
Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors.

Lun-De Liao et al.

Journal of Neuroengineering and Rehabilitation. (2012)

Presenter: SeungChan Lee

GIST, Dept. of Information and Communication, INFONET Lab.

INFONET, GIST 1 / 20

Background

Wireless BCI systems

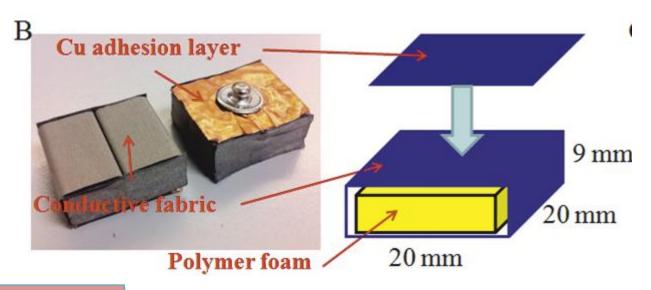
Emotiv EPOC neuro-headset

Neurosky Mindset

INFONET, GIST 2 / 20

Introduction & Motivation

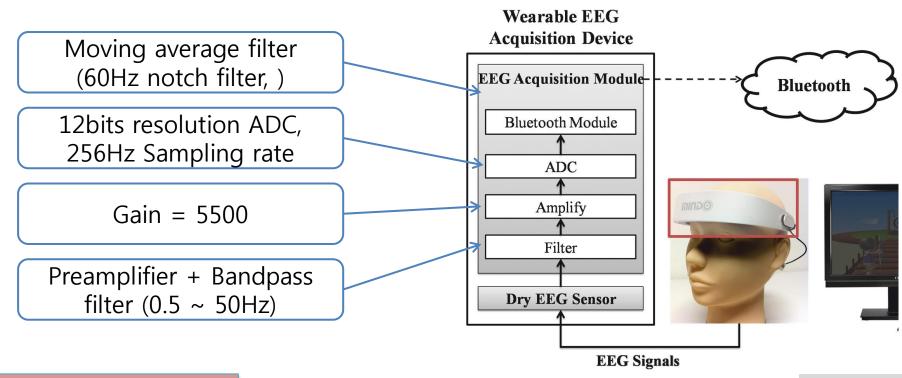
- Limitations of wet- and MEMS-type EEG sensors
 - Skin abrasion
 - The required used of conductive gel
 - Time-consuming, uncomfortable, and often painful
 - Degraded signal quality due to skin regeneration and drying of the conductive gel


Goals

- They developed a wearable, EEG-based BCI device with a novel dry foam-based sensor for gaming control.
- A real-time focusing detection algorithm was implemented in their device to detect the real-time cognitive state of the user.

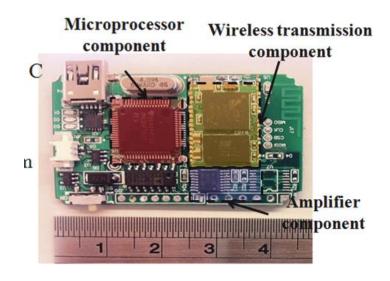
INFONET, GIST 3 / 20

System Design


- Dry EEG sensors
- Dry electrodes are designed by using conductive polymer foam made of a urethane material.
- Conductive foam was covered with a 0.2mm thick taffeta material.
- This was made from an electrically conductive polymer fabric and was coated with Ni/Cu on all of its surfaces.
- A 0.2-mm layer of Cu was used as an adhesion layer that was then connected to the wireless EEG acquisition module.

INFONET, GIST 4 / 20

System Design

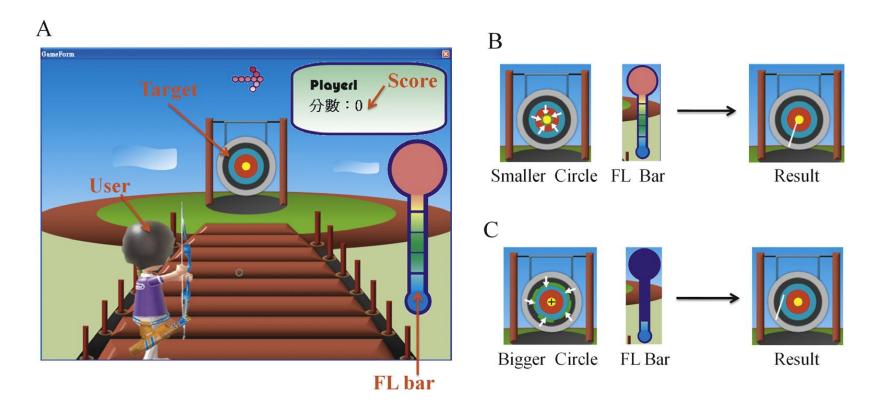

- Wireless EEG acquisition module
- This module was designed for acquiring EEG signals from the dry EEG sensors.
- Included components: INA2126(Texas Instruments opamp), AD8609(Analog Device opamp), MSP430(Texas Instruments microprocessor), BM0403(Unigrand Ltd., Bluetooth module)

INFONET, GIST 5 / 20

System Design

- Wireless EEG acquisition module
- Size: 4.5 x 3 x 0.6cm3
- Power consumption : 31.58mA with a 3.7V
 DC power supply
- Battery life: 23 hours using a commercial 750mAh Li-ion battery.

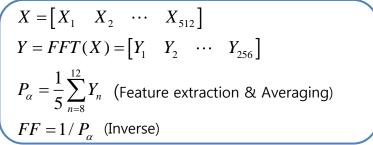
INFONET, GIST 6 / 20

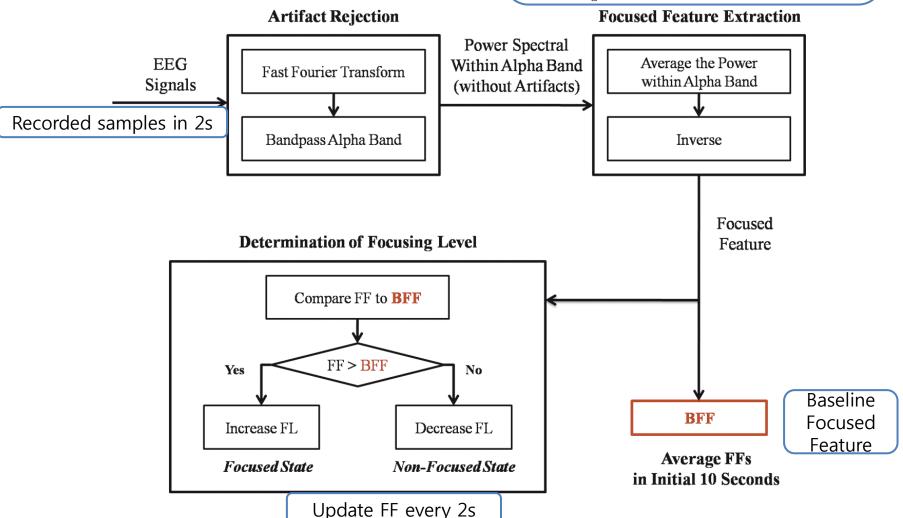

Application Design

- Archery game design
- They designed the archery game controlled by users via mental focusing feature.
- To measure the mental focusing level, they utilized the principle that the power of the alpha rhythm has a negative relationship with the mental focusing level.
- Using the focusing level(FL), they control the aiming of allows.
 - High FL: the shot was close to the center of the target high score
 - Low FL: the shot was far from the center of the target low score
- Game design
 - Total ten trials
 - Each trial persisted for ten seconds
 - The FL was initialized to zero for every shot.
 - The FL values were calculated every 2s.

INFONET, GIST 7 / 20

Application Design

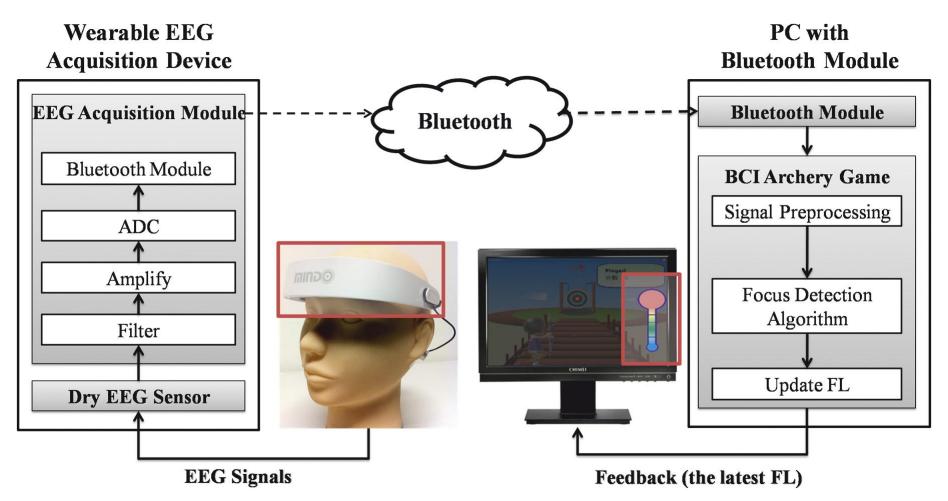

- Game interface



INFONET, GIST 8 / 20

Application Design

- Focusing level detection algorithm

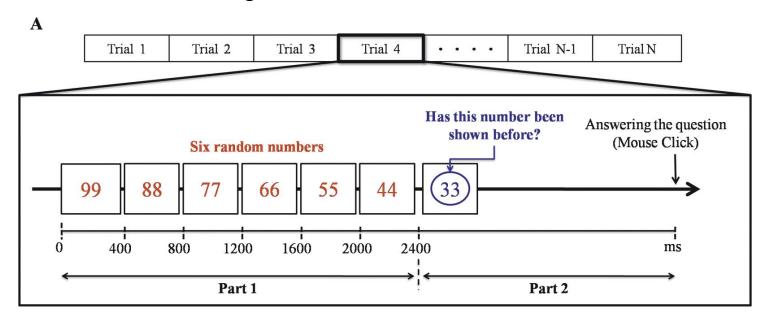


INFONET, GIST 9 / 20

Method

- Total system schematic

INFONET, GIST 10 / 20


Method

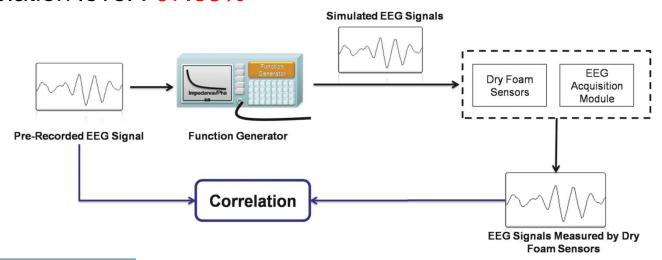
- Verification of the FL algorithm
- Do the FL algorithm indicated the user's focusing level well?
- Short-term memory test
 - The user watches a rapid series of pictures over a few seconds
 - A picture is shown and the user indicate whether of not this picture had been shown before
 - Accuracy high(focused) test in silence
 - Accuracy low(unfocused) test under noise
- Experiment procedures
 - Six numbers were presented sequentially, each number lasts for 400ms
 - A number was presented and the user had to indicate whether or not the number had been shown before by using a mouse click
 - Trial was repeated and total 3 min
 - Quite condition vs. noisy condition
 - Average accuracy are used as an indicator to determine the user's focus level.

INFONET, GIST 11 / 20

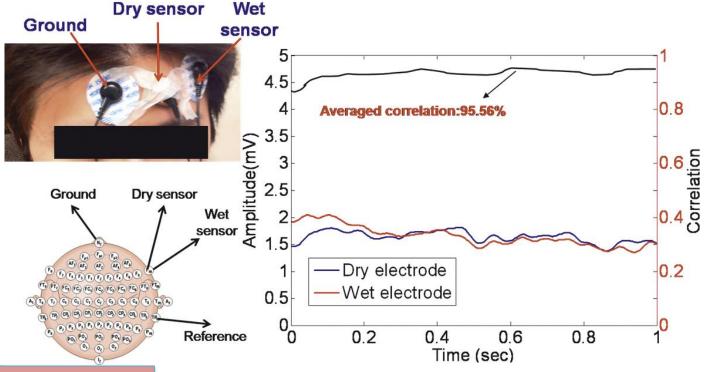
Method

- Verification of the FL algorithm

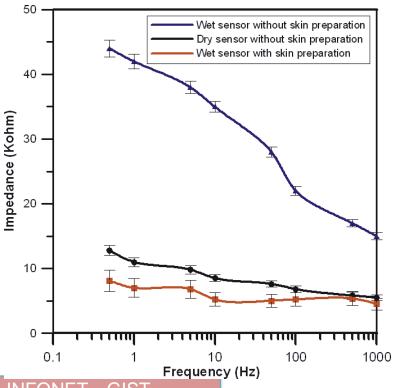
B

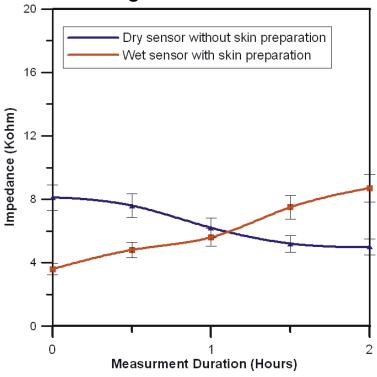


Noisy Condition


INFONET, GIST 12 / 20

- Verification of the signal quality of the proposed dry sensor
- Experiment procedure
 - The EEG data were prerecorded using standard EEG sensors with conductive gel and were stored in a computer.
 - the EEG data were fed into a programmable function generator and were passed through a voltage divider to generate simulated human EEG signals.
 - Compare the pre-recorded EEG data and the measured EEG data using dry sensor.
- Correlation level: 97.68%


INFONET, GIST 13 / 20


- The correlation between the conventional wet EEG sensor and the dry EEG sensor
- Correlation level: typically in excess of 95.56%
- The performance of the EEG signal measurement using the dry foam-based EEG sensor was identical to that of the conventional wet EEG sensors.

INFONET, GIST 14 / 20

- Comparison of the impedance at the sensor-skin contact interfaces
 - The impedance levels between the dry EEG sensors without skin preparation and conventional wet EEG sensors with skin preparation is similar.
- Comparison of the long-term impedance variation
 - The dry sensor is more stable than wet sensor because the conductive gels are easy to dry during long-term monitoring

INFONET, GIST

- Relationships between short-term memory testing, FF values and gaming scores under quiet and noisy conditions
- The average accuracy of short-term memory test under two different conditions: 69.0% and 59.8%

Table 1 Results of the short-term memory experiment under quiet and noisy conditions.

	Quiet Condition			Noisy Condition			
	Total	Correct	Accuracy	Total	Correct	Accuracy	<i>p</i> -value*
Subject 1	32	24	0.750	22	14	0.636	
Subject 2	44	34	0.773	42	28	0.667	
Subject 3	41	25	0.610	47	27	0.574	
Subject 4	36	24	0.667	38	21	0.553	
Subject 5	58	35	0.603	55	32	0.582	
Subject 6	53	38	0.717	51	25	0.490	
Subject 7	53	36	0.679	54	31	0.574	
Subject 8	54	35	0.648	55	29	0.527	
Subject 9	48	35	0.729	46	31	0.674	
Subject 10	50	36	0.720	47	33	0.702	
			0.690			0.598	0.001
* Paired + test							

* Paired t-test.

INFONET, GIST 16 / 20

- Relationships between short-term memory testing, FF values and gaming scores under quiet and noisy conditions
- The average FF values under two different conditions: 6.94 vs. 4.64
- The users maintained a lower FF under noisy conditions than under quiet conditions because of the presence of distractions.
- Correlation test 1
- The measured FF values were significantly positively correlated to the results of the short-term memory experiment.
 - The measured FF values truly represented the user's mental focusing level.

Table 2 Results of the FF values and gaming scores under quiet and noisy conditions.

	FF			Game Score			
	Quiet	Noisy	<i>p</i> -value*	Quiet	Noisy	<i>p</i> -value*	
Subject 1	8.0	4.9		9.6	7.4		
Subject 2	8.7	4.5		8.4	7.0		
Subject 3	5.4	4.4		9.2	7.6		
Subject 4	6.1	4.2		9.0	8.2		
Subject 5	4.5	3.5		9.0	7.6		
Subject 6	8.9	4.1		9.1	6.9		
Subject 7	7.1	3.9		9.1	6.1		
Subject 8	5.9	4.6		9.1	8.1		
Subject 9	8.0	6.6		8.7	7.9		
Subject 10	6.8	5.6		9.1	7.1		
	6.940	4.642	0.0005	9.013	7.393	0.00004	
* Paired t -test.							

INFONET. 17 / 20 GIST

- Correlation test 2
- The game scores are positively correlated to the measured FF values.
 - the game scores are lower if the user performs the test under two different conditions.
- The FF values are an indicator of the focused state and the FL algorithm is a reliable method for measuring the user's focusing level.

INFONET, GIST 18 / 20

Conclusion

- They proposed a wearable EEG-based BCI device with dry EEG sensors for cognitive state monitoring and demonstrated its use during EEG-based gaming control.
- Using their wearable EEG-based BCI device without conductive gel will allow users to monitor their EEG states more comfortably during daily life.
- This wearable EEG-based BCI device and the focusing level detection algorithm can be reliably used to control outside-world applications for general users or researchers.

INFONET, GIST 19 / 20

Thank you

INFONET, GIST 20 / 20

Discussion

- Prof. Lee
 - Check the design of our wireless BCI system?
 - What can we design the application using wireless BCI system?
- Jinteak Seong
 - How to measure the system specifications such as noise level, CMRR, and power consumption?
- Evgenii
 - How to focus in the game application?

INFONET, GIST 21 / 20