det

log 1

t r r rn n n n

r

C

n




   

  

I I
 

c) Number of receive antennas grow large 

It is also assumed that the column-vectors of the propagation matrix are asymptotically 

orthogonal, 

t

r t

H

n
r n n

n


 
 

 

G G
I  

and the achievable rate becomes 

2

2

log det

log 1

r t t

H
n n n

t

r
t

t

C
n

n
n

n







 
   

 
 

   
 

I G G

 

Thus, a large number of transmit or receive antennas, combined with asymptotic orthogonality 

of the propagation vectors (i.i.d. complex Gaussian), can increase the achievable rate. Extra 

receive antennas can compensate for a low SNR and restore multiplexing gains. 

B. Multi-user MIMO 

Multi-user MIMO consists of an array of M antennas and K autonomous terminals. We 

assume that each terminal has only one antenna. Multi-user MIMO differs from point-to-point 

MIMO in two respects: first, the terminals are typically separated by many wavelengths, and 

second, the terminals cannot collaborate among themselves. 
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1) Propagation 
We assume Time Division Duplex (TDD), so the reverse link propagation matrix is merely the 

transpose of the forward link propagation matrix. Assumption on the TDD comes from the need 

to acquire channel state-information between extreme numbers of service antennas and much 

smaller numbers of terminals. The propagation matrix, M KG  , can be decomposed by  

1/2
G HD  

where M KH   represents small scale fading and 1/2 K K


D   whose diagonal elements 

constitute a 1K   vector, and   is large scale fading coefficients. By assumption, the antenna 

array is sufficiently compact that all of the propagation paths for a particular terminal are subject 

to the same large scale fading. 

For multi-user MIMO with large arrays, the number of antennas greatly exceeds the number of 

terminals. Under the most favorable propagation conditions the column-vectors of the 

propagation matrix are asymptotically orthogonal, 

1/2 1/2
H H

M K M K
M M 



 

   
   

   


G G H H
D D

D

 

2) Reverse link 
On the reverse link, for each channel use, the K terminals collectively transmit a 1K   vector 

of QAM symbols, rq , and the antenna array receives a 1M   vector, rx , 

r r r r x Gq w  

Under the assumption that the columns of the propagation matrix are nearly orthogonal, i.e., 

H M  G G D , the base station could process its received signal by a matched-filter (MF), 

H H H
r r r r

H
r r rM 





 

 

G x G Gq G w

D q G w
 

3) Forward link 
For each use of the channel the base station transmits a 1M   vector, fs , through its M 

antennas, and the K terminals collectively receive a 1K  , fx , 

T
f f f f x G s w  
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III. ANTENNA AND PROPAGATION ASPECTS OF VERY LARGE MIMO 

The performance of all types of MIMO systems strongly depends on properties of the antenna 

arrays and the propagation environment in which the system is operating. With well separated 

ideal antenna elements, in a sufficiently complex propagation environment and without 

directivity and mutual coupling, each additional antenna element in the array adds another degree 

of freedom that can be used by the system. But, in reality, the antenna elements are not ideal, 

they are not always well separated, and the propagation environment may not be complex 

enough to offer the large number of degrees of freedom that a large antenna array could exploit. 

These practical issues are presented in this section. 

 

A. Spatial focus with more antennas 

The field strength is not necessarily focused in the direction of the intended receiver, but rather 

to a geographical point where the incoming multipath components add up constructively. As a 

technique for focusing transmitted energy to a specific location, Time Reversal (TR) has drawn 

attention, where the transmitted signal is a time-reversed replica of the channel impulse response. 

In this paper, the Time-Reversal Beam Forming (TRBF) is considered.  

 
Figure 1. Geometry of the simulated dense scattering environment. 

 

Figure 1 shows a simple geometrical channel model. The channel is composed of 400 

uniformly distributed scatterers in a square of dimension 800 800  , where   is the signal 

wavelength. The broadside direction of the M-element Uniform Linear Array (ULA) with 

adjacent element spacing / 2d   is pointing towards the center of the scatterer area. This 

model creates a field strength that varies rapidly over the geographical area, typical of 
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small-scale fading. With a complex enough scattering environment and a sufficiently large 

element spacing in the transmit array, the filed strength resulting from different elements in the 

transmit array can be seen as independent. 

 

Figure 2. Normalized filed strength in a 10 10   area 

 

Figure 2 shows the resulting normalized field strength in a small 10 10   environment 

around the receiver to which we focus the transmitted signal (using MF precoding), for ULAs 

with / 2d   of size 10M   and 100M   elements. Figure 2 illustrates two important 

properties of the spatial MF precoding: (i) that the field strength can be focused to a point rather 

than in a certain direction and (ii) that more antennas improve the ability to focus energy to a 

certain point, which leads to less interference between spatially separated users.  

 

B. Antenna aspects 

Massive MIMO relies to a large extent on a property of the radio environment called favorable 

propagation. Favorable propagation means that propagation channel responses from the base 

station to different terminals are sufficiently different. One way of quantifying how different the 

channel responses to different terminals are, is to look at the spread between the smallest and 

largest singular value of the channel. Figure 3(a) shows this for a computer simulated “i.i.d.” 

channel. The figure shows the cumulative density function for the smallest respectively the 

largest singular value for two cases: A conventional array of 6 elements serving 6 terminals (red 

curves), and a massive array of 128 elements serving 6 terminals (blue curves) 
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Figure 3. Singular value spread of massive MIMO channels 

 

For the 6-element array, the singular value spread is about 30 dB, meaning that 1000 times 

more power would be required to serve all six terminals, as compared to the power required to 

serve just one of them. With the massive array, the gap is less than 3 dB. 

In real channel implementation, measurements were conducted using an indoor 128-antenna 

base station consisting of four stacked double polarized 16 element circular patch arrays as 

shown in Fig. 4. Three of the terminals are indoors at various positions and 3 users are outdoors. 

The measurements were performed at 2.6 GHz with a bandwidth of 50 MHz, and the results 

were averaged over this bandwidth and over a physical displacement of 10 meters.  

 
Figure 4. Massive MIMO antenna used in measurements 

 

The blue curves in Fig 3. (b) show the corresponding singular value distributions. It is striking 

how well reality resembles the ideal case in Fig. 3. (a). The spread between the smallest and the 

largest singular value is a bit larger than for the ideal case, but the probability that the spread 
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exceeds 10 dB is negligible. As a reference, Fig. 3(b) also shows the result when only 6 of the 

128 elements are activates (red curves). Overall, there is compelling evidence that the 

assumption on favorable propagation that underpin massive MIMO are substantially valid in 

practice. 

 

IV. DISCUSSION 

After meeting, please write discussion in the meeting and update your presentation file. 

In the antenna implementation, they compared system of 6-antenna array and 6 terminals with 

single antenna and system of 128-antenna array and 6 terminals with single antenna. They used 

9 9[cycle / sec] 2.6 10 3.0 10cf     ,   8m / sec 3.0 10c   . Thus, the wavelength 

 m / cycle 0.1
c

c

f
   . According to the wavelength, if they used / 2d  , then the distance 

between patched antennas is / 2 50cmd   . 
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Abstract

In this report, we introduce linear regression approaches using shrinkage methods. The shrinkage

method have got attention to solve the problem of linear systems y = Ax because the method enables

us to obtain the solution with lower variance than the conventional least square estimator having the

minimum variance unbiasedness. First we will introduce basic concept of two shrinkage methods in the

linear regression, ridge and lasso. Then, we move our focus to problems of the Lasso variants such as

Fused lasso and Elastic-net. For the discussion in this report, we have partially referred to the chapter

3 of the book [1].

I. INTRODUCTION

A linear regression problem starts from an assumption that the corresponding regression function

Y = f(X) is linear where Y ∈ RM is a measurement vector generated by the function f(·) given a

vector X ∈ RN . This assumption allows us to describe the function f(·) using a linear projection, given

by

Y = AX ∈ RM , (1)

where a measurement matrix A ∈ RM×N specifies the linear relation between Y and X . In such a

regression problem, a typical aim is to estimate the unknown vector X from a set of known inputs or

training data (Y1, a1st-row) ... (YM , aMst-row) where ajth-row = [aj1, aj2, ..., ajN ] denotes the j-th row vector

of the matrix A. In addition, as before, we confine our focus to the linear regression problems which is

underdetermined (M < N) such that there exists infinitely many solutions for X .
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The most standard approach to the linear regression problems is least square estimation (LSE). LSE

obtains its estimate by solving the following optimization problem, given by

(PLSE) : X̂LSE =argmin
X
‖Y −AX‖22

=argmin
X

M∑
j=1

(
Yj −

N∑
i=1

ajiXi

)2

. (2)

It is well known that the LSE solver obtains an estimate X̂LSE by projecting the measurement vector Y

to a subspace of RM spanned by the column vectors of the matrix A. Namely, the minimization task

in (2) chooses X̂LSE which makes the vector difference Y −AX̂LSE to be orthogonal to the subspace.

Such a LSE solution can be represented as a linear function of the measurement vector, i.e.,

X̂LSE = (ATA)−1ATY . (3)

The popularity of LSE is originated from the Gauss-Markov theorem, one of the famous results in

statistics. The Gauss-Markov theorem states that the LSE solver provides the smallest variance among

all linear unbiased estimators. Let X̃ denote an unbiased linear estimate, i.e., E
[
X̃
]
= X . The mean

squared error (MSE) of X̃ is calculated as

MSE
(
X̃
)
:=E

[(
X̂ −X

)2]
= Var

(
X̃
)
+
(
E
[
X̂
]
−X

)2
=Var

(
X̃
)
. (4)

Then, the Gauss-Markov theorem shows that

Var
(
X̂LSE

)
≤ Var

(
X̃
)

(5)

for any other unbiased linear estimate X̃ (We omit the proof here. please refer to [1]).

However, there may exist a biased estimator which can offer smaller MSE then the LSE solver. Such an

estimator would provide a significant reduction in MSE at the expense of losing the unbiasedness [1],[3].

This is one motivation to use the shrinkage method to linear regression problem. The shrinkage methods

is a biased estimation approach to impose a penalty to the optimization setting of (2). If the imposed

penalty can properly catch the characteristic of the target unknown X , the shrinkage methods greatly

improve the estimation accuracy. In this report, we first introduce two types of the most well-known

shrinkage methods, ridge and lasso, by partially referring to [1],[3]. Then, we extend our discussion

to shrinkage methods which estimates the vector X having piecewise smooth or approximately sparse

property.
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II. SHRINKAGE WITH RIDGE PENALTY

In ridge regression, the elements of X are shrunk by imposing a penalty on the energy of X [2].

Therefore, the ridge penalty takes a quadratic form of X , leading to the following optimization setup

(PRidge) : X̂Ridge =argmin
X
‖Y −AX‖22 + λ ‖X‖22

=

M∑
j=1

(
yj −

N∑
i=1

ajiXi

)2

+ λ

N∑
i=1

X2
i , (6)

where λ ≥ 0 denote a parameter to control the amount of ridge shrinkage. Note that by applying the

quadratic penalty ‖X‖22 = XTX , the ridge estimation can be represented as a closed form function of

Y if M ≥ N , given by

X̂Ridge = (ATA+ λIN )
−1ATY . (7)

This imposition of the ridge penalty adds a positive constant to the diagonal ATA in (7) before inversion.

It is noteworthy that this addition makes the regression problem nonsingular even when ATA does not

have full rank. Namely, the ridge solution is necessarily unique regardless of the condition of the matrix

A. This is a strong motivation to use ridge regression.

Ridge regression shrinks the coordinate of X̂Ridge according to the singular value of the matrix A. The

singular value decomposition (SVD) of A has the form

A = UDVT , (8)

where U ∈ RM×N and V ∈ RN×N are orthogonal matrices, and D ∈ RN×N is a diagonal matrix with

singular values d1 ≥ d2 ≥ ... ≥ dN ≥ 0 of A. By applying SVD to the ridge solution, we can efficiently

compute a ridge estimate X̂Ridge associated with the orthonormal basis U and V, as LSE does using the

QR decomposition

X̂Ridge =(ATA+ λIN )
−1ATY

=V(D2 + λIN )
−1DUTY

=

N∑
i=1

vi
di

d2i + λ
uTi Y , (9)

where the ui ∈ RM and vi ∈ RN are the column vectors of U and V respectively. In (9), ridge regression

shrinks the elements of X̂Ridge by the factors di/(d2i +λ). This means that a greater amount of shrinkage

is applied to the elements of X̂Ridge associated with vi having smaller singular values di. Namely, ridge

April 5, 2013 DRAFT



4

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

True

Ridge

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

True

Ridge

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

True

Ridge

= 0.0001

 = 0.01

 = 1

Fig. 1. Sparse estimation via ridge estimator with different λ where N = 100,M = 70,K = 5
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Fig. 2. Sparse estimation via ridge estimator with different M where N = 100,K = 5, λ = 0.001

regression shrinks together the correlated elements of X with respect to vi if the direction of vi has small

energy in the column space of A.
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Fig. 3. Shrinkage characteristic of Ridge, Lasso and Best subset selection where the orthonomal matrix A is assumed. In

addition, the blue solid line in the figure is the 45◦ line to show the LSE solution as a reference (The figure is borrowed from

Table 3.4 of [1]).

The ridge penalty can be used to estimate sparse vectors X ∈ RN in undetermined systems Y =

AX ∈ RM . In order to apply the expression of (7), we need an augmented matrix A′ ∈ RN×N which

additionally includes N − M zero rows from A ∈ RM×N . Let us consider sparse vectors X which

contains K nonzero signed elements having unit magnitude. The ridge penalty shrinks the elements of

X with respect to non-principal basis of A′. Hence, the ridge regression enables the K largest elements,

which are most related to the principal basis of A′, to have exceptionally large magnitude.

We examine the ridge regression on the parameter N = 100,K = 5 with standard Gaussian matrix

aji ∈ A ∼ N (0, 1/M). Fig.1 shows that the ridge estimation can finds the K largest elements of X

with appropriately chosen λ. Another example is shown in Fig.2 where we show the behavior of ridge

regression according to the number of M . We note in Fig.2 that the magnitude of the K largest elements

of X̂ becomes smaller as M decreases. This means that for clear distinction of the K largest elements,

the ridge method requires M close to N . In addition, we know from Fig.1 and Fig.2 that the ridge solver

cannot exactly fit the nonzero elements of X .

III. SHRINKAGE WITH LASSO PENALTY

The main characteristic of lasso is that the elements of X are shrunk by imposing a L1-norm penalty

of X [3]. Namely, the penalty in the lasso setup takes an absolute sum of X , ı.e., ‖X‖1 =
N∑
i=1
|Xi|.

Following that, its optimization setup is represented as

(PLasso) : X̂Lasso =argmin
X
‖Y −AX‖22 + λ ‖X‖1

=

M∑
j=1

(
yj −

N∑
i=1

ajiXi

)2

+ λ

N∑
i=1

|Xi|, (10)
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Fig. 4. Sparse estimation via lasso estimator with different λ where N = 100,M = 70,K = 5
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Fig. 5. Sparse estimation via lasso estimator with different M where N = 100,K = 5, λ = 0.001
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where λ is a parameter to control the amount of lasso shrinkage. The larger λ leads to the stronger

shrinkage against the elements of X . When λ = 0 the solution is equivalent to the LSE solution. This L1

penalty generates the solutions of (10) nonlinear with respect to the measurement vector Y ; therefore,

there is no closed form solver as in ridge regression. The lasso solver can be implemented via a quadratic

programming. In addition, the LARs algorithm is well known as a computationally efficient algorithm for

the lasso solution [4].

To see the detail of the lasso behavior, we investigate the Karush-Kuhn-Tucker (KKT) condition with

the Lagrangian L(X,λ) of the setup in (10).

1) Stationarity:∇XL(X,λ) = GX −ATY + λB = 0,

2) Dual feasibility: λ ≥ 0,

3) Prime feasibility: ∇λL(X,λ) = ‖X‖1 ≤ 0,

4) Complementary slackness for strong duality: λ‖X‖1 = 0, (11)

where we define a Gram matrix G := ATA and

B := ∇X‖X‖1 =
[
∂
∑
|Xi|

∂X1
,
∂
∑
|Xi|

∂X2
, ...,

∂
∑
|Xi|

∂XN

]
. (12)

Since
∑
|Xi| is not differentiable, we apply the concept of sub-differential to ∂

∑
|Xi|

∂X1
. Then, each element

of B is given by

Bi =
∂
∑
|Xi|

∂X1
:=

 sign(Xi) if |Xi| ≥ λ

Bi ∈ [−1, 1] if |Xi| < λ
. (13)

We note the stationarity condition in (11), which can be rewritten as

ATY − λB = GX. (14)

Insight about the lasso shrinkage can be obtained by assuming that the matrix A is orthonomal, i.e.,

ATA = I. By applying the orthonomal assumption to (14), we have

X̂Lasso = ATY − λB. (15)

Then, the expression in (15) can be represented by a soft thresholding function with the parameter λ [5],

i.e.,

X̂Lasso = η
(
ATY ;λ

)
, (16)
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where the thresholding function η(τ ;λ) is elementwisely defined as

η (τi;λ) =


τi − λ if τ ≥ λi,

τi + λ if τ ≤ −λi,

0 otherwise.

(17)

We know from (17) that lasso shrinks the elements of X according to their magnitude. For the comparison

purpose, we also consider ridge estimate with the orthonomal matrix A, given by

X̂Ridge =
1

1 + λ
ATY . (18)

Differently from the lasso case, the ridge estimate is obtained with a proportional shrinkage 1
1+λ (radically

the proportional shrinkage of ridge is determined by singular values of A). We borrow Fig.3 from the

reference book (the figure in Table 3.4 of [1]) to depict the shrinkage characteristic of ridge and lasso,

compared to the best subset selection which is an optimal estimator to find the K(≤M) largest elements

of X ∈ RN . Fig.3 explicitly shows the difference among those three estimators.

We examine the lasso solver to estimate the signed K-sparse vectors X ∈ RN from the undetermined

system Y = AX ∈ RM , as in the ridge regression. Fig.4 shows that the lasso solver perfectly finds the

K largest elements with appropriate λ. We note in Fig.4 that the lasso estimate of the case λ = 1 does

not fit to the true of X because in this case, the lasso penalty shrinks the elements too much. Fig.5 shows

the lasso recovery of X for a variety of the number of measurements M . In the figure, we see that the

lasso solver finds an accurate solution when M = 50, 70, but fails in the estimation when M = 20.

IV. VARIANTS OF LASSO

A. Elastic-Net for Approximately Sparse Signal

We can generalize the ridge and the lasso penalty by using the concept of Lp-norm, i.e.,

(PLp
) : X̂Lp

=argmin
X

M∑
j=1

(
yj −

N∑
i=1

ajiXi

)2

+ λ

N∑
i=1

|Xi|p, (19)

for p ≥ 0, where the case p = 0 corresponds to the best subset selection which is non-convex; p = 2

corresponds to ridge regression which is convex; p = 1 is the lasso case which has the smallest p such

that the problem is convex. Value of p ∈ (1, 2) suggests a compromise between the lasso and ridge

regression. If p is closer to 1, the solver has the ability to put small elements close to zero which is the

nature of the lasso solver, If p is closer to 2, the solver more tends to shrink signal elements associated

with the singular values of A which is the nature of ridge regression.
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= 1.2 = 0.2

Fig. 6. Contours of the Lp penalty for p = 1.2 (left plot) and the elastic-net penalty (α = 0.2) (right plot) (The figure is

borrowed from Figure 3.13 of [1].)

Elastic-net, proposed by Zou and Hastie, introduced a different compromise between ridge and lasso

[7]. The elastic-net selects the largest elements like lasso, and shrinks the remaining small elements like

ridge, using a mixture penalty. Therefore, the elastic-net solver is useful for approximately sparse signals

whose small elements are originally not exactly zero. The optimization setting of the elastic-net solver

is given by

(PEN) : X̂EN =argmin
X
‖Y −AX‖22

+ λ
(
α ‖X‖22 + (1− α)‖X‖1

)
, (20)

where α is a mixing rate of the mixture penalty. We borrow Fig.6 from the book (Figure 3.13 of [1]). This

figure compares contours of the Lp norm penalty with p = 1.2 and the mixture penalty with α = 0.2. It

is very difficult to distinguish those two penalties by eyes. Although those two are visually very similar,

there exists a fundamental difference. The elastic-net has sharp (non-differentiable) corners such that it

can put the elements exactly zero, whereas the Lp penalty does not [7]. Likewise with lasso, the elastic-

net can be solved via quadratic programming, and the LARs-EN algorithm was introduced as a LARs

type algorithm to solve the elastic-net problem by Zou and Hastie [7]

We compare the elastic-net solver to the lasso solver in Fig.7 where the problem size is N = 100,M =

70. For the comparison, we test an approximately sparse signal generated from i.i.d two-state Gaussian

mixture density, i.e.,

fX(x) =

N∏
i=1

qN (xi; 0, σ
2
X1

) + (1− q)N (xi; 0, σ
2
X0

), (21)

with q = 0.07, σX1
= 0.05, σX1

= 1. We set the elastic-net parameters α = 0.4, and we use λ = 0.001

for the lasso and elastic-net both. In Fig.7, the elastic-net with appropriately calibrated parameters α, λ
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Fig. 7. Approximately sparse signal estimation (N = 100,M = 70, λ = 0.001) via lasso (Upper plot), and via the elastic-net

(bottom plot) where the MSE of lasso estimate is 0.0509, while that of the elastin-net is 0.0359 in this example.

surely improves the estimation accuracy from lasso although it is very hard to be distinguished by eyes.

Indeed, the MSE of lasso estimate is 0.0509, while that of the elastin-net is 0.0359 in this example.

B. Fused Lasso for Piecewise Smooth Signals

The use of various types of penalties enables us to solve the Y = AX problem adaptively to the

characteristic of the signal X . The fused lasso is one of such solvers to find piecewise smooth signals.

The fused lasso solves the problem given by

(PFL) : X̂FL =argmin
X
‖Y −AX‖22

+ λ

(
α

N∑
i=2

|Xi −Xi−1|+ (1− α)‖X‖1

)
, (22)

where the difference penalty,
N∑
i=2
|Xi −Xi−1|, enforces the estimate X̂FL to be piecewise smooth by

considering the order of the features. Namely, the fuse lasso encourages both sparsity of the signal values

and sparsity of difference between adjacent elements. Fig.8 shows contour plot of the fused lasso penalty

compared to that of the lasso penalty. As shown in Fig.8, the fused lasso penalty has asymmetric contour

owing the difference penalty, and it becomes severe as α increases. This asymmetricity of the fused lasso

encourages the smoothness of the signal.
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= 0.2

Fig. 8. Contours of the Lasso penalty (left plot) and the fuse lasso penalty (α = 0.2) (right plot)

We show an example of the piecewise smooth signal recovery using a fused lasso solver in Fig.9,

where measurements Y is generated from a piecewise smooth signal X with N = 100,M = 50 using a

standard Gaussian matrix A. This example shows that the piecewise smooth signal can be recovered via

the fused lasso as α increases although the signal X itself is not sparse. We also checked that the signal

can be recovered even from M = 25 measurements when α = 0.9. In the figure, the case of α = 0 is

noteworthy because the case is equivalent to the conventional lasso case. This case informs us that such

a piecewise smooth recovery is not successful via the normal lasso solver.

V. CONCLUSIVE REMARKS

We have discussed about shrinkage method to solve the linear system Y = AX . Estimation through

such a method has smaller MSE than LSE at the expense of losing the unbiasedness. Ridge regression

is one of the shrinkage methods applying a penalty on the energy of X . This ridge penalty makes the

solver to shrinks together the correlated elements of X with respect to the matrix A. Estimation accuracy

of ridge is not satisfied for the K sparse signal estimation because the ridge solver cannot exactly fit the

nonzero elements of X . We also have introduced the lasso solver which imposes L1-norm penalty of X .

The lasso solver shrinks the elements of X according to their magnitude, performing the shrinkage as a

soft thresholding function. The estimation accuracy of lasso is very good for K sparse signals by putting

the nonzero elements of X exactly to zero. Elastic-net solver is a compromise of ridge and lasso using

a mixture penalty. This solver is useful for approximately sparse signals whose small elements are not

exactly zero. The fused lasso solver was devised to find piecewise smooth signals. Imposing of difference

penalty, which reflects the order of signal features, enables us to estimate the piecewise smooth signal

effectively.
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Fig. 9. Piecewise smooth signal estimation via fused lasso for a variety of α when N = 100,M = 50, λ = 0.01
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Short summary: Polar codes are shown to be instances of both generalized concatenated 

codes and multilevel codes. It is shown that the performance of a polar code can be 

improved by representing it as a multilevel code and applying the multistage decoding 

algorithm with maximum likelihood decoding of outer codes. Additional performance 

improvement is obtained by replacing polar outer codes with other ones with better error 

correction performance. In some cases this also results in complexity reduction. It is shown 

that Gaussian approximation for density evolution enables one to accurately predict the 

performance of polar codes and concatenated codes based on them. 

 

 

I. INTRODUCTION 

 

The practical performance of polar codes under the successive cancellation (SC) 

decoding reported up to now turns out to be worse than that of LDPC and Turbo codes. 

 

This paper demonstrates  

1) Polar codes can be efficiently constructed using Gaussian approximation for density 

evolution.  

2) It is shown that polar codes can be treated in the framework of multilevel coding. This 

enables one to improve the performance of polar codes by considering them as multilevel or, 

equivalently, generalized concatenated (GCC) ones, and using block-wise 

near-maximum-likelihood decoding of outer codes. In some cases this results also in 

reduced decoding complexity.  

3) A simple algorithm for construction of GCC with inner polar codes. 

Efficient Design and Decoding of Polar Codes 
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II. BACKGROUND 

A. Polar codes 

 

Consider a binary input output symmetric memoryless channel with output probability 

density function  |W y x , y Y , 2x . It can be transformed into a vector channel 

given by    1 1 1 1| |n n n n n

n nW y u W y u G , where    1 1 1
| |

nn n n

i ii
W y x W y x


 , s

n sG B F , 

2sn  , 
1 0

1 1
F

 
  
 

, s  denotes s-times Kronecker product of a matrix with itself, and sB  

is a 2 2s s  bit reversal permutation matrix.  

For example) 

 

 

2 2 2 2 2

2 1 1 1 1 2( | ) ( | )W y u W y u G
       

4 4 2 4

4 1 1 2 1 1 2 3 4 2 3 2 4( | ) ( | , ) ( | , )W y u W y u u u u W y u u    

 

The vector channel can be further decomposed into equivalent subchannels 

   
1

( ) 1

1 1 1 11

1
, | |

2N
i

i N i N N

N i NN

u

W y u u W y u






 . 

For example) 

According to this, we can write       1 2

2 2, ,W W W W  for any given B-DMC W . 

   

   

2

2

(1) 2 2 2

2 1 1 2 1 1

1 1 2 2 2

1
| |

2

1
| |

2

u

u

W y u W y u

W y u u W y u 




 

   

   

(2) 2 2 2

2 1 1 2 2 1 1

1 1 2 2 2

1
, | |

2

1
| |

2

W y u u W y u

W y u u W y u 
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Given 1

ny  and estimates 
1

1

i

u


 of 1

1

iu  , the SC decoding algorithm attempts to estimate 

iu . This can be implemented by computing the following log-likelihood ratios 

   
   
   

1

111

11 1

11

, | 0

, log

, | 1

i
i n

n ii
i n

n i
i n

n i

W y u u

L y u

W y u u













: 

 

 
           

2 2 2 2 2 2 2 2
2 1 1 /2

1 1, 1, 1,1 /2 1 /2 /2 1, 2 tanh tanh , / 2 tanh , / 2 ,
i i i i

i i in n n
e o en n n nL y u L y u u L y u

   
 



         
    

 (1) 

 
             2 1

2 1 2 2 2 2 2 2
2 /2

1 1, 1, 1,1 /2 /2 1 /2 1, , 1 ,
i

i i i iui i in n n
e e on n n nL y u L y u L y u u


   

     (2) 

 

where 1, 1,,
i i

e ou u  are subvectors of 1

i

u  with even and odd indices, respectively, and 

   
 

 
1

| 0
log

|1

i i

i

i

W y
L y

W y
 . 

 

III. DESIGN OF POLAR CODES BASED ON GAUSSIAN APPROXIMATION 

The main drawback of the polar code construction method based on density evolution is its 

high computational complexity. The most practically important case corresponds to the 

AWGN channel. In this scenario, 
   1 2 4

2 4
~ ,

i

iL y N
 

 
 
 

, provided that the all-zero 

codeword is transmitted. 

The value given by (1)-(2) can be considered as Gaussian random variables with 

   
2

i i

n nL L   
   

D E , where E  and D  are the mean and variance, respectively. This enable 

one to compute only the expected value of 
 i
nL , drastically reducing thus the complexity. In 

the case of polar codes this approach reduces to 

 
     

2
2 1 1

/21 1 ,
i i

n nL L 
             

E E  (3) 

 
   2

/22
i i

n nL L   
   

E E  (4) 

where 
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 

 
2

4
1

1 tanh , 0
24

1 , 0.

u x

x
u

e dx x
x x

x

 







  

 




  

The error probability for each subchannel is given by 

 
/ 2 , 1 .

i

i nQ L i n        
E  

IV. DECOMPOSITION OF POLAR CODES 

The overall performance of a polar code is dominated by the performance of the worst 

subchannel. The proposed approach avoids this problem by performing joint decoding over a 

number of subchannels. 

 

A. Generalized concatenated polar codes 

The recursive structure of polar codes enables one to consider them as GCC. Namely, 

the generator matrix of a polar code can be represented as 
  s ls lG AF A F F

     , 

where 
1 0

1 1
F

 
  
 

 and A is a full-rank matrix with at most one non-zero element in each 

column. 

 

Inner code encoding: Inner codes i  of length 2ln   is generated by rows i,..., 2l  of 

matrix l

lB F . 

 

Outer code encoding: The generator matrix of the   1 ,R i l -th outer code iC  is 

obtained by taking rows  1 ,R j s l   of 
 s l

F
 

, such that row  1 2 ,s lR i j s   of sF  

is included into the generator matrix of the original polar code, where 0 2li  , 

0 2s lj   , and 

 
1 1

1

0 0

2 , 2 , 0,1 .
m m

j j

j m j j

j j

R i m i i
 

 

 

 
  

 
   
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B. Multilevel polar codes 

In the context of polar codes, signal constellation A is given by 2n  binary n-vectors 

 a u , which can be obtained as   l

la u uB F ,  2
n

u GF , where 2ln  . This 

constellation is recursively partitioned into subsets  1

iA u  by fixing the values of 1,..., iu u . 

The elements of u are obtained as codeword symbols of outer codes iC  of length 2s lN  . 

That is, one can construct N vectors    1, ,,...,
j

j n ju c c , 1 j N  , where  ,1 ,,...,i i N ic c C , 

1 i n   and obtain a multilevel codeword 
    1

,...,
Nl l

l lu B F u B F  . 

 

The multilevel polar codes can be decoded by multistage decoding algorithm. 

V. CONCATENATED CODES BASED ON POLAR CODES 

The performance of a polar code under the multistage decoding with block-wise 

maximum-likelihood decoding of outer codes can be improved by changing the set of 

frozen bits. Furthermore, if the algorithm used to perform block-wise decoding of outer 

codes does not take into account their structure, one can use any linear block code with 

i 
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suitable parameters, not necessary polar, as iC . This enables one to employ outer codes 

with better error correction performance. 

 

A. Capacity rule 

The rate iR  of iC  should be chosen equal to the capacity iC  of the i-th subchannel of 

the multilevel code, which is induced by matrix l

lB F . According to [10], one obtains 

 

       1
1 1

1 1

1 1 1 1; | i i

n i i i

i i u u
C I y u u E C A u E C A u

      
   

 

where 

 
   

 
1 1

2 1

1

| |
log

|
n

n n n n

n

n nR
a B

b B

W y a B W y a
C B dy

B W y b



 
 

  
 
 




 

is the capacity when using the subset B of 2

n  for transmission over the vector channel 

 1 1|n n nW y x . In the case of binary input memoryless output symmetric channels, one can 

drop the expectation operator to obtain 
     1i i

iC C A C A


  ,  where 
   

times

0,...,0
i

i

A A . 

It can be seen that the latter set is a linear block code iC  generated by l i  last rows of 
l

lB F . The expression can be further simplified to  

    
 

 

1

2 1

1

1

| 0

| 0 log

|
N

N

i jN
i j N

j NR
j

j j

b B j

C W y

C A W y dy

W y b





 

 
 
 
 
 
 





. 

Hence, the capacity of the i-th subchannel of the multilevel polar code can be computed 
as 

  
 

 

1 1

2 1

1

1

2 |

| 0 log

|

i

N

i

N

j jN
b C j N

i j NR
j

j j

b C j

W y b

C W y dy

W y b

 



 

 
 
 
 
 
 

 



. (5) 

 

Obviously, employing this rule results in a capacity achieving concatenated code, 

provided that the outer codes can achieve the capacity too. However, evaluating (5) seems 

to be a difficult task. 
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B. Equal error probability rule 

  

The probability of incorrect decoding of a binary linear block code C can be obtained as 

 
2

N
i

e j

j d

L
p A Q j



 
 
 
 


E

 

where iA  are weight spectrum coefficients of code C, and d is its minimum distance. 

Since it is in general difficult to obtain code weight spectrum, and union bound is known 

to be not tight in the low-SNR region, one can use simulations to obtain a performance 

curve for the case of AWGN channel and some fixed (probably, non-ML) decoding 

algorithm, and use least squares fitting to find suitable   and  , so that the decoding 

error probability is given by 

 
 
2

i

e

L
p m Q 

 
 
 
 

E
. 

 

Assume now that the outer codes iC  are selected from some family of error-correcting 

codes (not necessary polar) of length N. Let tK , tD  and  tP m  be the dimension, 

minimum distance and decoding error probability function for the t - th code, respectively, 

where m is the expected value of LLR.  

 

Figure 4 presents a simple algorithm for construction of a generalized concatenated 

(multilevel) code of rate R  according to the equal error probability rule. The algorithm 

employs the bisection method to approximately solve the equation

  
2

1
, 2

l
l

i
K i P RN


 , where  ,K i P  is the maximum dimension of a code capable of 

achieving error probability P  at the i -th subchannel. The parameter   is a sufficiently 

small constant, which affects the precision of the obtained estimate for P. The code is 

optimized for the case of AWGN channel with noise variance 2 . The algorithm returns 

the dimensions of optimal codes for each level, as well as an estimate for the decoding 

error probability for each code. 
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The SC/multistage decoder produces an error if decoding of any of the component 

codes is incorrect. Therefore, the overall error probability of the GCC can be computed 

as 

 

     

    

1

1 2 1 1 1

1

1 ,...,

1 | | ,...,

1 1 1 1
i

n

n n

n n

t i

i

P P C C

P C P C C P C C C

P m P





 

 

     

 

where iC  denotes the event of correct decoding of the outer code at the i-th level, P is the 

quantity computed by the above algorithm, and it  is the index of the code selected for the 

i-th subchannel. This expression enables semi-analytic prediction of the performance of 

the concatenated code, based on the available performance results for component outer 

codes. 

 

C. Decoding complexity 

One can use any suitable algorithm to implement soft-decision decoding of outer 

codes in the GCC obtained either by decomposing a polar code, or constructed explicitly 

using the algorithm in Figure 4. Box-and-match algorithm is one of the most efficient 

methods to perform near maximum likelihood decoding of short linear block codes [20]. 

Its worstcase complexity for the case of (N, K) code with order t reprocessing is 

given by     1t tO N K K O N   , although in practice it turns out to be much more 

efficient. Decoding of a concatenated code of length v = Nn involves decoding of N 

inner codes using the SC algorithm, and decoding of n outer codes. Therefore the 

overall complexity is given by  1 logt

b sO N nC Nn nC  , where bC  and sC  are some 

factors which reflect the cost of elementary operations performed by these algorithms.  
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VI. NUMERICAL RESULTS 

 

Figure 5 presents simulation results illustrating the accuracy of bit error rate analysis 

based on the Gaussian approximation. 

 

 

Figure 6 presents the performance of polar codes of length 2048 designed using the 

Gaussian approximation method for the case of AWGN channel with Eb/N0 = 3 dB. For 

multistage decoding, degree l decomposition of the original polar code was performed, 

and box-and-match algorithm with order t reprocessing was used for decoding of outer 

polar codes.  
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It can be seen that block-wise decoding of outer codes provides up to 0.25 dB 

performance gain compared to SC decoding. Higher values of N do not provide any 

noticeable performance improvement. The figure presents also the performance of GCC 

based on inner polar codes and outer optimal linear block codes with multistage decoding. 

It can be seen that increasing the length of outer codes provides additional 0.5 dB 

performance gain. This is due to much higher minimum distance of optimal codes 

compared to polar codes of the same length, obtained by decomposing the polar code of 

length Nn. 
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Abstract

This paper considers the use of sparse signal representation for the wideband direction of arrival (DOA)
or angle of arrival estimation problem. In particular, this paper discusses about the two ambiguities,
namely, spatial and algebraic aliasing that arise in wideband-DOA. The authors of the paper suggest
procedures to avoid the aliasing using multiple measurement vector and multiple dictionaries.

Introduction and Background

• A beamformer is a processor used in conjunction with an array of sensors to provide spatial
filtering. The sensor array collects spatial samples of propagating wave fields, which can be
processed by the beamformer.

• The objective of a beamformer is to estimate the signal arriving from a desired direction in the
presence of noise and interfering signals. A beamformer thus performs spatial filtering to separate
signals that have overlapping frequency content but originate from different spatial locations.

• Estimating the spatial locations (or directions) is a well-known problem in array signal processing.

• Three major DOA estimation techniques are 1. Classical methods (Delay-sum beamformer,
MVDR) 2. Subspace methods (MUSIC, ESPRIT) 3. ML-based methods

• This paper discusses about beamforming and in particular wide-band beamforming.

• DOA estimation by beamforming can be subjected to ambiguity called spatial aliasing [1].

• Spatial aliasing occurs when the spacing, d, between the sensors is larger than half of the apparent
wavelength, that is, d > λ/2 (See Fig. 1)

• We note from the figures, the resolution increases as d increases, but spatial aliasing also increases.

• This paper discusses how to avoid spatial aliasing ( if there is any) in a wideband setting.

• Various authors [2-5] have studied sparse representation (SSR) for narrowband DOA estimation
in various contexts. In [2], CS is applied to reduce the ADC sampling rate, in [3,4] it is used to
improve angle resolution, in [5] it is used to reduce hardware complexity. All these works assume
spatial aliasing is not present.

• However, in SSR based methods aliasing (or ambiguity) comes not only from spatial aliasing, but
also from the over-completeness of the dictionary (algebraic aliasing).

• This paper discusses, how to avoid both spatial and algebraic aliasing.
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Figure 1: Illustration of spatial aliasing

• In summary, the spatial aliasing can be avoided by using multiple dictionaries and the robustness
to algebraic alaising can be obtained by using multiple measurement vectors.

Data model

• A uniform linear array (ULA) comprised of N channels indexed by which are equally spaced on a
line with spacing d. It receives signals radiated from Q point sources.

• The signal at each channel after time-sampling is partitioned into P segments, where for each seg-
ment, K frequency subbands are computed by e.g., a filter bank or the discrete Fourier transform
(DFT).

• Let Sq,k(p) denote the kth subband (frequency) coefficient computed for the pth segment of the
signal that is radiated from theQth target; similarly, let yn,k(p) denote the kth subband (frequency)
coefficient for the pth segment of the signal received at the nth channel.

• With narrow-band assumption, the received signal at the nth sensor at the kth DFT bin is given
[1] by

yn,k(p) =

Q−1∑

q=0

ej2πfk
d
c
n sin θmq Sq,k(p) (1)

• The aim of this paper is to estimate the target DOAs {θ0, θ1, · · · , θQ−1}

• The matrix-vector form of Eqn. (1) is

yk,p =

Q−1∑

q=0

ak,mq
Sq,k(p) = AkSk,p (2)

where ak,mq
=

[
1, ej2πfk

d
c
1 sin θmq , · · · , ej2πfk

d
c
(N−1) sin θmq

]T
is called array response vector and Ak

steering matrix.

Assumption 1: The array response vectors corresponding to different targets are mutually inde-
pendent.
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Classical beamforming

• Classical beamforming (in this paper, delay-sum beamformer) sets the beamformer coefficients
corresponding to a single target angle.

• For example, if the beamformer wants to listen to angle θ = 30 deg, then it sets its coefficient

vector as
[
1, ej2πfk

d
c
1 sin π

6 , · · · , ej2πfk
d
c
(N−1) sin π

6

]T
and forms the product aH

k,myk,p

• The angle domain is divided into M points Θ = {θ0, · · · , θM−1}

• In many applications, such as sonar, a range (time)-bearing(angle) image is desired which can be
made by repeating the above procedure for all the subbands; the outputs are then combined and
transformed back into the time domain by means of e.g., an inverse Fourier transform.

• In the end, the signal for the pth segment at the mth angle in the range-bearing image I(p,m)
can be computed as

I(p,m) =

∣∣∣∣∣
1

N

K−1∑

k=0

aH
k,myq,k(p)e

j2πfkp

∣∣∣∣∣

2

(3)

• I(p,m) can be interpreted as the power of the output of a spatial-temporal filter steered to
the direction θm. The DOAs are estimated by seeking those θm whose corresponding values in∑P−1

p=0 I(p,m) are the largest.

• The delay-sum beamformer is subject to spatial aliasing. That is, when the spacing d is larger
than apparent wavelength, it is possible to find another θm′ 6= θm such that for an arbitrary integer
j

fk
d

c
sin θm = fk

d

c
sin θm′ + j (4)

holds and thus ak,m = ak,m′ , which gives multiple peaks in the range-bearing image I(p,m).

DOA estimation via SSR

Problem formulation

• Divide the whole angle search range into a fine grid Θ = {θ0, θ1, · · · , θM−1}.

• Each θm corresponds to a certain array response vector ak,m, which depends on fk.

• Construct N ×M steering matrix Ak = [ak,0, · · · ,ak,M−1] (dictionary)

• Assumption 2: The DOAs of the targets {θm0
, θm1

, · · · , θmQ−1
} ∈ Θ Ω = {m0,m1, · · · ,mQ−1}

• Data model : yk,p = Akxk,p xk,p is a Q-sparse signal (Q < N)

• We have P such snapshots (measurement vector), then we can form Yk = AkXk Yk is N ×P ,
Ak is N ×M and Xk is M × P

• Assume that the DOAs during the span of P snapshots remain unchanged, then the columns of
Xk share a common sparsity.

• Let R(A) denote an operation that collects the indexes of all the nonzero rows of a matrix A.
R(Xk) = Ω and |R(Xk)| = Q.

• With these notations, we can formulate the sparse recovery problem as

min
X̂k

|R(X̂k)| subject to Yk = AkXk (5)
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Aliasing Suppression

• As mentioned earlier, spatial aliasing occurs if d is larger than half of the apparent wavelength,
which leads to similar columns in the steering matrix

• In classical beamforming, the DOAs are sought by steering a beamformer to different potential
angles.

• However, the SSR-based method recovers Xk first and then estimates the DOAs by locating the
rows of Xk that contain dominant entries.

• The over-completeness of the SSR dictionary gives rise to non-unique solutions and thus ambiguity
in DOA estimation, which is termed as algebraic aliasing.

• Algebraic aliasing is essentially related to the “goodness” of the sensing matrices (steering matrix)
for the DOA recovery.

Proposition 1: Under Assumption 1, if the number of targets Q and channels N satisfy

N > 2Q− rank(Yk) (6)

then the SSR-based method will not suffer from algebraic aliasing.

Proof: Algebraic aliasing will not exist if we can find unique solution X̂k satisfying Yk = AkX̂k. This
is only possible if the Kruskal-rank of Ak is larger than 2Q− rank(Yk) [6, Theorem 2.4]. Since Ak is a
Vandermonde matrix, whose Kruskal-rank is equal to its rank, N.

Kruskal-rank (or k-rank) of a matrix A is defined as the largest integer r for which every set of r columns
of A is linearly independent.

Remarks:

• If rank(Yk) = 1 (P = 1), then Q < N/2, that is we can discriminate at most N/2 targets.

• On the other side, rank(Yk) ≤ rank(Xk) ≤ Q, suggests that Q < N .

• Thus, using multiple measurement vectors the authors argue that it is possible to counter the algebraic
aliasing.

So far, we have concentrated on the data model for a single frequency fm. We can obtain different measure-
ments and different dictionaries Ak 6= Al if we use different frequency fk 6= fl. We will next show that using
multiple dictionaries enables us to eliminate spatial aliasing.

• Let Γk denote the support of all possible DOA solutions for the k-th dictionary

Γk = {R(X̂
(0)
k ),R(X̂

(1)
k ), · · · }

• Spatial aliasing is frequency-dependent, which means that for different center frequencies, the resulting
ambiguity will not (completely) overlap. Therefore, we can imagine that if we solve Eqn. (5) for several
frequencies: f0, f1, · · · , fK−1 and combine the solutions in a judicious way, the ambiguity due to spatial
aliasing will at least be reduced.
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Theorem 1: With Proposition 1 met, if there exist at least two dictionaries, whose corresponding frequencies,
say fk and fl , satisfy

0 < |fk − fl| <
c

2d
(7)

then the intersection of the solution support related to different dictionaries will contain exclusively the target
DOAs, i.e., ⋂

k

Γk = Ω (8)

Proof: With proposition 1 satisfied, we can exclude the ambiguity due to algebraic aliasing and need to focus
only on spatial aliasing. Let us proceed with a counter-example. Suppose θm is one of the target angles and
θm 6= θm′ is spatial aliasing contained in both dictionaries corresponding to fk and fl , which implies that
{θm, θm′} belongs to both Γk and Γl. In accordance with Eqn. (4) we then have

fk
d

c
sin θm − fk

d

c
sin θm′ = j1

fl
d

c
sin θm − fl

d

c
sin θm′ = j2

fk
d

c
sin θm − fk

d

c
sin θm′ − fl

d

c
sin θm + fl

d

c
sin θm′ = j1 − j2 = j3

where j1, j2, j3 are integers and j1, j2 are not equal to 0. Using trignometric identities, the above equations can
be written as

− 2fk
d

c
sin

θm − θm′

2
cos

θm + θm′

2
= j1 (9)

− 2fl
d

c
sin

θm − θm′

2
cos

θm + θm′

2
= j2 (10)

− 2(fk − fl)
d

c
sin

θm − θm′

2
cos

θm + θm′

2
= j3 (11)

Since 0 < |fk−fl| <
c
2d , it is only possible for Eqn. (11) to hold if the integer j3 = j1− j2 = 0. On the other

hand, from the above equations we know that j1 and j2 are not zero and they cannot be equal. Therefore, the
angle θm′ cannot be contained simultaneously in Γk and Γl, which concludes the proof. A judicious choice of
frequencies can not only prevent spatial aliasing, but also enhance the performance in a noisy environment.

Aliasing-Free SSR Recovery

Based on the analysis in the previous section, the authors formulate the following multi-dictionary (MD) joint
optimization problem with the joint-sparsity constraint:

min
X̂k

|R(X̂k)| for k = 0, 1, · · · ,K − 1

subject to Yk = AkXk, and R(X̂k) = R(X̂l) for k 6= l (12)

whose solution will be free from any ambiguity under Theorem 1.

The authors have not proposed any new algorithm. They have used OMP in their simulations.

Numerical Examples

1. The authors demonstrate their approach using synthetic and real data.

2. For both cases, they considered ULA with N = 16 hydrophones, with a spacing of d = 0.06 m. The
speed of the signal wave is assumed to be c = 1500 m/s

3. In the synthetic data they consider two sinusoids Q = 2 with frequencies f0 = 25 kHz and f1 = 35 kHz.
The DOA are {35◦, 39◦}. The search gird is defined as Θ = {−90◦,−89.75◦, · · · , 90◦}. With P=100
snapshots, each dictionary has a dimension of 16× 720
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Figure 2: Comparison of classical beamforming with the proposed method. Upper-left subplot: the
frequency-bearing image after beamforming; upper-right subplot: the time-bearing image after beam-
forming; lower-left subplot: the integrated energy of the time-bearing image; lower-right subplot: the
result yielded by the proposed method.

Figure 3: MSE performance against the number of utilized frequencies

4. They halt OMP after 5 iterations. MSE = 1
Ns

∑Q−1
q=0 (θ̂m − θm)

1. In the real data experiment, the direction of the divers has to be estimated based on their exhaling sound.
Two divers who are 150 m away from the hydrophone are considered. The received signals are from 52◦

and 60◦, respectively.

2. We can see that the frequencies lower than 10 kHz are completely useless for DOA estimation: the diver
signal is subdued by the ambient noise dominated by the ship traffic in the harbor.

3. In the midfrequency range (between 10 and 12.5kHz), where the hydrophone array is not subject to
aliasing, there is a strong interference signal at a direction around −40◦, which possibly comes from a

6



departing ship blowing the horn.

Figure 4: Comparison of classical beamforming with the proposed method for the diver signal. Upper-
left subplot: the frequency-bearing image after beamforming; upper-right subplot: the time-bearing
image after beamforming (only signals above 25 kHz are taken); lower-left subplot: the integrated
energy of the time-bearing image; lower-right subplot: the result yielded by the proposed method.

In Summary, the authors have applied sparse signal reconstruction for DOA estimation (for ULA). They
formed an MD optimization problem with joint sparsity constraints. They show how to avoid ambiguities
(spatial and algebraic) by using multiple dictionaries and multiple measurement vectors, respectively. They
have demonstrated their findings through synthetic and real-life examples.
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Short summary: This paper  considers the reconstruction of structured-sparse signals 

from noisy linear observations. In particular, the support of the signal coefficients is 

parameterized by hidden binary pattern, and a structured probabilistic prior (e.g., Markov 

random chain/field/tree) is assumed on the pattern. Exact inference is discussed and an 

approximate inference scheme, based on loopy belief propagation (BP), is proposed. The   

proposed scheme iterates between exploitation of the observation-structure and 

exploitation of the pattern-structure, and is closely related to noncoherent turbo 

equalization, as used in digital communication receivers. An algorithm that exploits the 

observation structure is then detailed based on approximate message passing ideas. 

 

I. INTRODUCTION 

The main objective is to estimate the sparse signal Nx  from the noisy linear 

measurements My , 

  y Ax w  (1) 

 

where M NA  is a known matrix and 
Mw is additive noise, often modeled as circular 

white Gaussian,  i.e., 2~ (0, )CN w I . By “sparse,” we mean that the signal has only a few 

(say K , where K N ) non-zero coefficients. 

In many cases of interest, the system of equations in (1) is underdetermined, i.e., M N , so 

that, even in the noiseless case, there is no unique inverse. However, when x  is known to be 

sparse, it is possible to accurately reconstruct x  from y  if the columns of A are sufficiently 

incoherent. For various sparse reconstruction algorithms, including convex- optimization-based, 

Turbo Reconstruction of Structured Sparse Signals 
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greedy, and iterative thresholding algorithms, there exist elegant bounds on reconstruction error 

that hold when A  satisfies a certain restricted isometry property (RIP). In many applications, 

however, the signal x  has structure beyond simple sparsity. For example, the wavelet transform 

coefficients of natural scenes are not only approximately sparse, but also exhibit persistence 

across scales, which manifests as correlation within the sparsity pattern. Many other forms of 

structure in the sparsity pattern are also possible, and so we desire a powerful and flexible 

approach to modeling and exploiting such structure. 

In this paper, we take a probabilistic approach to modeling sparsity structure, allowing the use 

of, e.g., Markov chain (MC), Markov random field (MRF), and Markov tree (MT) models [2].  

Such models have been previously exploited for sparse reconstruction, but only to a limited 

extent. For example, [3] and [4] proposed Monte-Carlo-based [5] sparse reconstruction 

algorithms using MRF and MT models, respectively, and [6] and [7] proposed to iterate 

matching- pursuit with MAP pattern detection based on MRF and MT models, respectively. 

Monte-Carlo algorithms, while flexible, are typically regarded as computationally too expensive 

for many problems of interest. Matching-pursuit algorithms are typically much faster, but the 

schemes in [6], [7] are ad hoc. We attack the problem of reconstructing structured-sparse signals 

through the framework of belief propagation (BP) [8]. While BP has been successfully used to 

recover unstructured sparse signals (e.g., [9], [10]), we believe that its application to structured 

sparse signals is novel. As we shall see, the BP framework suggests an iterative approach, where 

sparsity pattern beliefs are exchanged between two blocks, one exploiting observation structure 

and the other exploiting pattern structure. In this regard, our scheme resembles turbo equalization 

from digital communications [11], where bit beliefs are exchanged between a soft equalizer and 

a soft decoder. Our two blocks are themselves naturally implemented using BP, and we detail a  

particularly efficient algorithm based on the approximate message passing (AMP) framework  

recently proposed by Donoho, Maleki, and Montanari [10]. 

 

II. SIGNAL MODEL 

Our structured-sparse signal model uses hidden binary indicators 1{ }N

n ns  , where {0,1}ns  . In 

particular, 1ns   indicates that the signal coefficient nx  is active while 0ns   indicates that 
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nx  is inactive. Assuming that the active signal coefficients are independently but 

non-identically distributed, we can write 

 

 ( | ) ( ) (1 ) ( )n n n n n n np x s s q x s x    (2), 

 

Where ( )nq   denotes the pdf of
nx , when active, and ( )   denotes the Dirac delta. We refer 

to  1 2, , , {0,1}
T N

Ns s s s  as the sparsity pattern, and model structure in s  through an 

assumed prior pmf ( )p s . 

 

III. TURBO INFERENCE  

Our primary goal is estimating the structured-sparse signal x  given the observations 0y y  

in model (1). In particular, we are interested in computing minimum mean-squared error(MMSE) 

estimates of { }nx . 

 

Figure 1 Factor graph of posterior 0( , | )p x s y y . The boxes represent factor nodes and the circles represent 

variable nodes. Dashed line partitions the factor graph into two sub-graphs 

 

A. Exact inference 

The estimation task is facilitated by the following factorization of the posterior pdf shown by 

the factor graph in Fig. 1. 

 0 0 0

1( ) ( ) ( , )

( , | ) ( | , ) ( , ) ( ) ( | ) ( | )

n n n

N

n n

nh g f x s

p p p p p p x s


     
s x

x s y y y y x s x s s y y x  (3) 

We use   to denote equality after scaling to unit area. 

The MMSE estimate of nx  is given by the mean of the marginal posterior 0( | )np x y y , 

which can be written as 
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0

0 0

{0,1} {0,1} 0

( , , )
( | ) ( , | )

( )n nN N

n

p
p x p

p 
 


   


  x x

s s

x s y y
y y x s y y

y y
 (4) 

 
0 0 0

{0,1} {0,1}

( , , ) ( | , ) ( | ) ( )
n nN N

p p p p
 

 

      x x
s s

x s y y s x y y y y x x  (5) 

 
0

{0,1} {0,1}

( | ) ( | ) ( ) ( ) ( | ) ( )
n nN N

p p p g p p
 

 

    x x
s s

s x y y x x x x s s  (6) 
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,

1 1

0 0 {0,1}

( , ) ( ) ( ) ( , ) ( | )
n N

n q n q

n n n n q q q n n

s sq n

f x s p s g f x s p s
 





  

  x
s

x s  (7) 

 

Where 
ns  denotes vector s  with the thn  element omitted, and ,n qs  denotes s  with 

both the 
thn  and 

thq  elements omitted. Writing ,( | ) ( | , ) ( | )n n n q q n q np s p s s p s s s s , the 

last summation in (7) reduces to ( | )q np s s , giving 

 0( | ) ( ) ( )
n n nn f x n g x np x v x v x  y y  (8) 

 

1

0

( ) ( , ) ( )
n n

n

f x n n n n n

s

v x f x s p s



  (9) 

 

1

0

( ) ( ) ( , ) ( | )
n

n
q

g x n q q q q n

sq n

v x g f x s p s s






x x  (10) 

 

B. Implementing the Message Passes 

Whereas exact posterior calculation via (8)-(10) is computationally prohibitive for typical 

problem sizes, approximate calculation can be efficiently accomplished using message 

passing. Using the framework of BP, the functions ( )
n nf xv    and ( )

ng xv    can be 

approximated. 

 

1
( ) ( )

0

( ) ( , ) ( )
n n n n

n

t t

f x n n n n s f n

s

v x f x s v s 



  (11) 

 

1
( ) ( )

0

( ) ( )

( ) ( ) ( , ) ( )
n q q

n
q

f x n x g nq q q

t t

g x n q q q s f q

sq n

v x v x

v x g f x s v s


 

 





 x x  (12) 

Which depend on the other messages 

 
1

( 1)

( ) ( ) ( 1)

{0,1}

( )

( ) ( ) ( ) ( )
n n n q

N
n

t
qf sq q

t t t

s f n h s n s h q

q n

v s

v s v s h v s








  





   
s

s  (13) 
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( )

( ) ( )

( )

( ) ( , ) ( )
n n n n

n

t
ng fn

t t

f s n n n n x f n
x

v x

v s f x s v x



 



   (14) 

We use the superscript-(t) to denote iteration. These messages can then be combined for 

marginal inference: 

 

 
( )

( ) ( )

0( | ) ( ) ( )
n n n

t
t t

n f x n g x np x v x v x  y y  (15) 

 
( )

( ) ( )

0( | ) ( ) ( )
n n n

t
t t

n f s n h s np s v s v s  y y  (16) 

 

Where 
( )t

p  denotes the iteration- t  approximation to the pdf. 

  We now partition our factor graph into the two sub-graphs separated by the dashed line in 

Fig.1. The message   ( )

1
( )

n n

N
t

f s
n

v 


  form the outputs of the left sub-graph and the inputs to the 

right one, while the messages  ( )

1
( )

n

N
t

h s
n

v 


  form the outputs of the right sub-graph and the 

inputs to the left one. From this, we can interpret the BP scheme as iterationg between two 

blocks, one which performs inference on the left sub-graph (which models structure in the 

observation) and the other which performs inference on the right sub-graph (which models 

structure in the sparsity pattern), with message-passing between blocks. 

 

We will henceforth refer to inference on the left sub-graph of Fig.1 as “sparsity pattern 

equalization” (SPE) and inference on the right sub-graph as “sparsity pattern decoding” 

(SPD). We now formally decouple these subtasks and represent each of them using a 

separate factor graph, as in Fig. 2. For this, we define two additional tht  iteration constraint 

functions, 

 
( ) ( )( ) ( )

n

t t

n n h s nh s v s  (17) 

 
( ) ( 1)( ) ( )

n n

t t

n n f s nd s v s

  (18) 
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Figure 2 Decoupling of partitioned factor graph from Fig. 1 into  

(a) sparsity pattern equalization and (b) sparsity pattern decoding. 

IV. SPARSITY PATTERN EQUALIZATION  

Below we outline a BP-based technique that follows the “approximate message passing” 

(AMP) framework recently proposed by Donoho, Maleki, and Montanari. Since we focus on 

a single iteration t , we suppress the superscript- ( )t  notation on messages in this section. 

For BP-based SPE, we expand the g  node in Fig. 2(a), yielding the loopy factor graph in 

Fig.3, with constraints 

 
2( ) ( ; , )H

m m mg x CN y a x  (19) 

 

Where H

ma  denotes the thm  row of A . Noting that SPE will require several iterations of 

message passing between nodes { }mg  and { }nx , we will henceforth use 
n m

i

x gv   and 

m n

i

g xv   to denote the SPE-iteration- i  messages. In addition, we will assume Gaussian 

active-coefficients, i.e., 

 
2( ) ( ;0, )n n n nq x CN x   (20) 

 

We use n  to abbreviate (1)nh , the prior probability of 1ns   assumed by SPE. Thus, the 

coefficient is Bernoulli-Gaussian, with the form 

 
2( ) ( ;0, ) (1 ) ( )

n nf x n n n n n nv x CN x x         (21) 

 

 

Figure 3 Factor graph for BP-based implementation of SPE 
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A. BP approximation via the large-system limit 

Exact calculation of ( )
m n

i

g x nv x  would involve the iteration of 12N  terms, which is cleary 

impractical. However, in the large system limit(i.e., ,M N   with /M N fixed), the 

central limit theorem motivates the treatment of ( )
m n

i

g x nv x  as Gaussian. In this case, it is 

sufficient to parameterize the inputs to 
mg  via 

 

 ( )
n m

n

i i

nm n x g n
x

x v x   (22) 

 
2( ) ( )

n m
n

i i i

nm n nm x g n
x

v x v x   (23) 

 

Which yields outputs from 
mg  that take the form  

 

 ( ) ( ; , ) 
m n

i i i

g x n mn n mn mnv x CN A x z c  (24) 

 


i i

mn m mq qmq n
z y A  (25) 

 
2 2| | 


i i

mn mq qmq n
c A  (26) 

 

 

From (22), (23), we see that 1 i

nm and 1i

nmv  are then determined by the mean and variance, 

respectively of the pdf 

 

 
1 ( ) ( ) ( )

  
 n m n n l n

i i

x g n f x n g x nl m
v x v x v x  (27) 

 

Using following equation 

 

 
1

( ; , ) ; ,
1 1





 
 
 
 
 
 




 

q

q
q

q q

q

q q
q q

v
CN x v CN x

v v

 (28) 

 

The product term in (27) reduces to 
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*

ln ln ln

2 2

ln ln ln ln

/ 1
; ,

| | / | | /



 

 
 
 
 


 

i i

l m
n i i

l m l m

A z c
CN x

A c A c
 (29) 

 

 

And so, under the large-system-limit approximations 

 

 ln 1

1


 
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And 2

ln ln1
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 
  

M

l m l
A A , (27) simplifies to 

 

 
1 2 *
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 
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v x CN x x CN x A z c  (31) 

 

 

Applying (28) to (31), we find, after some algebra, that 
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*

ln ln
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nm l m
A z  (34) 

 
2( )exp( ( ) | | )   i i i i

nm n n n n nmc c  (35) 

 

Where 
2

2
( )





n

n

n

c
c

, 
21

( )
 




 n n
n

n

c
c

c
, 

2

2
( )

( )





n

n

n

c
c c

. 

 

The thi  SPE iteration yields the nx -posterior approximation 

 

 
1

0 1
( | ) ( ) ( )





 
  n n l xn

i M i

n f x n g nl
p x v x v xy y  (36) 

 

 

The mean and variance of (36) constitute the MMSE estimate of nx  and its MSE. Nothing 

that (35) differs from (27) only in the inclusion of the 
thm  product term. 

 

B. Approximate message passing 
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The approximate BP algorithm outlined updates ( )O NM  variables per iteration. When 

N and M  are large, the resulting complexity may be undesirably high, motivating us to 

find a simpler scheme. 

Recently, Donoho, Maleki proposed AMP algorithms that greatly simplify BP algorithms 

of the form outlined by tracking only ( )O N  variables. Using AMP, we find that 

  

 
*

1
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
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z
z y A F c
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 (41) 

 

Above, (.;.)nF , (.;.)nG , and '(.;.)nF  are nonlinear functions that depend on the 

coefficient prior. We chose the Bernoulli-Gaussian prior. Thus, the nonlinear functions take 

the following form 
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 (44) 

 

V. NUMERICAL RESULTS 

  Numerical experiments were conducted for the observation model (1), where the elements of 

A  were independently drawn from a 
1

0,
 
 
 

CN
M

 distribution and where the signal coefficients 

were generated via ( | ) ( ;0,1) (1 ) ( )  n n n n n np x s s CN x s x  using Markov chain-generated 

binary sprsity pattern { }ns . We set (0,1]   called the Markov independence parameter. Note 
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that, as   increases, the pattern becomes less correlated, with 1   corresponding to an i.i.d 

pattern. 

 

VI. DISCUSSION 

After meeting, please write discussion in the meeting and update your presentation file. 
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Fluorescence protein

•
•



INFONET,   GIST         / 10

CS algorithm make up fluorescence microscope major drawback
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Sample plane

60x objective 
lens

Photo multiplier 
tube(Detector)

Digital micro mirror
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Sample plane

60x objective 
lens

Photo multiplier 
tube(Detector)

Digital micro 
mirror
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Recovering the signal x from acquired signal by solving the optimization 
problem.

The acquired signal is noisy, it is better to relax the constraints into

W will be either an orthonormal basis(e.g., Dirac basis) or an overcomplete
signal representation(e.g., undecimated wavelet frame or curvelet frame).

is chosen empirically depending on the noise level.
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M=N/Under sampling-ratio.

Under sampling ratio = 8, 16, 32, 64,...

       => M=8192, 4096, 2048,…

It means, we can save the time to using this system.
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Top left to bottom right: camera snapshot and reconstructed 
256-by-256 bead images for values of the undersampling ratio 
equal to 8, 16, 32, 64, and 128.

FOV: 6um * 6um

Nominal illumination 
level(blue) and for the 
same level reduced by 
a factor 10(red) and a 
factor of 100(green). 
Solid lines correspond 
to the PSNR in raster 
scan for the same 
surfacic
illumination(Blue: I, Red: 
I/10).
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• Conclusion

1. Reconstruct result is affected by measurement matrix.

      =>If we can make measurement matrix well, the reconstructed image will  

       get high resolution image.

2. Fluorescence microscopy imaging is possible in diffusing media.
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Short summary: In this paper authors propose solution of a combined problem; relay 

selection and power allocation to secondary users under the constraint of limited interference to 

primary users in cognitive radio (CR) system. Objective of the joint problem was to maximize 

system throughput.  A high complexity optimal solution and a low complexity suboptimal 

solution are proposed. The presented solutions show over 50% improvement in system throughput.  

I. INTRODUCTION 

Cooperative technique for spectrum sensing and sharing in CR networks has been investigated in the 

literature. It can obtain spatial diversity and combat detrimental effects of wireless channels however it 

has some limitations associated. For example, while doing relay selection and resource allocation one 

must also consider spectrum efficiency and interference limitation as well. Authors in this paper consider 

these combined issues i.e. relay selection and power allocation with interference limitation. 

II. SYSTEM DESCRIPTION 

In order to have effective cooperation following decisions must be made prior to cooperation:  

• When to cooperate 

• To whom cooperate with 

• What resources to share and how to share? 

These decisions are basis of relay selection and power allocation problem. 

 

Figure 1: The structure of a cooperative CR network 

Simplified Relay Selection and Power Allocation in 

Cooperative Cognitive Radio Systems 
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A simple three-node relay system where each CR user can only help one CR transceiver pair is shown 

in the figure. The source node transmits data to the destination and the relay simultaneously using 

orthogonal channels, Channel (CH) 0 and CH ��, respectively. The relay node forwards scaled version of 

the received signal from CH �� to the destination node using CH iC′ .  

Power modeling: 

Existing relay selection schemes does not consider interference issue. In order to prevent primary users 

from interference the transmission powers on channels (CH 0), CH �� and CH iC′  must satisfy: 

2

1, , , 1

2

2, , , 2

2

3, , 3

(1)

i s p d

i s p i

i i p

P h I

P h I

P h I

≤

≤

≤

 

Where , ,s p ih and , ,s p dh are channel gain between CR source and primary users of CH �� and (CH 

0) respectively while ,i ph is channel gain between CR source and primary user of channel CH iC′ . 

1I , 2I and 3I are acceptable interference powers of primary users over channel CH 0, CH �� and 

CH iC′ respectively. The overall transmission power of CR source and relay nodes are limited as: 

1, 2, 3, 3i i total iP P P and P P+ ≤ ≤  

The channels under consideration i.e. CH 0, CH �� and CH iC′  are �(0, 
2σ )  with known channel 

gains at CR source and CR relay nodes. If i
th
 CR user is relay node then signal and noise powers at 

destination from relay is:  

2 2

3, 2, , ,

2 2
2, ,

,

i i s i i d

i s i

P P h h

s i
P h

P
σ+

=  

2

3, ,

2 2
2, ,

2

, 1i i d

i s i

P h

n i
P h

P
σ

σ
+

 = + 
 

 

,

,

s i

n i

P

i P
SNR =  

Where ,s ih and ,i dh are channel gains between source and relay and relay and destination nodes 

respectively and SNRi is SNR value at destination from i
th

 relay channel.  

Throughput Calculation: 

The system throughput for i
th
 relay is: 
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( ) ( ) ( ) ( )
2 2 2

1, , 3, , 2, ,

2 2 2 2 2
3, , 2, ,

1, 2, 3,, , 1 log 2 1 1 log 2 1 (2)i s d i i d i s i

i i d i s i

P h P h P h

i i i i
P h P h

T P P P
σ σ σ

α α
+ +

  = − + + − +  
   

Where α is mis-detection probability of spectrum sensing. 

This equation tells us that data will be lost if interference happens. 

III. ALGORITHM DEVELOPMENT 

Optimal and suboptimal algorithms are developed for power allocation and relay selection problem.  

A. Optimal Approach 

Optimization problem is formulated as:  

( ) ( )

( )
1, 2, 3,

1, 2, 3,

1, 2, 3,

* * *

1, 2, 3,
, ,

* * *

1, 2,

3, 3

2

1, , , 1

2

2, , , 2

2

3, , 3

, , arg max , , (3 )

arg max , , (3 )

(3 )

(3 )

0 (3 )

0 (3 )

0 (3 )

i i i
i i i

i i i

i i i i
P P P

i
i

i i total

i

i s p d

i s p i

i i p

P P P T P P P a

i T P P P b

subject to

P P P c

P P d

P h I e

P h I f

P h I g

=

=

+ ≤

≤

≤ ≤

≤ ≤

≤ ≤

 

Lagrange multiplier is then used to divide the problem into subproblems and then obtain solution for 

subproblems: 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2

1, , 3, , 2, ,

2 2 2 2 2
3, , 2, ,

1, 2, 1 2 3 2 2

2 2

1 1, 2, 2 1, , , 1 3 2, , , 2

, , , , 1 log 1 1 log 1

(4)

i s d i i d i s i

i i d i s i

P h P h P h

i i
P h P h

i i total i s p d i s p i

L P P

P P P P h I P h I

σ σ σ
λ λ λ α α

λ λ λ

+ +

  = − − + − − +  
   

+ + − + − + −

According to Karush-Kuhn-Tucker conditions: 

1,0 iP≤ , 2,0 iP≤  and 0iλ ≥  i∀  
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Solving them by using dual-domain and sub-gradient method we get solution for Lagrangian dual variables as:  
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( ) ( )( )
( ) ( )( )
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1
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21
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 

 = + −  

 = + −  

 

Here ‘
nµ ’ is sequence of scalar step-sizes. Once we get ,i iλ ∀ we can calculate 1,iP and 2,iP  as follows; 
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2 2
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4 2 2 22 2
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1,
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Where 
( )

2

1 3 , ,

1

ln 2s p ih
K α

λ λ

−

+
=  and [ ] ( )max ,0

+
⋅ = ⋅  

By using these values we get optimal power allocation 
1, 2,

* *,
i i

P P . Note that 
3

2
3,

,

*

3min ,
i

i p

I

h
P P

 =  
 

. 

Finally system throughput 
*

iT  when i
th

 CR node acts as relay is then calculated from equation … 

B. Sub-Optimal Approach 

Joint relay selection and power allocation problem provides optimal throughput yet it is quite complex 

algorithm. A low complexity, sub-optimal version of the problem can be defined as follows: 

Transmission power constraints of CR nodes are defined as: 
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2
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In order to calculate system throughput by using equation 2 we need to choose relay as: 

2 2

3, , ,

2 22 2 2
3, , , , 2 , , ,

arg max i s i i d

i i d s p i s i s p i

P h h

P h h I h hi
i

σ+ +
=  

The optimal power limit and other constraints in (2) are taken as total power limit. 

IV. SIMULATION RESULTS 

Parameters: 

Interference limits:= 1 2 3 0.1I I I mW= = = , Path loss exponent= 4, channel of unit bandwidth 

is used. Channel fading follows Rayleigh distribution with 6dBσ =  

Results: 

 

Fig. 2. System throughput versus transmission power limit of CR source 

Transmission power limit of relay node is P3 = 0.5W and no. of candidate relay nodes = 20 

From figure we see proposed scheme achieves about 50% throughput achievement over optimal 

power allocation (OPA) and equal power allocation (EPA) schemes. Comparing sub-optimal 

scheme with optimal scheme we see only about 15% degradation in throughput is observed. 

Moreover in low Ptotal region the system throughput increase rapidly however for high Ptotal 

region the growth is restricted due to interference limits.  
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Fig. 3. System throughput versus number of candidate relays. 

Figure 3 shows that gap between optimal and sub-optimal schemes is small well when the number of 

candidate users is small. This shows that sub-optimal approach performs well when number of relays are 

small. 
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Abstract

In this paper, the authors present a source localization method based on sparse representation of sensor
measurements. In particular, they use SVD of the data matrix obtained from the sensors to summarize
the multiple measurements. The SVD summarized data is then sparsely represented in order to detect
the sources. The authors also proposed grid refinement in order to mitigate the effects of limiting
estimates to a grid of spatial locations. They demonstrate the superior resolution ability with limited
time samples of their method over the existing methods via various experiments.

Introduction and Background

• Source localization methods deal with finding the closely spaced sources in presence of considerable
noise.

• Many advanced techniques for the localization of sources achieve super-resolution by exploiting
the presence of a small number of sources. For example, the key component of the MUSIC method
is the assumption of a low-dimensional signal subspace.

• Estimating the spatial locations (or directions) is a well-known problem in array signal processing.

• Three major source estimation techniques are 1. Classical methods (beamformer, MVDR) 2.
Subspace methods (MUSIC, ESPRIT) 3. ML-based methods (deterministic and stochastic).

• Beamforming is simple but its resolution is limited. Subspace methods achieve super resolution,
provided SNR is moderately high and sources are not strongly correlated and the number of
snapshots (measurement vectors) are sufficient. ML techniques are superior than the subspace
methods but require accurate initialization for global convergence.

• By turning to the sparse signal representation framework, the authors are able to achieve super-
resolution without the need for a good initialization, without a large number of time samples, and
with lower sensitivity to SNR and to correlation of the sources.

• The authors have developed the method for narrowband case and discussed in brief how it can be
used for wideband source localization.

• Prior research has established sparse signal representation as a valuable tool for signal processing,
but its application to source localization has been developed only for very limited scenarios.
For example, [1, 2] is concerned with source localization in the beam-space domain, under the
assumption that the sources are uncorrelated, and that a large number of time samples is available.
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• In its most basic form, the problem of sparse signal representation in overcomplete bases asks
to find the sparsest signal x to satisfy y = Ax, where A ∈ CM×N is an overcomplete basis, i.e.,
M < N .Without the sparsity prior on x, the problem y = Ax is ill-posed and has infinitely many
solutions. Additional information that x should be sufficiently sparse allows one to get rid of the
ill-posedness.

Source localization framework

• The goal of the source localization is to find locations of sources of wavefields that impinge on an
array of sensors that are seperated by a distance less than or equal to λ/2

• Consider K narrowband signals uk(t), k ∈ {1, 2, · · · , K}, arriving at an array of M sensors, after
being corrupted by additive noise nm(t) , resulting in sensor outputs ym(t),m ∈ {1, 2, · · · ,M}.
After demodulation, the vector form of the received signal is

y(t) = A(θ)u(t) + n(t), t ∈ {t1, · · · , tT} (1)

• A(θ) is array manifold matrix. The (m, k)th element A contains the delay and gain information
from the kth source (at location θk) to the mth sensor. The column, a(θk), of A are called steering

vectors and is given by a(θk) =
[
ej

2π
λ
1 sin θk , ej

2π
λ
2 sin θk , · · · , ej 2π

λ
M sin θk

]T
• Any source localization method aims to find the unknown locations of the sources θk,∀k, given
y(t) and A.

• We note that finding θ is a non-linear estimation problem.

Sparse representation for a single time sample, that is, T = 1

• To cast a sparse representation problem, the authors introduce an overcomplete representation of
A in terms of all possible source locations.

• Let {θ̃1, θ̃2, · · · , θ̃N} be a sampling grid of all source locations of interest.

• The number of potential sources N will typically be much greater than the number of actual
sources K and the number of sensors M .
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• A matrix composed of steering vectors corresponding to each potential source location as its

columns constitute an over-complete dictionary, that is, A =
[
a(θ̃1), a(θ̃2), · · · , a(θ̃N)

]
. We note

that A is known and does not depend on the actual source locations.

• The signal vector is s(t) with the nth element sn(t) = uk(t) if the source k comes from θn for some
k and zero otherwise. For T = 1, then the source localization problem reduces to

y = As+ n (2)

• In effect, this overcomplete representation allows us to exchange the problem of parameter esti-
mation of θ for the problem of sparse spectrum estimation of s.

• With the key assumption that the source numbers are less, the underlying spatial spectrum is
sparse (i.e., has only a few nonzero elements), and hence we can solve this inverse problem via l1
methodology, min∥y −As∥22 + λ∥s∥1

• The data for the model is complex-valued; hence, neither linear nor quadratic programming can
be used for numerical optimization. Instead, the authors adopt an SOC programming framework
and find s. Once s is found, the estimates of the source locations correspond to the locations of
the peaks in s.

Source location with multiple time samples and l1 − SV D

• Source localization with multiple snapshots from potentially correlated sources is of greater prac-
tical importance.

• When we bring time into the picture, the overcomplete representation is easily extended and it
has the following form:

y(t) = As(t) + n(t), t ∈ {t1, t2, · · · , tT} (3)

Single and Joint inverse problem

• The first thought that comes to mind when we switch from one time sample to several time samples
is to solve each problem indexed by separately. In that case, we would have a set of solutions ŝ(t).

• If the sources are moving fast, then the evolution of the sources is of interest, and the approach is
suitable for displaying it.

• When the sources are stationary over several time samples, then it is preferable to combine the in-
dependent estimates to get one representative estimate of source locations from them, for example,
by averaging or by clustering.

• Now, we consider a simple approach that uses different time samples together. Let
Y = [y(t1),y(t2), · · · ,y(tT )], and define S and N similarly. Then, we have

Y = AS +N (4)

• We note that the matrix S is parametrized temporally and spatially, but sparsity only has to be
enforced in time not in space.

• To accommodate this issue in the optimization problem, the authors first compute the l2 norm of
all time-samples of a particular space index of s, that is, sl2i = ∥[si(t1), si(t2), · · · , si(tT )]∥2.
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• Then the authors minimize the l1 norm of sl2 =
[
sl21 , s

l2
2 , · · · , sl2N

]
. Now the problem becomes

min∥Y −AS∥2f + λ∥sl2∥1 (5)

• Note in Eqn. (5), the optimization is performed over the matrix S and once the estimate of S is
computed the peaks of S provide the source locations.

• The main drawback of this technique is its computational cost. The size of the inverse problem
increases linearly with T , and the computational effort required to solve it increases superlinearly
with T . In order to alleviate this, the authors propose a SVD based solution.

l1- SVD

• To reduce both the computational complexity and the sensitivity to noise, the authors propose to
use the SVD of the M × Tdata matrix Y .

• The idea is to decompose the data matrix into the signal and noise subspaces.

• With the signal subspace, mold the problem as multiple-vector sparse spectrum estimation problem
similar to Eqn. (4).

• Without noise on the sensors, the set of vectors of Y would lie in a K-dimensional subspace.

• If we can relate the basis of this K-dimensional subspace (set of K vectors) to the source matrix
S, then we can just keep K vectors (instead of T ) for the estimation problem.

• Take the SVD Y = ULV ′ and form a M ×K dimensional matrix Ysv as Ysv = Y V Dk, where
Dk is an T ×K matrix given as Dk = [IK0

′]

• Now Ysv can be written as

Ysv = Y V Dk

= (AS +N )V Dk

= ASV Dk +NV Dk

= ASsv +Nsv

(6)

• We note that the sparsity structure of S is retained in Ssv.

• Considering the k-th column of Eqn. (6) we have

ysv(k) = Assv(k) + nsv(k), k = 1, 2, · · · , K (7)

This is exactly the same form as multiple-vector model in Eqn. (3), expect that indexing is by
singular vector, k.

• By bringing SVD, the problem size is reduced from T to K. This reduction is substantial, because
in typical situations K ≪ T .

• Now in the matrix Ssv, the sparsity is along the spatial domain and not in the singular vector
domain.

• To accommodate the true sparsity in the minimization problem, the authors define
s̃l2i = ∥[ssvi (1), ssvi (2), · · · , ssvi (K)∥2. The sparsity of the N × 1 vector s̃l2i is the sparsity of the
spatial spectrum, which can be found by minimizing

∥Ysv −ASsv∥2f + λ∥s̃l2∥1 (8)
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• In this paper, the authors have solved the above problem using SOC programming (see paper for
details)

Multi-resolution grid refinement

• Thus far, in this paper, the estimates of the source locations are confined to a grid.

• We cannot make the grid very fine uniformly since this would increase the computational com-
plexity and also the columns of A becomes more linearly dependent.

• Hence, the authors explore the idea of adaptively refining the grid in order to achieve better
precision

• Instead of having a universally fine grid, we make the grid fine only around the regions where
sources are present.

• This requires an approximate knowledge of the locations of the sources, which can be obtained by
using a coarse grid first.

• The grid refinement algorithm goes like this

1. Create a rough grid of potential source locations θ̃(0), for i = 1, 2, · · · , N . Set r = 0.

2. Form Ar = A(θ̃(r)), where θ̃(r) =
[
θ̃
(r)
1 , θ̃

(r)
2 , · · · , θ̃(r)N

]
. Use the SOC minimization to find the

estimates of the source locations and set r = r + 1.

3. Get a refined grid θ̃(r) around the locations of the peak, θ̂
(r−1)
j (explained below).

4. Return to step 2, until the grid is fine enough.

• There are many ways of refining the grid; the authors have chosen a simple equispaced grid
refinement.

• Suppose at step r, we have a uniform grid with spacing δr. Also, we have an estimate θ̂
(r)
j

5



• Pick an interval around the jth detected source with two grid spacing on either side, that is,
[θ̂

(r)
j − 2δr, θ̂

(r)
j + 2δr], for j = 1, 2, · · · , K.

• In the intervals around the peak, select a new grid whose spacing is a fraction of the old one
δr+1 = δr/γ

Simulation results

• The authors consider M = 8 sensors separated by half a wavelength. K = 2 (62◦, 65◦), T =
200, N = 180.

6



• For correlated sources, the result is as follows

summary

In this paper, the authors have proposed a source location estimation based on sparse representation.
The SVD of the sensor measurements summarizes the large chunk of data which is then used as a model
for identifying the sources. This method is applicable for both narrow and wideband beamforming. The
authors have also presented a grid refinement method in order to obtain fine estimates. The advantages
of the proposed method include superior resolution ability with limited time samples for both correlated
and uncorrelated sources.
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Short summary: For cyclic LDPC codes, they propose to use their automorphism groups 

to improve the iterative decoding performance. Three types of iterative decoders are devised 

to take advantage of the code’s automor-phism group. Towards exploiting the automorphism 

group of a code, they propose a new class of cyclic LDPC codes based on pseudo-cyclic 

MDS codes with two information symbols, for which nonequivalent parity-check matrices 

are obtained. Simulation results show that for their constructed codes of short lengths, the 

automorphism group can significantly enhance the iterative decoding performance. 

I. INTRODUCTION 

 

 The use of automorphism group for classical codes 

 

Most classical codes are defined by high-density parity-check (HDPC) matrices, 

whose Tanner graphs have a large number of short cycles. 

 Iterative decoding performs rather poorly for these codes.  

To mitigate the deleterious effect of short cycles, Jiang and Narayanan [3] and 

Kothiyal et al. [4] proposed adaptive versions of iterative decoding, respectively.  

As a result, the performance was greatly improved. However, a significant increase 

in decoding complexity was incurred. 

 

Classical codes are known to have a very rich algebraic structure.  

 To overcome the adverse effect of short cycles while maintaining a reasonable 

complexity, the automorphism group, as a code structure, was exploited for iterative 

decoding 

 For HDPC and moderate-density parity-check (MDPC) codes, the automorphism 

group aided iterative decoding techniques are applied. 

Enhancing Iterative Decoding of Cyclic LDPC Codes 

Using Their Automorphism Groups 
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 In this paper, 

 

1) they apply automorphism group aided iterative decoding techniques to cyclic LDPC 

codes. 

2) For a cyclic code, two particular subgroups of the automorphism group are well 

known. They show that for a large class of cyclic LDPC codes [15]-[18], [20], the two 

subgroups of the automorphism group belong to the same equivalence class and thus 

cannot be harnessed for iterative decoding. 

3) They present a class of cyclic LDPC codes for which the automorphism group can 

be exploited for iterative decoding. 

II. HOW TO USE THE AUTOMORPHISM GROUP OF A CODE IN ITERATIVE DECODING 

A. The Automorphism Group of a Code 

 

Definition: Let C be a binary linear block code of length N. The set of coordinate 

permutations that map C to itself forms a group under the composition operation. This 

group is called the automorphism group of C, denoted by Aut(C) 

For a permutation  Aut C  , let 1   denote its inverse. From the definition we 

know that for any  0 1 1, ,..., Nc c c c C  , 
      1 1 10 1 1

, ,...,
N

cc Cc c
  

    
  . 

Let C  denote the dual code of C, then the following property holds. 

Property 1:    Aut AutC C . 

Property 2: For any  Aut C   and a parity check matrix H of C, H  also forms a 

parity check matrix of C. 

Property 3: For a binary cyclic code with odd length N, the automorphism group 

contains the following two subgroups: 

0S : The set of permutations 0 1 1, ,..., N    , where  :k j j k    mod N. 

1S : The set of permutations 0 1 1, ,..., N    , where  : 2k kj j    mod N and 1m  is 

the smallest positive integer such that 12 1
m
  mod N. 
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B. Two Perspectives and Their Equivalence 

 

Using the automorphism group of a code for decoding has a long history. In the early 

1960s, MacWilliams devised a hard-decision decoding procedure, called the permutation 

decoding [14]. Recently, the code’s automorphism group was brought into use in the 

soft-decision iterative decoding of HDPC codes [5]−[9] and MDPC codes [10]. Here, they 

review two possible perspectives involved and show their equivalence. 

 

 

 

(a) Assume that the BPSK signaling is used over the AWGN channel. Let c C  be 

the transmitted codeword and  1
N

x   the corresponding modulated sequence. Then 

the received signal sequence is given by 

y x n  , 

where n  contains N  i.i.d. Gaussian noise samples with zero mean and variance 2 . 

(b) Applying a permuation  Aut C  , we have 

y x n    . 

Fact 1: In Fig. 1(a) and Fig. 1(b), the outputs c  and c  are not necessarily equal. It is 

possible that only one of c  and c  is the transmitted codeword. 

Fact 2: In Fig. 1(a) and Fig. 1(c), the outputs c  and c  are not necessarily equal. It is 

possible that only one of c  and c  is the transmitted codeword. 

Fact 3: In Fig. 1(b) and Fig. 1(c), the outputs c  and c  are equal.  
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C. A partition of the Automorphism Group 

 

We call two parity-check matrices equivalent if they can be obtained from each other 

through row permutations; otherwise, we call them nonequivalent. Since the flooding 

schedule is assumed, we further have 

Fact 4: In Fig. 1(a) and Fig. 1(c), if H and H  are equivalent, then the outputs c  and 

c  are equal. 

Let  1 2, Aut C   , then 1  and 2  belong to the same equivalence class if and only if 

1H  and 2H  are equivalent. Note that the partition depends on the selection of H. For a 

given H, we can construct the same number of nonequivalent parity-check matrices as that of 

equivalence classes. 

 

D. Design of Three Types of Iterative Decoders 

 

Definition: Let the automorphism group of a code be partitioned based on a given H, a 

d-order diversity set is a set of d permutations that belong to different equivalence classes.  

We choose a d-order diversity set   : , 0,1,..., 1l l Aut C l d     . Denote by yL  the 

log-likelihood ratio vector (LLRV) computed from y. Below, they present three types of 

iterative decoders that use the diversity set in different manners. 

 

∙ Decoder-1: the diversity set is used in a serial manner. The decoding procedure is 

shown in Algorithm 1 
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∙ Decoder-2: the diversity set is used in a periodic manner. The decoding procedure 

is shown in Algorithm 2. In line 5, an inner iteration refers to one time updating of 

all check nodes and variable nodes of H. For d = 2, the decoder works in a Turbo 

manner [1]. But there are two main differences: 1) The message passing out of a 

component decoder in the preceding iteration is not subtracted from the a priori 

information passing to this component decoder in the current iteration; 2) Soft 

information exchanged between the two component decoders is not limited to 

information bits. 

 

 

 

Decoder-3: the diversity set is used in a parallel manner. Define 
1

l lH H 
. Then by 

concatenating lH , we form an augmented parity-check matrix 

 

0

1

1

aug

d

H

H
H

H 

 
 
 
 
 
 

. 

 

The decoder performs the SPA with flooding schedule on this highly redundant parity-check 

matrix, with the maximum number of iterations I. 
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III. A NEW CONSTRUCTION 

 

We define an    l c l c    binary matrix as 

 

   

     

0 1 2 1

1

1 0 3 2

1 1

2 3 0 1

1 1 1

1 2 1 0

,

c c

c c c

c

A A A A

A A A A

B

A A A A

A A A A

 

  



 
 
 
 
 
 
 
  

 

where each submatrix is an l l  circulant and the zeroth row of  1

iA  is the first row of iA . 

Define a permutation   as  

 

  : mod , 0,1,..., 1j j l c j l j l c         . (1) 

 

Theorem 4: If we perform row and column permutations on B, both using the permutation 

  given in (1), then we obtain a circulant matrix. 

 

They summarize the construction procedure as follows. 

Step 1: Choose a nonzero codeword from an (n, 2) pseudo-cyclic MDS code with a  . 

Step 2: Use the codeword and its pseudo-cyclic shifts to construct the base matrix 'W . 

Step 3: Use matrix dispersion on 'W  to obtain the QC matrix  'dispH W . 

Step 4: Apply Theorem 4 to  'dispH W  to obtain a circulant as the parity-check matrix H. 

 

For Step 1 and Step 2, the form of base matrix 'W  is given by 

 

 

 

0 1 2 1

1 0 3 2

2 3 0 1

1 2 1 0

'

n n

n n n

n

w w w w

w w w w

W

w w w w

w w w w



 

  

 

  



 
 
 
 
 
 
  

. (2) 
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To construct the base matrix of the form (2), they consider using pseudo-cyclic MDS codes 

with two information symbols. A pseudo-cyclic code with parameter  a GF q  has the 

property that for any codeword  0 1 1, ,..., nc c c 
, its pseudo-cyclic shift  1 0 2, ,...,n nac c c 

 is 

also a codeword. If a = 1, the pseudo-cyclic code reduces to a cyclic code. 

 

For Step3, the Tanner graph corresponding to the matrix  dispH W  has no cycles of 

length 4 and hence has a girth of at least 6. So the matrix  dispH W  can serve as the 

parity-check matrix and gives a QC-LDPC code of length n(q − 1). 

 

 

     
     

     

0,0 0,1 0, 1

1,0 1,1 1, 1

1,0 1,1 1, 1

n

n

disp

m m m n

A w A w A w

A w A w A w
H W

A w A w A w





   

 
 
 

  
 
 
 

. 

 

The way to construct the matrix A is given as follow: 

 

Let GF(q) be a finite field with q elements and a be a primitive element of GF(q). Then 

20, , , q     give all the elements of GF(q). For each non-zero element 

 , 0 2i i q    , define a    1 1q q    matrix  iA   over GF(2): it is a circulant 

permutation matrix; the zeroth row is a  1q  -tuple with weight one where the ith 

component is equal to one and all the other 2q   components are equal to zero. The matrix 

 iA   is referred to as the  1q  -fold matrix dispersion of element ai over GF(2). The 

 1q  -fold matrix dispersion of zero element of GF(q), A(0), is defined as the 

   1 1q q    all-zero matrix. 
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IV. SIMULATION RESULTS 

They present the simulation results for our constructed cyclic LDPC codes. The BPSK 

modulated AWGN channel is assumed. In addition to the three decoders presented in Section 

II, they also simulated a decoder that is not assisted by the automorphism group. The decoder 

is called Decoder-0, which performs the SPA with flooding schedule on the defining 

parity-check matrix. For all these decoders, the maximum number of iterations is set to be 

100. 

 

 

 

Fig. 2 shows the FER performance of the code. The 2-order diversity set  0 1,   is used. 

For comparison, they further simulated a (341,160) LDPC code constructed using the 

progressive-edge-growth (PEG) algorithm [29]. The parity-check matrix of the code has 

column weight 3 and row weights 5 and 6. The sphere-packing bound [30] for this length and 

rate is also included in the figure. 
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• Like HDPC codes, the performance gain for LDPC codes seems more significant for 

short code lengths. This can be seen by comparing Fig. 2 and Fig. 4 (note that the diversity 

sets for the two codes have the same order). 

• For both HDPC and LDPC with long code lengths, the automorphism group aided 

iterative decoding does not perform well. In fact, for long HPDC codes, it performs even 

worse than the hard-decision decoding. 

• To obtain a noticeable performance gain, LDPC codes require a smaller diversity set 

than HDPC codes. This is because that LDPC codes are inherently more suited to iterative 

decoding than HDPC codes. 
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I. INTRODUCTION

This paper has discussed about design and analysis of multiuser detection (MUD) using sparsely spread

CDMA systems. The objective of the MUD problem is how to detect multiple user signals simultaneously

at the low computational cost. The main obstacle is multiple-access interference (MAI). These multiple

user signals are interference for each user detection one another. The MAI problem arise in most CDMA

systems, and optimal detection in such systems requires exponentially growing computation as the number

of user increases. This paper investigates a suboptimal MUD detection using sparse CDMA systems. The

key idea of the proposed system is to encode the transmitted waveforms using sparsely spread CDMA

codes and detect the signal using a linear-complexity belief propagation (BP) algorithm. We summarize

the contributions of this work is following:

1) Description of the sparse CDMA system

2) Ensemble of the sparsely spread CDMA codes

3) Design of the BP algorithm for the MUD problem

4) Asymptotic analysis of performance of the BP algorithm based MUD detection

In this report, we aim to sketch the key point of each contribution of this paper.

II. DESCRIPTION OF THE SPARSE CDMA SYSTEM

We consider a fully-synchronous CDMA system which is able to simultaneously transmit K user

signals. As shown in Fig.1, symbols Xk from the k-th user is multiplied by the spreading code {Slk}Ll=1

having code length L, being transmitted to the receiver with gain Ak√
Λk

for the transmit power regulation.

Then, the receive observes the L channel outputs per a symbol transmission from K users, given by

Yl =

K∑
k=1

Slk
Ak√
Λk
Xk +Nl for l = 1 to L, (1)

July 25, 2013 DRAFT



2

Fig. 1. System model

where we consider additive noise following the zero-mean and unit variance Gaussian distribution, i.e.,

Nl ∼ N (0, 1). In vector form, the expression in (1) can be represented as

Y = SAX +N, (2)

where Y = [Y1, ..., YL] ∈ RL denotes the channel output vector, X = [X1, ..., XK ] ∈ XK ⊂ RK is the

input symbol vector, S ∈ RL×K is the sparse spreading matrix, and A = diag( A1√
Λ1

, A2√
Λ2

, ..., AK√
ΛK

) is the

gain matrix which has a diagonal form. In the system model, we additionally assume that input symbols

Xk, elements of the spreading codes Slk and the transmit gain Ak are i.i.d. drawn from PX ,PS ,PA

respectively. In the receiver side, the goal of the multiuser detector is to estimate the input vector X from

the channel output vector Y given S,A, PX .

III. ENSEMBLE OF THE SPARSELY SPREAD CDMA CODES

Let H ∈ {0, 1}L×K denote an incidence matrix of the spreading codes S which indicates nonzero

position of the matrix S. The authors also defined that two notation from the incidence matrix, which

are

The k-th symbol degree: Λk =

L∑
l=1

Hlk (3)

The l-th chip degree: Γk =

K∑
k=1

Hlk (4)
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Fig. 2. Factor graphical representation of the CDMA system

Similarly, the average of the symbol and chip degree is defined as Λ = 1
K

K∑
k=1

Λk and, Γ = 1
L

L∑
l=1

Γl,

respectively. Then, the factor graph representation of the CDMA system is given in Fig.2. The authors

of this paper have tried to analyze the performance of this CDMA system by assuming the following:

1) Large-system limit: The system size is very large, i.e., K,L → ∞, and its system load remains a

constant, i.e., β → K/L.

2) No-short-cycle: Under the large-system-limit, the factor graph of the CDMA system does not include

cycles shorter than the number of the BP iterations denoted by t.

3) Chip-semi-regular: Under the large-system-limit, the chip degree concentrate around their average,

i.e., for every l and very small constant ε > 0, lim
K,L→∞

Pr{|Γl −EΓ| > εEΓ} = 0.

Throughout this report, such CDMA system satisfying above assumption is referred to large-sparse-system

(LSS).

IV. DESIGN OF THE BP ALGORITHM FOR THE MUD PROBLEM

Before discussing the BP detection algorithm for the MUD system, let us summarize the important

known facts the BP algorithms

1) BP basically aims to find marginal posterior PDF of each element Xk.

2) In order to reduce the complexity, BP removes the duplicated calculation with message exchanging

over the graph connection.

3) Optimality of BP: BP provides exact inference (optimal) of the marginal PDFs if the corresponding

factor graph is perfectly tree-structured.

4) Loopy BP: BP is well applied to graphs with cycles and provides good approximation of the

marginal PDFs in practice even through the performance is suboptimal .

For the description of the BP algorithm, we define two notation for the message: symbol-to-chip (StC)

messages denoted by V
(t)
k→l(x) and chip-to-symbol (CtS) messages denoted by U

(t)
l→k(x) where t is the
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number of iterations. In addition, Vk(x) denotes the marginal PDF of Xk. For convenience, we define a

set of edge representing statistical connection over the factor graph as E := {(l, k)|Slk 6= 0}. Also we

define ∂l (resp. ∂k) as the subset of symbols (resp. ships) which have the statistical connection to chip l

(resp. symbol k), called its neighborhood. Then, the iterative BP algorithm for computing the marginal

PDF of all symbols is shown in Algo.1. This iterative BP algorithm performs exact marginalization of

each symbol Xk given the entire observation Y if the factor graph is cycle-free. In practical CDMA

systems, however, the average node degree is always greater than 2 such that cycles are inevitable. Thus,

the BP algorithm performs approximate inference by assuming that all nodes, {Xk} and {Yl}, are i.i.d.

each other.

Algorithm 1 Iterative BP
Inputs: Channel output Y , Spreading matrix Φ, Gain matrix A, Prior knowledge pX(x)

Outputs: Marginal PDFs Vk(x) for every k

1)Initialization:

set U0
l→k(x) = 1 ∀x ∈ X for every (l, k) ∈ E

2)Iterations:

for t = 1 to T do

set V (t)
k→l(x) ∝ pX(x)×

∏
j∈∂k\l

U
(t−1)
j→k (x) for every (l, k) ∈ E

set U (t)
l→k(x) ∝ E

{
pYl|X(y|X)|Xk = x, V

(t)
k→l

}
:=

∑
(xi)∂l\k

exp

−1
2

(
yl − slkak√

Λk
x−

∑
i∈∂l\k

sliai√
Λi
xi

)2


×
∏

i∈∂l\k
V

(t)
i→l(xi) for every (l, k) ∈ E

end for

3)Marginal PDFs calculation:

set Vk(x) ∝ pX(x)
∏

j∈∂k
U

(T )
j→k(x) for every k

The LLR form of BP algorithm is simply obtained by fixing a reference point x0 ∈ X and then defining

LLR messages as

LLR CtS message: L(t)
l→k(x) := log

E
{
pYl|X(y|X)|Xk = x, L

(t)
k→l

}
E
{
pYl|X(y|X)|Xk = x0, L

(t)
k→l

} (5)
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LLR StC message: L(t)
k→l(x) := log pX(x) +

∑
j∈∂k\l

L
(t−1)
j→k (x) (6)

V. ASYMPTOTIC ANALYSIS OF PERFORMANCE OF BP

The key result of this paper states that

The marginal posterior computed for each symbol Xk using BP after t itertions essentially converges to

the marginal posterior of a scalar Gaussian channel as the system size increases.

Now, we provide mathematical support for the statement above by stage. Let P bp
Xk

(·|Y (t)
k ,S,A) denote

the output CDF from BP, which is approximate posterior of Xk given Y (t)
k . Here, Y (t)

k is all observations

within distance 2t − 1 to Xk on the factor graph. If Xk and Yl is directly connected, the distance will

be 1. In addition, let us introduce the canonical scalar Gaussian channel, given as

Z =
√
gX +N, (7)

where X ∼ PX and N ∼ N (0, 1) are independent, and g denotes the channel gain. For remainder

derivation, we use PX|Z;g(·|z; g) to denote the CDF of the posterior distribution of X given Z, according

to the Gaussian channel model in (7).

Theorem 1 (Gaussian convergence of Marginal posterior): Given fixed iterations t, the marginal pos-

terior of Xk converges to that of the Gaussian channel, i.e. for every k

P bp
Xk

(x|Y (t)
k ,S,A)→ PX|Z;g(x|h(Y

(t)
k ,S,A); η(t)A2

k), (8)

in probability under the LSS setup, where the Gaussian channel output is given as Z = h(Y
(t)
k ,S,A) ∼

N (
√
η(t)ax, 1), the channel gain Ak

√
η(t) is determined by the following recursion:

1

η(t)
= 1 + βvar

{
AX|

√
η(t−1)AX +N

}
, (9)

and

var {U |V } := E
{

(U −E {U |V })2
}
. (10)

Proof : The authors proved Theorem 1 by considering messages of the LLR form given in (5) and

(6). Proving Theorem 1 is equivalent to showing the LLR StC message is Gaussian distributed with

Xk ∼ N (A2
kη

(t)Xk, 1). We summarize this proof in four steps.
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Fig. 3. Upper diagram: Multiuser channel and BP detection. Lower diagram: The asymptotically equivalent scalar Gaussian

channel

Step I: The StC message is Gaussian RV by the central limit theorem (CLT): Under the no-short-cycle

assumption, all CtS messages L(t)
l→k are i.i.d. conditioned on Xk = xk. From (6), by CLT, the message

is a Gaussian random vector.

Step II: LLR obtained from a scalar Gaussian channel is also Gaussian distributed. Namely, for Y =
√
γX +N , its LLR is a Gaussian RV, i.e.,

log
pY |X(Y |x1)

pY |X(Y |x0)
=
√
γ(x1 − x0)Y − γ(x2

1 − x2
0)/2 (11)

Step III: Calculation of mean and covariance of the StC messages given as

E[L
(t)
k→l(x)] = log pX(x) +

∑
j∈∂k\l

E[L
(t−1)
j→k (x)]. (12)

We first consider the mean of the CtS messages. To this end, we have

f(y, x) := E
{
pYl|X(y|X)|Xk = x, L

(t)
k→l

}

=
∑

(xi)∂l\k


1√
2π

exp

−
1

2
(y −

∑
i∈∂l\k

sliAi√
Λi
xi − ckx)2 +

∑
i∈∂l\k

L
(t)
i→l(xi)︸ ︷︷ ︸

=Bxk



 , (13)
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where we use ck = slkak√
Λk

. Then, we apply the 2nd order Taylor approximation with respect to x = 0 as

f(y, x) ≈ f(y, x = 0) + f ′(y, x = 0)x+
1

2
f ′′(y, x = 0)x2

= g0(y) + g1(y)ckx+
1

2
g2(y)c2

kx
2, (14)

where we define

g0(y) :=
1√
2π

∑
(xi)∂l\k

exp

−1

2
(y −

∑
i∈∂l\k

sliAi√
Λi
xi)

2 +Bxk

 (15)

g1(y) :=
1√
2π

∑
(xi)∂l\k

(y −
∑

i∈∂l\k

sliAi√
Λi
xi) exp

−1

2
(y −

∑
i∈∂l\k

sliAi√
Λi
xi)

2 +Bxk

 (16)

g2(y) :=
1√
2π

∑
(xi)∂l\k

((y −
∑

i∈∂l\k

sliAi√
Λi
xi)

2 − 1) exp

−1

2
(y −

∑
i∈∂l\k

sliAi√
Λi
xi)

2 +Bxk

. (17)

Then, from (5), the CtS LLR message is given as

L
(t)
l→k = log

g0(y) + g1(y)ckx+ 1
2g2(y)c2

kx
2

g0(y) + g1(y)ckx0 + 1
2g2(y)c2

kx
2
0

≈ g1(y)

g0(y)
ck(x− x0) +

g2(y)

g0(y)
c2
k(x2 − x2

0)− 1

2

g2
1(y)

g2
0(y)

c2
k(x2 − x2

0), (18)

where we further apply the 2nd order Taylor approximation of log(x). The mean of the CtS message

E[L
(t)
j→k(x)] can be obtained by taking integration to (18) with respect to y. Then, using (12), the mean

of the LLR StC message is obtained as

E
[
L

(t)
k→l(x)

]
= Θ(xk(x− x0)− (x2 − x2

0)/2) (19)

where

Θ = A2
k

∫
g2

1(y)

g0(y)
dy

∑
j∈∂k\l S

2
jk

Λk
. (20)

In (20), by law of large number,
∑

j∈∂k\l S
2
jk

Λk
→ 1. Here, importantly note that the result in (19) is exactly

equivalent to mean of LLR in a scalar Gaussian channel

Xk =
√

ΘX +N

= Ak

√∫
g2

1(y)

g0(y)
dyX +N (21)

where Xk here is a symbol obtained from the BP iteration given the observation Y (which is equivalent

to Z in Th.1) and N ∼ N (0, 1) is additive noise with unit variance. Although the derivation of covariance

is omitted here, they are also equivalent.
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Now, we summarize the proof as following

1) LLR of StC message is asymptotically a Gaussian RV by CLT from Step I.

2) LLR of a scalar Gaussian channel is a Gaussian RV from Step II.

3) The mean and covariance of LLR StC message have the exactly same form as the LLR of the

scalar Gaussian channel in (21) from Step III.

4) From (12), each individual symbol Xk via BP is also Gaussian distributed with N ∼ N (
√

Θ, 1).

The last piece of the proof of Theorem 1 is to quantify the corresponding SNR Θ with respect to the

number of BP iterations t by showing that

lim
L,K→∞
Γ→∞

∫
g2

1(y)

g0(y)
dy = η(t). (22)

But, the proof of (22) was not well explained in the paper. One thing is that one can derive the recursion

in (9) by showing (22).
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Short summary: Compressive sensing enables the receiver to sample below the 

Shannon-Nyquist sampling rate, which may lead to a decrease power efficiency and 

production cost. This paper investigates the use of CS in a general Code Division Multiple 

Access (CDMA) receiver. Furthermore, they numerically evaluate the proposed receiver in 

terms of bit error rate under different signal to noise ratio conditions and compare it with 

other receiver structures. 

 

I. INTRODUCTION 

 As wireless communication devices are becoming more and more widespread and 

ubiquitous, the need for power efficiency and low production cost becomes 

paramount. 

 Recently, a new concept termed CS has been attracting more and more attention in the 

signal processing community. If a signal is sparse in some arbitrary basis, it may be 

sampled at a rate lower than the Nyquist frequency. 

 In the spread spectrum area, some researchers have studied the general use of CS for 

spread spectrum communication systems.  

 In their work they apply CS to a general CDMA system. And they show that a random 

demodulation implementation may be used to subsample the CDMA signal, but they 

also develop a simplified version of the RD which performs equally well for CDMA 

signals but is simpler and cheaper to implement.  

II. SIGNAL MODEL 

Each slot contains an independent CDMA signal and the slots decoded sequentially and 

independently of each other. 

Compressive Sensing for Spread Spectrum Receivers 
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For one slot, define a discrete QPSK baseband signal, 1Nx  as: 

 

 x Ψα  (1) 

 

where { 1}N NS 

  Ψ  is an orthogonal or near orthogonal dictionary, containing 

spreading waveforms for transmission, S  is the subset of { 1}N N  that contains orthogonal or 

near-orthogonal dictionaries and 
1{ 1 ,0}Nj   α  is a sparse vector, that selects which 

spreading waveform(s) and what QPSK constellation point(s) to send. 

Each node has a unique CDMA sequence assigned, which it uses to transfer information and 

each node does not know which neighbors it has, but it knows all possible CDMA sequences. 

Note that in this signal model α  is defined so that all users have identical amplitude. 

In cases where the number of active nodes or users in a network is smaller than the total 

number of possible users, the vector α  may be assumed sparse, which is the enabling factor for 

CS. 

At the receiver the following signal is observed: 

 

 ( )   y Θ x w ΘΨα Θw  (2) 

 

Where Θ  is a measurement matrix, which we shall treat later, and 
1Nw  is Additive 

White Gaussian Noise (AWGN). Notice here that we take into account noise folding as the noise 

is folded down into the compressed domain together with the signal. This makes the noise has an 

impact on the demodulation performance, because each time the sampling rate is reduced by one 

half, the Signal to Noise Ratio (SNR) is decreased by 3dB . 

 

A. Spread Spectrum Dictionary of Gold Sequences 

In spread spectrum signals, a possible dictionary Ψ  is a set of Gold sequences, as used in e.g. 

GPS technology. A set of Gold sequences is a special dictionary of binary sequences with very 

low auto and cross-correlation properties.  

When using such a CDMA dictionary, the received signal must be sampled at a rate 

corresponding to the chip rate, where a chip is one entry in the received Gold sequences. If α  is 
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sparse the information rate of the signal is much lower and it may be possible to decrease the 

sampling rate by using CS. 

 

III. COMPRESSIVE SENSING 

CS is novel sampling scheme, developed to lower the number of samples required to obtain 

some desired signal. 

Denote by M N



Θ  a CS measurement matrix, where    is the subsampling ratio 

when compared to the Nyquist rate and /M N  . This measurement matrix is then 

responsible for mapping the N -dimensional signal x  to a M -dimensional signal y . 

Normally this would make it impossible to recover the original signal, but under the assumption 

that x  is sparse in some basis, it is possible to reconstruct the original signal from the sampled, 

M -dimensional signal y . 

A. Compressive Spread Spectrum Measurement Matrix 

In most CS literature a choice of measurement matrix or structure must be made. The Random 

Demodulator (RD) sampling structure is one of the most well-known measurement matrix 

structures developed, which is well suited for practical implementation. In the RD a 

Pseudo-Random Noise (PRN) sequence is mixed with the received signal. Because a spread 

spectrum transmitter has already spread the signal before transmission, we show that the RD 

structure can be improved so that the mixing with a PRN sequence at the receiver may be 

skipped.  

The proposed measurement matrix may therefore be defined similarly to the definition of the 

RD matrix in “Beyond Nyquist : Efficient Sampling of Sparse Bandlimited Signals”.   

 

Figure 1 Pseudo-random demodulation scheme 
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In their work, the measurement matrix is based on two matrices, D  and H . First, let 

0 1, , , { 1}N      be the chipping sequence used in the RD for a signal of length N . The 

mapping x Dx  signifies the demodulation mapping with the chipping sequence, where D  

is the diagonal matrix: 

0

1

N







 
 
 
 
 
 

D  

 

  Second, the H  matrix denotes the accumulate-and-dump action performed after mixing. 

Let M  denote the number of samples taken. Then each sample is the sum of /N M  

consecutive entries of the demodulated signal. An example with 3M   and 6N   is : 

 

1 1

1 1

1 1

 
 


 
  

H  

 

The reason for applying a chipping sequence is to spread the signal across the frequency 

spectrum, so that information is aliased down into the lower frequency area, which is left 

untouched by the low-pass filtering. 
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Figure 2  Action of the demodulator on a pure tone. The demodulation process multiplies the 
continuous-time input signal by a random sequence wave. The action of the system on a single tone is 
illustrated in the time domain(left) and the frequency domain (right). The dashed line indicates the 
frequency response of the lowpass filter. 

 

 

Figure 3 Signatures of two different tones. The random demodulator furnishes each frequency with a 
unique signature. This image enlarges the filter’s passband region of the demodulator’s output for two 
input tones (solid and dashed). The two signatures are nearly orthogonal. 
 

 In the proposed receiver this mixing is unnecessary because the signal has already been 

spread at the transmitter. The proposed receiver may therefore be simplified to: 

 y = Hx  (3) 

 

This is significantly simpler to implement in hardware than the RD. The use of a CDMA 

dictionary introduces a random-like dictionary matrix, which spreads the signal out so that each 

sample contains a little bit of the original information signal. Therefore, the sampling process 

may be rewritten as: 

 y = Hx = HΨα =Θα  (4) 

 

Here, the measurement matrix becomes Θ= HΨ  
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B. Subspace Pursuit 

To reconstruct the signal a reconstruction algorithm must be chosen. Many different 

approaches have been developed, but two main classes of reconstruction algorithms are in 

widespread use: 1l  minimization and greedy algorithms. Often, 1l  minimization provides the 

best solution, but if the matrices Ψ  and Θ  are very large, it is much more efficient to use the 

simpler greedy algorithms. Therefore, we choose to use greedy algorithms in this work. 

Recall that Θ  is a measurement matrix with N  columns and /N   rows and define 

A Θ Ψ . Then we define the Subspace Pursuit algorithm as in Algorithm 1. In each algorithm 

iteration, the pseudo-inverse is calculated as the least-squares solution as this is less 

computationally demanding. 

 

Algorithm 1 Subspace Pursuit Algorithm [3]  

Input: 

Sparsity S, measurement and dictionary matrices combined A  and received, sampled signal y  

Initialization: 

0T  {indices of the S largest absolute magnitude entries in the vector 
T

A y } 

0 0

0 T

r T T
 y y A A y  

Repeat 

1l l   

1l lT T  {indices of the S largest absolute magnitude entries in the vector 1T l

r


A y } 

lT {indices of the S largest absolute magnitude entries in the vector †
lT

A y } 

†
l l

l

r T T
 y y A A y  

Until 
1

2 2|| || || ||l l

r r

y y , l S  

 

To demonstrate the performance of the Subspace Pursuit algorithm with the Gold dictionary, 

they have performed numerical experiments to find the phase transition in the noise-less case for 

various choices of measurement matrices.  
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Figure 4 Phase Transition Diagrams for the three different measurement matrices (Rademacher, RD and 
CSS measurement matrix). The black line is the phase transition line for the Tuned Two Stage 
Thresholding(TST) algorithm from “Optimally tuned iterative reconstruction algorithms for compressed 
sensing” 

IV. CONCLUSION 

In this work they apply CS to a general CDMA system and they show that it is possible to use 

a very simple measurement scheme at the receiver side to enable subsampling of the CDMA 

signal. 
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Active illumination

- Direction, intensity, and pattern of illumination are controlled by 
commands or signals. 

Single pixel camera

- Single pixel camera, developed originally at Rice University, is one 

of the paramount examples of CS.

- It can be seen as an optical computer comprising:

= digital micromirror device(DMD) (1024x768 micromirros)

= two lenses

= single photodetector

=  A/D converter.

Background 

3
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Single pixel camera

Background 

4

- The process which include changing DMD pattern and taking signal from 
PhotoDiode will be repeated until M values are acquired.

- Each of these values (output voltage of the photodiode) can be 
interpreted as the inner product of the desired image x with a 
measurement basis Φ ݉ ൌ 1, 2, … .ܯ,

- The resolution of the reconstructed image is limited by the pixel 
arrangement of the DMD.
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Active illumination Single-pixel camera

5

Instead of the DMD, Active illumination single-pixel camera setup used 
video projector to incorporate the random measurement matrix into the 
system.
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Active illumination Single-pixel camera

6

- The video projector was used to project the result of the product 
between the image to be reconstructed and the random measurement 
patterns.

- Each of the output voltages of the photodiode amplifier circuit is 
representative for the inner product between the pattern used for that 
measurement and the image to be reconstructed.
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• Traditional Single-pixel camera(Rice university version)

Result
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Ideal image with 64*64 pixels

Haar wavelet
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• Active illumination single-pixel camera

Result

8

1. Sharp edge was increased when 
use active illumination single pixel 
camera.

2. This system is cheaper and more 
compact than Rice university one.

3. It doesn’t need active illumination 
source. 
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Short summary: In this paper authors formulate the problem of Resource Allocation (RA) in 

Cognitive Radio (CR) networks with relay stations. The problem takes into account the issues 

like: fluctuations of usable spectrum resource, channel quality variations caused by frequency 

selectivity, and interference caused by different transmit power levels. They propose easy to 

implement heuristic algorithms. The simulation results reveal that presented solutions show good 

proportional fairness among CR users and improvement in system throughput by power control.  

I. INTRODUCTION 

Resource allocation in CR relay networks is considered in the paper. The relay nodes are simply 

Medium Access Control (MAC) repeaters.  

Main challenges in designing RA algorithm are: 

• Fluctuations in available spectrum resource: The number of usable resource may differ in each 

area. It may cause great variations in available band-width and jitters between packets. 

Therefore they adopt proportional fair scheduling which allocates resource to CR MSs 

proportionally to their capabilities such as transmission rates determined by channel quality. 

• Instability of wireless channels: The frequency selectivity would cause variations of Signal-to-

Noise Ratio (SNR). As a result, the quality of each channel would differ on each node. The RA 

algorithm needs to take into account the instability of channel quality. 

• Power control and interference among nodes: the number of usable channels are determined by 

the activity of PR networks. With proper power control, spatial reuse can be achieved and two 

adjacent CR RSs can transmit over the same channel.  

 

II. SYSTEM DESCRIPTION 

The network design considered is shown in the following figure.  

Resource Allocation in Cognitive Radio Relay Networks 
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The network drawn with solid and dashed lines corresponds to Primary Radio (PR) network and 

Cognitive Radio (CR) network. The RA is performed by the Cognitive Radio Base Station (CR BS) in a 

centralized manner. The transmission of CR network is time-divided into frames and synchronized with 

the PR network. In each frame there are multiple time-slots not used by PR. The CR BS gathers available 

channels within the vicinity of each node and the quality of each channel. The CR BS then schedules the 

usage of frequency bands and time-slots for its downstream Cognitive Radio Relay Stations (CR RSs) and 

Cognitive Radio Mobile Stations (CR MSs). Each CR MS can connect to CR BS directly or through CR 

RS. The RA is done in downlink transmission only. The notations used are shown in table 1. The authors 

starts RA problem formulation by considering fixed transmit power and then extend the formulation to 

incorporate adjustable transmit power. 

 

III. FIXED TRANSMIT POWER 

A. Problem Formulation: proportional fair scheduling for cognitive relay networks with fixed transmit 

power in relay stations is considered. (Given parameters same as in system description section) 

( )
( )

O λ max
( )

m

m m

t

t

λ

ρ∈

= ∑
M

 where ( )
1

1
0

,p
m

N

m

c t

r c tλ
−

∈ =

=∑∑
C

  (1) 

Where ( )m tλ is scheduled rate of CR MS m in frame t, and  ( )m tρ is the long-term average rate 

of CR MS m until frame t.  
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c t c tk

N N
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c t c tk

r c t r c t i

r c t r c
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∈ = ∈ =∈
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∈ = ∈ =∈
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( ) ( )
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, ,max I max I , 01p
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i
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∈ ∈ ∈
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R    (3) 

( ) ( )
{ }

( )
\

,

1 1

I , , 1I , , 0
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k
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k mj
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+∈ ∈∈

++ ∀ ∈ ≤≤ ∀ ∈ ≤∑ ∑ ∑
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R C  (4) 

( ) ( ) ( )I , 0, , ,j j jc t c t cr j t Nc≤ ∀ ∈ ∀ ∈ ≤ ≤R L C    (5) 

( ) ( ),
1 0,

,max I ,
c
i t N

k i c
k

c t v i c
∈

+

≤ ≤
≤ ∀ ∈ ∀ ∈R C     (6) 

 

The problem is integer programming problem which is NP-hard and computationally 

infeasible to solve. By relaxing the integrality constraint the computationally lighter upper bound 

of original problem is defined as: let ( ) ( )
1

0

1
I ,

N

l l

t

w c c t
N

−

=

= ∑  
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Maximize:  ( )
*

O λ
m

m m

λ

ρ∈

= ∑
M

      (1) 

Subject to: *
mλ =N ( )

1 1
( )p p

m m
c

w c R c
∈

∑
C

      (2) 

  ( ) ( )
1 1

1

( ) ( )p p
i i

c
i

k k

c ck

w c R c w c R c i
∈ ∈∈

≥ ∀ ∈∑ ∑∑
C C
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,
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1
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The algorithm has two parts:  

• Find and schedule available sub-channels for each CR RS.  

• Allocate sub-channels and time-slots of all hops in a greedy-based approach. 

Resolve conflicts among interfering CR RSs and schedule their available sub-channels: The algorithm 

scans through all the sub-channels. For each sub-channel c, it scans through each CR RS r, and record all 

CR RSs that interfere with r in the set U. All of the CR RSs in the set U have access to sub-channel c, but 

are interfered with each other. The CR RS m with maximum value of 
( )

1
p
m

m

R c

ρ
 in U can access the sub-

channel c at a given time. 

Allocate the resource between the CR BS and the CR RSs: the CR MSs are sorted in descending order 

of their contributions to the objective function. For each m in the sorted order and the CR RS u that m 

attaches to, the amount of service that m receives is initialized to the number of bits that can be 

transmitted using all the available time-slots between m and u over the scheduled sub-channel c (line 23). 

The sub-channels between the CR BS and u are allocated in the order of transmission rate. That is, the 

sub-channel c’ with highest rate ( )
1p

u

R c′ is allocated first, and then the second highest sub-channel is 

allocated, and so on.  

 

IV. VARIABLE TRANSMIT POWER 

Better spectrum utilization and system throughput can be achieved with proper control of CR RS 

transmit power. A scheduler decides power level of a CR RS from pool of discrete power levels. The 

decision normally involves the interference indicator between two CR RSs, e(i, j), and the maximum 

sustainable rate Rl (c) on an CR RS-CR MS link l over a sub-channel c become functions of the transmit 

power p.  

A. Problem Formulation:  Let ip  denotes the transmit power level of CR RS i. (Given parameters are 

same as in fixed power transmission).  

Objective: ( )
( )

O λ max
( )

m
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t
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= ∑
M
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∈ =

=∑∑
C

   (1) 

Subject to:  ,ip i∈ ∀ ∈P R        (2) 
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c t c tk

N N

k

c t c tk

r c t r c t i

r c t r c

N

t i

τ τ

τ
∈ = ∈ =∈

− −

∈ = ∈ =∈

≤ ≤ −≥ ∀ ∈

= ∀ ∈

∑∑ ∑∑∑

∑∑ ∑∑∑

C C

C C

R

R

  (3) 
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( ) ( )
1

1 ,
, ,max I max I , 01p

ci
i

k
c k c

c t c t t Ni
∈ ∈ ∈

+ ≤ ∀ ∈ ≤ ≤
C C

R     (4) 

( ) ( )
{ }

( ) ( ),

1 1\

I I , ,, 1 0,
c c
i ji

k i mi j

k mj

c t e p c t i t Nc
+

+

∈ ∈∈

+ ≤ ∀ ∈ ∀ ∈ ≤ ≤∑ ∑ ∑
R

R C  (5) 

( ) ( ) ( ), ,I , , , 0, 1c
j j j i ic t c t c p i j cr t N

+≤ ∀ ∈ ∈ ∀ ∈ ≤∀ ≤R R  C   (6) 

( ) ( ),
1 0,

,max I ,
c
i t N

k i c
k

c t v i c
∈

+

≤ ≤
≤ ∀ ∈ ∀ ∈R C      (7) 

 

The problem formulation same as fixed power transmission case except that interference indicator 

e(i,j)(p) between two CR RSs (i, j) and the maximum sustainable rate Rl(c, p) on an CR RS and CR MS 

link l over sub-channel c are functions of the CR RS transmit power as shown in constraint 5 and 6 

respectively. 

B. Proposed Greedy Algorithm for PFSCRN-ATP: an algorithm for power level selection, shown in 

Algorithm 2 below, is based upon following criteria: 

• Interference to other CR RSs is minimized.  

• Spectrum should be fully utilized 

 

 

 

A score is calculated for each combination of (CR RS, power level)(r, p). It is calculated based upon 

contribution, i.e., 
( )

1
,p

m

m

c pR

ρ
, of m

th
 CR RM node to (1) on each available sub-channel c of r. The 

contribution of CR MSs is summed up. The power level for CR RS is determined then as: Priority is 
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given to the (r, p) combination with highest score while tie is broken by choosing the combination that 

can achieve the objective function with lowest power level.  

After the transmit power of CR RSs are determined by using Algorithm 2, the scheduling problem is 

solved by using a PFSCRN-ATP as shown in Algorithm 3. It is modified version of Algorithm 1 with 

selected power levels. 
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V. PERFORMANCE EVALUATION 

The simulation environment of an IEEE 802.16j relay network has been constructed to evaluate the 

proportional fairness of proposed algorithms, and to compare the system throughput of each algorithm. 

A. Simulation Setup: two scenarios for evaluation of performance of proposed algorithms. 

Total CR BS =1 (located in center of the cell),  Total CR RS = 4, Total CR MS = 20 or 40 

in low system load or high system load case,   Total 40 random topologies are generated,  

Total Frames = 2000, No of sub-channels = 64 

Scenario 1 {purpose} Signal enhancement Scenario 2 {purpose} Range extension 

CR RSs within 1200m of CR BS CR RSs within 1500m of CR BS 

CR MSs uniformly distributed in cell, with in 

1800m of CR BS 

CR MSs uniformly distributed with in 300m of 

randomly selected CR RS 

 

B. Proportional Fairness: 
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The upper bounds of FTP case in both figures are derived as that presented in III-A. The upper bounds 

of ATP in both figures are derived by using the power levels determined by Algorithm 2. The random 

scheduling is lower than proposed algorithms because in scenario 1, the CR RSs are placed closer to the 

CR BS. The channel condition of each CR MS would be less variant. On the contrary, in scenario 2, the 

CR RSs are placed far apart from each other as well as from the CR BS, and the channel condition of each 

CR MS varies a lot. However proposed algorithms are insensitive to the changes of scenario and system 

load. 

C. System Throughput: Overall system throughput is the sum of the services that each CR MS receives 

during the whole simulation period.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In scenario 1, the overall system throughput of 20 and 40 CR-MSs does not differ much. The overall 

system throughput of FTP and ATP does not differ much, either. The reason is that CR RSs are placed 

closer to the CR BS. As a result, CR RSs will easily interfere with each other even with the lowest 

transmit power level. In such circumstance where cell coverage is small and CR MSs are evenly 

distributed, transmit power control will not help much. Also, in scenario 1, the channel condition of each 

CR MS does not differ much. Hence, the throughput does not differ much in all settings. 

In scenario 2 the CR RSs are placed farther from the CR BS. Also, CR MSs tend to form hot-spot near the 

CR RSs. In systems where CR RSs are apart far enough and CR MSs are clustered in a certain extent, the 

interference among CR RSs will be highly controllable through adjustment of transmit power levels. Thus, 

as shown in Fig. 5, the performance of ATP is better than that of FTP.  

 

D. Algorithm Running Time: The implemented algorithms are executed with 4 CR RSs, 40 CR MSs, 

64 sub-channels, 48 time-slots per frame, and 2000 frames. The proposed FTP and ATP requires 0.38 ms 

and 0.75ms, respectively. however random FTP and random ATP require 0.14 ms and0.23ms, 

respectively. Although they are slightly less than proposed algorithms, yet proposed algorithms 

outperform random scheduling algorithms as shown in Figs. 2–5. 
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Multipath Matching Pursuit 
 

Submitted to IEEE trans. on Information theory 

Authors: S. Kwon, J. Wang, and B. Shim 

Presenter: Hwanchol Jang 

 

 Multipath is investigated rather than a single path for a greedy type of search 

 In the final moment, the most promising path is chosen. 

 They propose “breadth-first search” and “depth-first search” for greedy algorithm. 

 They provide analysis for the performance of MMP with RIP 

 

I. Introduction 

CS 

 The sparse signals nx   can be reconstructed from the compressed measurements 
n y Φx   even when the system representation is underdetermined (m<n), as long as the 

signal to be recovered is sparse (i.e., number of nonzero elements in the vector is small). 

 

Reconstruction 
1. L0 mimimization 

 K-sparse signal x can be accurately reconstructed using m=2K  measurements in a 

noiseless scenario [2]. 

 

2. L1 minimization 

 Since ℓ0-minimization problem is NP-hard and hence not so practical, early works focused 

on the reconstruction of sparse signals using ℓ1-norm minimization technique (e.g., basis 

pursuit [2]). 

 

3. Greedy search 

 the greedy search approach is designed to further reduce the computational complexity of 
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the basis pursuit.  

 In a nutshell, greedy algorithms identify the support (index set of nonzero elements) of 

the sparse vector x in an iterative fashion, generating a series of locally optimal updates. 

 

OMP 

  In the orthogonal matching pursuit (OMP) algorithm, the index of column that maximizes 

the magnitude of correlation between columns of Φ and the modified measurements (often 

called residual) is chosen as a new support element in each iteration. 

 If at least one incorrect index is chosen in the middle of the search, the output of OMP 

will be simply incorrect. 

 

II. MMP algorithm 

L0 minimization 

0
min  subject to 

x
x Φx y . (1) 

 

OMP 

 OMP is simple to implement and also computationally efficient 

 Due to the choice of the single candidate it is very sensitive to the selection of index. 

 The output of OMP will be simply wrong if an incorrect index is chosen in the middle of the 

search. 

 

Multiple indices 

 StOMP algorithm identifying more than one indices in each iteration was proposed. In this 

approach, indices whose magnitude of correlation exceeds a deliberately designed threshold 

are chosen [9].  

 CoSaMP and SP algorithms maintaining K supports in each iteration were introduced. 

 In [12], generalized OMP (gOMP), was proposed. By choosing multiple indices 

corresponding to N (> 1) largest correlation in magnitude in each iteration, gOMP reduces 

the misdetection probability at the expense of increase in the false alarm probability. 
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 By success we mean that an index of the true support T is chosen in the iteration.  

 

RIP 

 A sensing matrix Φ  is said to satisfy the RIP of order K if there exists a constant (0,1)   

such that 

2 2 2

2 2 2
(1 ) (1 )    x Φx x  (2) 

 
for any K-sparse vector x. 

  The minimum of all constants   satisfying (2) is called the restricted isometry constant 

K  .  

 

Lemma 3.1 (Monotonicity of the restricted isometry constant [1]): If  the  sensing matrix Φ  

satisfies the RIP of both orders K1  and K2, then 
1 2K K   for any 1 2K K . 

 

Lemma 3.2 (Consequences of RIP [1]): For I   , if 1I   then for any Ix  , 

2 2 2
(1 ) ' (1 )I II I    x Φ Φ x x  (3) 

1

2 22

1 1
( ' )

1 1I I

I I 
 

 
x Φ Φ x x  (4) 

 

Lemma 3.3 (Lemma 2.1 in [19]): Let  1 2,I I   be  two  disjoint sets  ( 1 2I I  ).  If 

1 2
1I I   , then 

                                                            
1 2 1 2 22
'I I I I Φ Φ x x  (5) 

holds for any x . 

 

Lemma 3.4: For m×n matrix Φ , 
2

Φ  satisfies 

max min( , )2
( ' ) 1 m n   Φ Φ Φ  (6) 
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A. Success Condition in Initial Iteration

In the first iteration, MMP computes the correlation betweenmeasurementsy and each column

φi of Φ and then selectsL indices whose column has largest correlation in magnitude.Let Λ

be the set ofL indices chosen in the first iteration, then

‖Φ′

Λy‖2 = max
|I|=L

√∑

i∈I

|〈φi,y〉|
2. (7)

Following theorem provides a condition under which at leastone correct index belonging toT

is chosen in the first iteration.

Theorem 3.5:Supposex ∈ R
n is K-sparse signal, then amongL candidates at least one

contains the correct index in the first iteration of the MMP algorithm if the sensing matrixΦ

satisfies the RIP with

δK+L <

√
L

√
K +

√
L
. (8)

Proof: From (7), we have

1
√
L
‖Φ′

Λy‖2 =
1

√
L
max
|I|=L

√∑

i∈I

|〈φi,y〉|
2 (9)

= max
|I|=L

√
1

|I|

∑

i∈I

|〈φi,y〉|
2 (10)

≥

√
1

|T |

∑

i∈T

|〈φi,y〉|
2 (11)

=
1

√
K

‖Φ′

Ty‖2 (12)

where|T | = K. Sincey = ΦTxT , we further have

‖Φ′

Λy‖2 ≥

√
L

K
‖Φ′

TΦTxT‖2 (13)

≥

√
L

K
(1− δK) ‖x‖2 (14)

where (14) is due to Lemma 3.2.

On the other hand, when an incorrect index is chosen in the first iteration (i.e.,Λ ∩ T = ∅),

‖Φ′

Λy‖2 = ‖Φ′

ΛΦTxT‖2 ≤ δK+L ‖x‖2 , (15)

August 26, 2013 DRAFT
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where the inequality follows from Lemma 3.3. This inequality contradicts (14) if

δK+L ‖x‖2 <

√
L

K
(1− δK) ‖x‖2 . (16)

In other words, under (16) at least one correct index should be chosen in the first iteration

(T 1
i ∈ Λ). Further, sinceδK ≤ δK+N by Lemma 3.1, (16) holds true if

δK+L ‖x‖2 <

√
L

K
(1− δK+L) ‖x‖2 . (17)

Equivalently,

δK+L <

√
L

√
K +

√
L
. (18)

In summary, ifδK+L <
√

L
√

K+
√

L
, then amongL indices at least one belongs toT in the first

iteration of MMP.

B. Success Condition in Non-initial Iterations

Now we turn to the analysis of the success condition for non-initial iterations. In thek-th

iteration (k > 1), we focus on the candidatesk−1
i whose elements are exclusively from the true

supportT (see Fig. 3). In short, our key finding is that at least one ofL indices chosen bysk−1
i

is from T underδK+L <
√

L
√

K+3
√

L
. Formal description of our finding is as follows.

Theorem 3.6:Suppose a candidatesk−1
i includes indices only inT , then amongL children

generated fromsk−1
i at least one candidate chooses an index inT under

δK+L <

√
L

√
K + 3

√
L
. (19)

Before we proceed, we provide definitions and lemmas useful in our analysis. Letfi be

the i-th largest correlated index in magnitude betweenrk−1 and {φj}j∈TC . That is, fj =

arg max
j∈TC

\{f1,...,f(j−1)}

∣∣〈φj , r
k−1
〉∣∣. Let FL be the set of these indices (FL = {f1, f2, · · · , fL}).

Also, let αk
j be thej-th largest correlation in magnitude between the residualrk−1 associated

with sk−1
i and columns indexed by incorrect indices. That is,

αk
j =

∣∣〈φfj , r
k−1
〉∣∣ . (20)

Note thatαk
j are ordered in magnitude (αk

1 ≥ αk
2 ≥ · · · ). Finally, let βk

j be thej-th largest

correlation in magnitude betweenrk−1 and columns whose indices belong toT − T k−1
i (the set

of remaining true indices). That is,

βk
j =

∣∣〈φϕ(j), r
k−1
〉∣∣ (21)

August 26, 2013 DRAFT
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…

(k-2)-th iteration

(k-1)-th iteration

k-th iteration

��
���

��
���

��
���

���	��
���

…… ��
�

��
�

���	��
�

…

⋮

Fig. 3. Relationship between the candidates in(k − 1)-th iteration and those ink-th iteration. Candidates inside the gray box

contain elements of true supportT only.

whereϕ(j) = arg max
j∈(T−T k−1)\{ϕ(1),...,ϕ(j−1)}

∣∣〈φj , r
k−1
〉∣∣. Similar toαk

j , βk
j are ordered in magni-

tude (βk
1 ≥ βk

2 ≥ · · · ). In the following lemmas, we provide the upper bound ofαk
L and lower

bound ofβk
1 .

Lemma 3.7:αk
L satisfies

αk
L ≤

(
δL+K−k+1 +

δL+k−1δK
1− δk−1

)
∥∥∥xT−T k−1

j

∥∥∥
2√

L
. (22)

Proof: See Appendix A.

Lemma 3.8:βk
1 satisfies

βk
1 ≥

(
1− δK−k+1 −

√
1 + δK−k+1

√
1 + δk−1δK

1− δk−1

) ∥∥∥xT−T k−1

j

∥∥∥
2√

K − k + 1
. (23)

Proof: See Appendix B.

Proof of Theorem 3.6: From the definitions ofαk
j and βk

j , it is clear that a (sufficient)

condition under which at least one out ofL indices is true ink-th iteration of MMP is

αk
L < βk

1 (24)

August 26, 2013 DRAFT
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<

Fig. 4. Comparison betweenαk
N andβk

1 . If βk
1 > αk

N , then amongL indices chosen inK-iteration, at least one is from the

true supportT .

First, from Lemma 3.1 and 3.7, we have

αk
L ≤

(
δL+K−k+1 +

δL+k−1δK
1− δk−1

)
∥∥∥xT−sk−1

j

∥∥∥
2√

L
(25)

≤

(
δL+K +

δL+KδL+K

1− δL+K

)
∥∥∥xT−sk−1

j

∥∥∥
2√

L
(26)

=
δL+K

1− δL+K

∥∥∥xT−sk−1

j

∥∥∥
2√

L
. (27)

Also, from Lemma 3.1 and 3.8, we have

βk
1 ≥

(
1− δK−k+1 −

√
1 + δK−k+1

√
1 + δk−1δK

1− δk−1

) ∥∥∥xT−sk−1

j

∥∥∥
2√

K − k + 1
(28)

≥

(
1− δL+K −

(1 + δL+K) δL+K

(1− δL+K)

)
∥∥∥xT−sk−1

j

∥∥∥
2√

K − k + 1
(29)

=
1− 3δL+K

1− δL+K

∥∥∥xT−sk−1

j

∥∥∥
2√

K − k + 1
. (30)

Using (24), (27), and (30), we can obtain the sufficient condition of (24) as

1− 3δL+K

1− δL+K

∥∥∥xT−sk−1

j

∥∥∥
2√

K − k + 1
>

δL+K

1− δL+K

∥∥∥xT−sk−1

j

∥∥∥
2√

L
. (31)

From (31), we further have

δL+K <

√
L

√
K − k + 1 + 3

√
L
. (32)

Since
√
K − k + 1 <

√
K for k > 1, (32) holds underδL+K <

√

L
√

K+3
√

L
, which completes the

proof.
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APPENDIX A

PROOF OFLEMMA 3.7

Proof: The ℓ2-norm of the correlationΦ′

FL
rk−1 is expressed as

∥∥Φ′

FL
rk−1

∥∥
2

=
∥∥∥Φ′

FL
P⊥

sk−1

j

Φ
T−T k−1

j
x
T−T k−1

j

∥∥∥
2

(102)

=
∥∥∥Φ′

FL
Φ

T−T k−1

j
x
T−sk−1

j
−Φ′

FL
P

T k−1

j
Φ

T−T k−1

j
x
T−T k−1

j

∥∥∥
2

(103)

≤
∥∥∥Φ′

FL
ΦT−sk−1

j
xT−T k−1

j

∥∥∥
2
+
∥∥∥Φ′

FL
PT k−1

j
ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2
. (104)

SinceFL andT − sk−1
j are disjoint (FL ∩ (T − sk−1

j ) = ∅) and also noting that the number of

correct indices inskj is k by the hypothesis,

|FL|+ |T − sk−1
j | = L+K − (k − 1). (105)

Using this together with Lemma 3.3,
∥∥∥Φ′

FL
ΦT−T k−1

j
xT−sk−1

j

∥∥∥
2
≤ δL+K−k+1

∥∥∥xT−T k−1

j

∥∥∥
2
. (106)

Similarly, noting thatFL ∩ T k−1
j = ∅ and |FL|+ |sk−1

j | = L+ k − 1, we have
∥∥∥Φ′

FL
PT k−1

j
ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2
≤ δL+k−1

∥∥∥∥Φ
†

T k−1

j

ΦT−T k−1

j
xT−T k−1

j

∥∥∥∥
2

(107)

where
∥∥∥∥Φ

†

T k−1

j

ΦT−T k−1

j
xT−T k−1

j

∥∥∥∥
2

=

∥∥∥∥
(
Φ′

T k−1

j

ΦT k−1

j

)
−1

Φ′

T k−1

j

ΦT−T k−1

j
xT−T k−1

j

∥∥∥∥
2

(108)

≤
1

1− δk−1

∥∥∥Φ′

T k−1

j

ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2

(109)

≤
δ(k−1)+K−(k−1)

1− δk−1

∥∥∥xT−T k−1

j

∥∥∥
2

(110)

=
δK

1− δk−1

∥∥∥xT−T k−1

j

∥∥∥
2

(111)

where (109) and (110) follow from Lemma 3.2 and 3.3, respectively. SinceT k−1
j andT − T k−1

j

are disjoint, if the number of correct indices inT k−1
j is k − 1, then

∣∣T k−1
j ∪

(
T − T k−1

j

)∣∣ = (k − 1) +K − (k − 1). (112)
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Using (104), (106), (107), and (111), we have

∥∥Φ′

FL
rk−1

∥∥
2
≤

(
δL+K−k+1 +

δL+k−1δK
1− δk−1

)∥∥∥xT−T k−1

j

∥∥∥
2
. (113)

Using the norm inequality
(
‖z‖1 ≤

√
‖z‖0 ‖z‖2

)
, we further have

∥∥Φ′

FL
rk−1

∥∥
2

≥
1

√
L

L∑

i=1

αk
i (114)

≥
∥∥Φ′

FL
rk−1

∥∥
2

(115)

≥
1

√
L
Lαk

L =
√
Lαk

L (116)

whereαk
j is

∣∣〈φfj , r
k−1
〉∣∣ 5 andαk

1 ≥ αk
2 ≥ · · · ≥ αk

L. Combining (113) and (116), we have
(
δL+K−k+1 +

δL+k−1δK
1− δk−1

)∥∥∥xT−T k−1

j

∥∥∥
2
≥

√
Lαk

L, (117)

and hence

αk
L ≤

(
δL+K−k+1 +

δL+k−1δK
1− δk−1

)
∥∥∥xT−T k−1

j

∥∥∥
2√

L
. (118)

APPENDIX B

PROOF OFLEMMA 3.8

Proof: Since βk
1 is the largest correlation in magnitude betweenrk−1 and {φj}j∈T−T k−1

j(∣∣〈φϕ(j), r
k−1
〉∣∣)6, it is clear that

βk
1 ≥

∣∣〈φj, r
k−1
〉∣∣ (119)

for all j ∈ T − T k−1
j , and hence

βk
1 ≥

1√
K − (k − 1)

∥∥∥Φ′

T−T k−1

j

rk−1
∥∥∥ (120)

=
1

√
K − k + 1

∥∥∥Φ′

T−T k−1

j

P⊥

T k−1

j

Φx

∥∥∥ (121)

5fj = arg max
j∈TC

\{f1,...,f(j−1)}

∣

∣

〈

φj , r
k−1

〉∣

∣

6ϕ(j) = arg max
j∈(T−Tk−1)\{ϕ(1),...,ϕ(j−1)}

∣

∣

〈

φj , r
k−1

〉∣

∣
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where (121) follows fromrk−1 = y−ΦT k−1

j
Φ

†

T k−1

j

y = P⊥

T k−1

j

y. Using the triangle inequality,

βk
1 ≥

1
√
K − k + 1

∥∥∥Φ′

T−T k−1

j

P⊥

T k−1

j

ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2

(122)

≥

∥∥∥∥Φ′

T−T k−1

j

ΦT−T k−1

j
xT−T k−1

j

∥∥∥∥
2

−

∥∥∥∥Φ′

T−T k−1

j

PT k−1

j
ΦT−T k−1

j
xT−T k−1

j

∥∥∥∥
2√

K − k + 1
. (123)

Since
∣∣T − T k−1

j

∣∣ = K − (k − 1),
∥∥∥Φ′

T−T k−1

j

ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2
≥ (1− δK−k+1)

∥∥∥xT−T k−1

j

∥∥∥ (124)

and also
∥∥∥Φ′

T−T k−1

j

PT k−1

j
ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2

≤
∥∥∥Φ′

T−T k−1

j

∥∥∥
2

∥∥∥PT k−1

j
ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2

(125)

≤
√

1 + δK−k+1

∥∥∥PT k−1

j
ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2

(126)

where (126) follows from Lemma 3.4. Further, we have
∥∥∥PT k−1

j
ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2

(127)

=

∥∥∥∥ΦT k−1

j

(
Φ′

T k−1

j

ΦT k−1

j

)
−1

Φ′

T k−1

j

ΦT−T k−1

j
xT−T k−1

j

∥∥∥∥
2

(128)

≤
√
1 + δk−1

∥∥∥∥
(
Φ′

T k−1

j

ΦT k−1

j

)
−1

Φ′

T k−1

j

ΦT−T k−1

j
xT−T k−1

j

∥∥∥∥
2

(129)

≤

√
1 + δk−1

1− δk−1

∥∥∥Φ′

T k−1

j

ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2

(130)

≤
δ(k−1)+K−(k−1)

√
1 + δk−1

1− δk−1

∥∥∥xT−T k−1

j

∥∥∥
2

(131)

where (129) and (130) are from the definition of RIP and Lemma 3.2. (131) follows from Lemma

3.3 and
∣∣T k−1

j ∪
(
T − T k−1

j

)∣∣ = (k − 1) +K − (k − 1) sinceT k−1
j andT − T k−1

j are disjoint

sets. Using (126) and (131), we obtain
∥∥∥Φ′

T−T k−1

j

PT k−1

j
ΦT−T k−1

j
xT−T k−1

j

∥∥∥
2
≤

√
1 + δK−k+1

√
1 + δk−1δK

1− δk−1

∥∥∥xT−T k−1

j

∥∥∥
2
. (132)

Finally, by combining (123), (124) and (132), we have

βk
1 ≥

(
1− δK−k+1 −

√
1 + δK−k+1

√
1 + δk−1δK

1− δk−1

) ∥∥∥xT−T k−1

j

∥∥∥
2√

K − k + 1
. (133)
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Short summary: This letter derives sufficient conditions for the OMP to recover the support set 

of a sparse vector from noise corrupted measurements. In particular, the conditions are given in 

terms of the minimum absolute values of the signal amplitudes.  That is, if the minimum values 

of the non-zero coefficient of the signal satisfy certain bound then OMP guarantees exact support 

recovery. 

 

I. SYSTEM MODEL AND BACKGROUND  

 Consider a model A y x e , 젨m m nR A R  y  with m n and x  is a K-sparse 

signal.  

 Let iA be the ith column of A and assume that 2 1, ? ,2, ,iA i n ‖ ‖ .  

 Let ( ) { | 0}isupp x i x    and   | ( ) |s u p p x K . 

 The goal of OMP is to estimate the support of x  iteratively.  

 At each iteration, OMP selects a column of A that is most correlated with the current 

residual. OMP then updates the residual by projecting y  onto a linear space spanned 

by the selected columns. The algorithm iterates until certain stopping rule is satisfied. 

 

A. The OMP algorithm 

Notations: For two sets  and , let \ { | , }i i i      and {1,2, , } \c n   . 

Let A  denotes a sub-matrix whose column indices are elements of the set  and x  

denotes the elements of x  whose indices are specified by    and 1( )T TA A A A 

     

represents the pseudo-inverse of A.  

 

The Exact Support Recovery of Sparse Signals with 

Noise via Orthogonal Matching Pursuit  
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1. Initialize: Given A and y , set the initial residual vector 
0

r y (that is 0 0x ), the 

initial index set as empty, 
0  and the iteration counter t=1. 

2. Find  the index min | , |t i t
i

i A r  and update the support set estimate  

1t t ti    

3. Estimate: 
tt A

x y and update the residual 
tt tA r y x  

4. Halt if some stopping rule is satisfied. Otherwise, set t=t+1 and return to step 2.  

 

Stopping rule design for the OMP depends on noise. In noiseless case, (when 0e ) the 

stopping rule can simply be 0t r . This letter considers two types of bounded noises, 

namely, 2l bounded noise, 2 1e‖ ‖ and l  bounded noise, *

2A e‖ ‖ . The stopping 

rules for these two noises in terms of residuals are 2 1t r‖ ‖ and *

2tA r‖ ‖ , respectively. 

This paper also considers the case when ie  follows 2(0, ) .  

II. RIP AND A FEW ASSOCIATED LEMMAS 

Two features of a sensing matrix are often used to analyze and derive the recovery 

performance guarantee of OMP. One is the Mutual Incoherence Property (MIP) [1] defined as

max | , |i j
i j

A A


 . And, the other one is restricted isometry property (RIP).  

 A matrix A satisfies RIP of order  K with parameter  K  if it is the smallest constant 

such that 

 
2 2 2

2 2 2(1 ) (1 )K Kx Ax x    ‖ ‖ ‖ ‖ ‖ ‖   (1) 

 

holds for any K-sparse vector .x    

 Lemma 1:  Suppose that a matrix A satisfies RIP of order K. Let  be an index set 

with | | K  . Then all singular values of sub-matrix A , which are denoted by ( )i A  , 

satisfy 

 1 ( ) 1K i KA        (2) 

 Remark 1:  For any given matrix *

2 2,m nB R B B ‖ ‖ ‖ ‖ . Let | | K  , then  

 
*

2 2 max젨 ( ) 1i K
i

B B B      ‖ ‖ ‖ ‖   (3) 
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 Lemma 2: Suppose that a matrix A satisfies RIP of order K. Let  be an index set with

| | K  . Then all eigenvalues of  matrix *A A 
, which are denoted by *( )i A A  

, 

satisfy 

 
*1 ( ) 1K i KA A         (4) 

 Lemma 3: Suppose that a matrix A satisfies RIP of order K. Let  and   be two 

disjoint sets with | ( ) ( ) |supp supp K    . Then for any vector x  with 

( )supp x , it holds that  

 
* *

2 2 2( ) ( ) KA A A A     x x x‖ ‖ ‖ ‖ ‖ ‖   (5) 

 

 

Recovery conditions of OMP algorithm 

MIP RIP 

Noiseless 

case 

Noisy case Noiseless case Noisy case 

1
2 1K




   

[3] 

2 2(1 ) log
| |

1 (2 1)
min

N
x

K

 






 
 

[2] 

1
1 1K K

  
  

[4, 5] 

1
2 1K




  and 

12
| |

1 (2 1)
minx

K






 
   [6] 

 

1
1 3K K

  
  and 

1 1

2

1 1

2(1 )
| |

(1 ) (1 )

K
min

K K

x
K



 



 




  

[7] 

 

III. EXACT SUPPORT SET RECOVERY OF SPARSE SIGNALS 

Condition 

 

Let  be an original support set of the signal x . Let 1tr  is the residual at the tth iteration,

1,2 ,t K . The condition for OMP to select a correct index at tth iteration is 

 
* *

1 1c t tA A    
r r‖ ‖ ‖ ‖   (6) 
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A. 2l  bounded noise 

Theorem 1: Suppose that 
2 1e‖ ‖  and the matrix A satisfies condition 1

1 1K K
  

 . Then OMP 

with stopping rule 
2 1t r‖ ‖  will exactly recover the support   of K-sparse signal x , if the 

minimum magnitude of nonzero elements of x  satisfies 

 
1 1

1

( 1 1)
min | |

1 ( 1)

K

i
i

KK










 


 
x   (7) 

Proof 

 

 Suppose that OMP selects only correct indexes at the first t-1 iterations, then 1t   

and the support of the solution 1tx  obtained at t-1th iteration is 1( )tsupp  x  and   

1| ( ) | 1tsupp t K   x . 

 We can write the residual 1tr as 

 
11 1 1( )

tt t tA A
        r y x x x e   (8) 

 

 Our goal is to find the RHS and LHS of the condition * *

1 1c t tA A    
r r‖ ‖ ‖ ‖  

 

 Let us start with the LHS, that is, *

1c tA  
r‖ ‖  

 

* * *

1 1

* *

1

1

( )

( )

max | , ( ) | max | , |

c c c

c c

c c

t t

t

i t i
i i

A A A A

A A A

A A A

      

    

 
 

  

  

  

r x x e

x x e

x x e

‖ ‖ ‖ ‖

‖ ‖ ‖ ‖   (9) 

 Now from Lemma 3 it holds for any ci  

 1 1 1 2| , ( ) | ( )i t K tA A      x x x x‖ ‖  

 Also, since 1 2 1iand A e‖ ‖ ‖ ‖ , we have  

 2 2 1| , |i iA A e e‖ ‖ ‖ ‖  

 Now, the LHS becomes 

 
*

1 1 1 2 1( )c t K tA    
  r x x‖ ‖ ‖ ‖  (10) 
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 Let us find the RHS, that is, *

1tA  r‖ ‖ . Let us recall that the residual 1tr  is orthogonal to 

the columns of
1t

A
 , that is,

1

*

1 0
t tA
  r . Then 

 
1 1

1

* *
\ \ 1*

1 1*

t t

t

t

t t

A A
A

A

 



    

  



   
    

     

r
r r

0
 

 Thus, *

1tA r has only 1| \ | ( 1)t K t      non-zero elements. By using the relation 

2

n


x
x

‖ ‖
‖ ‖ , we have 

 

*
* 1 2

1
( 1)

t
t

A
A

K t

 
  

 

r
r

‖ ‖
‖ ‖  

 Now, 

 

* * *

1 2 1 2

* *

1 2 2

(

)(

)t t

t

A A A A

A A A

     

   

  

  

r x x e

x x e

‖ ‖ ‖ ‖

‖ ‖ ‖ ‖
 

 *

1 2 1 2 1 1 2( (1 ) ( (1 ) () ) )t K t K tA A             x x x x x x‖ ‖ ‖ ‖ ‖ ‖  (Consequence of RIP) 

 * *

2 2 2 1 1 11 1K KA A        e e‖ ‖ ‖ ‖ ‖ ‖  

 Therefore, the RHS is lower bounded by 

       * 11
1 1 2 1

1( 1 )
(

( 1 ) ( 1 )
) KK

t tA
K t K t

 
   


  

   
r x x‖ ‖ ‖ ‖             (11) 

 1 2( ( 1) mi | |) nt i
i

K t


   x x x‖ ‖                        (12) 

  

 Using Eqns. (10), (11), and (12), we can find that for the condition (6) to be satisfied , the 

following inequality must hold true 

1 1

1

( 1 1)
min | |

1 ( 1)

K

i
i

KK










 


 
x  

which is stated in Theorem 1. 

 

 After all the K indexes in   have been identified, we find a new estimator via K Ax y . 

Then, the residual Kr  obeys 

 2 2 2 2 1K KA A      r y x y x e‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖  
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 Therefore, OMP stops after K iterations during which the stopping rule is satisfied. 

 

B. l bounded noise: 

Theorem 2: Suppose that *

2A e‖ ‖  and the matrix A satisfies condition 1
1 1K K

  
 . Then 

OMP with stopping rule *

2tA r‖ ‖ will exactly recover the support   of K-sparse signal x , 

if the minimum magnitude of nonzero elements of x  satisfies 

 
1 2

1

( 1 1)
min | |

1 ( 1)

K

i
i

K

K

K










 


 
x  

C. Gaussian noise case 

 

It is well known that when the noise in the model A y x e  follows iid Gaussian distribution 

with zero-mean and variance 2 , then 

  2

1
2 log 1P m m m

m
   e‖ ‖  

 

Theorem 3: Suppose that each element of the noise vector follows Gaussian with zero mean 

and variance 2  and the matrix A satisfies condition 1
1 1K K

  
 . Then, OMP with stopping 

rule 2 2 logt m m m r‖ ‖ will exactly recover the support   of K-sparse signal x with 

probability at least 1-(1/m), if the minimum magnitude of nonzero elements of x  satisfies 

 
1

1

( 1 1) 2 log
min | |

1 ( 1)

K

i
i

K

m m m

K

 








  


 
x  

 

Remarks: 

 

 In 2l bounded noise case, the minimum magnitude of the K-sparse signal needs to be 

in the same order of the noise level.  

 In l bounded noise case, the minimum magnitude needs to be about K times the 

noise level  
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 In the Gaussian case, the minimum magnitude depends on the size “m” of the matrix. 

Thus, m must be chosen to satisfy 1
1 1K K

  
  (for example say 2m K ), then the 

minimum magnitude need to be about K times of . 
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Short summary:  

They present an approach to designing capacity approaching high-girth low-density 

parity-check (LDPC) codes that are friendly to hardware implementation, and compatible with 

some desired input code structure defined using a protograph. The approach is based on a 

mapping of any class of codes defined using a protograph into a family of hierarchical quasi- 

cyclic (HQC) LDPC codes. Next, they present a girth-maximizing algorithm that optimizes the 

degrees of freedom within the family of codes to yield a high-girth HQC LDPC code, subject to 

bounds imposed by the fact that HQC codes are still quasi-cyclic. Finally, they discuss how 

certain characteristics of a code protograph will lead to inevitable short cycles and show that 

these short cycles can be eliminated using a “squashing” procedure that results in a high-girth 

QC LDPC code. 

(The “girth” of a code is the length of the shortest cycle in the code graph) 

I. INTRODUCTION 

 

1. The construction of LDPC codes 

 

 Highly random graph construction 

 Algebraic construction 

 

1) Highly random graph construction 

 It can produce LDPC codes that closely approach the Shannon capacity 

 Not easy to implement in hardware as the irregular connections imply wiring complexity. 

 

Hierarchical and High-Girth QC LDPC codes 
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2) Algebraic construction 

 In actual implementations, more structured constructions have been strongly preferred 

 Quasi- cyclic LDPC (QC LDPC) codes are a particularly practical and widely used class of 

structured LDPC codes. 

 In view of the practicality, they focus in this paper on the design of QC LDPC codes 

that have good decoding performance 

 

2. Optimizing the decoding performance 

 

 Water-fall 

 Error floor 

 

1) Water-fall  

 “Water-fall” is a regime where the signal-to-noise (SNR) is relatively low. 

 The standard way to do that for irregular random constructions is to use “density-evolution” 

or “EXIT chart” techniques to obtain the degree distribution that optimizes the code threshold 

in the asymptotic limit of long block lengths 

 

2) Error floor 

 An “error floor” in the performance curve means that the decoding failure rate does not 

continue to decrease rapidly as the SNR increases. 

  



 

 

3 

In this paper, they focus on how to take a code structure, such as a particular 

spatial-coupling structure, that has been designed to perform near the Shannon limit in the 

waterfall regime, and constructing a QC LDPC code with that structure that also 

empirically has excellent error floor performance. 

 

II. QC LDPC CODES 

 

 Review of Standard QC LDPC codes 

 

QC LDPC codes are defined in terms of circulant permutation matrices. Let ,i pI  denote 

the circulant permutation matrix, or “cyclic shift matrix,” obtained by cyclically left-shifting a 

p p  identity matrix by i positions, where 0 1i p   ; 0, pI  is thus the p p  identity 

matrix. We often suppress the dependence on p, writing iI  instead of ,i pI . As an example, if 

4p  , then 

1

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

I

 
 
 
 
 
 

. 

An important special case of QC LDPC codes is “weight-I (J, L) regular” QC LDPC code. The 

parity check matrix of such a code consists of J rows and L columns of p p  cyclic shift 

submatrices. The submatrix in the jth row and lth column is   ,

, 1

j l

j l

i

iI I  and the code has 

blocklength N pL . They abstractly represent the  ,j l th submatrix as a power of dummy 

variable x  as ,j li
x . 

More generally, a QC LDPC code is represented by a polynomial parity check matrix  H x  

whose entries are polynomials in x: 
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 

     

     

     

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

L

L

J J J L

h x h x h x

h x h x h x
H x

h x h x h x

 
 
 
 
 
  

 

where    
1

, 0
,

p s

j l ss
h x c j l x




  for 1 ,1j J l L    ,    , 0,1sc j l  . 

Example 1: Let C be a length-9 QC LDPC code described by 

 

 
 

For this code, 2, 3J L  , and 3p  , and H can equivalently be written as 

 
 

The polynomial version of the parity check matrix is 

 

 
 

For the maximum weight M among all polynomial entries  ,j lh x  in  H x , they call such a 

code a weight-M QC-LDPC code. 

The code in Example 1 is a weight-II QC LDPC code. 
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III. GRAPHICAL REPRESENTATIONS OF QC LDPC CODES 

 

 

A “protograph,” as introduced by Thorpe in [30], is a template that can be used to derive a 

class of Tanner graphs. Each node in a protograph represents a “type” of node in a Tanner 

graph. The nodes will all be duplicated p times in the Tanner graph derived from the protograph. 

 

 

 

Fig. 2 shows two Tanner graphs derived from the protograph of Fig.1, with 3p  . Note that 

there are many possible Tanner graphs that one can construct, which correspond to a particular 

protograph, and they need not necessarily have a quasi-cyclic structure. The Tanner graph shown 

in Fig. 2(a) is not quasi- cyclic. But it is always easy to construct a quasi-cyclic version of any 

protograph. 

Protographs can equivalently be described by an “incidence” matrix. An incidence matrix 

has a number of rows equal to the number of types of checks in the protograph and a number of 
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columns equal to the number of types of variables. Each entry in the incidence matrix tells you 

how many edges there are connecting a type of check node to a type of variable node in the 

protograph. For example, the incidence matrix P for the protograph in Fig.1 would be 

1 1 1

0 1 2
P

 
  
 

. 

 

 Lifting procedure (used to maximizes the girth of the code) 

The lifting procedure is simply to replace each entry in the incidence matrix with a polynomial 

of weight equal to the entry. 

For example, the protograph in Fig. 1, which has the incidence matrix P, can be lifted into a 

QC LDPC code with parity check matrix 

 
0

a b c

d e f

x x x
H x

x x x

 
  

 
, 

where , , , , ,a b c d e  and f  are integer exponents between 0 and 1p  , with e f . These 

integer exponents parameterize an ensemble of QC LDPC codes all of which are liftings of 

(and which cover) the original protograph. In our algorithms, they will optimize over the choice 

of these exponents to find a lifting that maximizes the girth of the resulting code. 

 

IV. CYCLES IN QC LDPC CODES 

 How to identify cycles in QC LDPC codes from their parity check matrix 

 For weight-I QC LDPC codes  For higher weight QC LDPC codes 

 Review of an obstacle in constructing QC LDPC codes with good girth (The higher 

weight QC LDPC codes with certain characteristics are inevitable to have short 

cycles) 

 HQC LDPC codes overcome the obstacle 

 Applying a lifting transformation into HQC codes to obtain high-girth QC codes. 
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A. Finding Cycles in Weight-I QC LDPC codes 

 

 Cycle 

A cycle is a path through nodes in the Tanner graph of a code. It alternates between check and 

variable nodes, and starts and ends at the same node. 

 

 

 Condition of the cycles for weight-I QC LDPC codes 

They specify the conditions on the  , , ,a b c d  developed in [33] that result in a cycle. 

Calculate an alternating sum of the shift indices associated with neighboring permutation 

matrices along a given path (every odd shift index is subtracted rather than added). For 

example, consider the left-hand path of Fig. 3. The sum is a b c d    .                        

Only if the differences sum to zero (mod-p) at the end of the path will the path return to the same 

variable node in the starting permutation matrix, thereby forming a cycle. For the example of Fig. 

3, the condition for a length-four cycle to exist is: 

  mod  0,a b c d p      

which is satisfied for 0, 2, 1, 2a b c d    , but is not satisfied by 0, 2a b c d    . 
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B. Finding Cycles in Higher Weight QC LDPC codes 

  

Let us take the matrix  H x  of Exmple 1,  

 
0 0 0

0 1 2
.

0

x x x
H x

x x x

 
  

 
 

 Now, consider the following ordered series: 

            1,2 , 2,2 , 2,3 , 2,3 , 2,3 , 1,3O   

where each pair  ,j l  in O  satisfies 1 2j J    and 1 3l L   . This ordered series 

specifies a sequence of rectilinear moves through  H x . 

To specify a candidate cycle through the Tanner graph, we associate a coefficient index s  

with each pair  ,j l   in O , such that  , 0sc j l  . They denote this series of coefficient indices 

by S . The candidate cycle will be a cycle if the alternating sum of coefficient indices in S 

modulo p equals zero. 

In their example, consider the two following choices for the respective (ordered) sets of 

coefficient indices: 

 

 

0,0,1,2,1,0

0,0,2,1,2,0 .

a

b

S

S




 

Each of these choices corresponds to a cycle of length-6 through the Tanner graph of the code. 

The alternating sums modulo-3 can be verified to be equal to zero. Respectively, these sums are 

 

 

0 0 1 2 1 0 mod  3 =0

0 0 2 1 2 0 mod  3 =0.

     

     
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C. Invertible Cycles in Higher Weight QC LDPC codes 

An important theorem proven by Smarandache and Vontobel [35] states that any weight-III 

QC LDPC code will inevitably contain cycles of length six. Suppose that, without loss of 

generality, the polynomial  ,j lh x  is weight-III and has the form a b cx x x  . To see that a 

cycle must exist using thier notation, choose the length-six ordered series 

            , , , , , , , , , , ,O j l j l j l j l j l j l , 

and choose  , , , , ,S a b c a b c . We find that  

 a b c a b c       mod 0p  ,  

for any value of p. 

One can also prove (see [35, Th. 17] or [27, Example 3.3]) that a parity check matrix            

of a weight-II QC LDPC code that contains two weight-2 polynomials in the same row or the 

same column will inevitably have eight-cycles. To see this, suppose the two weight-2 

polynomials are in the same row j , but in two different columns 1 2l l . Let 
1,

a b

j lh x x   and 

2,

c d

j lh x x  . Consider the length-eight ordered series 

                1 1 2 2 1 1 2 2, , , , , , , , , , , , , , ,O j l j l j l j l j l j l j l j l  

and choose 

 , , , , , , ,S a b c d b a d c . 

We again find that 

 a b c d b a d c         mod 0p  , 

regardless of the value of p. 

These inevitable six-cycles and eight-cycles appear to put serious limitations on what 

protographs can be converted into quasi-cyclic codes with high girth. 
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V. HQC LDPC CODES 

 

 To solve the problem of invertible short cycles, they introduce HQC LDPC codes. 

 An HQC LDPC code is formed from “levels” that each has a quasi-cyclic structure. 

The structure can be specified in two forms: 

1) Polynomial parity check matrices 

2) Tree structure 

 They connect the hierarchical structure to a particular sequence of liftings of a base 

graph. 

 

A. Parity Check Matrices of HQC LDPC Codes 

 

Example 2: Consider the polynomial parity check matrix specified in (18) with 8p  . 

Because the highest weight of any of the polynomial entries is 2, and because there are 12 

columns in the matrix, this is a length-96 weight-II QC LDPC code 

 

 

Each of the three contractions  of the parity check matrix of this code into the polynomial 

parity check matrices represented by (18), (19), and (20), corresponds to a “level” in the 

hierarchy of this three-level HQC LDPC code. 
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We now present a formal definition of the family of K-level HQC LDPC codes which 

generalizes our example. 

Definition 1: An HQC LDPC code with K levels is defined by a 
   k k

J L  multivariate 

polynomial parity check matrix  H   in K variables. The entry in the jth row and lth column of 

 H  ,  1
k

j J  ,  1
k

l L   is a K-variate polynomial  , , ,j lh    over the K variables 

   1
, ,

k
x x . With these definitions, we defined the code by the    k k

J L  polynomials  

. 

 

Example) We can rewrite the term  1,1 , ,h x y z  of (20) as 

 

 

where all coefficients  1, 2, 3 1,1s s sc  are zero except for 

           6,0,0 1,1,0 7,1,0 0,1,1 2,1,1 1,2,11,1 1,1 1,1 1,1 1,1 1,1 1.c c c c c c       

 

B. Tree Structure of HQC LDPC Codes 
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Remained contests  

 

 Finding cycles in HQC LDPC codes 

 Inevitable cycles in HQC LDPC codes 

 

 Proposing girth maximization using hill climbing 

 

 Design of restricted two-level HQC LDPC codes (The additional “restriction” is 

that the weight of the first(lowest) level must be one) 

The restricted two-level HQC LDPC codes can considered weight-I QC LDPC 

codes 

 Squaring sets of trees to eliminate inevitable cycles  

 

 Design of high-girth codes 
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Numerical Result 

In Figs. 9, 10, and 11, they plot the respective error rate performance of the three codes for the 

binary symmetric channel (BSC). For purposes of comparison, they plot analogous results for 

some randomly generated girth-6 QC LDPC codes. These codes have the same length, same rate, 

and same nonzero positions in the base matrix (i.e., same protograph structure) as the girth-10 

and girth-8 codes to which they are compared. 
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∙ High girth or High rate   Low error floor  



INFONET, GIST 
Journal Club (2013. 10. 26) 

 

 

 

Authors: Jose L. Paredes, Member, IEEE, Gonzalo 

R. Arce, Fellow, IEEE, and Zhongmin 

Wang. 

Publication: IEEE Journal of Selected Topics in Signal 

Processing, Octovber 2007 

Speaker: Ju-Sung Kang 

 

 

Short summary:  

In this paper, they have introduced two novel ultra-wideband (UWB) channel estimation 

approaches based on compressive sensing (CS).  

The proposed approach relies on the fact that transmitting an ultra-short pulse through a 

multipath UWB channel leads to a received UWB signal that can be approximated by a linear 

combination of a few atoms from a pre-defined dictionary which means sparse representation of 

the received signal.  

The key in the proposed approach is in the design of a dictionary of parameterized 

waveforms (atoms) that closely matches the information-carrying pulse shape leading thus to 

higher energy compaction and sparse representation, and, therefore higher probability for CS 

reconstruction.  

In the first approach, the CS reconstruction capabilities are exploited to recover the composite 

pulse-multipath channel from a reduced set of random projections. This reconstructed signal is 

subsequently used as a referent template in a correlator-based detector.  

In the second approach, from a set of random projections of the received pilot signal, the 

Matching Pursuit algorithm is used to identify the strongest atoms in the projected signal that are 

related to the strongest propagation paths that composite the multipath UWB channel.  

 

I. INTRODUCTION 

1. Ultra-wideband (UWB) communications 

- High bandwidth, lower-power consumption, shared spectrum resources, ranging from 

short-distance high-data-rate application to long-distance low-data-rate application. 

Ultra-Wideband Compressed Sensing : Channel 

Estimation 
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- An ultra-short duration pulse is used as the elementary pulse-shaping to carry information 

  simplicity in the transmitter (carry-less signal), little impact on other narrowband radio 

system, rich in multipath diversity. 

- Interference cancellation, antenna design, timing synchronization, and channel estimation. 

  requirement of high-speed ADC converters. : Such formiable sampling rates are not feasible 

with state of the art ADC technology. 

- This paper focuses on this goal by casting the problem of USB channel estimation and 

detection into the emerging framework of CS. 

 

2. Compressed sensing  

- The remarkable result of CS reveals that with high probability, a signal, f , with a large 

number of data points that is M -sparse in some dictionary   of basis functions, can be 

exactly reconstructed using only a few number of random projections of the signal onto a 

random basis   that is incoherent with  . 

- The number of projections is much smaller than the number of samples in the original signal 

leading to a reduced sampling rate and to a reduced use of ADCs resources. 

 

3. Basic assumption 

- When the short duration pulses propagate through multipath channels, the received signals 

remain sparse in some domain and thus CS is applicable. 

-  
Fig. 1.  Effect of UWB channel (indoor propagation in residential environments) on the transmitted pulse for two different propagation scenarios: 
(a) line-of-sight (LOS); (b) non-line-of-sight (NLOS); (c) zoom-in of (a); and (d) zoom-in of (b). Transmitted pulse (–.–) is also shown in (c) and 
(d). 

- Gaussian monocycle( 0.65ns), IEEE 802.15.4a channel model 1 and 2(CM1, CM2). 
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- As depicted in above figure, the received UWB signal is composed of set of spaced clusters 

of the transmitted pulse which captures the statistical characteristics of multipath arivals in a 

UWB channel.  

- It can be seen relatively long time intervals between clusters and rays where the signal takes 

on zero or negligible values. It is precisely this signal sparsity of the received UWB signals that is 

exploited in this work. 

 

II. ULTRA-WIDEBAND COMPRESSIVE SENSING. 

- The sparsity of the signal can be in any domain and the number of random measurements is 

much smaller than the number of samples in the original signal leading to a reduced sampling 

rate and reduced use of ADCs resources. 

 

1. Compressive sensing overview. 

- f  : N-point discrete-time representation of signal. 

- y  : a set of K measurements y f  

-   : K N  measurement matrix, rows are basis vectors of the space 
NR  

- If f  is sparse, f  can be written as a superposition of a small number of vector taken from 

a dictionary 1[ ,...., ]Z  
 of basis 

1
i i

M

l l

i

f  


  
 (1) 

- K N , and measurement matrix   is incoherent with the dictionary  . 

- 1[ ,..., ]T

Z  
 is a vector that contains M nonzeros coefficients where Z is the number of 

elements (atoms) in the dictionary  . 

- The signal f can be recovered from the solution of convex, nonquadratic optimization 

problem known as basis pursuit.  

- But solving the optimization problem is computationally expensive and is not suitable for 

real-time application. So, there are more efficient recovery algorithms such as matching pursuit, 

orthogonal matching pursuit, and tree-based matching pursuit. 
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TABLE I : MATCHING  PURSUIT  ALGORITHM 

 
-  

- MP  is  a  computationally  simple  iterative greedy algorithm that tries to recover the 

signal by finding(in the measurement signal) the strongest component (atom of dictionary), 

removing it from the signal, and searching again the dictionary for the strongest atom that is 

presented in the residual signal.   

- This  procedure is iteratively repeated until the residual signal contains just insignificant 

information.  

- Signal reconstruction is then achieved by linearly combining the set of atoms found in the 

measurements.  

- 1[ ,..., ]ZV v v  , 0T  : maximum # of algorithm iterations,   : the minimum energy 

that is left in the residual error signal. 

 

2. Processing UWB signals Using CS. 

- The received UWB signal model 

1

0

( ) ( )* ( ) ( )
L

l l

l

g t p t h t p t 




    (3) 

- ( )p t  : transmitting pulse, ( )h t  : noiseless UWB channel. 

- We call it as composite pulse-multipath channel. 

- Typically, a Gaussian pulse or its derivatives are used as ( )p t .  

- 

2

22( ) ( )

t

np t p t e 


 , ( )np t  is a polynomial of degree n that depends on the order of the 

derivative used. 

- ( )h t  is the impulse response of the UWB channel 
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1

0

( ) ( )
L

l l

l

h t t  




   (4) 

- l  : gain factor, l  : delay factor, L : # of propagation paths. 

- In our analysis, the set of delays and gains are generated according to the models proposed by 

the IEEE 802.15.4a working group in [15] . But we restrict our analysis to real-valued UWB 

channel models where there is not pulse distortion. 

 

 
 

Fig. 2.  (a) Received UWB signal for a realization of an indoor residential channel with LOS propagation (CM1). (b) CS reconstruction using 
time-sparsity model, with 500 random projections. (c) CS reconstruction using multipath diversity, with 500 random projections. (d) CS 
reconstruction using multipath diversity, with 250 random projections. 

 

1) UWB signal reconstruction Using Time Sparsity Models :  

- A first approach is assuming that the signal is sparse in the time domain.  

- This signal model is adequate for the UWB channel in industrial environments with LOS 

propagation. 

- [ (0), ( ),..., (( 1) )]Tg g g T g N T    

- T : sampling period, N # of samples 

- ~ (0,1)N , K*N random matrix with entries i.i.d. 

- Since we are assuming sparsity in the time domain, the dictionary I    

- Running the MP algorithm with the V   and the random projection y g  yields the 

results show in fig.2. 



 

 

6 

- Fig. 2(a) : the 2048-point channel for a realization of an indoor residential channel with LOS 

propagation obtained from [15]. This is the signal targeted for reconstruction from a reduced set 

of random projections.  

- Fig. 2(b) : the reconstructed signal obtained using 500 random measurements. Note that it 

fails to recover many of the signal details yielding a poor performance.  

- Increasing the # of random projection means that higher sampling rate and demanding ADC 

resources. 

- Appealing approach : to design a dictionary of parameterized waveforms where the received 

UWB signal can be compactly represented, increasing thus the sparsity of the underlying signal.  

- This approach is motivated by the fact that the received UWB signal given by (3) can be 

thought of as a linear combination of the signal contributions of the various propagation paths 

that compose the UWB multipath channel. 

 

2) UWB signal Reconstruction Using Multipath Diversity. 

- Since CS theory relies on the fact that the underlying signal is sparse in some dictionary of 

basis or tight-frames, it is important to define a suitable dictionary to represent the underlying 

UWB signal. 

- Alternatively, we can generate a new dictionary just inspecting the characteristic of the 

received UWB waveform. 

- Since the received UWB signal is formed by scaled and delayed versions of the transmitted 

pulse and since the dictionary should contain elements (atoms) that can fully represent the signal 

of interest, it is natural to think that the elementary function to generate the atoms of the dictionary 

should be closely related to the pulse waveform used to covey information, i.e., the Gaussian pulse 

or its derivatives. 

- Therefore, the dictionary is generated by shifting with minimum step   the generating 

function, ( )p t , leading to a set of parameterized waveforms given by 

2

2

( )

2( ) ( ) ( ) 0,1,2,...

t j

j nd t p t j p t j e j

 


        (5) 

- Dictionary 0 1{ ( ), ( ),.....}D d t d t  : delayed versions of the UWB transmitted pulse. 

- The other definitions are same with Time Sparsity Model cases. 
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- [ (0), ( ),..., (( 1) )]Tg g g T g N T  , T : sampling period, N # of samples, ~ (0,1)N , K*N 

random matrix with entries i.i.d. 

- The MP algorithm is then applied on the random projected signal, y, and the dictionary   

-   is the discrete time dictionary defined by uniformly sampling the atoms of the dictionary 

D. 

- Fig. 2(c) and (d) show the reconstructed signal using 500 and 250 random measurements, 

respectively. As it can be seen from Fig. 2(c) and (d), CS successfully recovers the desired signal 

from random projections  

- Furthermore, comparing Fig. 2(b) and (c), it can be seen that reconstruction using multipath 

diversity outperforms reconstruction using time sparsity model  

- Therefore, by building a dictionary that is closely matched to the underlying waveform, a 

notable performance gain is achieved in the reconstruction 

 
 
Fig. 3.  Probability of success reconstruction for UWB signal for two different propagation scenarios: LOS - - - and NLOS —. 

 

 

3. UWB Channel Estimation Using CS 

- Consider the composite pulse-multipath channel, given by (3), where the channel parameters 

1{ , }L

i i i    related to the various propagation paths have to be estimated. 

- The number of multipath components in (4) that form the UWB channel can be quite large, 

leading to a large time dispersion of the transmitted pulse [3]. 

- But only some paths have the amount of original energy. (e.g. 1160   70) Therefore, we 

limit ourselves to estimate the cL
 most significant paths that composes the UWB channel 

impulse response 
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- Furthermore, the reconstruction step in the MP algorithm can be thought of as a weighted 

sum of the elements in the dictionary, that is 1

( )
Z

i i

i

d t



. 

- Since each element in the dictionary is a shifted version of the transmitted pulse, it turns out 

that i  is an estimate of the path gain related to the i th propagation path. 

- Furthermore, the path delay is directly determined by observing the time-location of the i th 

atom found in the received UWB signal. 

- Let 1 2[ , ,..., ]T

Z   
 and let let ( )k

 for 1,2,...,k Z  be sorted elements of the set 

1{| |,...,| |}Z 
. Also let ( )kl

 be the index in the sparse vector of the kth sorted element. For 

1,2,..., Ci L
 :  

( )

( )

ii l

i il

 





 
  (6) 

 

III. ULTRAWIDEBAND DETECTION BASED ON COMPRESSIVE SENSING 

- Until now, we have the assumption of noiseless conditions. But we have to consider the 

noise and interferences. 

 

1. UWB Signal Models. 

 

Figure. Placement of pilot waveforms for PWAM, TR, and preamble ( 3fN  , 3pN  , 18N  ). 

- Consider a peer-to-peer UWB communication system where the k th binary information 

symbol is transmitted by sending fN ultra-short pulses in the symbol interval sT , that is [22] 

1

0

( ) ( ) ( )
fN

f s

k j

s t b k p t jT kT





     (7) 

- /f s fT T N  : frame time ; time interval between two consecutive pulses. 
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- ( ) { 1,1}b k    : binary information symbol that modulated the amplitude of the pulse stream. 

- pT  : pulse duration ; p fT T .  

- fN  nonoverlapped pulses are transmitted for each information symbol. 

- The channel is static during a burst of 
sN  consecutive symbols. ( ( )h t  is fixed during the 

burst of sN  symbols). 

- Let 1f L pT T    : there is no inperpulse interference. 1L   : max delay spread of multi 

path channel. 

- The received waveform during the first frame of the kth transmitted information symbol  

1

0

( ) ( ) ( ) ( )
L

f l s l

l

r t b k p t kT t  




     (8) 

- ( )t  : zero mean AWGN that models thermal noise and other interference like multi user 

interference. 

- Since 1f L pT T    and the UWB channel is fixed, the received signal during the kth 

information symbol can be represented by periodically repeating the noiseless part of ( )fr t  

every sT  seconds. 

1

0

( ) ( ) ( )
fN

f f

j

r t r t jT t




    (9) 

- Two common approaches in detection problem : correlator based detector and Rake receiver. 

- In the UWB correlator-based detector, it is assumed that the channel impulse response is 

completely known at the receiver to define the reference template that is used in the demodulation 

stage.  

- Likewise, for the RAKE-based receiver the channel taps 1{ , }| r

i i

L

l l i    related to the most 

significant propagation paths are assumed to be known a priori to define the set of templates for 

the bank of correlators and the weights for MRC [28].  

- In either case, the need for UWB channel estimation arises. 

- The problem of UWB channel estimation using CS under the data-aided framework. : We 

use pN
known pilots symbols in each packet to estimate the channel impulse response. Based on 

these pilots, the channel is estimated either by CS template reconstruction (Section II-B2) or CS 
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channel tap estimation (Section II-C). The remaining ( )s pN N  symbols that convey 

information are decoded based on the acquired channel characteristics.  

- Under this setting, the received UWB signal (9) can be conveniently rewritten as shown in 

(10) 

1

0 1

( ) 1

1

( ) ( ) ( ) 0

( )

( ) ( ) ( )

w

p f

w

N L

p l f l w

k lf

N N N L

i l f w l w s f w

k N lf

k
b p t kT t for t T

N
r t

k
b p t kT T t forT t N N T

N

  

  



 

 

 

  
      

   
 

 
      

  

 

 
 (10) 

- w p fN N N
, wT

 : time turation of the pilot waveforms.  

- The received UWB signal is observed over nonoverlapped time intervals ( 1)f fkT t k T    

for 0,1,..., 1.wk N   the received pilot waveform in a frame time is : 

1

( ) ( ) ( ) ( )
L

p l f l

lf

k
r t b p t kT t

N
  



 
    

  
  (11) 

 

2. CS correlator based detertor 

- A first approach exploits the CS reconstruction is a correlator-based detector.  

- By observing the received UWB signal in a frame-long interval and random projecting the 

observed signal, a noisy template can be recovered using MP algorithm. Since wN  pilot 

waveforms are used for channel estimation, the estimate composite pulse-multipath channel is 

formed by averaging over  noisy templates. This approach is computationally demanding as a 

noisy template is recovered for each received pilot waveform.  

- Alternatively, the random projected signals corresponding to the received pilot waveforms can 

be averaged and input to the MP algorithm for template reconstruction. This latter approach 

requires less computation since the MP algorithm is performed just once. Furthermore, by 

ensemble averaging the random projected signals, the effect of AWG noise is mitigated. 

- Thus, CS template reconstruction is achieved by random projecting the frame-long received 

signals, ensemble averaging the random projected signals, and using MP algorithm to recover an 

estimate of the composite pulse-multipath channel. 
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- Once the template has been estimated, it can be used as correlator template to enable 

integrate-and-dump demodulation at frame-rate sampling.  

-  Since each symbol is present in fN  frames, the decision statistics for the th symbol is 

formed by adding up the fN  correlator output samples related to the transmitted symbol.  

1
( 1)

0

( ) ( ) ( )
f

f s

f s

N
j T kT

cs f s
jT kT

j

z k r t g t jT kT dt


 




      (12) 

- ( )csg t  is the CS estimate of the composite pulse-multipath channel. 

- It can be extended to symbol-rate directly. 

 

3. CS rake receiver 

- Rake-based detectors relies on the assumption that the UWB channel parameters, path delays 

and path gains, related to the most significant propagation paths are known at the receiver [4], 

[21]. 

- Consider the received pilot waveform given by (11) for 
1,2,..., wk N

, where l  and l  

are the UWB channel taps to be estimated. 

- To reduce the effect of AWGN on the estimation of the UWB channel parameters, the CS 

projected pilot signals are averaged to obtain a reduced-noise projected signal that is used in the 

MP algorithm to estimate the channel parameters as described in Section II-C. 

- Thus, CS channel estimation is performed using the ensemble average of the random 

projections leading to a reduced computational cost and minimizing the noise effect. 

- After the estimation of parameters, the CS Rake Receiver is followed. 

- Let 1{ , }| cL

l l l    be the channel parameters related to the strongest paths obtained using CS 

channel estimation.  

- The received signal, ( )r t , is fed to a bank of cL
 correlators with templates given by the 

atoms 
( )lp t 

 for 
1,2,..., cl L

.  

- The outputs of these correlators contain the energy captured by the strongest paths and are 

combined via maximum ratio combining (MRC) [29] to obtain sufficient statistic for detecting 

the th bit transmitted during the th frame. 
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1

( , ) ( ) ( )
c

s f l p

s f l

L
kT jT T

R l s f l
kT jT

l

z k j r t p t kT jT dt



 

  

 


    
  (13) 

- Recalling that fN
 pulses are used to transmit an information symbol, the decision statistic 

for symbol detection is formed by summing up the MRC outputs for fN
 consecutive frames. 

1

0

( ) sgn( ( , ))
fN

R

j

b k z k j





 
  (14) 

 

IV. SIMULATION RESULTS 

- The Proposed CS-based detectors are compared to that of correlator detectors used in [16], 

[22]. : 

1

0

1
( ) ( )

wN

k

kw

g t r t
N





 
 and tradition correlator (i.e. analog-template estimation followed by 

correlator based detector.). 

- 10000N   symbols are transmitted. 

 

1. BER Performance for Different Propagation Scenarios :  

 
Fig. 4.  Indoor residential BER performance for CS-Correlator, CS-Rake, and traditional correlator with / 0.36K N  . 

- The CS-Correlator outperforms the traditional correlator for all range of SNR.  

- This shows that the reconstructed template using CS framework, ( )csg t , is more reliable for 

symbol detection than the one obtained by averaging the received pilot signal, .  

- This performance is expected since a denoising operation is inherently applied on the 

recovered signal yielding a template that is a linear combination of the transmitted pulses. 
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- The performance of CS-correlator for LOS channel is better than that for NLOS channel.  

- This is also expected since NLOS channel introduces more multipath components than LOS 

channel, yielding thus a received UWB signal with less sparsity.  

- CS-Rake outperforms the correlator-based detectors for LOS channel and yields competitive 

performance to that yielded by the traditional correlator for NLOS channel.  

- As can be seen, CS-Rake degrades its performance for dense multipath channel since the CS 

channel estimation is unable to resolve the strongest paths among the multiple closely spaced 

propagation paths.  

 

2. BER Performance for Different Number of Pilot Symbols :  

 

Fig. 5.  BER performance for different number of pilot symbols, with / 0.36K N   

- Increasing the number of pilot waveforms, improvement in the channel estimation is 

achieved, leading to a performance gain on all the methods.  
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3. BER Performance for Different Number of Projections :  

 
 

Fig. 6.  BER performance for different number of projections. 

 

- As expected, the CS-correlator’s performance improves as the number of projections 

increases.  

- More interestingly, by sampling the random projected signal at 30% of the signal’s sampling 

rate, the CS-Correlator achieves the same performance as that yielded by the traditional 

correlator. 

- Thus, with reduced ADC resources, the CS framework is able to reconstruct a template as 

good as the one obtained sampling the received UWB signal at a much higher sampling rate. 

 

V. DISCUSSION 

- What is the relation between estimated parameters and CS? 

Because of the UWB property, and the equation (3) we can use the result of MP for 

estimate the parameters. 

- What is the value of dictionary? (form time domain to discrete domain) 

  From the uniformly sampled D , we can generate the dictionary   as shifted version of 

pulse signal. 

- How to reduce the # of samples? 

  If we think about one frame, in tradition method, we need all sample point of frame (e.g. 

2048) but, by using CS, form only 250 samples, we can reconstruct the original signals. 
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Short summary: The intent of this paper is to propose new methods for the 

reconstruction of areas obscured by clods. They are based on compressive sensing theory, 

which allows finding sparse signal representations in underdetermined linear equation 

systems. 

 

I. INTRODUCTION 

Clouds in remotely sensed imagery may or may not represent an unwanted source of noise. In 

case they are viewed as a noise source, several methodologies have been developed in the past in 

order to cope with this problem. In this paper, they will focus on the approach which attempts to 

remove the clouds by substituting them with cloud-free estimations.  

Recently, CS has been introduced by Donoho and Candes et al. CS theory aims at recovering 

an unknown sparse signal from a small set of linear projections. By exploiting this new and 

important result, it is possible to obtain equivalent or better representations by using less 

information compared with traditional methods. 

In this paper, they propose three novel methods to solve the problem of the reconstruction of 

missing data due to the presence of clouds. Given a cloud-free and a cloud-contaminated image, 

each of the missing measurements is recovered by applying the CS theory in which cloud-free 

pixels are exploited. 

Missing-Area Reconstruction in Multispectral Images 

Under a Compressive Sensing Perspective 



 

 

2 

II. PROBLEM FORMULATION 

Let us consider two multispectral images (1)I and (2)I  acquired by an optical sensor at two 

different dates and registered over the same geographical area. Let us suppose that the two 

acquisitions are temporally close to each other.  

We make the hypothesis that image (2)I  is obscured by the presence of clouds. We will call 

cloudy area in image (2)I  as target region (2)  and the remaining part as source region (2) . 

Image (1)I  does not contain clouds it is supposed cloud free. Their aim is to generate a new 

image (2)I  without clouds. 

They assume that any pixel (1) (1)x   can be expressed as linear combination of pixels in 

region (1) . 

 

Figure 1 Illustration of the reconstruction principle 

 

 

In other words, in (1)I , we have  

 

 
(1) (1) (1) (1)        x x    (1) 

 

Where   is an unknown weight vector associated with the considered pixel 
(1)x . Once   

is computed, if we assume that 
(1)I  and (2)I  are temporally close, so that the scene did not 

change in between the two observations, it will be possible to reuse the   coefficients to 

reconstruct the spatially corresponding pixel in the missing area (2) . 
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 (1) (1) (1)

(2)
(2) (2)

from :  ,

to :  

I f x

I x





 



 (2) 

 

Where ( )f  represents an estimation function. 

 

III. RECONSTRUCTION VIA CS 

A. CS solutions 

 BP : A well-known solution for problem (1) is the BP principle. It suggests a 

convexificaion of the problem by using the 1L
 norm. Note that, if the original signal 

x  is sufficiently sparse, the recovery via BP is provably exact. 

 OMP : One of the easiest and fastest alternative techniques is the OMP, an improved 

version of the MP method. MP finds the atom that has the highest correlation with the 

signal. It subtracts off the correlated part from the signal and then iterates the 

procedure on the resulting residual signal. 

 BP VS OMP : In general, BP and OMP algorithms provide good performances in 

reconstruction problems. Nonetheless, BP is considered more powerful than OMP, 

since it can recover with high probability all sparse signals and is more stable. On the 

contrary, OMP results attractive for its fast convergence and in its ease of 

implementation. 

 

B. Genetic Algorithm 

GA are a part of evolutionary computation which solves optimization problems by mimicking 

the principles of biological evaluation.  

In general, a common GA involves the following steps. First, an initial population of 

chromosomes is randomly generated. Then, the goodness of each chromosome is evaluated 

according to a predefined fitness function representing the aim of the optimization. Evaluating 

the fitness function allows keeping or discarding chromosomes, by using a proper rule based on 

the principle that, the better the fitness, the higher the chance of being selected. Once the 
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selection of the best chromosomes is done, the next step is devoted to to the reproduction of a 

new population. This is done by genetic operators such as crossover and mutation operators. All 

these steps are iterated until some predefined condition is satisfied. In this situation, the fitness 

function are given below 

 

 1 0
minf   (3) 

 
2

2 minf D x   (4) 

 

IV. EXPERIMENTAL RESULTS 

A. Data set Description and Setup 

 Compare the reconstructed image with the original cloud-free image.  

 Two aspects : 1. The kind of ground covers obscured and 2. The size of the 

contaminated area. 

 For the purpose of comparison, we implemented two other methods developed to 

reconstruct cloudy areas in images. One consists in a recent work exploiting a 

multiresolution inpainting (MRI), whereas the second method estimates a missing 

pixel by contextual multiple linear prediction (CMLP). 

B. Results 

 Contamination of Different Ground Covers : In Figure shows mask A covering a 

region that includes mainly an urban area, mask B obscuring an industrial zone, and 

mask C covering a vegetation area.  

 

Method 

Mask A Mask B Mask C 

PSNR Complexity 
Time 

[s] 
PSNR Complexity Time [s] PSNR Complexity 

Time 

[s] 

MRI 22.54 - 2856 16.05 - 2517 33.77 - 2898 

CMLP 20.99 1 1 20.11 1 1 24.05 1 1 

OMP 23.96 3 4 20.60 3 4 31.97 3 4 

BP 22.22 294 66 24.74 168 59 30.67 301 60 

GA 23.78 148 68621 23.15 95 26312 32.01 138 43193 
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In general, MRI can re return visually satisfactory results only when the missing area 

refers to a uniform region such as a vegetation region. 

The OMP algorithm produces very sparse reconstruction solution. On the contrary, 

the BP algorithm selects a large number of weight coefficients. Finally, GA can be 

viewed as a compromise between the two previous methods. Despite the very long 

time needed to estimate the reconstruction model, it results sparser than BP but less 

parsimonious than OMP. 

 

Figure 2 Masks adopted to simulate the contamination of different ground covers. 

 

 Contamination with different size : Figure shows the three different masks adopted to 

simulate different increasing cloud cover sizes.  

Method 

Mask 1 Mask 2 Mask 3 

PSNR Complexity 
Time 

[s] 
PSNR Complexity Time [s] PSNR Complexity 

Time 

[s] 

MRI 24.27 - 2995 22.85 - 10176 23.82 - 22353 

CMLP 24.61 1 1 24.43 1 2 25.46 1 2 

OMP 26.36 3 5 26.42 3 16 27.39 3 21 

BP 26.45 338 61 26.82 332 143 28.25 329 973 

GA 26.72 173 69231 27.10 168 103342 28.15 170 259459 

 

To get higher PSNR values, one needs to resort to CS techniques. Indeed, our 

implementations return better results in terms of PSNR in all the simulations. The 

result form this viewpoint underline the main weakness of the GA solution i.e., its 

expensive computational needs.  
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Figure 3 Masks adopted to simulate the different sizes of contamination. 
 

 

V. CONCLUSION 

This paper deals with the complex and important problem of removal of clouds from images. 

First we have shown how two common CS solutions, namely, the OMP and BP algorithms, can 

be formulated for a cloud-contaminated-image reconstruction problem. Then, we have proposed 

a solution for solving the CS problem exploiting the capabilities of GA.   

  The experimental results point out the superiority of the proposed methods compared to two 

reference methods for cloud removal. OMP has the advantage of being sparser and significantly 

faster than BP and GA, but it is the less robust method. And BP is much less sparse than OMP. 

GA represents a good compromise between the OMP and BP methods, mainly because it is more 

robust than OMP and more sparse than BP.   

VI. DISCUSSION 

After meeting, please write discussion in the meeting and update your presentation file. 
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Short summary: In this paper authors mention that cognitive radio relay channels can be 

divided into three categories: direct, dual-hop, and relay channels. The relay node involves both 

dual-hop and relay diversity transmission. They develop power and channel allocation 

approaches for cooperative relay networks. They also develop a low complexity approach that 

can obtain most of the benefits from power and channel allocation with minor performance loss. 

  

I. INTRODUCTION 

Resource (channel and power) allocation in CR relay networks is considered in the paper. The power 

and channel allocation for cooperative relay in a three-node CR network, which consists of a source, a 

relay, and a destination and can operate in multiple spectrum bands, is considered. In this context CR 

relay channels(CRRCs) can be divided into three categories as shown in Fig. 1.  

 

These relay channels have their advantages over each other. For example a dual-hop channel has a 

bottleneck in throughput whereas a relay channel loses half of its throughput due to its half-duplex 

constraint. While a CR transmitter and at its intended CR receiver using direct channel on their respective 

links can result in scarcity of the available spectrum bands for other users in highly congested areas. In 

this paper authors propose to assign the spectrum band of the relay channel to assist the transmission in 

dual-hop or direct channels.  

Power and Channel Allocation for Cooperative Relay in 
Cognitive Radio Networks 
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Authors in this paper first introduce CRRC in a CR network with four typical spectrum bands, and then 

discuss power constraints for both the source and the relay. Finally they obtain end-to-end throughput of 

CRRC. 

II. CR SYSTEM DESCRIPTION 

A. Cooperative Relay Channel 

The network design considered is shown in the following figure.  

 

 

In the network setup every CR node is equipped with an omnidirectional antenna and can 

simultaneously sense four licensed spectrum bands, BDi. Each of them belongs to a PU exclusively. The 

primary user 1 (PU1), PU2 and PU4 are using BD1, BD2 and BD4 channels respectively. 

However they have local effect only.  The PU3 has large coverage area and effects the whole CR 

network. However, for example, if PU3 is not transmitting then BD3 is available to relay node. The 

source-relay (sr), relay-destination (rd) and source-destination (sd) links are using channel powers over 

BD3 as 3
srg , 3

rdg  and 3
sdg  respectively.  

B. Transmit Power Constraint 

Let 1 2 3 4, , ,S S S S Sp p p p =  P , 1 2 3 4, , ,R R R R Rp p p p =  P  represents power allocation vectors for source and 

relay nodes over all four BDs, respectively. The power constraint is defined as:
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max max,S R
i ip P p P≤ ≤ and total power is defined as: 

4 4

max max
1 1

,S S R R
i i

i i
p P p P

= =

≤ ≤∑ ∑ where max
SP  and max

RP

maximum powers that source and relay are able to transmit. 

C. End-to-End Throughput 

End-to-end throughput on direct transmission on BD4 can be expressed as: ( )4 4
S

directR C p g=  where 4g

is channel power over BD4. For dual-hop transmission in BD1 and BD2, both operates serially 

thus the end-to-end throughput is smaller of two hops, i.e., ( ) ( ){ }1 1 2 2min ,S R
dualR C p g C p g= .  The 

throughput on relay channel is: ( ) ( ) ( ){ }3 3 3 3 3 3

1
min ,

2
S sr S sd R rd

relayR C p g C p g C p g= + . The overall 

throughput of CRRC is given as: ( ),S R
all direct dual relayR R R R= + +P P . 

III. POWER AND CHANNEL ALLOCATION 

Due to complexity, the channel and power allocation is considered independently.   

A. Channel Allocation: four possible transmission modes are defined as:    

 

Objective of channel allocation is to select proper mode to maximize overall end-to-end throughput. The 
throughput for each mode is defined in end-to-end throughput section. It requires power allocation for 
each mode.  

B. Power Allocation: for first 3 modes, power allocation at relay node is defined as: 

( )

( )

max

max log 1

R
RD

R
RD

R
RD i i

i

R
i i

i

J C p g

B p g

∈Γ

∈Γ

  =  
  
  = + 
  

∑

∑

P

P

 

Subject to: 
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max

RD

R R
i

i
p P

∈Γ

≤∑  

max ,R
i RDp P i≤ ∈Γ  

0,R
i RDp i≥ ∈Γ  

Similarly power allocation at source is defined as: 

( )max
S

SR SD

S
SD i i

i
J C p g

∈Γ Γ

  =  
  
∑

P


 

Subject to: 

max

SR SD

S S
i

i
p P

∈Γ Γ

≤∑


 

max ,S
i SR SDp P i≤ ∈Γ Γ  

0,S
i SR SDp i≥ ∈Γ Γ  

( )
SR

S
i i

i
C p g R∗

∈Γ

≤∑  

where ( )
SR

S
io i

i
R C p g∗

∈Γ

= ∑  represents throughput on link from source to relay node. Similarly the 

throughput on link from relay to destination can be defined in similar way. Here S
iop  represents 

power allocated to source by using water-filling solution[2],
( )

1

ln 2
S
io

i i

Bp
gλ µ

 
= − 

+  
. The last 

constraint in above problem is non-convex.  

For mode 1 and 3, the last constraint can be converted into inequality constraint as

*

1
1

1
2 1

RS Bp
g
 ≤ − 
 

. The problem then becomes convex optimization problem and can be solved by 

using water-filling solution. 

For mode 2 there are more than one spectrum bands for first hop of dual hop transmission. In 

this case the last constraint of the defined problem is non-convex. It is transformed into equality 

constraints as: 

Step 1: Perform power allocation without considering the constraint and obtain the power 

allocation vector SP . 

Step 2: Check whether SP meets the constraint. If so, it is the power allocation vector that we 

need for the source. Otherwise, reduce the sum power constraint of the source max
SP and perform 

power allocation until *SP meets: 

( )* * *

SD

S
i i

i
R C p g Rε ε

∈Γ

− ≤ ≤ +∑  where * * *
1 3,0, ,0S S Sp p =  P  
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Step 3: Obtain the inequality constraints by *
1 1
S Sp p≤ and *

3 3
S Sp p≤  

For mode 4:  use SD link (direct transmission) if 3 3
s d s rg g>  but if 3 3

s d s rg g≤  then all three links 

should be used in relay diversity transmission i.e., ( ),S R
all direct dual relayR R R R= + +P P  

In this case power allocation at relay is: ( ) ( ) ( )2 30, , ,0R R Rp pα α α =  P  and source needs to 

divided its power into three parts; direct, dual and relay diversity.  

Direct transmission case; ( ) ( )4 4
S

directR C p gα = ,  

Dual-hop case; ( ) ( ) ( )( ){ }1 1 2 2min ,S R
dualR C p g C p gα α= , 

Relay transmission; ( ) ( ) ( ) ( )( ){ }3 3 3 3 3 3

1
min ,

2
S sr S sd R rd

relayR C p g C p g C p gα α= +  

The overall end-to-end throughput can be maximized as: 

( ) ( ) ( ) ( ){ }max
S direct dual relayJ R R Rα α α α= + +

P
 

Subject to: 

{ }

( )

max
1,3,4

max

2
1 2

1

, 1,3, 4

0, 1,3,4

S S
i

i

S S
i
S
i

S S

p P

p P i

p i
gp p
g

α

∈

≤

≤ =

≥ =

≤

∑

 

• When ( ) ( ) ( )3 3 3 3 3 3
S sr S sd R drC p g C p g C p g≤ +  then objective function becomes: 

( ) ( ) ( ) ( )1 1 3 3 4 4

1
max

2S

S S sr SJ C p g C p g C p gα  = + + 
 P

 

• When ( ) ( ) ( )3 3 3 3 3 3
S sr S sd R drC p g C p g C p g> +  then objective function becomes: 

( ) ( ) ( ) ( )( ) ( )1 1 3 3 3 3 4 4

1
max

2S

S S sd R dr SJ C p g C p g C p g C p gα  = + + + 
 P

 

In both of the cases, the problem is convex problem and can be solved by using water-filling solution 

as: 

( )1
1 1

1

ln 2
S
o

Bp
gλ µ

 
= − 

+  
 

( )3
1 3

1

2 ln 2
S
o

Bp
gλ µ

 
= − 

+  
 

( )4
4 4

1

ln 2
S
o

Bp
gλ µ

 
= − 

+  
 

In brief, the power and channel allocation in CRRC can be summarized as follows: 
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• List all possible modes of the channel allocation  

• Perform power allocation for each mode 

• Pick the mode with the largest overall end-to-end throughput by exhaustive search. 

 

IV. NUMERICAL RESULTS 

The parameters used for evaluation are: number of CR nodes=3; number of spectrum bands = 4; 
spectrum bandwidth = 1 MHz; noise at CR node= -126 dBW; path loss between two CR nodes = 126 dB; 
maximum allowable power on each spectrum band i.e. Pmax=3W;  

A. Different Source / Relay Power Constraints 

  

 

PA= Power Allocation, CA = Channel Allocation, max
SP = maximum power at source, max

RP = 

maximum power at relay, Rall= end-to-end throughput. “No PA No CA” is Mode 4 used as a 
baseline for comparison. The notable observation in Fig. 4 is that CA continue to increase 
throughput for increase in sum power constraint however PA can only improve throughput when 

max 9SP W≤ .  This is because when the sum power constraint is large enough, the per band power 

constraint will limit the transmit power. {Then the source sends signals with maximum allowable 
transmit power on each spectrum band. This is equivalent to equal power allocation, i.e., Pmax no 
power allocation.} Therefore, channel allocation is more effective than power allocation in 
CRRC. In Fig. 5 the throughputs of different schemes grow almost at similar scales. However 
when the sum power constraint is large enough, the throughput will be capped by per band 
power constraint. 

A. Low Complexity Approach: if the CR system works in Mode 4, the relay has to 
conduct both dual-hop and relay diversity transmission, which complicates the system. 
Therefore, we omit Mode 4 and only consider Modes 1, 2, and 3 for the power and 
channel allocation.  
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We can find that the low complexity approach of omitting Mode 4 has similar performance to the 
method of considering all four modes. Furthermore, when the sum power constraint at the source 
is larger than 9 W, it only decreases the throughput from about 4.6 Mbps to about 4.5 Mbps 
compared to the scheme with power and channel allocation, i.e., about 2% performance loss. 
 

B. Performance in Multiple Spectrum Bands:  

When N independent spectrum bands are used, there are L=N/4 relay channels on average. It 
is shown in fig. 7 that low complexity scheme has performance close to power and channel 

 
allocation scheme for both 5W and 10W sum power constraints. Moreover it outperforms the 

scheme with no power and channel allocation in both of the power constraint cases.  
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I. INTRODUCTION 

-In this paper, authors address the problem of data gathering in WSNs with outlying sensor readings and broken 
links. 

-Traditional approaches rely on in-network data compression (ex)wavelet transform, joint entropy coding and so 
on), which may suffer from following two major drawbacks: 

1) High communication overhead(in the worst case O( 2N ) single-hop transmissions are needed to collect the 

data from N sources)  
2) Some approaches such as the distributed source coding rely on a static correlation structure, which may not be 

easily obtained in a dynamic environment. 
-The recent breakthroughs in CS theory motivate us to investigate compressive data gathering. 
-The main contributions of this paper are as follows. (Authors target the robustness of compressive data gathering: 

the accuracy of the recovered data at the sink is significantly affected by outlying sensor readings and broken links, 
whose existence makes the collected signal uncompressible) 

1. Authors argue that compressible data may lose its compressiveness in WSNs due to outlying sensor 
readings and broken links. 

2. They propose two CS based approaches, with one focusing on detecting and recovering (correcting) 
outlying sensor readings and the other inferring the broken links. 

3. They perform an extensive simulation study to evaluate the performance of the proposed methods over 
various parameter settings and compared to other popular in-network compression algorithms. 

 

II. FUNDAMENTALS OF COMPRESSIVE SENSING  

Let x  be a 1N   column vector in NR . Given an N N  orthogonal basis [ (1), (2),..., ( )]N      

with each ( )i  being a column vector, x  can be expressed by (1), 

                                    
1

( ),
N

i
i

x s s i


                                  (1)                   

Robust Compressive Data Gathering  
in Wireless Sensor Networks 
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where s  is the coefficient sequence of x in the transform domain  .The signal x  is k -sparse if it is a linear 

combination of k  basis vectors. That is, only k  of the is  coefficients are nonzero and the other ( )N k  ones 

are zero. If K N , instead of acquiring all the N values from x , CS aims to reconstruct x  by taking only a 

small set of measurements: 

,y x s As                                     (2) 

 

Where y  is a 1M   vector, ,k M N is a M N    measurement matrix, and A  is a M N matrix. 

For a 1N   vector s , it has been proved that if A holds the Restricted Isometry Property(RIP), s can be 

recovered with only log( / )M c k N k   measurements at an overwhelming probability through the following 

1l -minimization 

1
min | | ,ls subject to y As  

where c is a constant depending on each instance. 

 The definition of RIP is as follows: a matrix A  obeys RIP with ( , ) (0,1)k for if    

2
2

2
2

|| ||
1 1

|| ||

Av

v
                                    (3)                  

holds for all k -sparse vector v . 

( A  should project all k -sparse vector v  with equal energy.) 

 If the measurement vector y is corrupted with noise N (AWGN),   

,y As N                                       (4) 

Then the 1l -minimization is 

1 2
min | | || ||l ls subject to As y   ,                         (5) 

where   bounds the amount of noise in the data. 
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III. SYSTEM MODEL AND MOTIVATION 

 
Fig.1. The architecture for compressive data gathering. Each observation at the data sink is a random projection of 
all sensor readings. 
  
In Fig.1, the shortest path tree spanning all sensor nodes and rooted at the data sink is adopted to gather the 

readings of the whole network. The objective is to collect the original sensor readings from all sensors. If no 

compression policy is employed, 2( )O N number of messages are required. However, compressive data gathering 

requires ( )O MN messages, with log( / )c k N k M N   . This architecture is detailed as follows. 

 Let N be the number of sensors and x be the set of sensor readings forming a 1N  column vector in N . 

Each sensor reading , {1, 2,..., },ix i N is multiplied with a vector of M random values and the resultant vectors 

are added together forming partial projections from the non-leaf nodes along the paths to reach the root, which 

computes the final M random projections of the N sensor readings. The random vectors associated with the 

sensor nodes constitute the column of the measurement matrix . Thus the data received at the sink is: 

y x                                     (6) 

This architecture can preserve high fidelity data recovery at the data sink only if the original sensor readings 

(vector x ) are compressible. In principle this is true as the values in x are the samples of a real-world smooth 

signal and they are spatially correlated.  

However, our sensor network is not perfect. Its sampled data x may not be compressible due to the outlying 

readings and broken links. 
-The outlying readings: Malfunctioning sensors may report outlying readings. Since outlying readings are typically 

uncorrelated with each other and uncorrelated with normal sensor readings, the spartcity of the signal in its 
transform domain may be violated. 
-Broken links: It may exist due to power depletion or sensor malfunction. In compressive data gathering, a broken 

link may affect multiple sensor readings.  
Therefore, in this paper, authors focus on solving both problems. 
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IV. OUTLYING SENSOR READING IDENTIFICATION AND BROKEN LINK DETECTION 

A. Outlying sensor reading identification. 

 
Fig.2. The recovered signal with outliers. 

 
They randomly select sensors to be outliers and test the impact of outlying readings on compressive data 

gathering. Figure.2 illustrates the recovered signal when we have one, two or 100 sensors reporting outlying 
readings. We observe that even with only one sensor reporting an outlying reading, the recovered signal deviates 
from the original one significantly. 

Outlying sensor reading detection is a challenging problem in compressive data gathering because the data 
collected at the sink are the random linear projections of the real sensor readings, which renders the popular 
statistics-based outlier detection algorithms inapplicable. To solve this problem, we resort to the compressive 
sensing theory again.  

Sensor outlying is itself a sparse event in the primal domain(I, the identity matrix) of x since we assume that only 
a very small of sensor readings is outlying sensor readings. Therefore, outlying sensor readings can be identified 

based on the compressive sensing theory. Let m ox x x  ( :mx the vectors of the readings of all the sensors, :x

normal sensor readings, :ox outlying sensor readings )  

Note that x is sparse in its transform domain  , but ox  is not. However, ox  is sparse with respect to I . 

Therefore, we have 

( )( )

m o

o o

T
o

y x x x

s Ix s x

s x

    

     

  

                                (7) 

where ( )T
os x  can be reconstructed by any CS recovery algorithm. 

 
B. Broken Link Detection. 
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Fig.3. The recovered signal with broken links. 

 
 As shown in Fig.3, the existence of broken links makes the direct utilization of compressive sensing on x invalid.  
-Dashed line of the first graph: when the link connecting the node at position 10 to the tree is broken.  
-Dashed line of the second graph: when the link connecting the node at position 113 to the tree is broken. 
-Dashed line of the third graph: when the link connecting the node at position 487 to the tree is broken. 
 In this subsection, they propose an approach to infer the broken links based on the compressive sensing theory. 

Let jl  be a binary variable denoting the status of the link from sensor j to its parent node in the routing tree. 

Then 1jl  if and only if the link from j to its parent is broken. Let 1 2[ , ,..., ]l Nx l l l  be the vector of the link 

statuses. Note that lx is sparse in the primal domain of x since we assume that only a very small number of links are 

broken at any instant of time. In other words, lx is sparse with respect to the identity matrix I , i.e., l lx Is . Let 

i  be the parent of j . Denote by ly the vector of lM observation characterizing the broken links. Each 

observation is the random projection of the link statuses. If i  locally concludes that the link to j is broken, i

simply adds a vector of lM random values to the partial projections of lx  for broken link detection. All the 

random values used for the projection form the observation matrix l . At the data sink, the received value can be 

written as 

l l l l ly x Is                                      (8) 

which can be solved easily based on any CS sparse recovery algorithm. 

 

 

V. THE RESULT OF SIMULATION 

In this section, they show the performance of robust compressive data gathering in sensor networks. 

Definition: For each sensor ˆ, {1, 2,..., },i i in i N let x and x be the true and the estimated reading, respectively. 

The Average relative error(ARE) is defined to be the average of the ratio between the difference of the estimated 
reading and the true reading vs. the true reading: 
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1
ˆ| | /

N

i i ii
x x x

ARE
N




                              (9) 

 
1) Compressive Data Gathering In a Perfect Network: They first evaluate the performance of compressive data 
gathering when the network is perfect: neither broken links nor outlying sensor readings exist in the network.

 
Fig.4. The ARE of the three algorithms 

  
Fig.4(a) is without the random noise case, (b) is with the random noise case. 

In Fig.4(a), the ARE increases as k  increases and the ARE decreases with an increasing M , while for entropy 

coding and wavelet transformation, their AREs slightly increase with an increasing k. Because they are not 
dependent on the number of k, but the correlation among the transmitted data.  
In Fig.4(b), we could notice that the ARE of compressive data gathering when noise exists is greater than that of 

the case when there is no noise. Overall, the compressive data gathering achieves a lower ARE than the other two 
methods. This is because the noise damages the original data correlation, leading to inaccurate data decompression 
in conventional data gathering methods. 
2) Outlying reading detection and recovery: For outlying reading detection they consider the following scenario. Let 

p be the percentage of outlying sensors. In other words, the vector of outlying sensor readings is o N p 
sparse. 
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Fig.5. (a) The ARE of the three algorithms vs. p   

 (b) Outlying reading detection ratio vs. p (solid curves) and ARE vs. p (dashed curves) 

 
In Fig.5(a), we could notice that ARE increases as the percentage of the sensor nodes with outlying readings 

increases and compressive data gathering achieves the best signal recovery performance. This is because outlying 
readings can severely distort the data correlation. In addition to, authors show that by removing the outlying sensor 
readings, the true reading can be obtained with very low recovery error. 

In Fig.5(b), we could notice that the detection ratio increases and ARE decreases as M increases. 
 
3) Broken link detection and recovery: For broken link detection we consider the following scenario. Given a 

percentage q , randomly choose N q links to be broken. Let lx be an l -sparse vector where l N q  .  

 
Fig.6. The performance of the three algorithms when there are broken links. (a) ARE vs. q  (b) Broken link 

detection ratio vs. q . 

 

In Fig.6(a), it is observed that the ARE increases as q  increases. We also could observe that compressive data 

gathering achieves a much better result than the algorithms based on entropy coding and wavelet transformation. 
This is because broken links that are far away from the sink may not severely affect the data recovery accuracy of 
compressive data gathering while the impact of broken links on the algorithms based on entropy coding and wavelet 
transformation is the same wherever the broken links are. 

In Fig.6(b), it is noticed that as an overall trend, the larger the M , the higher the detection accuracy we can 

achieve. And for a particular M , the larger the q , the lower the detection ratio.   

 

 

 

VI. CONCLUSION 
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-In this paper, Authors investigate the problem of robust data gathering in WSNs based on the compressive 
sensing theory.  

Firstly, propose an architecture for compressive data gathering 
And then, develop two CS based methods  
1. to identify outlying readings  
2. to identify broken links 
Finally, authors carry out an extensive simulation study and their results demonstrate that the proposed robust 

compressive data gathering approach outperforms other popular in-network compression algorithms.  
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