Sparsity driven ultrasound imaging A. Tuysuzoglu et al.

J. Acoustical Society of America (Feb. 2012.)

Presenter : Jin-Taek Seong

GIST, Dept. of Information and Communications, INFONET Lab.

Gwangju Institute of Science and Technology

Overview of Scenarios

- A broadband single-element unfocused transducer performs a raster scan in a plane parallel to the cross section of the object.
- At each scan position, the transducer sends an acoustic pulse and then detects the echo.
- For all experiments, the initial distance between the object and transducer was set to be 75 mm.

Introduction

- A new model-based framework for ultrasound imaging that estimates a complex-valued reflectivity field is presented.
- The benefits are:
 - Providing improved resolution and reduced diffraction artifacts.
 - Overcoming challenging observation scenarios involving sparse and reduced apertures.
- The framework is based on a regularized reconstruction of the underlying reflectivity field using a wave-based linear model of the ultrasound observation process.
- The physical model is coupled with nonquadratic regularization functions, exploiting prior knowledge that the underlying field should be sparse.
- These nonquadratic functions enable the preservation of strong physical features, i.e., strong scatterers or boundaries.

Observation model for ultrasound scattering

• The free space Green's function is used to model the scattered field in space in response to a point source of excitation,

$$G(|\mathbf{r}'-\mathbf{r}|) = \frac{\exp(jk(|\mathbf{r}'-\mathbf{r}|))}{4\pi|\mathbf{r}'-\mathbf{r}|},$$

• This can linearize the Lippmann–Schwinger equation using Born approximation to obtain the following observation model:

$$y(\mathbf{r}') = c \int G^2(|\mathbf{r}' - \mathbf{r}|) f(\mathbf{r}) \, dr$$

- where y(·) denotes the observed data, f(·) denotes the unknown complex-valued reflectivity fields
- Note that squaring the Green's function captures the two-way travel from the transducer to the target and back

Observation model for ultrasound scattering

 The model is discretized and the presence of measurement noise is taken to be additive to obtain the following discrete observation model:

- where y and n denote the measured data and the noise, respectively, at all transducer positions; f denotes the sampled unknown reflectivity field; and T is a matrix representing the discretized version of the observation kernel.
- Given the noisy observation model, the imaging problem is to find an estimate of f based on the measured data y.

INFONET, GIST

Sparsity-driven ultrasound imaging-Imaging problem formulation

 The conventional ultrasound imaging method of synthetic aperture focusing technique (SAFT) essentially corresponds to using T^H to reconstruct the underlying field f,

$$\hat{\mathbf{f}}_{\mathrm{SAFT}} = \mathbf{T}^H \mathbf{y}$$

 The proposed method produces an image as the solution of the following optimization problem, which will be called sparsity-driven ultrasound imaging (SDUI):

$$\hat{\mathbf{f}}_{\text{SDUI}} = \operatorname*{argmin}_{f} J(\mathbf{f})$$

- where the objective function has the following form:

$$J(\mathbf{f}) = ||\mathbf{y} - \mathbf{T}\mathbf{f}||_2^2 + \lambda_1 ||\mathbf{f}||_p^p + \lambda_2 ||\mathbf{D}|\mathbf{f}||_p^p$$

- D is a discrete approximation to the derivative operator or gradient, $\lambda_1,$ λ_2 are scalar parameters

Sparsity-driven ultrasound imaging-Solution of the optimization problem (1/2)

• The following smooth approximation is used as

$$||\mathbf{z}||_p^p \approx \sum_{i=1}^K \left(\left| (\mathbf{z})_i \right|^2 + \epsilon \right)^{p/2}$$

Using the approximation, we obtain a modified cost function,

$$egin{split} & \mathcal{J}_m(\mathbf{f}) = ||\mathbf{y} - \mathbf{T}\mathbf{f}||_2^2 + \lambda_1 \sum_{i=1}^N \Bigl(ig|(\mathbf{f})_iig|^2 + \epsilon\Bigr)^{p/2} \ & + \lambda_2 \sum_{i=1}^M \Bigl(ig|(\mathbf{D}|\mathbf{f}|)_iig|^2 + \epsilon\Bigr)^{p/2}. \end{split}$$

- The quasi-Newton method is employed.
- The gradient of the cost function is expressed as

$$\nabla J_m(\mathbf{f}) = \widetilde{\mathbf{H}}(\mathbf{f})\mathbf{f} - 2\mathbf{T}^H\mathbf{y}$$

INFONET, GIST

Sparsity-driven ultrasound imaging-Solution of the optimization problem (2/2)

• The Hessian is

$$\widetilde{\mathbf{H}}(\mathbf{f}) \stackrel{\Delta}{=} 2\mathbf{T}^{H}\mathbf{T} + p\lambda_{1}\Lambda_{1}(\mathbf{f}) + p\lambda_{2}\Phi^{H}(\mathbf{f})\mathbf{D}^{T}\Lambda_{2}(\mathbf{f})\mathbf{D}\Phi(\mathbf{f})$$

• They use $\tilde{\mathbf{H}}(\mathbf{f})$ as an approximation to the Hessian in the following quasi-Newton iteration:

$$\hat{\mathbf{f}}^{(n+1)} = \hat{\mathbf{f}}^{(n)} - \left[\tilde{\mathbf{H}}\left(\hat{\mathbf{f}}^{(n)}\right)\right]^{-1} \nabla J_m\left(\hat{\mathbf{f}}^{(n)}\right)$$

• The following fixed point iterative algorithm can be obtained:

$$\tilde{\mathbf{H}}\left(\hat{\mathbf{f}}^{(n)}\right)\hat{\mathbf{f}}^{(n+1)} = 2\mathbf{T}^{H}\mathbf{y}$$

• The iteration runs until $\|\hat{\mathbf{f}}^{(n+1)} - \hat{\mathbf{f}}^{(n)}\|_2^2 / \|\hat{\mathbf{f}}^{(n)}\|_2^2 < \delta$

INFONET, GIST

Experiments and Results

- Ultrasound experiments were carried out in a tank of water $(2 \times 1 \times 1 \text{ m})$.
- Data acquisition scenarios are considered: (a) full aperture case, (b) sparse aperture case, and (c) reduced aperture case.
- A full scan forms a 64×64 grid with a total of 4096 scan locations.

- Images of the 3.2 mm steel rod using full, sparse, and reduced aperture data
 - Reconstructions by SAFT using (a) full data, (c) 6.25% sparse data, and (e) 6.25% reduced data
 - Reconstructions by the SDUI method using (b) full data with λ₁=500, λ₂=100, (d) 6.25% sparse data with λ₁=25, λ₂=5, and (e) 6.25% reduced data λ₁=170, λ₂=5

INFONET.

- Effect of the gradient-based regularization
 - Images of the channel using sparse aperture data. Reconstructions by SAFT using (a) 14.06% and (d) 6.25% sparse data
 - Reconstructions by the SDUI method with $\lambda_2=0$ using (b) 14.06% sparse data with $\lambda_1=20$, (e) 6.25% sparse data with $\lambda_1=5$
 - Reconstructions by the SDUI method using with (c) λ_1 =600, λ_2 =20 and (f) λ_1 =250, λ_2 =10

Selection of regularization parameters

- Recall that λ₁ scales the term that emphasizes preservation of strong scatterers, whereas λ₂ scales the gradient of the image and emphasizes smoothness and sharp transitions.
 - If the object features of interest are below the size of a nominal resolution cell, that is they should appear as "points," then they can be emphasized by choosing $\lambda_1 \gg \lambda_2$. This case leads to sparse reconstructions and can produce super-resolution.
 - If instead the object features of interest span multiple pixels, and thus form regions, these homogeneous regions can be recovered with sharp boundaries by choosing $\lambda_1 \ll \lambda_2$

INFONET,

 SDUI reconstructions of the 3.2 mm steel and the 3.2 mm aluminum rod separated by 10 mm reconstructed from 6.25% reduced aperture data for various choices of the regularization parameters.

Conclusions

- A new method for ultrasound image formation has been described that offers improved resolvability of fine features, suppression of artifacts, and robustness to challenging reduced data scenarios.
- The resulting nonlinear optimization problem was solved through efficient numerical algorithms exploiting the structure of the SDUI formulation.
- Results obtained from sparse aperture data scenarios suggest that SDUI can alleviate the motion artifact problem.
- The performance of the SDUI could be likely enhanced using multifrequency data where the choice of number of frequency components and the appropriate weightings will be key factors to consider.