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1. Introduction

Studies presented in 1949 by Shannon and Golay have recently collided in a major revision
to signal and image measurement theory. Shannon is traditionally cited to support the claim
that the sampling rate in a high fidelity imaging system must be greater than twice the spa-
tial bandwidth [1]. Golay introduced the idea of artificial discrete multiplex coding in optical
measurements [2]. Candés, Tao and Romberg [3, 4] and Donoho [5] have demonstrated that sig-
nals, assumed to be sparse in some basis, sampled by multiplex encodings may be accurately
infered with high probability using many fewer measurements than suggested by Shannon’s
sampling theorem. Takhar et al. applied compressive sampling algorithms in demonstrating a
single pixel camera [6]. We have previously applied these methods with Golay-inspired coded
aperture spectroscopy to demonstrate compressive measurement of 3D spectral datacubes from
2D measurements [7, 8].

This paper explores the relationship between compressive sampling and a third paper from
the late 1940’s, Gabor’s invention of holography [9]. Gabor holography is an amazingly sim-
ple and effective encoder for compressive sampling. Decompressive inference improves holo-
graphic systems by increasing the number of pixels or voxels one can infer from a single
hologram and by resolving reconstruction ambiguities. Holography is a comparatively effec-
tive encoder for compressive imaging because holographic multiplex measurement weights are
complex valued.

After the invention of the laser, Gabor holography was generally supplanted by off-axis
Leith-Upatnieks holograpy[10]. Signal reconstruction from off-axis holograms may be under-
stood simply using Shannon sampling and linear filtering theory. As illustrated by recent studies
of holographic cytometry [11], however, the simplicity of the Gabor geometry remains attrac-
tive and competitive. We demonstrate in this paper that interference terms that may not be
removed from Gabor holograms by linear filtering may be removed by imposing a sparsity
constraint.

Computational imaging from electronically recorded holograms recorded on electronic de-
tector arrays is called digital holography [12, 13]. Digital holography typically relies on
monochromatic laser illumination. Optical coherence tomography is a closely related tech-
nique relying on multispectral illumination for 3D interferometric tomography [14]. Alternative
approaches to optical 3D imaging include projection tomography [15, 16] and confocal mi-
croscopy. Digital holography is not regarded as a 3D tomographic imaging technique because
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3D object estimation from coherent scattering data is ill-posed [17]. This problem is tradition-
ally addressed by recording holograms of objects illuminated by a sequence of plane waves,
which forms the basis of diffraction tomography [18].

Our main result is that decompressive inference enables 3D tomography from a single 2D
monochromatic digital hologram. While this result is in apparent conflict with Devaney’s proof
that holographic tomography is ill-posed, the overthrow of Devaney’s objection using a sparsity
prior and convex optimization parallels the overthrow of Shannon sampling by similar methods.

Our results also suggest that holography may have general advantages in compressive op-
tical imaging. Since the irradiance is the only observable in conventional optical imaging,
multiplex measurement codes are constrained to nonnegative weights. This results in rela-
tively poor measurement conditioning. Holography, in contrast, is an interferometric modality
in which both the amplitude and the phase of a field can be obtained as in radar or MRI. The
complex-valued encodings may provide a more direct application of compressive sensing. Chan
et al. [19] have previously described phase-sensitive terahertz compressive imaging.

We note that our approach is fundamentally different than hologram data compression [20].
Our approach is to directly collect a smaller number of measurements than the number of
voxels (or pixels) in the reconstructions, whereas the hologram data compression applies data
compression to the holograms that are already obtained. The word “compressive” in this pa-
per emphasizes that our holographic sampling or sensing process encodes and compresses 3D
datacube information into 2D holographic measurements. This encoding is inverted using com-
pressive sampling theory [4, 5]. Similar terminology appears in related studies [21, 22].

2. Compressive sensing background

Compressive sensing theory ensures highly accurate reconstruction for multiplex encoders that
satisfy a sufficient condition called the restricted isometry property (RIP) [3, 4]. Let a S-sparse
signal be defined by a signal that has only S nonzero components and (N −S) coefficients that
are exactly zero. A matrix H ∈ RM×N is said to satisfy S-RIP with constant δS ∈ (0,1) if, for
any S-sparse f ,

(1−δS)‖ fT‖2
2 ≤ ‖HT fT‖2

2 ≤ (1+δS)‖ fT‖2
2, (1)

where T denotes the set of indices on which the S-sparse signal is supported, and ‖·‖2 denotes
the Euclidean norm. This condition implies that for any S-sparse object to be reconstructed
accurately and reliably, the corresponding sub-matrix HT of H composed of S columns of H
has to form a nearly isometry transformation. Note that the condition also implies that all the
eigenvalues of the Gram matrix of any S-column sub-matrix HT are distributed near 1 (in fact
in the range of [1−δS 1 + δS]), which consequently ensures that any S-column sub-matrix HT

is well-conditioned.
Let μ1(H,Ψ) be defined by

μ1(H,Ψ) =
√

N max
1≤m≤M
1≤n≤N

|〈hm,ψn〉| , (2)

where hm and ψn denote the m-th row of H and the n-th column of Ψ, respectively. Candés et
al. [3] and Donoho [5] showed that if f is S-sparse in Ψ, and M satisfies

M ≥C ·μ2
1 (H,Ψ) ·S · logN, (3)

then an accurate reconstruction can be obtained with high probability by solving

θe = argmin
θ

||θ ||1 such that g = H fe = HΨθe, (4)
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where ||θ ||1 = ∑i |θi|. S denotes the number of nonzero (or significant) coefficients of f in the
Ψ domain. As clear from Eqn. (3), the smaller μ1 is, the more accurate the reconstruction would
be for the same M.

An alternative definition of coherence is given by

μ2(D) = max
i	= j,1≤i, j≤N

{
dT

i d j

‖di‖2‖d j‖2

}
, (5)

where di is the i-th column of the sensing matrix D = HΨ. This can also be interpreted as
the maximum off-diagonal element of the Gram matrix of D, whose columns are normalized.
When μ2(D) is minimal such that

S <
1
2

(
1+

1
μ2(D)

)
, (6)

then the S-sparse is necessarily the sparsest solution that satisfies minθ‖θ‖0, and hence can be
obtained by solving Eqn. (4) [23].

Note that for Ψ = I with I being an identity matrix (i.e., the canonical basis), μ1(H, I) = 1
for a discrete Fourier transform (DFT) matrix H. Hence, the DFT matrix that generates Fourier
samples distributed uniformly at random over the frequency domain satisfies the so-called re-
stricted isometry property with high probability given that M ≥CS logN is satisfied. Our Gabor
hologram multiplex encoder may be considered as 3D Fourier transform encoder. However,
our Fourier samples are limited to a certain band volume, which may produce a relatively large
μ1, larger than 1 in general. Holographic measurements using illumination with multiple wave-
lengths and/or angles can provide the Fourier samples over a larger band volume improving μ1

and, consequently, the RIP for our Gabor hologram multiplex encoder.

3. Theory and Methods

As illustrated in Fig. 1, a Gabor hologram is formed in interference between a plane wave A
and a 3D object with scattering density η(x′,y′,z′). A 2D detector array records the irradiance

I(x,y) = |A+E(x,y)|2
= |A|2 + |E(x,y)|2 +A∗E(x,y)+AE∗(x,y), (7)

where the scattered field E is defined under the Born approximation as

E(x,y) =
∫∫∫

dx′dy′dz′η(x′,y′,z′)h(x− x′,y− y′,z− z′), (8)

where h is the product of exp(ikz) representing the phase delay at a distance z [24] and the in-

verse Fourier transform of the propagation transfer function exp(iz
√

k2 − k2
x − k2

y) [25, Eqn. (3-

74)]. Note that the squared field term |E(x,y)|2 produces the autocorrelation of the Fourier
transform of the field E in the Fourier domain. In Eqn. (7), the term |A|2 is simply a con-
stant, and hence the effect of |A|2 can be removed by eliminating the DC term (the term at
the origin) from the Fourier transform of the interference irradiance measurements I(x,y).
Also, we may assume that A is 1 without loss of generality. Then, we may proceed with
A∗E(x,y)+ AE∗(x,y)+ |E(x,y)|2 = 2Re{E(x,y)}+ |E(x,y)|2 = 2Re{E(x,y)}+ e(x,y). If we
neglect the nonlinearity caused by |E(x,y)|2 and regard e(x,y) as model error, then Eqn. (7)
represents a linear mapping between the object scattering density and measurement data.

Let a 3D object (i.e., the scattering potential) be denoted by η(x′,y′,z′) with the convention
that z′ = 0 at the detector plane. Let the sample spacings be Δx = Δy = Δ. Also, let Δz be the
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Plane wave
(633nm HeNe laser)

3D Object (η)
Detector

array

Object field (E)

Hologram (I)

Reference field (A)

Fig. 1. Gabor hologram geometry.

sampling pitch in the z-axis. Let the number of pixels along each dimension of the detector
be N. Using this notation, a 3D tomographic reconstruction problem may be formulated by
noting the similarity of the data to that in diffraction tomography [24, 26]. Recall that the
2D field measurement E(x,y) is related to the 3D object scattering density η(x′,y′,z′) through
Eqn. (8). Therefore, a discrete mathematical forward model for tomographic reconstruction can
be constructed by discretizing Eqn. (8).

The 2D sampled field at the detector plane with the sample spacings defined above can be
expressed by

En1n2 = E(n1Δ,n2Δ)

=
1

(2π)2

∫
· · ·

∫
dz′dxdydkxdky

∫∫
dx′dy′η(x′,y′,z′)eikz′e−i(kxx′+kyy′) ∑

m′
1

∑
m′

2

δ (x′ −m′
1Δ)

δ (y′ −m′
2Δ)eiz

√
k2−k2

x−k2
y δ (z− z′)e−i(kxx+kyy)δ (x−n1Δ)δ (y−n2Δ)∑

m1

∑
m2

δ (kx −m1Δk)

δ (ky −m2Δk)∑
l

δ (z− lΔz)

=
1

N2 ∑
l

∑
m1

∑
m2

⎡
⎣∑

m′
1

∑
m′

2

ηm′
1m′

2le
−i2π

m1m′
1+m2m′

2
N

⎤
⎦eiklΔze

ilΔz

√
k2−m2

1Δ2
k−m2

2Δ2
k e−i2π n1m1+n2m2

N , (9)

where ηm′
1m′

2l = η(m′
1Δ,m′

2Δ, lΔz). Note that the terms in the square bracket form the 2D dis-
crete Fourier transform of η . Also note that the last exponential term in the last line of Eqn. (9)
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also forms the inverse 2D Fourier transform in conjunction with the summations over m1 and
m2. Hence, this equation can simply be written as

En1n2 = F−1
2D

{
∑
l

η̂m1m2le
iklΔze

ilΔz

√
k2−m2

1Δ2
k−m2

2Δ2
k

}
, (10)

where η̂ denotes the Fourier transform of η , and F−1 denotes the inverse Fourier transform
operator. Equation (10) is called a multislice approximation [26]. Eqn. (9) may also be viewed
as a 2D slice of the 3D Fourier transform of η . The 2D slice can be interpreted as a surface
patch of the Ewald k-sphere as in traditional diffraction tomography [27]. Note that while the
3D Fourier transform interpretation requires 3D interpolation of either the 3D Fourier transform
of η or the 3D spatial scattering density η , the multiscale approximation requires no such
interpolation and is less sensitive to errors that would result from 3D interpolation.

Define ḡ(n2−1)×Nx+n1
= En1,n2 and f(l−1)×(Nx×Ny)+(m′

2−1)×Nx+m′
1
= ηm′

1,m′
2,l , where Nx and Ny

denote the numbers of pixels of the detector in the x-direction and y-direction, respectively.
With these definitions, Eqn. (10) may be rewritten as

ḡ = G2DQB f , (11)

where B = bldiag(F2D,F2D, · · · ,F2D) with F2D being the matrix representing the 2D DFT whose
size is (Nx×Ny)×(Nx×Ny) and “bldiag” denoting the block diagonal matrix, Q = [P1P2 · · ·PNz ]

with [Pl ]m1m2 = eiklΔze
ilΔz

√
k2−m2

1Δ2
k−m2

2Δ2
k ; [Pl ]m1m2 represents the element of the matrix Pl at the

intersection of the row m1 and the column m2, and G2D represents the 2D inverse DFT matrix.
As discussed earlier, ignoring the non-linearity of Eqn. (10) caused by the squared field term e,
the Gabor hologram measurement may be algebraically written as

g = 2Re{ḡ} = 2Re{G2DQB f} = 2Re{H f}+ e+n, (12)

where g ∈RNx×Ny represents the Gabor hologram from which the DC component is removed,
Hi j = [G2DQB]i j, and e and n denote vectorized |E(x,y)|2 and additive noise, respectively.
The nonlinear term is traditionally removed using off-axis holography. As demonstrated below,
however, this term may be eliminated algorithmically from Gabor data using decompressive
inference. We discuss the effects of e in Sec. 5.

We remark that the elements of the measurement matrix H (e.g., see Eqn. (12)) in holography
are complex valued. In contrast, the typical optical imaging modality provides only nonnegative
values because the only observable are the intensities. Such nonnegativity constraints confine
the measurement basis space to be only the nonnegative orthant, which limits the angles be-
tween the measurement basis vectors (the columns of H) and effectively makes the coherence
values large. On the other hand, interferometric imaging modalities such as holography allow
the measurement vectors to reside in the entire space as opposed to the nonnegative orthant by
allowing for negative values in the measurement basis vectors. Such negative values may enable
us to design a sensing system with a small coherence value. This advantage with holography
for compressive sensing remains valid in Gabor holography because although the f and g may
be assumed to be real, the elements of the multiplex encoder H are still complex valued. We
also note that in other holography such as the Leith-Upatnieks holography [25], the f and g as
well as H are, in general, all complex valued.

Prior to discussing experimental estimation of f from Eqn. (12), we briefly consider the spa-
tial resolution expected in the reconstruction and a sparsity constraint to enable decompressive
inference. Optical measurement over a finite aperture is bandlimited. The band volume is the
support in the 3D Fourier space of η(x′,y′,z′) for sampling E(x,y) over a finite aperture. Spa-
tial resolution in imaging systems is assumed to be inversely proportional to the limits of the
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band volume, which yields transverse resolution Δx = λ z/D for objects at range z observed
over aperture D and the axial resolution is Δz = λ (2z)2/D2 [28]. Our objective is to achieve
this resolution over the 3D datacube using decompressive inference of a 2D hologram.

If the entire diffraction pattern is captured by the hologram, the effective aperture size D
for a Gabor hologram observed in the Fresnel diffraction zone is determined by size of the
object feature observed. A feature of cross section w produces a diffraction pattern with cross
section D ≈ λ z/w. This implies that Δx ≈ w and Δz ≈ 4w2/λ . The dependence of axial reso-
lution on feature size is the result of the ”missing cone” in the paraxial band volume [28]. The
missing cone may be removed by recording holograms along multiple axes. In the experiments
described here, however, we are satisfied with the single axis band limited resolution. We an-
ticipate, for example, that object features of approximately 100μ cross section will be observed
under visible light with approximately 1 cm axial resolution.

Forward models such as Eqn. (12) have been inverted by decompressive inference by either
selecting a basis, typically a particular wavelet basis, on which f may be assumed to be sparse
or by enforcing a sparsity constraint on the total variation, as defined by Rudin et al [29], of f .
We choose the second approach here and estimate f as

f̂ = argmin
f

|| f ||TV such that g = H f , (13)

where ‖ f‖TV is defined by

‖ fk‖TV = ∑
k

∑
n1

∑
n2

|∇( fk)n1,n2 |, (14)

where fk denotes a 2D plane of the 3D object datacube. We adapt the two-step iterative shrink-
age/thresholding algorithm (TwIST) [30] to solve this optimization problem.

4. Experimental results

The light scattered from the object and the collimated beam, which served as the reference
beam, overlapped on a Lumenera LU100 1280×1040 pixel focal plane array with pixel pitch
of 5.2 μm. We cropped the array of measurements to a 1024×1024 array, which is then down-
sampled to a 512×512 array using B-spline functions. The hologram, which is the interference
pattern produced on the sensor, was digitized with 10 bits accuracy. The measurement vector
g is then zero-padded on all four sides to create a 712× 712 array to avoid the artifact of the
circular convolution caused by using FFT. For our simulations, the matrix H has the size of
(712×712)× (712×712×10) with 10 being the number of object planes that can be changed
by adjusting the related parameter. The reconstruction was performed on a digital computer
with Intel Core2 Quad CPU Q9300 at 2.5 GHz and 8 GB of RAM. The data processing takes
about 4 hours for H with the size of (712× 712)× (712× 712× 10). The codes were written
in Matlab 7.7.

As illustrated in Fig. 2, we illuminated two seed parachutes of common dandelions (tarax-
acum) with a collimated, spatially filtered Helium-Neon laser of 632.8 nm wavelength. One
object is placed 1.5 cm away from the detector array, and the other dandelion is placed 5.5 cm
away from the detector array. Figures 3(b) and 3(c) are photographs of the two seed parachutes.
The illumination and scattered fields were captured in the Gabor hologram shown in Fig. 3(a).
Figure 3(d) is the 3D datacube estimated from the Gabor recording by the TV-minimization al-
gorithm. As the reconstruction shows, the stem and the petals, representing the high-frequency
features in the image, are reconstructed well. In addition, the distance between the detector
plane and the first parachute and the distance between the two parachutes are also accurately
estimated. We notice that there are still some errors in some reconstruction planes including the
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5.5 cm

1.5 cm

Fig. 2. Experimental apparatus.

planes in which the two seed parachutes. We conjecture that the errors are mainly reconstruc-
tion errors and the effects of noise, and they occur because of the rather insufficient number
of measurements. The reconstruction errors can be suppressed by exploiting the phase-shifting
holography that can increase the effective SNR and the effective number of measurements [31].
The reconstruction error in the plane of z = 0 is explained in Sec. 5. Figure 3(e) shows the
backpropagated (or digital refocusing) field that is obtained by digitally backpropagating the
hologram using the propagation kernel h in Eqn. (8) [25]. In contrast to the reconstruction in
Fig. 3(d), the backpropagated field shows messy planes full of out-of-focus features obscuring
the object features of the two parachutes.

5. Discussion

To understand the effects of the squared field e(x,y) on the reconstruction, we consider the
behavior of the algorithm. The algorithm determines how much portion of the measurement
(or measurement estimate) should be placed in which object plane based on the amount of
correlation that the diffraction patterns of the measurement and the diffraction pattern that the
estimate at a particular object plane would produce. The squared field e is inclined to produce
the diffraction patterns that bear little correlation with all of the object planes. Consequently,
most of the reconstruction error caused by e tends to remain in the plane of z = 0. In this way,
we may effectively isolate most of the errors that result from the squared field term. Since these
errors are concentrated in the plane of z = 0 (measurement plane), such reconstruction values
are not part of the object scattering density η by definition. Therefore, we may effectively
remove most of the errors that would result from the squared field (zero-order) term in the
reconstructions.

To verify this, we present two simple simulation examples: Figure 4(a) shows the reconstruc-
tion from a simulated squared field e, a rectangle with no diffraction patterns. As expected, all
the signal e remains in the plane of z = 0 since the there is no information pertaining to which
plane it diffracts from, meaning that the correlation of e with any object plane is small. In
Fig. 4(b) , we simulated a 3D object that has two rectangles in the second and third planes from
which the simulated squared field e is generated; the reconstruction is produced from only e
without the field E. As the reconstruction illustrates, the reconstruction contains a small error
in some object planes induced by little correlation between e and the interference patterns that
the estimated object would produce. Otherwise, most of the errors are concentrated in the first
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Fig. 3. (a) Raw Gabor hologram for seed parachutes of taraxacum arranged as in Fig. 2,
(b) and (c) photographs of the individual objects, (d) transverse slices at various ranges
of the tomographic reconstruction of the 3D data volume containing both objects, and (e)
transverse slices at various ranges of the backpropagated (numerical refocusing) field.
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(a)

(b)

Fig. 4. Simulations showing the effects of squared field term e: the 3D datacube estimates
from the squared field with no diffraction (a) and the squared field with diffraction (b).

plane (z = 0). Both cases imply that most of the errors produced by the squared field term in
Gabor holography may be numerically isolated and effectively removed since they are related
to the object scattering density.

Now, we consider the effects of the conjugate term E∗(x,y) on the reconstruction. In conven-
tional digital holography, the effect of the conjugate term on reconstructions is called the twin
image problem [25]. Considering that e would behave as discussed above, our forward model
including the conjugated field E∗(x,y) is approximated well to be linear. In our approach, the
effect of the conjugate term on the reconstruction can be numerically eliminated by confining
our estimate domain to only the one side of the measurement plane (i.e., z ≥ 0). Our decom-
pressive inference method directly reconstructs the 3D volume object η rather than the field at
a distance which is a superposition of all the object planes each of which is at a different focus.
This implies that the virtual object η∗ is placed to the other side of the measurement plane (i.e.,
z ≤ 0) by our inference method. This aspect of our decompressive inference allows a separa-
tion of the real and the virtual objects. Hence, by confining the reconstruction domain to be the
region in which z ≥ 0, we can readily resolve the twin image problem in the reconstruction. A
similar philosophy has successfully been applied to 2D holographic reconstruction to remove
the twin image problem [32].

In conclusion, our results show that we can obtain a 3D (512×512×10, or 712×712×10
after preprocessing to avoid the circular convolution effect) datacube of voxels with 5.2 μm
transverse resolution and 0.8 cm axial resolution reconstructed from a single 2D (512× 512)
hologram. This demonstrates the main advantages of compressive holography, i.e. that holo-
grams naturally encode high quality multiplex data and that decompressive inference can infer
multidimensional objects from lower dimensional data. Extensions of compressive holography
may use off-axis encoding to filter nonlinear terms and multispectral illumination to increase
the band volume and improve axial resolution. It would be also useful to combine our approach
with phase-shifting digital holography.
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