# A novel BCI based on ERP components sensitive to configural processing of human faces.

Yu Zhang et al. (Andrzej Cichocki\*)

#### Journal of Neural Engineering (2012)

#### **Presenter : SeungChan Lee**

GIST, Dept. of Information and Communication, INFONET Lab.



Gwangju Institute of Science and Technology

## Background

- Face-sensitive event related potentials(ERPs)
  - Related ERPs
    - N170 : a large negative component peaking at the lateral occipitotemporal sites between 140 ~ 200ms
    - VPP(Vertex Positive Potential) : a large positive component at the frontocentral sites with a similar latency to the N170
    - P1, N250
  - Previous study
    - Oddball paradigm-based BCI with stimuli of natural faces
    - Online accuracy reaches over 90% with two trials (better performance using facial images instead of using intensified icon stimuli)
    - The prominent features derived from the facial images at visual cortex, which may be associated with the cognitive components reflecting face perception.

# Introduction

- Motivation
  - Face perception rely more on configural information rather than other visual object perception.
  - The inversion of a face can disrupt the configural face information, thereby making the face processing slower and more difficult.
  - The two components N170 and VPP are believed to reflect the configural processing of the face, their amplitudes and latencies can be modulated by the inversion of the face.
  - Could the signal modulation caused by the loss of configural face information be applied to the BCI using stimuli of facial images and improve the system performance?

- Subjects
  - 7 healthy right-handed volunteers (aged from 24 to 49, all males)
- Stimuli
  - 9 types of stimuli on ERP components(N170, VPP, and P300)



- 4 natural human faces(2 females) : face-related stimuli
- 4 objects(car, ship, bicycle and house) : object stimuli

- Paradigm
  - Each subject completed two experimental sessions on two separate days. (interval : less than three days)
  - Each part being tested with same stimulus type.



 Total 48 direction commands were implemented for each subject in the online test phases of the two sessions

- Paradigm
  - The timing of one run



- Training phase : K=5, each run consisted of 40 flash sub-trials (5 targets and 35 non-targets) with no feedback
- Online test phase : k=1(single trial), feedback was provided.

- EEG acquisition
  - 256 Hz sampling rate with the g.USBamp amplifier (high-pass and lowpass filters 0.1Hz and 30 Hz; a notch filter 50 Hz)
  - 16 electrodes were used (F3, Fz, F4, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, P07, P08, Oz, two ear references, and one ground on the Fpz)

![](_page_6_Figure_5.jpeg)

- Feature extraction
  - 700 ms data segment after baseline corrected (100 ms pre-stimulus interval was extracted)
  - Total 320 such data segments consisting of 40 targets and 280 nontargets were derived from each part during the training phase.
  - Each data segment was downsampled to 21 Hz after 12-point moving average.
  - A spatiotemporal feature vector with dimension of 240 (i.e. 16 channels × 15 sampling points)
  - 320 feature vectors were collected for each type of stimulus.
- Classification

INFONET. GIST

- Linear discriminant analysis(LDA) was used.
- Procedure
  - Eight spatiotemporal feature vectors were extracted during the single trial.
  - Calculate their posterior probabilities belonging to the target class.
  - stimulus direction with the maximal posterior probability was detected and presented to the subject as feedback.
- Classification accuracy was averaged over the two sessions.

- Evaluation
  - Information transfer rate(ITR)

$$ITR = M \left\{ \log_2 N + P \log_2 P + (1 - P) \log_2 \left( \frac{1 - P}{N - 1} \right) \right\} bits / \min$$

- N possible choices in which each choice is equally probable to be selected by the user.
- The probability (P) that the desired choice will indeed be selected remains invariant.
- Each error choice has the same probability of selection.
- M denotes the number of commands per minute.
- One-way analysis of variance(ANOVA)
  - ANOVA is a collection of statistical models used to analyze the differences between group means and their associated procedures (such as "variation" among and between groups)
  - ANOVAs are useful in comparing (testing) three or more means (groups or variables) for statistical significance.

#### • Online accuracy and ITR

|                       |             | Subject    |            |            |            |      |            |            |                    |
|-----------------------|-------------|------------|------------|------------|------------|------|------------|------------|--------------------|
| Stimulus              | Performance | <b>S</b> 1 | <b>S</b> 2 | <b>S</b> 3 | <b>S</b> 4 | S5   | <b>S</b> 6 | <b>S</b> 7 | Average            |
| Upright face          | Acc         | 83.3       | 81.3       | 75.0       | 81.3       | 50.0 | 83.3       | 85.4       | $77.1 \pm 12.4$    |
|                       | ITR         | 32.8       | 31.0       | 25.9       | 31.0       | 10.4 | 32.8       | 34.7       | $28.4 \pm 8.39$    |
| Inverted face         | Acc         | 93.8       | 87.5       | 85.4       | 89.6       | 70.8 | 95.8       | 97.9       | <b>88.7</b> ± 9.08 |
|                       | ITR         | 43.4       | 36.7       | 34.7       | 38.8       | 22.8 | 45.9       | 48.7       | <b>38.7</b> ± 8.63 |
| Upright eyeless face  | Acc         | 85.4       | 79.2       | 81.3       | 79.2       | 58.3 | 87.5       | 93.8       | $80.7 \pm 11.2$    |
|                       | ITR         | 34.7       | 29.3       | 31.0       | 29.3       | 14.8 | 36.7       | 43.4       | $31.3 \pm 8.83$    |
| Inverted eyeless face | Acc         | 89.6       | 77.1       | 85.4       | 79.2       | 54.2 | 95.8       | 95.8       | $82.4 \pm 14.5$    |
|                       | ITR         | 38.8       | 27.6       | 34.7       | 29.3       | 12.5 | 45.9       | 45.9       | $33.5 \pm 11.8$    |
| Upright eye           | Acc         | 91.7       | 70.8       | 75.0       | 72.9       | 45.8 | 87.5       | 79.2       | $74.7 \pm 14.9$    |
|                       | ITR         | 41.1       | 22.8       | 25.9       | 24.4       | 8.43 | 36.7       | 29.3       | $26.9 \pm 10.6$    |
| Inverted eye          | Acc         | 89.6       | 68.8       | 77.1       | 70.8       | 41.7 | 81.3       | 87.5       | $73.8 \pm 16.2$    |
|                       | ITR         | 38.8       | 21.4       | 27.6       | 22.8       | 6.69 | 31.0       | 36.7       | $26.4 \pm 10.9$    |
| Upright object        | Acc         | 70.8       | 75.0       | 64.6       | 66.7       | 37.5 | 77.1       | 81.3       | $67.6 \pm 14.5$    |
|                       | ITR         | 22.8       | 25.9       | 18.6       | 20.0       | 5.08 | 27.6       | 31.0       | $21.6 \pm 8.45$    |
| Inverted object       | Acc         | 77.1       | 66.7       | 75.0       | 58.3       | 39.6 | 70.8       | 83.3       | $67.3 \pm 14.6$    |
|                       | ITR         | 27.6       | 20.0       | 25.9       | 14.8       | 5.86 | 22.8       | 32.8       | $21.4 \pm 8.92$    |
| Highlight icon        | Acc         | 48.3       | 68.8       | 41.7       | 43.8       | 33.3 | 47.9       | 45.8       | $47.1 \pm 10.8$    |
|                       | ITR         | 9.58       | 21.4       | 6.69       | 7.56       | 3.65 | 9.39       | 8.43       | $9.53 \pm 5.61$    |

 The best performance with accuracy of 88.7% and ITR of 38.7 bits min-1 was yielded by the inverted face.

- Online accuracy and ITR
  - Accuracies
    - Compared with the highlight icon (accuracy of 47.1%), other stimuli achieved significantly higher accuracies.
    - While the accuracy had no significant difference between upright and inverted for all face-related stimuli and objects, the difference was marginally significant for the inverted face in contrast to the upright face.
    - Comparing the face-related stimuli with the object, only the inverted face generated significantly higher accuracy than that of the object.
  - ITRs
    - Both the face-related stimuli and the object achieved significantly higher ITRs than the ITR 9.53 bits min-1 of the highlight icon.
    - The inverted face yielded significantly higher ITR than that of the upright face while there was no significant difference between upright and inverted for the eyeless face, eye and object.
    - The inverted face also significantly improved the ITR in comparison to the object.

- Offline analysis
  - Why performance improved for the inverted face?
  - Methods
    - For each type of stimulus, 8 runs were randomly selected from the 16 runs (5 targets and 35 non-targets in each run) of the two experimental sessions for the classifier training.
    - The remaining 8 runs were used as test data.
    - Such procedure was repeated 100 times and the average classification accuracy and ITR were then calculated.

![](_page_11_Figure_8.jpeg)

- Offline analysis
  - Comments
    - The inverted face yielded higher accuracy and ITR than those of the other stimuli across various trials.
    - The face-related stimuli obtained a performance exceeding that of the object, while both of them performed better than the highlight icon.
    - There was no big difference between upright and inverted for the eyeless face, eye and object, whereas the inverted face was noticeably better than the upright face.

![](_page_12_Figure_7.jpeg)

ERP analysis

![](_page_13_Figure_3.jpeg)

INFONET, GIST

#### ERP analysis

![](_page_14_Figure_3.jpeg)

|                       | NI               | /0               | V               | PP               | P300            |                  |  |
|-----------------------|------------------|------------------|-----------------|------------------|-----------------|------------------|--|
| Paradigm              | Amplitude        | Latency          | Amplitude       | Latency          | Amplitude       | Latency          |  |
| Upright face          | $-6.36 \pm 2.64$ | $200.9 \pm 16.4$ | $5.17 \pm 1.10$ | $199.2 \pm 13.2$ | $5.40 \pm 1.15$ | $274.1 \pm 59.8$ |  |
| Inverted face         | $-6.18 \pm 2.34$ | $217.1 \pm 11.7$ | $8.37 \pm 1.71$ | $214.9 \pm 7.81$ | $6.68 \pm 1.17$ | $279.6 \pm 44.6$ |  |
| Upright eyeless face  | $-6.19 \pm 2.39$ | $204.8 \pm 12.9$ | $5.36 \pm 1.06$ | $206.3 \pm 12.7$ | $6.44 \pm 1.02$ | $284.1 \pm 30.1$ |  |
| Inverted eyeless face | $-5.83 \pm 2.13$ | $218.8 \pm 7.80$ | $7.12 \pm 1.94$ | $218.3 \pm 8.80$ | $6.58 \pm 1.24$ | $281.6 \pm 37.2$ |  |
| Upright eye           | $-5.60 \pm 1.87$ | $207.6 \pm 9.30$ | $6.22 \pm 2.11$ | $208.7 \pm 9.10$ | $5.15 \pm 1.36$ | $282.3 \pm 45.8$ |  |
| Inverted eye          | $-5.22 \pm 1.18$ | $217.1 \pm 10.7$ | $7.06 \pm 2.40$ | $219.3 \pm 8.10$ | $5.20 \pm 1.31$ | $276.3 \pm 25.2$ |  |
| Upright object        | $-3.44 \pm 1.61$ | $208.7 \pm 11.0$ | $3.43 \pm 1.47$ | $201.5 \pm 26.1$ | $5.19 \pm 1.13$ | $290.7 \pm 35.9$ |  |
| Inverted object       | $-3.54 \pm 1.24$ | $209.8 \pm 10.7$ | $3.15 \pm 1.79$ | $199.2 \pm 31.0$ | $5.16 \pm 1.03$ | $294.0 \pm 24.4$ |  |
| Highlight icon        | $-3.25 \pm 1.79$ | $199.8 \pm 11.8$ | $2.79 \pm 1.86$ | $205.4\pm32.3$   | $3.57 \pm 1.44$ | $301.5 \pm 37.4$ |  |

- ERP analysis
  - N170
    - Larger N170 amplitudes evoked by the face-related stimuli than by the highlight icon.
    - No significant difference was found among the face-related stimuli and between the object (both upright and inverted) and highlight icon.
    - A longer N170 latency was observed for the inverted than the upright.
  - VPP
    - A larger VPP amplitudes evoked by the face-related stimuli than by the highlight icon and by the object.
    - The inverted face elicited significantly larger VPP than the upright face.
    - A longer VPP latency was observed for the inverted than the upright.
  - P300
    - A larger P300 amplitudes evoked by the face-related stimuli and the object than by the highlight icon, especially at the parietal-occipital and occipital sites.
    - The inverted face yielded higher P300 amplitude than that of the upright face.
    - the P300 amplitude evoked by the eyeless face (both upright and inverted) was higher than by the upright face.
    - the P300 amplitudes derived from the inverted face and eyeless face were significantly higher than that of the object.

- Discriminative feature analysis
  - r<sup>2</sup>-value(squared pointwise biserial correlation coefficients)
    - Pointwise biserial correlation coefficient
      - Definition

$$r(x) = \frac{\sqrt{N_1 N_2}}{N_1 + N_2} \frac{\operatorname{mean}\{x_i | y_i = 1\} - \operatorname{mean}\{x_i | y_i = 2\}}{\operatorname{std}\{x_i | y_i = 1, 2\}}$$

Where N1 and N2 are the numbers of variables belonging to class 1 (target) and class 2 (non-target), xi and yi are the value and class label of the ith variable.

- The r2-value is equal to the squared of r(x).
- Larger r2-value indicates higher separability of distributions.

- Discriminative feature analysis
  - Temporal and spatial distributions of the most discriminative information for the nine stimuli

Upright Face Inverted Face

GIST

N170/VPP

210ms

P300

INFONET,

300ms

Upright

**Eyeless Face** 

![](_page_17_Figure_4.jpeg)

0.04

0.02

0

- Discriminative feature analysis
  - Comments
    - Almost all of the face-related stimuli and the object yielded more discriminative features than the highlight icon from 200 to 500 ms after stimulus onset.
    - The most outstanding components in the features were found around 200 and 300ms, which just correspond to N170/VPP and P300.
    - The discriminative features around 200 ms for the face-related stimuli and the object were mainly located at the fronto-central sites(Cz)
    - the P300 distributions for the face-related stimuli and the object were mainly located at the parietal-occipital sites, compared with the centroparietal distribution of P300s elicited by the highlight icon

#### Discussion

- Advantages of facial images based BCI
  - A high luminance contrast is usually required to elicit a prominent visual evoked potential for the visual stimuli, and this may cause visual fatigue and discomfort for the user.
  - The facial images are more vivid than icons, letters or symbols, they may resist fatigue and discomfort to improve the visual attention for subjects.
  - Loss of configural information makes face perception more difficult and associated with higher cognitive functions. This encourages subjects to focus attention on the target more actively.
- Performance

INFONET, GIST

- Both the face related stimuli and the object yielded significantly higher accuracies and ITRs than that of the highlight icon.
  - This implies that stimuli with higher cognitive task requirement, such as face and object perception, are more effective than the intensified stimuli of dull icons for the P300-based BCI system.
- The ITR derived from the inverted face was significantly higher than that of the upright face.
  - This suggests that the loss of configural face information assists in improving the performance of the BCI system.

# Conclusion

- They proposed a novel BCI system using multi-component ERPs sensitive to configural processing of human face with an oddball paradigm.
- The performance of the proposed BCI is significantly improved in comparison to the conventional P300-based BCI with stimuli of intensification pattern.
  - The online performance of classification accuracy 88.7% and ITR of 38.7 bits min-1 obtained by the LDA classification using only single trial without any optimization of algorithm for feature extraction.