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Introduction

In the past, there have been numerous attempts to design and build
full-bodied humanoid robots.

The realization of a robotic system that understands human
Intentions and produces complex behaviors is needed, for disabled
or elderly persons.

The EEG-based BCI system for robots has been suggested in
robotics and neural engineering fields because some elderly or
disabled people can control robots naturally and intuitively by
thinking while using this system.

The active BCIl can control an application using consciously
iIntended brain signals without external events.

BCI methods using sensorimotor rhythms belong to the active BCI.

These methods classify specific motor images in a general sense
through the power over the frequency ranges [e.g., mu (8-12 Hz) or
beta (18-22 Hz)].
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Introduction

In a synchronous BCIl system, sequential cues are provided at a
fixed rate.

Because a user cannot control the timing of motion commands, it
tends to lower the information transfer rate (ITR).

One main goal of EEG-based BCls for human robot interaction is
being able to command a robot directly by thinking.

This paper describes a new brain-actuated humanoid robot
navigation system that allows for asynchronous direct control of
humanoid motions using the active BCI system.

Their system provides five low-level motion commands (e.g., “stop,”
“turn the head to the left,” “turn the head to the right,” “turn the body,”
or “walk forward”) by combining the classification of three motor
imagery (Ml) states (e.g., “left hand,” “right hand,” or “foot”) with a
posture-dependent control paradigm.

To evaluate the proposed system, a humanoid robot navigation
experiment in a maze was conducted with human subjects.
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Methods

Their proposed system has four key features.

First, low-level commands make the humanoid turn at any angle and
walk to any position.

Second, five complex humanoid motions are controlled by three
iIntentional mental states.

Third, the subject can command the humanoid using asynchronous
protocol.

Fourth, their system does not employ a reactive but rather an active
system.
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Methods(System Description)

e The system consists of three main subsystems: the BCI system, the
Interface system, and the humanoid control systems.
e The BCI system classifies four user mental states.

e The non-control state is referred to as “rest” and the three MI states
are referred to as “left hand”, “right hand”, and “foot”.
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Methods(Experimental Protocol)

1) Offline training session

2) Selection of informative feature
components and training of two
classifiers

3) Online testing sessions

4) Checking the accuracy of the
online session

5) Real-time humanoid navigation
control experiment

(a) (b)
-8 | Left & | Left
E Rest @ | Right Ig E]Rest & | Right EI
‘ Foot ‘ Foot
- eiim
Rest Motor Imagery Rest Motor Imagery
Static Cue f Fade-out Feedback Cue
T L] [ § T T L] T L] 1} 1 1 1 T 1 I 1
0 2 4 6 8 10 0 3 6 9
time(sec) time(sec)
(€) 1 selection Level : Fade-out : Fade-in:

Fig. 2. (a) Offline training protocol: After the rest sessions, the subject is
asked to imagine a motor imagery indicated by a static cue. (b) Online feedback
testing protocol: 6 s are allowed to test the performance of the classification with
dynamic fade-out feedback. (c) Dynamic fading feedback is used to secure a
robust classification of a mental state from the ongoing EEG (see Section I[I-H).
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Methods(Experimental Protocol)

e TO verify the navigation
performance of system, an indoor
maze was designed.

e |t was aimed to reduce the bias
through an order of experiments
(manual control or BCI control).

e If they missed any waypoints, they
could skip them.

e Each subject conducted the
experiment 3 times using the BCI
system and one time through
keyboard control for comparison.
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Methods(Data acquisition & Feature Extraction)

In this paper, they applied this signal
processing protocol to filter and detect
the sensorimotor rhythm.
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Methods(Data acquisition & Feature Extraction)

To extract amplitude features, every 250ms observation segment
recorded for 2 s (500 samples) from nine channels was analyzed by
the autoregressive algorithm, and the square root of power in 1Hz
wide frequency bands within 4-36 Hz was calculated.

In the offline training session, 32 feature vectors with 288 dimensions
(9 channels * 32 frequency components) were collected within the Ml
and rest periods ( 4 s for each) for one trial.

These feature vectors were used to select informative feature
components and train the classifiers.

During the online testing and real-time control session, the feature
vectors were sampled from the selected informative feature
components and these were used to produce real-time feedback and
classification for the motion commands.
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Methods(Feature Selection)

In this study, the Fisher ratio was used to select informative feature
components of each subject that can be interpreted as suitable
channel-frequency bands.

For the amplitude feature vector from the “rest” and MI states,
let 4=« and =+ denote the mean and variance, respectively, of the
amplitude feature set from the “rest” state, and let #w and ow denote
the mean and variance, respectively, of the amplitude feature set
from the MI state.

The Fisher ratio is defined as the ratio of the between-class variance
to the within-class variance as follows:

2
fr = Opetween _ (lurest — Hw )
2
O

2

] ] ] within o-rzest + O-l\2/ll ] ] ] ] ]
The Fisher ratio is a measure of the (linear) discrimination of two
variables, and it can also be considered as a signal-to-noise ratio.
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Methods(Feature Selection)
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Channel-frequency selection using the Fisher ratios from three sets of “rest” versus MI tasks. (a) Channel-frequency distribution of the Fisher ratios of

subject A. (b) Topographical distribution of the Fisher ratios of subject A at the highest frequency bands (12, 14, and 10 Hz, respectively). The first two top-scoring
channels for the “left-hand” imagery tasks were channels C4 and FC4, while channels C3 and FC3 were selected for the “right-hand” imagery tasks, and channels
CPz and Cz were selected for the “foot” imagery tasks. (c) Spectral distribution of the Fisher ratios for subject A. For the “left-hand” imagery tasks, the maximum
Fisher ratio of C4 was 0.15 at 12 Hz, and a 5-Hz window centered at 12 Hz was selected as the optimal frequency region.
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Methods(Classification)

To translate the intended EEG data into appropriate movement
commands for the humanoid robot, the intentional activity classifier
(IAC) and movement direction classifier (MDC) were employed.

If the signals are interpreted as the MI state by the IAC, then the
MDC classifies the specific M| state as either a “left hand”, “right
hand”, or “foot” states.

For the initial training, the features from the training trials between O
and 4 s (e.qg., rest period) were assigned to the “rest”’ class, and the
signal segments between 4 and 8 s (e.g., MI period) were assigned
to the Ml class.

For the training, the negative output values of the IAC denote the
“rest” classes, while the positive output values of the IAC denote the
MI classes.
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Methods(Classification)
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Fig. 6. Time period selection using the LDA distance metric and determination
of a classifier threshold. (a) ROC curve determines an appropriate threshold
value and (b) a typical intention level curve of a subject to discriminate the rest
and MI time periods. As the informative time period, a 1-s interval centered at
the maximum and minimum LDA distance points was selected.
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Methods(Dynamic Fading Feedback rule)

e Because the classification results of the sensorimotor rhythm based
active BCI could generate the misclassification results, some
normalization methods would be used to enable a smooth transition
between class-specific feedbacks.

e In this study, the dynamic fading feedback rule was designed to
avoid abrupt false classifications, as shown in fig.
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Methods(Dynamic Fading Feedback rule)

1) the candidate decision produced during the online feedback
testing session and the real-time control session

2) the selection level associated with the confidence measurement of
selected classifications.

Rule 1: When the selection level is zero, the next first classification is
newly set to be the candidate’s decision.

Rule 2: Whenever the classification result is identical to the
candidate decision, the selection level is increased by 1; otherwise,
the selection level is decreased by 1.

Rule 3: When the selection level reaches 4, the control system
confirms its decision and generates a motion command accordingly
(i.e., “left,” “right,” or “forward”).

Rule 4: The fading feedback cues and the arrow and text shown on
the display are transparentized according to the candidate’s decision
and its selection level.
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Methods(Dynamic Fading Feedback rule)

e Fig. 8 illustrates an example of the
command selection procedure.
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Fig. 7. Diagram of humanoid navigation control. (Left) Left-hand imagery.
(Right) Right-hand imagery. (Forward) Foot imagery.
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Methods(Evaluation)

1) Performance of the Brain—Computer Interface System: (ITR)
|, =log, N+ plog, p+(1-p)log,{1—p)/ (N -1)}, ITR=f,xI,

I, iIs the Dbit rate (bits/trial) for the three mental state choices (N=3), p
is the accuracy, and f. is the decision rate (trial/min).

2) Navigation Performance

Total Time: total time taken to accomplish the task (in seconds);

Traveled Distance: distance traveled to accomplish the task (in centimeters);
Forward Steps: number of walking steps during forward movement;

Turning Steps: number of walking steps to turn the robot body;

Explored Angle: total turning angle of the robot head to explore the
surrounding environment (in degrees);

# Trans: number of transitions between the walking mode and the
exploration mode;

Waypoint: number of waypoints on which the robot
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Results(Feature Selection)

e The Fisher ratios for the channel and frequency components and
averaged discriminant values for the offline training period for each

motor imagery and subject are illustrated.

e Table |
subjects.
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Fig. 10. Channel-frequency distributions of Fisher ratios for all subjects for “left-hand,” “right-hand,” and “foot” imagery tasks. (a) Left. (b) Right. (c) Foot.
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TABLEI

:: FEATURE SELECTION RESULTS
o1 St Lefi-hand — Right-hand Foot
Ch Feg Ch Feg Ch Fryg
A C4 913 FC3 104 (2 812
chd 1014 C3 913 CPz Tl
B C4 1115 C3 1216 CPz  10-14
FC4 913 FC3 812 CP3 2125
c fC4 913 €3 913 FCz 2630
C4 1014 FC3 TI1 FC4 283
D 4 913 €3 1013 CPz 812
FC4 1014 CP3 115 FC4 610
E 4 93 O 15 CPz 913
CP4 10-14 FC3 1115 FCz 610
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Results(Navigation Performance)

e Tables Il and Ill provide details about the performance of the two
hierarchical classifiers (IAC and MDC) for the five subjects.

e Table Il shows the number of offline training trials per mental task,
the TPR and FPR of the IAC, and the accuracy of the MDC for each

task.

e Table Il shows the online testing performance achieved using the
fading feedback rule for the given mental tasks.

TABLEII
OFFLINE TRAINING RESULTS

ONLINE FEEDBACK TESTING RESULTS

TABLE Ll

A B |Cc| D E

Trials 140 160 | 120 ] 200 200
Lefi-hand  79.0 888 |966| 860 785

Accuracy Righthand 859  89.4 [820| 623 740
(%) Foor 593 753 |832] 638 750
Average 747 845 |873| 707 758

(biﬂ;ﬁin) 77 121 | 136 64 82

A B C D E

Response Ti 2.2 1.6 1.4 1.9 2.1
Time

(scc) T2 34 31 |26 35 33

Left-hand 867 80.0 [100.0] 933 86.7

Accuracy Right-hand 80.0 86.7 |93.3 | 66.7 66.7

(o) Foot 66.7 733 |86.7| 667 733

Average  77.8 80.0 |933| 778 75.6

{bi[tmn) 106 128 [265] 104 9.8
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Results(Navigation Performance)

e The results of the real-time navigation experiments of the humanoid

robot.

e During the manual control experiments, all of the subjects controlled
the robot to pass through all five waypoints without any collisions
during navigation.

e During the BCI control experiments, the robot stepped on 3.2
waypoints with an average of 0.3 collisions, while the robot always

successfully reached the final position.

) ) Total Distance Forward Turning Explored 4 Trans. Wit Collisions
Subject Session time travelled s_leps s_leps angle (times) (times) (times)
(sec) (cm) (times) (times) ()
BCI 634.1 335.5 102.7 64.3 1161.3 39.7 23 0.7
A Manual 479.7 415.8 126.0 64.0 543.0 27.0 5.0 0.0
BCI 642 .4 429.0 129.3 78.3 1485.9 40 4 0.7
B Manual 432.7 403.7 129.0 58.0 501 21 S 0
BCI 632.3 430.1 130.3 69.7 974.0 49.7 4.7 0.0
e Manual 452.9 389.4 118.0 64.0 605.0 34.0 5.0 0.0
i BCI 448.8 307.0 86.7 46.0 704.9 313 2.0 0.0
Manual 410.5 481.0 134.0 61.0 494.1 21.0 5.0 0.0
BCI 448.8 410.0 115.0 51.7 585.1 27.0 2.7 0.3
E Manual 424 .4 508.9 143.0 58.0 509.0 24.0 5.0 0.0
5 Mean 561.3 382.3 112.8 62.0 982.2 37.5 3.1 0.3
(+ Sid) (+102.8) (£57.2) (+18.5) (£13.2) (+360.7) (+8.8) (£1.2) (+0.4)
Mean 440.0 439.8 130.0 61.0 530.4 254 5.0 0.0
Manual (= Std) (£27.0) (£52.2) (£9.3) (£3.0) (£45.7) (£5.4) (+£0.0) (+£0.0)
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.
Results(Navigation Performance)

e Fig. shows the sequential snapshots taken during an experiment.
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Fig. 12.  Navigation task is to make the robot move from a starting position to destination regions, while passing through the five waypoints at the corners of the
maze. The first row shows snapshots taken during a trial, and the second row shows images acquired from the robot camera at each position.
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Discussions

This paper has described a new humanoid navigation system that is
directly controlled through an asynchronous sensorimotor rhythm-
based BCI system.

Their approach allows for flexible robotic motion control in unknown
environments using a camera vision.

Brain-actuated humanoid control by this active BCI could be further
Improved in speed and accuracy.

Recently, researchers have introduced hybrid BCls that exploit the
advantages of different reactive approaches (e.g., P300 or steady-
state visually evoked potentials) and active approaches to improve
the overall performance of BCI system.

Another extension of this study is to realize human-robot interaction
that can recognize high-level human cognitions, such as affective
states.
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