Design of active dry electrodes for wireless BCI system

Presenter : SeungChan Lee

GIST, Dept. of Information and Communication, INFONET Lab.

Gwangju Institute of Science and Technology

Introduction

- Development of active dry electrodes
 - For neuro-feedback applications, we are going to design a wireless BCI system.
 - We designed to equip with active dry electrodes for good signal quality and convenient installation.
 - I designed active dry electrodes with impedance converter(OPAMP buffer circuit) and low pass filter.
- Picture of active dry electrodes

Electrodes test with Emotiv EPOC

- Test procedure
 - Connect a active dry electrode with Emotiv EPOC headset for measuring signal quality
 - The electrode received power supply from two AA batteries
 - Measure the signal quality using Emotiv test bench utility
- Test results

INFONET, GIST

 Comparing signal quality with wet electrodes equipped with EPOC headset, the signal quality of designed electrode is unstable and uncorrelated with wet electrodes signals.

Redesign of electrode circuit

- Previous design of electrode circuit
 - Previous circuit was not working properly with Emotiv EPOC headset due to their unstable signal quality.
- Redesign of electrode circuit
 - RC low pass filter + OPAMP buffer + Protection circuit
 - Cutoff frequency of low pass filter = 1591Hz
 - Bipolar power supply ±2.5V

Lab Meeting, Aug. 20, 2013

Redesign of electrode circuit

INFONET, GIST

- Test method
 - I measured the signal quality and electrodes impedance utilizing ADS1299 evaluation board.
 - The ADS1299 is a complete analog front end IC that including low-noise, multichannel, simultaneous-sampling, 24-bit $\Delta\Sigma$ ADC with a built-in programmable gain amplifier (PGA), internal reference, and an onboard oscillator for electroencephalogram (EEG) applications.
 - Connecting designed electrodes with evaluation board, I tested our active dry electrodes compared with conventional wet electrodes(Hurev stardisk) on my forehead.

- Measured waveforms
 - Sampling rate and time : 500 samples/sec, 6 seconds
 - Black line : designed active dry electrodes
 Red line : conventional wet electrodes
 - Measured EEG signals with designed electrodes looks like less noisy, but phase difference also observed between two measured signals.

• Frequency domain of measured waveforms

- Electrode impedance
 - The impedance can be obtained by measuring the voltage difference between a reference electrode and a target electrode.
 - Lower impedance means a higher contact capability, and a better contact capability implies high quality EEG signal acquisition.
 - ADS1299 has special function for impedance measurement. Using function of AC lead-off detection with 31.25Hz frequency and 6uA current source, I measured electrodes impedance.

- Impedance test method
 - Measuring peak-to-peak voltage, we can calculate electrodes impedance through Ohm's law.

Mean (V) Vrms

Vpp

Channel 1

8.09E+0

-226.81E-3

Channel 2

-52.08E-3

64.86E-3

3.423019E+(55.194730E-

- Measured peak-to peak voltage
 Ch1 : designed electrodes
 Ch2 : wet electrodes
- Impedance calculations
 - Designed electrodes = 8.09V/6uA = 1.348MΩ
 - Wet electrodes = 64.86 mV/6uA = 10.81 k Ω

- Discussion about designed electrode impedance
 - The impedance of designed electrodes reached 1.348M Ω .
 - This is because operational amplifier buffer on designed electrodes circuit.
 - Because OPAMP buffer blocks 6uA current flow from ADS1299, the measured voltages reached saturated voltage range.
 - So, for impedance measurement, we have to find another way.

G.tec active electrodes circuit

- Structure of g.tec active electrodes
 - Used only two wire for connection with Gamma box
 - 100uA current source for power supply instead of voltage source
 - Sharing power supply line and measured signal transmission line
 - RC low pass filter + OPAMP buffer

G.tec active electrodes circuit

INFONET, GIST

Wireless BCI system design

- Future work
 - Design of wireless BCI system based on ADS1299 and MSP430 microcontroller.
 - Measurement of impedance about active dry electrodes.
 - Test of g.tec active electrode circuit.

