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Short summary: Non-negative signal is an important class of sparse signals. Many 

algorithms have already been proposed to recover such non-negative sparse 

representations. One of such modification is Non-Negative Orthogonal Matching 

Pursuit(NNOMP), which satisfies non-negative constraint by selecting positive coefficients 

and using a non-negative optimization technique. However, since it consumes the extra 

computational costs, the most significant benefit of OMP—fast implementation—cannot be 

exhibited. Therefore, author proposed a fast implementation of NNOMP similar with 

canonical fast OMP based on QR decomposition method, called Fast Non-Negative 

Orthogonal Matching Pursuit(FNNOMP). 

 

I. INTRODUCTION 

A. Sparse Representation of Signals and OMP Algorithm. 

Using an overcomplete dictionary matrix M N×∈Φ   that contains N  prototype 

signal-atoms as columns iφ ’s, a measurement M∈y   can be approximated as a sparse linear 

combination of these atoms.  

≈y Φx  

 

The greedy sparse approximation algorithms are generally computationally low cost. One 

simple greedy algorithm is Matching Pursuit(MP). It iteratively adds the most correlated atom of 

dictionary to set of selected elements. However, it does not give the best representation for 

chosen atoms and may re-select atom already selected in the last iteration. 
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Orthogonal Matching Pursuit(OMP) is an algorithm that compensate these drawbacks. It 

performs the orthogonal projection of measurement y  onto the support set s  for each iteration. 

i.e.,  

2
: arg min

s
s s s= −

x
x y Φ x  

where sx  and sΦ  are coefficient vector and sub-dictionary for the support set s , respectively. 

From this extra computation, sparse representation of every iteration becomes the best 

representation using current support set is . In the other hands, since the next residual 

:
i ii s s= −r y Φ x  is orthogonal to is , atoms which are already selected cannot be re-selected at 

later iterations. 

 

B. Non-Negative OMP(NNOMP)  

Canonical NNOMP has two different points from OMP, which are that it selects the most 

positively correlated atom and it performs Non-Negative Least Square(NNLS) program instead 

of Least Square(LS) program for best representation. 

 
Table 1. Difference between OMP and Canonical NNOMP 

 OMP Canonical NNOMP 

Atom Selection 1i is s k−←   s.t. 

1
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arg max T
k i

k N
k −

∈
= rφ  

1i is s k−←   s.t. 
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k −

∈
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LS program 
2

arg min
s

s s s= −
x

x y Φ x  
20

arg min
s

s s s≥
= −

x
x y Φ x  

 

However, in this implementation, selected positively correlated atom in an iteration may force 

the coefficient in last iteration becomes zero although that atom still remains in support set. Such 

algorithm efficiency-reducing problem is caused by dividing the atom selection and NNLS as 

separate tasks. 
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II. FAST ORTHOGONAL MATCHING PURSUIT (FOMP) 

A. Expensive Computational Cost of Standard OMP 

In the standard OMP, we solve the LS at each iteration, which can be solved by 

Moore-Penrose pseudo-inverse of sΦ . i.e.,  

† 1( )T T
s s s s s

−= =x Φ y Φ Φ Φ y  

At k -th iteration, s k=  and calculation of †
sΦ  needs a matrix inversion of T k k

s s
×∈Φ Φ  , 

which costs 3( )k  of computation. To reduce this computational cost, we can use the QR 

factorization. 

 

B. Fast Implementation using QR Factorization 

Let s s s=Φ Ψ R  be the QR factorization where sΨ  is column orthonormal and sR  is 

upper-triangle with positive diagonal elements. Then we can solve 
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s
s s s

s s s

where

= −
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instead of solving 
2

arg min
s

s s s= −
x

x y Φ x . Since sΨ  is orthonormal and sR  is upper-triangle, 

computation of T
s s=z Ψ y  and 1

s s s
−=x R z   are much simpler than that of †

s s=x Φ y . 

But the algorithm would not be fast if the calculation of Ψ , R , and 1−R  could not be done 

efficiently. Here, by using the Graham-Schmidt (GS) procedure, we can quickly calculate Ψ  

and R  based on iterative update. At the k +1-th iteration, 
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, 1 1( )T
k k k k+ += −q I Ψ Ψ φ , 1

T
k k+=ν Ψ φ  and 1kµ += q . In this setting, we do 

not need to keep track kx  and kR  in the intermediate iteration. By updating kΨ , 1
k
−R  , and 
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kz  at each iteration and calculating 1
K K K

−=x R z  at the last iteration K , we can make OMP 

faster for the cases that K  is large. 

  However, this FOMP implementation cannot be directly applied for non-negative problem 

because we may get negative Kx  from positive Kz  

 

III. FAST NON-NEGATIVE ORTHOGONAL MATCHING PURSUIT (FNNOMP) 

Let k k k k=Φ x Ψ z  be the best approximation of y  with the non-negative coefficient in k -th 

iteration. In the 1k + th iteration, we have 

1 1 1 1

1 1

k k k k k k
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From 1 1 1k k k+ + +=Ψ R Φ , we can get  
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where ( )1 1 2 1
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where ( )1 2
T

k kγ γ γ=γ  . Here, we can see that  

1 0i i i kx x zγ +′ = + ≥  for all {1,2, , }i k∈   

and  

1 1 1 0k k kx z γ+ + +′ = ≥  

to keep the non-negative restriction. From the update rule of 1
1k

−
+R , 1

1

1 1
k

k

γ
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q

 is always 

positive. ix ’s are also positive at all times and iγ  may be positive, may be negative. Appling 

these, we can specify the range of 1kz +  to get non-negative representation as 
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For finding the most positively correlated atoms, we should calculate min{ , }T th
i i izz = ψ r  and 

select 1 1 2max{ , , }kz z z+ =   for all {1,2, , } \ ki N s∈  , where ks  is the support set of last 

iteration. In fact, since T T
i j≥ψ r ψ r  where T T

i j≥r rφ φ , we do not need to calculate iζ  for all i . 

Instead, we can investigate from the index which has largest T
i rφ  value to descent order, while 

keep tracking the index and value of shrunk by th
iz . Here is the pseudo code and decision rule of 

FNNOMP. 

 
 

A. Computational Complexity 
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i. CNNOMP with positively correlated atom selection and NNLS 

Atom selection: ( )MN , each iteration. 

  NNLS: 2( )LMk  for k -th iteration. 

  Overall complexity: 3( )NMK LMK+   

where ( ) ( )L k≈   and K  is the maximum number of iteration. 

 

ii. FNNOMP 

  Atom selection and sorting: ( log )MN N N+ , worst case. 

  Calculating threshold th
iz : 2( )Mk k+ , worst case. 

  Calculating T
iψ r : ( )Mk  

  Overall complexity for updating 1kz + : 2( )PMk Pk+  where inner loop terminates at P -th 

iteration 

  Finding Kx  from 1
K K
−R z : 2( )K  

  Overall complexity: 2 3( log )MNK NK N PMK PK+ + + . 

 

Assuming that K  is large so that ( ) ( )M K≈  , the complexity of FNNOMP becomes 
2 3( log )NK NK N PK+ + , roughly 3( )K  for small N  and K , while that of CNNOMP 

becomes 5( )K . 

 

 

 

IV. SIMULATIONS 

Simulation Setting:  
M N×∈Φ   is i.i.d. Gaussian random matrix. 

N∈x   is generated using Gaussian-Bernoulli model, i.e., uniform random support and Normal 

distributed non-zero coefficients. 

1000 times simulation 
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A. Probability of Exact Recovery 

 
For fixed 256N = , exact recovery probability is almost same. 

B. Computational Time versus Sparsity 

 
For fixed 256N = , computational time of FNNOMP is much shorter as sparsity grows. 

C. Computational Time versus Length of Measurement 

 
For fixed 256N =  and 24K =  and 32, computational time of both algorithms is slowly 

increasing with M . But still FNNOMP much faster than CNNOMP. 
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D. Computational Time versus Signal Length 

 
For fixed 128M =  and 64K =  and 96, the computational time of CNNOMP is almost 

constant, while that of FNNOMP increases very slowly with N . 

 

V. CONCULSION 

By using QR factorization, author proposed FNNOMP. FNNOMP and CNNOMP has similar 

recovery performance but computational cost of FNNOMP is significantly low than CNNOMP, 

especially under the large sparsity and small signal dimension condition. 

 

VI. DISCUSSION 

 

 

Appendix 
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