Optimizing the Channel Selection and Classification Accuracy in EEG-Based BCI. Mahnaz Arvaneh et al. (Chai Quek*)

IEEE Transactions on Biomedical Engineering (2011)

Presenter : SeungChan Lee

GIST, Dept. of Information and Communication, INFONET Lab.

Gwangju Institute of Science and Technology

Background

- Channel selection problems in EEG-based BCI
 - A large number of EEG channels
 - It may include noisy and redundant signals. degradation of performance
 - It needs a prolonged preparation time. inconvenience in installation process
 - Selecting the least number of channels with required accuracy can balance both needs.
- Various channel selection methods
 - SVM based
 - Recursively eliminates the least-contributed channels based on classification accuracy.
 - Mutual information(MI) based
 - Rank the channels based on MI between channels and class labels
 - Common spatial filter(CSP) based
 - Directly select the channels according to their CSP coefficients
 - RCSP based
 - used sparse solutions of spatial filters

Background

- Research problems in EEG channel selection
 - How many channels are required for the best classification accuracy?
 - What is the minimum number of channels required to achieve the same accuracy as obtained by using all the channels?
- To address the research questions...
 - They proposed a sparse common spatial pattern(SCSP) algorithm.
 - The proposed algorithm minimizes the number of channels by sparsifying the common spatial filters within a constraint of classification accuracy.

CSP algorithm

- The CSP algorithm is effective in discriminating two classes of EEG data by maximizing the variance of one class while minimizing the variance of the other class.
- Summary of formula derivation
 - Let single trial EEG data $\mathbf{X} \in \mathbf{R}^{N \times S}$ (N : the number of channels, S: the number of measurement samples)
 - The CSP algorithm projects **X** to spatially filtered **Z** as $\mathbf{Z} = \mathbf{W}\mathbf{X}$ (the rows of \mathbf{W} : the spatial filters, the columns of \mathbf{W}^{-1} : CSP)
 - Normalized covariance matrix $\mathbf{C} = \frac{\mathbf{X}\mathbf{X}^T}{\text{trace}(\mathbf{X}\mathbf{X}^T)}$

trace(X) : sum of diagonal elements of **X**

- $\mathbf{C}_{C} = \mathbf{C}_{1} + \mathbf{C}_{2} = \mathbf{F}_{C} \boldsymbol{\psi} \mathbf{F}_{C}^{T}$
 - $\boldsymbol{C}_{\!_1}, \boldsymbol{C}_{\!_2}$: Computed by averaging over multiple trials of EEG data
 - \mathbf{F}_{c} : matrix of normalized eigenvectors
 - ψ : diagonal matrix of eigenvalues
- Whitening transformation matrix
- Transformation of covariance matrices

CSP algorithm

- Summary of formula derivation
 - Whitening transformation matrix $\mathbf{P} = \sqrt{\psi^{-1}} \mathbf{F}_{C}^{T}$
 - Transformation of covariance matrices

$$\mathbf{C}_1' = \mathbf{P}\mathbf{C}_1\mathbf{P}^T, \quad \mathbf{C}_2' = \mathbf{P}\mathbf{C}_2\mathbf{P}^T$$

 $= \mathbf{U} \boldsymbol{\Lambda}_1 \mathbf{U}^T \qquad = \mathbf{U} \boldsymbol{\Lambda}_2 \mathbf{U}^T \qquad \boldsymbol{\Lambda}_1 + \boldsymbol{\Lambda}_2 = \mathbf{I}$

 C_1', C_2' : share common eigenvectors,

- ${\boldsymbol{U}}\;$: eigenvectors matrix
- $\Lambda~$: diagonal eigenvalues matrix
- Apply CSP projection matrix $\mathbf{W} = \mathbf{U}^T \mathbf{P}$

 $\mathbf{C}_1' = \mathbf{U}^T \mathbf{P} \mathbf{C}_1 \mathbf{P}^T \mathbf{U} = \Lambda_1, \quad \mathbf{C}_2' = \mathbf{U}^T \mathbf{P} \mathbf{C}_2 \mathbf{P}^T \mathbf{U} = \Lambda_2 \qquad \Lambda_1 + \Lambda_2 = \mathbf{I}$

- Because $\Lambda_1 + \Lambda_2 = I$, the maximum variance of one class lead to the minimum variance of the another class. \rightarrow Optimal discrimination

SCSP algorithm

- Motivation
 - Sparsify the CSP spatial filters to emphasize on a limited number of channels with high variances between the classes
 - Discard the rest of the channels with low or irregular variances that may be due to noise or artifacts.
- Sparsity measurement

$$- l_1 / l_2 = \frac{\|\mathbf{x}\|_1}{\|\mathbf{x}\|_2}$$

- The sparsest possible vector(only a single element is nonzero) has a sparseness of one.
- Non-sparsity measurement : l_1 / l_2 norm increases when the sparsity decreases.
- Modification of CSP algorithm

SCSP algorithm

- Modification of CSP algorithm
 - Include regularization parameter in optimization problem

$$\min_{\mathbf{W}_{i}}(1-r)\left(\sum_{i=1}^{i=m}\mathbf{w}_{i}\mathbf{C}_{2}\mathbf{w}_{i}^{T}+\sum_{i=m+1}^{i=2m}\mathbf{w}_{i}\mathbf{C}_{1}\mathbf{w}_{i}^{T}\right)+r\sum_{i=1}^{i=2m}\frac{\|\mathbf{w}_{i}\|_{1}}{\|\mathbf{w}_{i}\|_{2}}$$

Subject to : $\mathbf{w}_{i}(\mathbf{C}_{1}+\mathbf{C}_{2})\mathbf{w}_{i}^{T}=1, i = \{1, 2, ..., 2m\}$
 $\mathbf{w}_{i}(\mathbf{C}_{1}+\mathbf{C}_{2})\mathbf{w}_{j}^{T}=1, i, j = \{1, 2, ..., 2m\} i \neq j$

- Parameter $r(0 \le r \le 1)$ controls the number of removed channels and classification accuracy.
- Non-linear optimization problem → solved using sequential quadratic programming(SQP) and augmented Lagrangian methods

SCSP algorithm

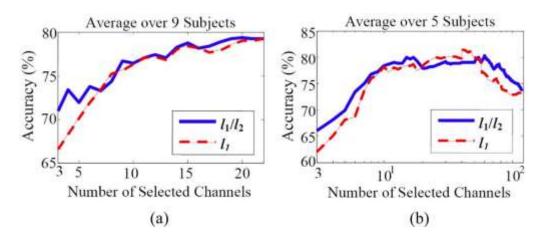
- Channel selection
 - From training set of two class motor imagery data, first two sparse spatial filters corresponding each class are obtained by solving the optimization problem.
 - Zero element channel \rightarrow discard Non-zero element channel \rightarrow select the channels
 - Importance order : apply ranking method(used maximum of the absolute values of the corresponding sparse spatial filter.

Datasets and processing

Datasets

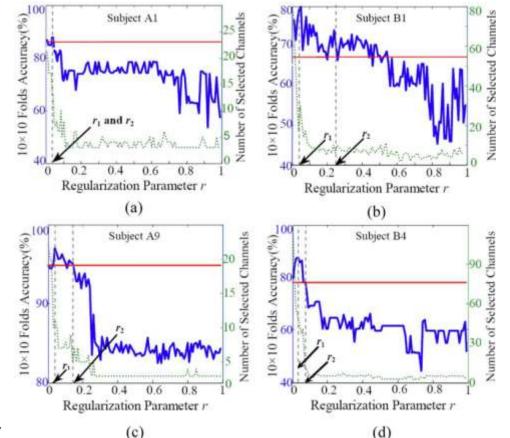
- With a moderate number of channels (22 channels)
 - Dataset 2a from BCI competition 4
 - 9 subjects
 - Used only right and left hand motor imagery tasks
 - 72 trials training set + 72 trials testing set on each subjects
- With a large number of channels (118 channels)
 - Dataset 4a from BCI competition 3
 - 5 subjects
 - Right hand and foot motor imagery tasks
 - 140 trials training set + 140 trials testing set on each subjects
- Data processing
 - Extract 0.5 ~ 2.5 seconds data samples after the visual cue
 - Apply 8 ~ 35Hz band-pass filter
 - (Training set) select optimal channels using first and last sparse spatial filter
 - (Test set) CSP retraining over selected channels and dataset spatially filtered using the first and last 3 spatial filters.
 - Variance of spatially filtered signal applied SVM classifier

- Performance comparison of l_1 and l_1 / l_2 Regularization term
 - Varying r value(different number of channels)
 - l_1 / l_2 norm based SCSP algorithm leads better classification accuracies when two different regularization based SCSP algorithm select same number of channels.



- Channel selection with different criteria
 - Two channel selection criteria
 - First criterion : maximizes the accuracy by removing noisy and irrelevant channels.(SCSP1)
 - Second criterion : minimizes the number of selected channels while maintaining the classification accuracy.(SCSP2)
 - Procedure
 - r was chosen from 0.01 to 0.99.
 - For each r, a set of selected channels was determined.
 - Using 10x10 fold cross validation on training set, compute classification accuracy with each set of the selected channels.
 - Optimal r was selected based on the accuracy.

Channel selection with different criteria



- Summary
 - the use of small values of *r* improved the accuracy by removing some noisy and redundant EEG channels, while increased values of *r* reduced the number of channels but also decreased the classification accuracy.
- further increase of the *r* value did not yield further reduction in the number of selected channels.
 INFONET, GIST

- Classification accuracy vs. number of selected channels.
- About bellow table (overall 22 channel subjects)
 - Decreasing the number of channels is very effective without accuracy degradation.(SCSP1: reduced 40% of the channels, SCSP2: reduced 61.2% of the channels)
 - the proposed SCSP algorithm using both criteria yielded significantly better classification accuracies (average 9.45% more) compared to the use of three typical channels.

Dataset IIa, BCI Competition IV									
Subject	All Ch Acc(%)	(C3,C4,Cz) Acc(%)	SCSP1		SCSP2				
			Acc (%)	♯ Selected Ch	Acc (%)	# Selected Ch			
A1	90.97	75.69	91.66	13	91.66	13			
A2	56.25	53.47	67.36	9	60.41	4			
A3	96.52	93.05	97.91	14	97.14	12			
A4	72.91	68.05	72.22	14	70.83	11			
A5	63.88	53.47	65.27	11	63.19	9			
A6	63.88	61.11	66.67	14	61.11	10			
A7	79.86	57.63	84.72	19	78.47	15			
A8	97.22	86.80	97.22	15	95.13	5			
A9	91.66	88.88	91.66	10	93.75	5			
Mean	79.23	70.90	81.63	13.22	79.07	8.55			
Std	15.63	15.72	13.7	2.99	15.61	3.90			
p-value	0.006		0.003	_	0.004	_			

P-value denotes the paired T-test between results of (C3,C4,CZ) and other results. (CH: Channels, ACC: Accuracy, \sharp : Number).

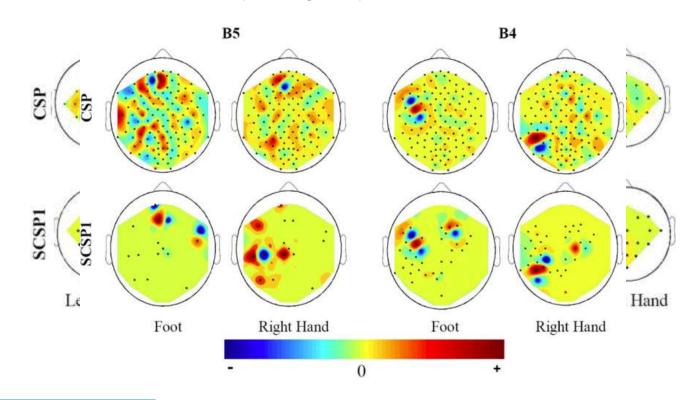
- Classification accuracy vs. number of selected channels.
- About bellow table (overall 118 channel subjects)
 - Decreasing the number of channels is very effective without accuracy degradation.(SCSP1: reduced 81% of the channels, SCSP2: reduced 93% of the channels)
 - The results also show an average improvement of 11.5% in the classification accuracy compared to the use of three typical channels.

Dataset IVa, BCI Competition III									
Subject	All Ch Acc(%)	(C3,C4,Cz) Acc(%)	SCSP1		SCSP2				
			Acc \$ (%)	Selected Ch	Acc ♯ (%)	Selected Ch			
B1	74.28	54.28	80.71	17	71.42	7			
B2	94.28	80	97.14	12	95.71	10			
B3	49.28	55	57.14	33	57.14	3			
B4	77.14	70	85	36	77.85	10			
B5	72.85	87.14	91.42	15	94.28	10			
Mean	73.56	69.28	82.28	22.6	79.28	7.6			
Std	16.06	14.69	15.38	11.05	16.19	3.08			
p-value	0.535	-	0.043	-	0.023	_			

P-value denotes the paired T-test between results of (C3,C4,CZ) and other results.

(CH: Channels, ACC: Accuracy, \$: Number).

- Spatial filter coefficient distribution
 - CSP filters have large weights in several unexpected locations.→ degradation of classification accuracies.
 - the SCSP filters have strong weights over the motor cortex areas and smooth weights over the other areas. → the proposed SCSP yielded filters that are neurophysiologically more relevant and interpretable.



Conclusion

- They investigated the reduction of channels whereby the classification accuracy is constrained to an acceptable range.
- Two criterions
 - Using the first criterion yielded the best classification.
 - Using the second criterion retained the least number of channels.
- The proposed SCSP algorithm yielded an average improvement of 10% in classification accuracy compared to the use of typical three channels
- A visualization of the obtained sparse spatial filters
 - The proposed algorithm improved the results by emphasizing on a limited number of channels with high variances between the classes.