Journal Club Meeting, Jul. 31, 2013

| Random-Frequency SAR Imaging Based )

on Compressed Sensing
\ J. Yang et al. /

IEEE Trans. Geo. Remot. Sensing (2013. Feb.)

Presenter : Jin-Taek Seong

GIST, Dept. of Information and Communications, INFONET Lab.

G . Gwangju Institute of
S Science and Technology

INFONET, GIST 1 /18



Journal Club Meeting, Jul. 31, 2013

Introduction

¢ The stepped-frequency waveform consists of sequences of single-
frequency pulses

¢ The stepped-frequency waveform can be viewed as the frequency
sampling of the total bandwidth

® The advantages of a single frequency
— Simple hardware requirements
— High resolution

® [he drawback is

— Along time period to transmit the signals, since the transmitter must scan
over the radar bandwidth using a sequence of discrete frequencies

¢ Therefore, this leads to many limitations for the application of the
stepped-frequency waveform in SAR.

® There has to be a tradeoff between the resolution and imaging range
width.
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Introduction

¢ |[f the targets are sparse or compressible, the required frequencies in the
stepped-frequency SAR can be reduced significantly using a CS theory

¢ [n this paper, a random-frequency SAR imaging scheme based on CS is
proposed

— Reconstruction the 2-D image of the sparse targets by transmitting a small
number of random frequencies.

e A sparse transform structure is proposed for the reshaped 2-D reflectivity
map.
® The main advantages of the proposed imaging scheme
— 1) the available imaging range width can be enlarged significantly, while the
range and azimuth resolutions are both maintained

— 2) the required number of frequencies can be reduced

— 3) random undersampling is very easy to implement for both range and
azimuth
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Stepped-Frequency Waveform (1/2)

¢ The stepped-frequency waveform uses a sequence of pulses to
achieve an ultrawide bandwidth

¢ \Ne denote the transmitted waveform as

si(n,t) = rect - ) expli2n () 1)

¢ For a point reflector at range R, the echo signal is

se(n,t) = g - rect (t —;f/c) exp [727 fe(n)(t — 2R /c)]
(2)

— g is the reflectivity coefficient of the target

¢ The demodulation reference signal is
s(n,t) =se(n,t) - spoe(n,t)
4. (t ‘;f/ C) exp [j27f.(n)(t — 2R/c)]
- exp [—j27 fe(n)i]
t— 2R/c> exp [_jél?rfcc(n)R

=g -rect (
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Stepped-Frequency Waveform (2/2)

¢ \We consider that the frequency interval is equal to Af, so that
fC(n):fC+nAfa n:]-aQaN (5)

¢ The demodulated signal can be rewritten as
t— 2R/c) ' An(f.+ Afn)R
exp | —

s(n,t) = g - rect ( J
c

p

(6)
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Fig. 1. Processing of stepped-frequency waveform. (a) Transmitted wave-
form. (b) Demodulated signal. (c¢) Extracted data points. (d) Range profile.
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Limitations of Stepped-Frequency Waveform
Applied to SAR (1/2)

¢ Sampling with Af results in periodic repetition in the time domain,
and the repetition period is 1/Af

® The corresponding repetition period for range is c¢/(2A4f), so the
nonaliasing range width is limited to
C
R, < (8)
(2AF) |
¢ For a fixed pulse time interval, to avoid overlapping of the echoes,
the maximum range width is

Atc
Dy = > 9)
¢ For a given frequency step, the maximum nonaliasing range width is
c Nc
Dz_—QAf_ﬁ (10)
¢ Therefore, the maximum available range width is
D= min{Dl, Dz} (12)
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Limitations of Stepped-Frequency Waveform
Applied to SAR (2/2)

¢ The equivalent azimuth sampling interval is NAtV, where V is the

radar velocity.
re = NALV. (13)

¢ The range resolution is
C

® The available imaging range width and the range resolution and
azimuth resolution must be traded off against each other

(14)

Tr

¢ To let the available range width become wider, At and N should be
bigger, B should be smaller, but all of these requirements will
decrease the resolution in both the range and azimuth dimensions.
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Random-Frequency SAR Imaging Based on

CS-SAR Imaging Mod

el (1/3)

¢ The radar data are the superposition of the echoes of all scatterers
in the area illuminated by the radar’s beam (i.e., the scene)

¢ The received signal of the nth pulse in the mth sequence can be

expressed as

C

A f.(n)R(m,n, x,1
s(m,n) = [/ g(x,y) - exp [—J fe(n) ( — ;)} dxdy

— xand y are the coordinates of the
target

- g(x, y) is the reflectivity coefficient
of the target at (x, y)

- R(m, n, X, y) is the range of the
target at (x, y)

— G s the area illuminated by the
beam
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Random-Frequency SAR Imaging Based on
CS-SAR Imaging Model (2/3)

¢ The scene consists of a set of point scatterers on a grid, and the
interval of the grids should be smaller than the radar resolution

® The reflectivity coefficients of the scatterers can be denoted as a 2-
D matrix

(9(1,1) - 9(1,Q) ]

Lg(P,1) - g(P,Q) ]
e The 2-D reflectivity coefficient matrix should be reshaped to a
column vector, i.e., g is a PQ X1 vector

e The discrete expression of the radar data of the nth pulse in the mth
sequence is

PQ
4: C
(m,n) Z‘f' EKP[ T fe(n)R(m,n, 1)

C
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Random-Frequency SAR Imaging Based on
CS-SAR Imaging Model (3/3)

¢ The linear equation can be expressed in matrix form as
s=Ag+n

— where s is an MNx1 vector, A is an MNxPQ matrix, g is a PQx1 vector, and
n is the noise term. M is the total number of sequences; N is the number of
frequencies in one sequence.

® The detailed form is

INFONET, GIST
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Random-Frequency SAR Imaging Based on

CS-CS Imaging Scheme

¢ |n order to apply a CS scheme, a reduced set of elements in s is
selected randomly, and a reduced set of rows in A is also selected
accordingly. It means that a small number of frequencies are
selected randomly.

¢ The CS measurement can be expressed as
/ / /
s =A'g+n

¢ The targets can be reconstructed as

min glli st [[A'g—s[2<e

¢ Assume that L samples are selected from the total of MN samples;
then, the uniform pulse time interval becomes (MN/L)At, so that the
maximum available range width becomes

oy _ MN Ate

L 2
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Random-Frequency SAR Imaging Based on
CS-Sparsity of Targets

¢ A Priori Sparse Targets: it means that the targets consist of a small
number of dominant scatterers

e Sparsely Representable Targets: we can find a transform to make
most of the coefficients in the transform domain

¢ The CS imaging scheme combined with the sparse transform (see
the appendix) can be expressed as

s =A'g+n =A' (T, ¥,) 0 T .g+n'
¢ This equation can be rewritten as
s =A'(P,¥,.) 'x +n'
¢ \We can solve for the transform coefficients using

X = min [|x]|; s.t. HA'(lifT\ilc)_lx —§'|| <e.

2

¢ Then, the reflectivity coefficients can be obtained by
g = (v, ¥,) 'k
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Experimental Results

¢ |n order to show the validity, an experiment is carried out for
stepped-frequency and random-frequency SAR imaging

¢ A stepped-frequency radar is mounted on a rail to acquire data

¢ The rail is controlled by a microcomputer, and the radar can move
on the rail with a preset velocity
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TABLE 1II
EXPERIMENT PARAMETERS
Bandwidth S12MHz
Pulse Time Interval le-3s
Radar Velocity 0.05m/s
Squint Angle 0°
Range Resolution 0.293m
Azimuth Resolution 0.05m
Number of Frequencies 312
Number of Sequences 480
Scene Azimuth Points 40
Scene Range Points 20
Selected Samples for CS 1024
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Experimental results. (a) Position of the three corner reflectors.

(b) Imaging result of the full data using the Omega-K algorithm. (¢) CS
reconstruction result of 1/240 data. (d) Imaging result of 1/240 data using the

Omega-K algorithm.
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Conclusions

¢® The theory of CS has been used to reduce the required frequencies
in a stepped-frequency SAR system

¢ Based on the theory of CS, the traditional sampling requirements
can be avoided, and the limitations of the stepped-frequency
waveform applied in SAR are overcome

¢ The available imaging range width can be enlarged significantly,
while the range and azimuth resolutions are maintained.

® The results of the CS imaging scheme are even better than the
traditional results of the fully sampled data

¢ Future work will include fast reconstruction strategies and detailed
investigations of the sparsity and compressibility of the targets

¢ Speckle noise will make the phase of the reflectivity map random,
and it is difficult to find an effective sparse transform for a complex
reflectivity map
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Appendix — Transform of the 2D Matrix

¢ \We begin with the sparse transform for the 2-D reflectivity matrix.

The sparse transform can be applied to both the columns and rows

of the 2-D matrix, and it can be expressed as.

X=v. .GV,

— where X contains the coefficients after the sparse transform, G is shown
in (29), ¥, is the sparse transform matrix for the columns, the size of ¥,

is PxP, Y. is the sparse transform matrix for the rows, and the size of

W is QxQ. ¥, and Y¥r are full rank matrices.

* |n the imaging scheme based on CS, the 2-D reflectivity matrix G is
reshaped to a column vector g

RL

W, =

¢ The sparse transform of the reshaped reflectivity vector can be

expressed as
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