
INFONET, GIST
Journal Club (2015. 04. 13)

Authors: Mehrdad Yaghoobi, Di Wu, and Mike E. Davies

Publication: IEEE SIGNAL PROCESSING LETTERS, 2015

Speaker: Haeung Choi

Short summary: Non-negative signal is an important class of sparse signals. Many

algorithms have already been proposed to recover such non-negative sparse

representations. One of such modification is Non-Negative Orthogonal Matching

Pursuit(NNOMP), which satisfies non-negative constraint by selecting positive coefficients

and using a non-negative optimization technique. However, since it consumes the extra

computational costs, the most significant benefit of OMP—fast implementation—cannot be

exhibited. Therefore, author proposed a fast implementation of NNOMP similar with

canonical fast OMP based on QR decomposition method, called Fast Non-Negative

Orthogonal Matching Pursuit(FNNOMP).

I. INTRODUCTION

A. Sparse Representation of Signals and OMP Algorithm.

Using an overcomplete dictionary matrix M N×∈Φ  that contains N prototype

signal-atoms as columns iφ ’s, a measurement M∈y  can be approximated as a sparse linear

combination of these atoms.

≈y Φx

The greedy sparse approximation algorithms are generally computationally low cost. One

simple greedy algorithm is Matching Pursuit(MP). It iteratively adds the most correlated atom of

dictionary to set of selected elements. However, it does not give the best representation for

chosen atoms and may re-select atom already selected in the last iteration.

Fast Non-Negative Orthogonal Matching Pursuit

Orthogonal Matching Pursuit(OMP) is an algorithm that compensate these drawbacks. It

performs the orthogonal projection of measurement y onto the support set s for each iteration.

i.e.,

2
: arg min

s
s s s= −

x
x y Φ x

where sx and sΦ are coefficient vector and sub-dictionary for the support set s , respectively.

From this extra computation, sparse representation of every iteration becomes the best

representation using current support set is . In the other hands, since the next residual

:
i ii s s= −r y Φ x is orthogonal to is , atoms which are already selected cannot be re-selected at

later iterations.

B. Non-Negative OMP(NNOMP)

Canonical NNOMP has two different points from OMP, which are that it selects the most

positively correlated atom and it performs Non-Negative Least Square(NNLS) program instead

of Least Square(LS) program for best representation.

Table 1. Difference between OMP and Canonical NNOMP

 OMP Canonical NNOMP

Atom Selection 1i is s k−←  s.t.

1
{1,2,... }

arg max T
k i

k N
k −

∈
= rφ

1i is s k−←  s.t.

1
{1,2,... }

arg max T
k i

k N
k −

∈
= rφ and

1 0T
k i− >rφ

LS program
2

arg min
s

s s s= −
x

x y Φ x
20

arg min
s

s s s≥
= −

x
x y Φ x

However, in this implementation, selected positively correlated atom in an iteration may force

the coefficient in last iteration becomes zero although that atom still remains in support set. Such

algorithm efficiency-reducing problem is caused by dividing the atom selection and NNLS as

separate tasks.

2

II. FAST ORTHOGONAL MATCHING PURSUIT (FOMP)

A. Expensive Computational Cost of Standard OMP

In the standard OMP, we solve the LS at each iteration, which can be solved by

Moore-Penrose pseudo-inverse of sΦ . i.e.,

† 1()T T
s s s s s

−= =x Φ y Φ Φ Φ y

At k -th iteration, s k= and calculation of †
sΦ needs a matrix inversion of T k k

s s
×∈Φ Φ  ,

which costs 3()k of computation. To reduce this computational cost, we can use the QR

factorization.

B. Fast Implementation using QR Factorization

Let s s s=Φ Ψ R be the QR factorization where sΨ is column orthonormal and sR is

upper-triangle with positive diagonal elements. Then we can solve

2
arg min

s
s s s

s s s

where

= −

=

z
z y Ψ z

z R x



instead of solving
2

arg min
s

s s s= −
x

x y Φ x . Since sΨ is orthonormal and sR is upper-triangle,

computation of T
s s=z Ψ y and 1

s s s
−=x R z  are much simpler than that of †

s s=x Φ y .

But the algorithm would not be fast if the calculation of Ψ , R , and 1−R could not be done

efficiently. Here, by using the Graham-Schmidt (GS) procedure, we can quickly calculate Ψ

and R based on iterative update. At the k +1-th iteration,

[]1 1k k k+ +=Ψ Ψ ψ , 1 0
k

k+
 

=  
 

R ν
R

μ
 and

1
1

1
1 10

k
k

k
µ

µ

−
−

−
+

 
− 

 =
 
 
 

R νR
R

where 1
1

1

k
k

k

+
+

+

=
qψ
q

, 1 1()T
k k k k+ += −q I Ψ Ψ φ , 1

T
k k+=ν Ψ φ and 1kµ += q . In this setting, we do

not need to keep track kx and kR in the intermediate iteration. By updating kΨ , 1
k
−R , and

3

kz at each iteration and calculating 1
K K K

−=x R z at the last iteration K , we can make OMP

faster for the cases that K is large.

 However, this FOMP implementation cannot be directly applied for non-negative problem

because we may get negative Kx from positive Kz

III. FAST NON-NEGATIVE ORTHOGONAL MATCHING PURSUIT (FNNOMP)

Let k k k k=Φ x Ψ z be the best approximation of y with the non-negative coefficient in k -th

iteration. In the 1k + th iteration, we have

1 1 1 1

1 1

k k k k k k

k k k k

z
z

+ + + +

+ +

= +
= +

Ψ z Ψ z ψ
Φ x ψ

.

From 1 1 1k k k+ + +=Ψ R Φ , we can get

1
1 1 1

1 1 1

k k k

k k k

−
+ + +

+ + +

=
=

Ψ Φ R
ψ Φ γ

where ()1 1 2 1
T

k kγ γ γ+ +=γ  is 1k + column of 1
1k

−
+R . Then

1 1 1 1

1 1 1

1 1 1 1

1 1

()

k k k k k k

k k k k k

k k k k k k k

k k

z
z

z z γ

+ + + +

+ + +

+ + + +

+ +

= +

= +

= + +
′=

Ψ z Φ x ψ
Φ x Φ γ
Φ x γ
Φ x

φ
,

where ()1 2
T

k kγ γ γ=γ  . Here, we can see that

1 0i i i kx x zγ +′ = + ≥ for all {1,2, , }i k∈ 

and

1 1 1 0k k kx z γ+ + +′ = ≥

to keep the non-negative restriction. From the update rule of 1
1k

−
+R , 1

1

1 1
k

k

γ
µ+

+

= =
q

 is always

positive. ix ’s are also positive at all times and iγ may be positive, may be negative. Appling

these, we can specify the range of 1kz + to get non-negative representation as

4

1

0

where 0 for {1,2, , }
0 :

min where 0
i

i
th

k i
i

i

i k
z z x

γ

γ

γ
γ

+

<

+∞ ∀ ≥ ∈
≤ ≤ =  ∃ <




.

For finding the most positively correlated atoms, we should calculate min{ , }T th
i i izz = ψ r and

select 1 1 2max{ , , }kz z z+ =  for all {1,2, , } \ ki N s∈  , where ks is the support set of last

iteration. In fact, since T T
i j≥ψ r ψ r where T T

i j≥r rφ φ , we do not need to calculate iζ for all i .

Instead, we can investigate from the index which has largest T
i rφ value to descent order, while

keep tracking the index and value of shrunk by th
iz . Here is the pseudo code and decision rule of

FNNOMP.

A. Computational Complexity

5

i. CNNOMP with positively correlated atom selection and NNLS

Atom selection: ()MN , each iteration.

 NNLS: 2()LMk for k -th iteration.

 Overall complexity: 3()NMK LMK+

where () ()L k≈  and K is the maximum number of iteration.

ii. FNNOMP

 Atom selection and sorting: (log)MN N N+ , worst case.

 Calculating threshold th
iz : 2()Mk k+ , worst case.

 Calculating T
iψ r : ()Mk

 Overall complexity for updating 1kz + : 2()PMk Pk+ where inner loop terminates at P -th

iteration

 Finding Kx from 1
K K
−R z : 2()K

 Overall complexity: 2 3(log)MNK NK N PMK PK+ + + .

Assuming that K is large so that () ()M K≈  , the complexity of FNNOMP becomes
2 3(log)NK NK N PK+ + , roughly 3()K for small N and K , while that of CNNOMP

becomes 5()K .

IV. SIMULATIONS

Simulation Setting:
M N×∈Φ  is i.i.d. Gaussian random matrix.

N∈x  is generated using Gaussian-Bernoulli model, i.e., uniform random support and Normal

distributed non-zero coefficients.

1000 times simulation

6

A. Probability of Exact Recovery

For fixed 256N = , exact recovery probability is almost same.

B. Computational Time versus Sparsity

For fixed 256N = , computational time of FNNOMP is much shorter as sparsity grows.

C. Computational Time versus Length of Measurement

For fixed 256N = and 24K = and 32, computational time of both algorithms is slowly

increasing with M . But still FNNOMP much faster than CNNOMP.

7

D. Computational Time versus Signal Length

For fixed 128M = and 64K = and 96, the computational time of CNNOMP is almost

constant, while that of FNNOMP increases very slowly with N .

V. CONCULSION

By using QR factorization, author proposed FNNOMP. FNNOMP and CNNOMP has similar

recovery performance but computational cost of FNNOMP is significantly low than CNNOMP,

especially under the large sparsity and small signal dimension condition.

VI. DISCUSSION

Appendix

8

	I. Introduction
	II. Fast Orthogonal Matching Pursuit (FOMP)
	A. Expensive Computational Cost of Standard OMP
	B. Fast Implementation using QR Factorization

	III. Fast Non-Negative Orthogonal Matching Pursuit (FNNOMP)
	IV. Simulations
	A. Probability of Exact Recovery
	B. Computational Time versus Sparsity
	C. Computational Time versus Length of Measurement
	D. Computational Time versus Signal Length

	V. Conculsion
	VI. discussion
	Appendix

