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A brain-computer interface (BCI) provides a direct communication pathway 
between the brain and an external device that is independent from any 
muscular signals. 

Through motor imagery or movement intentions, brain activities can be 
voluntarily decoded to control signals. 

In the majority of current BCI systems, the brain signals are measured by 
electroencephalogram (EEG), due to its low cost and high time resolution 
compared to other modalities. 

However, a major challenge in EEG-based BCI research is the inherent 
nonstationarity in the recorded signals. 

Variations of the signal properties from intra and inter sessions can be 
caused by changes of task involvement and attention, fatigue, changes in 
placement or impedance of the electrodes. 

Variations in the EEG signal can lead to deteriorated BCI performances. 

Introduction 
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Dealing with nonstationary changes in EEG-based BCIs has remained a 
challenging issue. 

This paper aiming to extract BCI features that are robust and invariant 
against the nonstationarities. 

For this purpose, we optimize the CSP spatial filters by minimizing the 
dissimilarities and variations in the train data. 

The CSP is a well known feature extraction method for motor imagery 
based BCI. 

The CSP algorithm is a feature extraction method that computes spatial 
filters maximizing the discrimination of the two classes. 
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Despite the widespread use and the efficiency of CSP, its performance may 
be distorted by intrinsic variations in the signal properties. 

CSP only considers the separation of the means of the two classes, while 
the within-class scatter information is completely ignored. 

Since the EEG signals are nonstationary, there may be high trial-to-trial 
variations within a class that result in large scatters around the means in the 
feature space. 

This paper proposes a novel spatial filtering algorithm by defining a new 
criterion that simultaneously maximizes the discrimination between the 
class means, and minimizes the within-class dissimilarities.  

A Kullback–Leibler (KL) based term is defined to measure the within-class 
dissimilarities, the proposed algorithm is called KLCSP. 
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CSP linearly transforms EEG data to a spatially filtered space that the 
variance of one class is maximized while the variance of the other class is 
minimized. 

 

 

 

 

 

 

Since band-passed EEG measurements have approximately zero means, 
the normalized covariance matrix can be estimated as: 

where X ∈ RC×S denotes a single-trial EEG with C and S being the number 
of the channels and the measurement samples. 

The CSP algorithm projects X to spatially filtered Z as: 

Where the rows of the projection matrix W are the spatial filters. 

Method (Common Spatial Patterns)  
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W is generally computed by solving the eigenvalue decomposition problem: 

 

     and     are, respectively, the average covariance matrices of each class. 

   is the diagonal matrix that contains the eigenvalues of  

Since the eigenvalues in    indicate the ratio of the variances under the two 
conditions,  

The first and the last m rows of W, corresponding to the m largest and the m 
smallest eigenvalues, are generally used as the most discriminative filters. 

The CSP algorithm, in computing the projection matrix W, can be 
formulated as an optimization problem: 

 

 

 

where the unknown weights wi ∈ R1×C, i = {1, . . . , 2m}, respectively, 
indicate the first and the last m rows of the CSP projection matrix. 

 

 

 

 

 

 

 

 

 

 

Method (Common Spatial Patterns)  

6 

1∑ 2∑

Λ
1

2 1

−∑ ∑

Λ



INFONET,   GIST Nov 7, 2014                  /23 

The CSP filters consider the discrimination of the average powers (means) 
of the two classes. 

However, the large discrimination between the class means does not 
guarantee to have compact features with small scatters around the means. 

Since the EEG signals are nonstationary, there may be high trial-to-trial 
variations within a class resulting in deteriorated BCI performances. 

This issue motivates to modify the CSP algorithm such that simultaneously 
the discrimination between the class means is maximized, and the within-
class dissimilarities are minimized. 

For this purpose, first, the variations and dissimilarities between the trials of 
each class require to be measured. 

A natural choice for a dissimilarity metric is one that compares the 
probability distribution functions. 

A common possible choice, used in this paper, is the KL divergence or 
relative entropy. 

 

 

Method (Minimizing Within-Class Dissimilarities in CSP Filters) 
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Given two probability distributions, P1(i ) and P2(i ) (taken as reference), the 
KL(Kullback Leibler) divergence is defined as 

 

the KL divergence evaluates the dissimilarity between two distributions via 
the logarithm of their ratio weighted by the occurrence probability. 

In this paper, it is assumed that the nonstationarities exist only in the first 
two moments of the single-trial EEG (i.e.,mean and covariance) 

To measure the within-class dissimilarities of the EEG data, we split the 
training trials of each class into a number of consecutive epochs,  

And then we measure the dissimilarities between the distributions of each 
epoch and the average trials from the same class using the first two 
moments. 

The average distribution of a group of band-pass filtered EEG trials can be 
defined by a zero mean and a covariance matrix computed from averaging 
the covariance matrices over the multiple EEG trials. 

Method (KLCSP) 
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The most practical model for modeling the distribution of the EEG trials that 
is consistent with zero mean and a covariance matrix is Gaussian. 

The KL divergence between multivariate Gaussian distributions, N0(μ0,0) 
and N1(μ1,1), has a closed-form expression: 

 

 

where det and d denote the determinant function and the dimensionality of 
the data, respectively. 

So                                measures the dissimilarity of the distribution of the t-
th epoch in class ω from the average distribution in class ω 

Minimizing the average within-class dissimilarities of the spatially filtered 
data is equivalent to minimizing the loss function 

 

Method (KLCSP) 
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Adding the proposed loss function to the CSP optimization function results 
in spatial filters that simultaneously maximize the between-classes distance 
and minimize the within-class dissimilarities of the powers. 

Hence, the following optimization problem is proposed to obtain the 
optimized spatial filters: 

 

 

 

 

where r (0 ≤ r ≤ 1) is a regularization parameter to control the discrimination 
between and the similarity within the training classes. 

Each epoch contains ν consecutive trials from the same class.  

In this paper, the best subject-specific r and ν values are selected from 
small predefined sets by cross-validation. 

 

Method (KLCSP) 
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Dataset IVa from BCI Competition III 

– This publicly available dataset comprised EEG data from five healthy 
subjects recorded using 118 channels. 

– The subjects were instructed to perform one of two motor imagery tasks: 
right hand or foot. 

– 280 trials were available for each subject, whereby 168, 224, 84, 56, 
and 28trials formed the training sets for subjects aa, al, av, aw, and ay, 
respectively. 

– Subsequently, the remaining trials formed the test sets. 
Neuro-Rehabilitation Dataset 

– This dataset comprised a total of 132 sessions EEG data recorded from 
11 hemiparetic stroke patients. 

– Each patient underwent 12 motor imagery-based BCI with robotic 
feedback neuro-rehabilitation sessions recorded over one month 

– The EEG data were acquired using 25 channels.  
– The experimental paradigm is shown in Fig. 1. 

 

Experiment (Data description) 
 

11 



INFONET,   GIST Nov 7, 2014                  /23 

 

 

 

The patient was first prepared with a visual cue for 2 s, then a “go” cue 
would instruct the patient to perform motor imagery of the impaired hand. 

If the voluntary motor intent was detected within the 4 s action period, the 
strapped MIT-Manus robot would assist the patient in moving the impaired 
limb toward the goal. 

There was a total of 160 repeats in each session (1 repeat means a 
complete run from preparation cue to the rest stage). 

There was a dedicated calibration(training) phase before the rehabilitation 
phase to train the online classifier. 

The classification problem involved distinguishing between the motor 
imagery stage and the rest stage. 

First 160 single-trials were considered as the training set, and the second 
160 single-trials were considered as the test set. 

Experiments (Data description) 
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The performance of the proposed KLCSP algorithm was evaluated on the 
abovementioned datasets, and compared with the CSP and the sCSP 
algorithms. 

For each dataset, the EEG data from 0.5 to 2.5 s after the visual cue were 
used 

A bandpass filter from 8 to 30 Hz was used for filtering the EEG data, since 
this frequency band includes the range of frequencies that are mainly 
involved in performing motor imagery. 

The spatially filtered signals were obtained using the first and the last two 
spatial filters of (s/KL)CSP, m = 2. 

Finally, the variances of the spatially filtered signals were applied as the 
inputs of the LDA classifier. 

Experiments (Data Processing) 
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In the KLCSP, two parameters are required to be optimally selected, the 
regularization parameter r and the number of trials in each epoch ν. 

The best subject-specific r and ν were selected from the sets of r ∈ {0.1, 
0.2, . . . , 0.9} and ν ∈ {1, 5, 10}, respectively. 

Five-fold cross-validation was performed for the different values of r and ν 
on the train data and the ones resulting in the minimum error were chosen. 

To consider the changes over the time, in all the experiments, each epoch 
was constructed by a set of consecutive trials from the same class. 

It is noted that by selecting different numbers of trials in each epoch, 
nonstationarities and variations in different time-scales are taken into 
account. 

Considering a small number of trials in each epoch results in focusing on 
trial-by-trial changes, such as muscular artifacts,  

while increasing the number of trials shifts the focus into slower changes, 
such as variations of task involvement or fatigue. 

 

 

 

Evaluation (Selecting the Parameters in KLCSP)  
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In the first experiment, we compared the proposed KLCSP algorithm with 
the standard CSP and the sCSP algorithms using the first dataset. 

Table I presents the classification accuracies on the test data obtained by 
CSP, sCSP, and KLCSP 

 

 

The results showed that the proposed KLCSP algorithm outperformed the 
CSP and the sCSP algorithms by an average of 4.14% and 0.77%. 

Table II reports the average classification accuracies of the test sets from 
the neuro-rehabilitation dataset obtained by CSP, sCSP, and KLCSP. 

 

 

 

The results showed that the KLCSP algorithm yielded the mean (median) 
accuracy of 73.43% (72.50%), whereas the CSP and the sCSP algorithms 
yielded the accuracies of 68.69% (67.81%), and 69.86% (68.75%). 

Evaluation (Performance Comparison)  
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Fig. 2 depicts scatter plots of the classification accuracies obtained from the 
neuro-rehabilitation dataset. 

 

 

 

 

 

Each plotted point on the sub-figures indicates the classification accuracy 
obtained from one of the 132 sessions. 

The points above the diagonal line mean the algorithm of the y-axis 
performed better than the one of the x-axis. 

The sCSP and the proposed KLCSP algorithms, respectively, outperformed 
the CSP algorithm in 95 and 112 sessions over the total 132 sessions, 

Interestingly, the last sub-figure showed that in 103 over 132sessions, the 
proposed KLCSP algorithm outperformed the sCSP algorithm. 

Evaluation (Performance Comparison)  
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Collecting all the results of the two aforementioned datasets and dividing 
them to three groups based on their CSP error rates. 

Table III investigates the performance of KLCSP and sCSP on the different 
BCI users. 

 

 

 

First three rows compare the average(median) classification accuracies of 
the different groups obtained by CSP, sCSP, and KLCSP filters, respectively. 

Last three rows show the statistical wilcoxon test results.  

KLCSP algorithm improved the results of all the groups of the subjects, 
including those with poor, moderate, and high CSP performances 

The improvements from KLCSP for the subjects with moderate or poor CSP 
performances were statistically significant. 

KLCSP results revealed that for the subjects with poor CSP performances 
the KLCSP algorithm significantly outperformed the sCSP algorithm. 

Evaluation (Performance Comparison)  
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Fig. 3 shows the distance between the power of each trial and the average 
power of the corresponding class in the train sets after filtering by the best 
CSP and KLCSP filters. 

 

 

 

 

 

 

The best filters were defined by the fisher score of the corresponding 
features in the train set. 

Higher fisher score is obtained with maximum between class distance and 
minimum within class distance. 

Based on Fig. 3, shorter distances between the powers of the trials and the 
average power of the corresponding class indicate more similarities.  

Evaluation (Toward Understanding the Merits of KLCSP)  
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From Fig. 3, one can easily recognize higher dissimilarities and variations 
within the rest class as compared with the motor imagery class. 

In the neurorehabilitation dataset, since the rest class was a “no-command” 
state (the patients were allowed to do almost any other mental tasks than 
the impaired hand motor imagery), this class has high variations. 

The distances between the powers of the trials and the average power in 
the KLCSP filtered trials are mostly smaller than the CSP ones. 

 

Evaluation (Toward Understanding the Merits of KLCSP)  
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Fig. 4 shows the train and the test features obtained by CSP and the 
proposed KLCSP filters. 

 

 

 

 

 

 

 

 

It is noted that for the ease in visualization only two features which had the 
highest fisher scores in the train data were plotted. 

The blue and red squares denote the features of the hand motor imagery 
and the rest class, respectively. 

The black line represents the LDA hyperplane obtained by the train data. 

Evaluation (Toward Understanding the Merits of KLCSP)  
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The figure clearly reveals that the KLCSP features were more compact and 
thus more separable. 

transferring from the train to the test in CSP caused big shifts as well as big 
changes in the shape of the feature distributions.  

In contrast, the differences between the feature distributions of the train and 
the test sessions in KLCSP were almost limited to small shifts. 

 

 

 

 

 

 

 

 

Evaluation (Toward Understanding the Merits of KLCSP)  
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To better explain the performance differences between the CSP and the 
KLCSP algorithms, Fig. 5 compares some examples of the spatial filters. 

 

 

 

 

 

 

For P007 and P037, although the CSP filters captured the relevant patterns 
over the left motor cortex, they were still affected by some nonstationarities 
and artifacts in some irrelevant channels. 

For aa, the CSP filter failed to capture the foot motor imagery pattern. 

On the contrary, the KLCSP algorithm extracted filters that are 
neurophysiologically more relevant, with strong weights over the relevant 
motor cortex areas and smooth weights over the other areas. 

 

 

Evaluation (Toward Understanding the Merits of KLCSP)  
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This paper proposed a novel spatial filtering algorithm, KLCSP, to extract 
features that are robust and invariant against the nonstationarities in the 
EEG signals. 

This was achieved by defining a new criterion, that maximizes the 
discrimination between the classes while minimizes the within-class 
dissimilarities. 

Thus, a loss function was defined to measure the within-class dissimilarities 
based on the KL divergence, and it was imposed in the CSP optimization 
function. 

The experimental results demonstrated that the proposed KLCSP algorithm 
significantly outperformed the CSP and the sCSP algorithms by an average 
of 4.7% and 3.5%, respectively (p < 0.01). 

The results also showed that the KLCSP filtered signals had less within-
class variations compared to the CSP ones. 

Moreover, plotting the feature distributions confirmed that the KLCSP 
features were more compact and more separable,  

 

 

Conclusion   
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Thank you  
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