
 

  

Introduction to 
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With Coding Theoretic Perspective 
This book is a course note developed for a graduate level course in 
Spring 2011, at GIST, Korea. The course aimed at introducing the 
topic of Compressed Sensing (CS). CS is considered as a new signal 
acquisition paradigm with which sample taking could be faster than 
what can be expected of the canonical approach. Namely, the 
number of signal samples sufficient to reproduce a given signal could 
be much smaller than the number of samples deemed sufficient 
under the Shannon Nyquist sampling theory. The CS theory is 
expected to influence many application areas with interruptive 
changes to their current practices in the years to come, including 
tomography, radars, communications, image and signal processing, 
and wireless sensor networks. In addition, we make note of the fact 
that the tenet of CS theory is equivalent to the parity-checking and 
syndrome decoding in the Channel Coding theory. On the one hand, 
this means that, wealth of information is available to solve the parity-
check equation from Channel Coding theory which can be leveraged 
to understand the CS problem better; on the other hand, the new 
information being generated in the CS community can be utilized to 
provide new perspectives in advancing the Channel Coding theory. 
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Chapter I. COURSE INFORMATION 
1. General Information 
 
Instructor: Heung-No Lee, Ph.D., Associate Professor, GIST, Korea. 
Address: Gwangju Institute of Science and Technology, 261 Cheomdan Gwagiro, Gwangju, 
Republic of Korea. 
Phone: (82) 62-715-2237, 3140. 
E-mail: heungno@gist.ac.kr. 
Home page: http://infonet.gist.ac.kr/ 
 
 
 
Open Source Policy 

• The research trend is to moving towards “reproducible researches.” 

• The homeworks and term projects submitted shall be reproducible as well.   
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2. Course Syllabus 
 
I will use the following course schedule which will be posted at the course website at 
http://infonet.gist.ac.kr/.  
 
 
Course Schedule 
 Weekly Schedule Remarks 
1st Week GIST Entrance Ceremony  
2nd 
Week 
3/7, 3/9 

Introduction to Compressed Sensing, Shannon Nyquist 
Sampling Theorem 
 Richard Baraniuk, Compressive sensing. (IEEE Signal 

Processing Magazine, 24(4), pp. 118-121, July 2007) 

 Justin Romberg, Imaging via compressive sampling. 

(IEEE Signal Processing Magazine, 25(2), pp. 14 - 20, 

March 2008)  

 

3rd Week 
3/14, 
3/16 

Compressive Sensing Theory: L0, L1, L2 solutions HW#1 Out 

4th Week 
3/21, 23 

Compressive Sensing Theory: L0 and L1 equivalence,   

5th Week 

3/28, 30 
Compressive Sensing Theory: Generalized Uncertainty 
Principle, Sparse Representation, conditions for the unique L0 
solution, and the unique L1 solution 

1. D. Donoho and X. Huo, “Uncertainty Principles and 

Ideal Atomic Decomposition,” IEEE Trans. on Info. 

Theory, vol.47, no.7, Nov. 2001.  

2. M. Elad and A. Bruckstein, “A generalized 

uncertainty principle and sparse representation in 

pairs of bases,” IEEE Trans. Info. Theory, vol. 48, no. 

9, Sept. 2002.  

HW#2 Out 
 

6th Week 
4/4, 6 

Compressive Sensing Theory: conditions for the L0 solution, 
and the unique L1 solution, the Candes-Tao’s  approach  

1. Emmanuel Candès and Terence Tao, Decoding by 

linear programming. (IEEE Trans. on Information 

Theory, 51(12), pp. 4203 - 4215, December 2005)  

2. Emmanuel Candès, Justin Romberg, and Terence 

Tao, Robust uncertainty principles: Exact signal 

reconstruction from highly incomplete frequency 

information. (IEEE Trans. on Information Theory, 

52(2) pp. 489 - 509, February 2006)  
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3. Emmanuel Candès and Terence Tao, “Near optimal 

signal recovery from random projections: Universal 

encoding strategies” (IEEE Trans. on Information 

Theory, 52(12), pp. 5406 - 5425, December 2006)  

7th Week 

4/11, 13 
Sensing matrices and oversampling factors HW#3 Out 

8th Week 

4/18, 20 
Stable Recovery  

9th Week 

4/25, 27 
Midterm Exam  

10th 

Week 

5/2, 4 

Recovery Algorithm I: Homotopy, LASSO, LARs, OMP HW#4 Out 

11th 

Week 

5/9, 11 

Recovery Algorithm II: L1 minimization, 
Interior Point Methods, Log Barrier Methods 

 

12th 

Week 

5/16, 18 

L1-Magic packages HW#5 Out 

13th 

Week 

5/23, 25 

Bayesian Recovery Algorithm  

14th 

Week 

5/30, 6/1 

Message Passing Algorithms: Support Set Recovery 
 

HW#6 Out 

15th 

Week 

6/6, 8 

Memorial Day, Overview of the course 
 

 

16th 

Week 

 

 Final Term Paper Due 
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3. How to Cite this Note 
Please use the following line when you quote the materials in this book.  
 Heung-No Lee, Introduction to Compressed Sensing (Lecture notes), Spring 

Semester, 2011.  

 
 

4. Course Scope and Materials 
 
The following materials will be discussed in class: 
 
Please note that all of these papers are available just by clicking the link or at the RICE’s 
Compressive Sensing web-site: http://dsp.rice.edu/cs/.  
 
Introduction to Compressive Sensing 

4. Richard Baraniuk, Compressive sensing. (IEEE Signal Processing Magazine, 24(4), 

pp. 118-121, July 2007) 

5. Justin Romberg, Imaging via compressive sampling. (IEEE Signal Processing 

Magazine, 25(2), pp. 14 - 20, March 2008)  

6. David Donoho and Yaakov Tsaig, Extensions of compressed sensing. (Signal 

Processing, 86(3), pp. 533-548, March 2006)  

Compressive Sensing Theory 
7. Emmanuel Candès, Justin Romberg, and Terence Tao, Robust uncertainty principles: 

Exact signal reconstruction from highly incomplete frequency information. (IEEE 

Trans. on Information Theory, 52(2) pp. 489 - 509, February 2006)  

8. Emmanuel Candès and Terence Tao, “Near optimal signal recovery from random 

projections: Universal encoding strategies” (IEEE Trans. on Info. Theory, 52(12), pp. 

5406 - 5425, December 2006)  

9. David Donoho, Compressed sensing. (IEEE Trans. on Info. Theory, 52(4), pp. 1289 - 

1306, April 2006)  

10. D. Donoho and X. Huo, “Uncertainty Principles and Ideal Atomic Decomposition,” 

IEEE Trans. on Info. Theory, vol.47, no.7, Nov. 2001.  

11. M. Elad and A. Bruckstein, “A generalized uncertainty principle and sparse 

representation in pairs of bases,” IEEE Trans. Info. Theory, vol. 48, no. 9, Sept. 2002.  

12. Scott S. Chen, D. Donoho, and M. Saunders, “Atomic Decomposition by Basis 

Pursuit,” SIAM J. Sci. Comput. 20, pp. 33-61, vol.20, no.1, 1999.  
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Recovery Algorithms 
13. David Donoho and Yaakov Tsaig, Fast solution of L1-norm minimization problems 

when the solution may be sparse. (Stanford University Department of Statistics 

Technical Report 2006-18, 2006)  

14. Jacob Mattingley and Stephen Boyd, “Real-time convex optimization in Signal 

Processing,” IEEE Signal Processing Magazine, pp.50 – 61, May, 2010.  

 (Source @ http://www.stanford.edu/~boyd/papers/rt_cvx_sig_proc.html ). 

 Disciplined CVX Programming 

 The Robust Kalman Filtering example 

15. Michael Zibulevsky and Michael Elad, “L1-L2 Optimization in Signal and Image 

Processing,” IEEE Signal Processing Magazine, pp. 76-88, May, 2010.  

16. D. Donoho, A. Maleki, and A. Montanari, “Message passing algorithms for 

compressed sensing,” PNAS, Nov. 10, 2009.  

Connections to Shannon Theory/Coding Theory 
17. The Shannon’s 1948 paper 

18. The Rate Distortion Theory (Information Theory, Cover and Thomas) 

19. Emmanuel Candès and Terence Tao, Decoding by linear programming. (IEEE Trans. 

on Information Theory, 51(12), pp. 4203 - 4215, December 2005)  

20. Emmanuel Candès and Terence Tao, Error correction via linear programming. 

(Preprint, 2005)  

21. Goyal, V.K., Fletcher, A.K., and Rangan, S.; , "Compressive Sampling and Lossy 

Compression," Signal Processing Magazine, IEEE , vol.25, no.2, pp.48-56, March 

2008. 

doi: 10.1109/MSP.2007.915001 

URL: http://www.ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4472243&isn

umber=4472102.  

22. Pier Luigi Dragotti, Martin Vetterli, and Thierry Blu, Sampling moments and 

reconstructing signals of finite rate of innovation: Shannon meets Strang-Fix. (IEEE 

Trans. on Signal Processing, 55(7), pp. 1741-1757, May 2007)  

23. Gongguo Tang, Arye Nehorai, Performance analysis for sparse support recovery. 

(Preprint, Nov 2009)  

24. D. Baron, M.F. Duarte, and M.B. Wakin, “Distributed Compressive Sensing,” Dror 

Baron, Marco F. Duarte, Michael B. Wakin, Shriram Sarvotham, and Richard G. 
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Baraniuk, Distributed compressive sensing. (Preprint, 2005) [See also related 

technical report and conference publications: Allerton 2005, Asilomar 2005, NIPS 

2005, IPSN 2006]  

25. Robert Calderbank and Sina Jafarpour, Reed Muller Sensing Matrices and the Lasso 

(Preprint, April 2010)  

26. Maxim Raginsky, Sina Jafarpour, Zachary Harmany, Roummel Marcia, Rebecca 

Willett, and Robert Calderbank, Performance bounds for expander-based compressed 

sensing in Poisson noise. (Submitted to IEEE Transactions on Signal Processing, 

2010)  

27. S. Jafarpour, X. Weiyu, B. Hassibi, and R. Calderbank, “Efficient and robust 

compressed sensing using optimized expander graphs,” IEEE Information Theory, 

vol. 55, no. 9, pp. 4299-4308, 2009. 

28. S. Sarvotham, D. Baron, and R. Baraniuk, “Measurements vs. Bits: Compressed 

Sensing meets Information Theory,” 44th Annual Allerton Conference, Sept. 27-29, 

2006. 

29. M. Vetterli, P. Marziliano, T. Blu, “Sampling Signals with Finite Rate of Innovation,” 

IEEE Trans. on Signal Processing,” vol. 50, no.6, June, 2002.  
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5. The RICE University Repository  
Rice University, U.S.A., maintains a nice list of resources for Compressed Sensing papers 
and software packages.  
 

• l1-Magic  

• SparseLab  

• GPSR  

• L1 LS: Simple Matlab Solver for L1-Regularized Least Squares Problems  

• sparsify  

• MPTK: Matching Pursuit Toolkit [See also related conference publication: ICASSP 

2006]  

• Bayesian Compressive Sensing  

• SPGL1: A solver for large scale sparse reconstruction  

• sparseMRI  

• FPC  

• Chaining Pursuit  

• Regularized OMP  

• SPARCO: A toolbox for testing sparse reconstruction algorithms [See also related 

technical report]  

• TwIST  

• Compressed Sensing Codes  

• Fast CS using SRM  

• FPC_AS  

• Fast Bayesian Matching Pursuit (FBMP)  

• SL0  

• Sparse recovery using sparse matrices  

• PPPA  

• Compressive sensing via belief propagation  

• SpaRSA  

• KF-CS: Kalman Filter based CS (and other sequential CS algorithms)  

• Fast Bayesian CS with Laplace Priors  

• YALL1  

• TVAL3  

• RecPF  
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• Basis Pursuit DeQuantization (BPDQ)  

• k-t FOCUSS  

• Sub-Nyquist sampling: The Modulated Wideband Converter  

• Threshold-ISD  

• A Sparse Learning Package  

• Model-based Compressive Sensing Toolbox  

• Sparse Modeling Software  

• Spectral Compressive Sensing Toolbox  

• CS-CHEST: A MATLAB Toolbox for Compressive Channel Estimation  

• DictLearn: A MATLAB Implementation for Dictionary Learning  

6. Applications 
 
There are many interesting application areas. Let us review several of them here. 
 
A. Single Pixel Cameras 
 
RICE University (Prof. Baraniuk’s group) has applied the Compressed Sensing idea to a 
single pixel camera, and has shown that the Compressed Sensing idea is not only theoretical 
but also practical and feasible in real-world system. The following picture depicts the idea.  

 

 
 
B. Terahertz pulsed spectroscopic imaging 
 
 Terahertz waves (0.3 – 10 THz, 10-330 cm-1) penetrate common barrier materials 

such as clothes and plastics. 
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 Terahertz waves can be used in a non-destructive manner to reveal what is concealed 

such as weapons and explosives behind garments and plastic packages for security 

applications, or tumors and deceased cells inside human bodies for medical 

applications.  

 Most Terahertz imaging systems use raster scanning with a focused Terahertz beam. 

 It seems difficult to build a compact and sensitive multi-element Terahertz detector.  

 Raster scanning a whole image scene in a pixel-by-pixel manner takes a large amount 

of time, say minutes or hours to acquire the total number of pixels for a certain 

resolution.  

 Compressed sensing may provide a rescue for the Terahertz imaging system.  

 Each sample in Compressed Sensing paradigm can provide a holistic view of the 

entire object. The resolution can be controlled by varying the number of holistic 

samples taken.   

 There are a number of papers recently on this subject.  Just to name a few, here they 

are [26][27].  
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C. Other areas of applications 
 
 Brain Computer Interface System with EEG Signal Classifications  
 Detection of Images for Security Applications (See Yi Ma’s paper) 
 Ultrasound imaging system (One possible area) 
 Super-Resolution Systems (See this at Chapter II.9) 

 
 
D. Summary of Applications 
One of the challenges is to bring down the cost of these nice technological gadgets. This is 
possible when low power and low cost signal acquisition and restoration technology are 
available!!! Compressive Sensing maybe is the way to meet this challenge!  
 

7. References  
 

[1] David L. Donoho, “Compressed Sensing,” IEEE Trans. Information Theory, vol. 52, no. 4, pp. 
1289-1306, Apr. 2006. 

[2] David L. Donoho and Jared Tanner, “Precise Undersampling Theorems,” Proceedings of the 
IEEE, vol. 98, pp. 913-924, May, 2010.  

[3] Richard Baraniuk, “Lecture Notes: Compressive Sensing,” IEEE Signal Processing Magazine, p. 
118-121, July, 2007.   
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Chapter II. COMPRESSED 
SENSING 
1. Compressed Sensing, Compressive Sensing, Compressive Sampling 
Compressed Sensing, Compressive Sensing, Compressive Sampling, they all mean the same 
in this note.  
 

2. Pioneers of Compressed Sensing 
 
“Stars” in the field of the Compressed Sensing include 
 
 David Donoho (Stanford University, Statistics) 

 Emmanuel Candes (Stanford University, Statistics) 

 Richard Baraniuk (RICE University, ECE) 

 
The claimed statement: Sub-Shannon Nyquist Rate Sampling is good enough for representing 
(sparse) signals.  
 

Here’s what David L. Donoho has said: 
 

 in his paper Compressed Sensing [4], “everyone now knows that most of the data 

we acquire “can be thrown away” with almost no perceptual loss—witness the 

broad success of lossy compression formats for sounds, images, and specialized 

technical data. The phenomenon of ubiquitous compressibility raises very natural 

questions: why go to so much effort to acquire all the data when most of what 

we get will be thrown away? Can we not just directly measure the part that will 

not end up being thrown away?”   

 

 in another one of his paper [5], “The sampling theorem of Shannon-Nyquist-

Kotelnikov-Whittaker has been of tremendous importance in engineering theory 

and practice. Straightforward and precise, it sets forth the number of 

measurements required to reconstruct any bandlimited signal. However, the 

sampling theorem is wrong! Not literally wrong, but psychologically wrong. 

More precisely, it engender[s] the psychological expectation that we need very 

large numbers of samples in situations where we need very few. We now give 

three simple examples which the reader can easily check, either on their own or 
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by visiting the website [Donoho’s Sparse Lab web-site] that duplicates these 

examples.” 

 

3. Sampling Theorem and Dimensionality Reduction by Shannon 
 

Having seen the quotes from Compressed Sensing papers, it would be interesting to 

retrospect what Shannon has said in the past on the subject of the sampling theorem.  

 

Here is what Shannon established in the late1940s in one of his papers, [1], on the issue of 

sampling theorem. One thing we found interesting is that he also mentioned on the subject of  

dimensionality reduction when the sampling theorem is used in the context of representing 

messages.  

 

The Theorem 1 of the paper [1] is stated below: 

 

Theorem 1. (Shannon’s sampling theorem [1]) If a function ( )f t  contains no frequencies 

higher than W  cps [cycles per second], it is completely determined by giving its ordinates 

at a series of points spaced 1
2W  seconds apart. (See also Review of Sampling Theorem in 

Problem 6 on page 75) 

 

In communications, it is often of interest to represent a function limited both in time and 

frequency, say a signal bandlimited to W cps starting at the zero frequency and time limited to 

the interval of T seconds. This is not possible in the strict sense due to the time-frequency 

equivalence of the Heisenberg uncertainty principle. But it becomes possible by making an 

adjustment that the signal has bandwidth W cps and very small values outside the interval T. 

Taking samples of such a signal at the speed of 2W samples per second is sufficient, the 

theorem states, for reproduction of the signal by interpolation using the sinc sin x
x  kernel. This 

is not only an engineering approximation, but there exists rigourous forms of similar results 

by mathematicians, see Whittaker [2].   

 

This theorem opens up the possibility of representing a continuous function ( )f t  of a 

certain period T and a bandwidth W with a finite number of equally spaced samples. Namely, 
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a sequence of 2TW number of samples, each sample taken at 1
2W  second apart, is sufficient 

for representing any signal with such time and bandwidth limitation.  

 

Shannon in [1] then goes on to the topic of geometrical representation of the signals. Namely, 

he argues that the 2TW evenly spaced samples of a signal can be thought of as co-ordinates of 

a point in a space of 2TW dimensions. A continuous signal f(t) corresponds to a point in this 

space.  

 

In a similar way, one can associate a geometrical space with the set of possible messages. 

Suppose a speech signal for example of time duration T and bandlimited by W cps. This 

signal can also be represented by a set of samples of size 2TW. Unlike the communications 

signals which we purposely generate and use as a means to carry digital information over a 

channel, the message bearing signals such as speech or television signals bear several points 

need close attension. The former type of signals would be designed to occupy the full 

dimension so that maximum amount of information is sent over the channel; for the latter 

case, signals could be grouped together for the purpose of representation and dimensionality 

reduction can be achieved. Namely, the apparent dimension 2TW of these signals can be 

reduced to 2D TW≤ . Shannon argues this dimensionality reduction idea in the following 

paragaphs: 

 “Various different points may represent the same message, insofar as the final 

destination is concerned. For example, in the case of speech, the ear is insensitive to 

a certain amount of phase distortion. Messages differing only in the phases of their 

components sound the same. This may have the effect of reducing the number of 

essential dimensions in the message space. All the points which are equivalent for the 

destination can be grouped together and treated as one point. If may then require 

fewer numbers to specify one of these “equivalence classes” than to specify an 

arbitrary point. For example, in Fig. 2 we have a two-dimensional space, the set of 

points in a square. If all points on a circle are regarded as equivalent, it reduces to a 

one-dimensional space—a point can now be specified by one number, the radius of 

the circle.”  
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Figure 1: Fig. 2 of Shannon [1] 
 
 “In the case of sounds, if the ear were completely insensitive to phase, then the 

number of dimensions would be reduced by one-half due to this cause alone. The 

sine and cosine components na  and nb  for a given frequency would not need to be 

specified independently, but only 2 2
n na b+ ; that is, the total amplitude for this 

frequency. The reduction in frequency discrimination of the ear as frequency 

increases indicates that a further reduction in dimensionality occurs. The vocoder 

makes use to a considerable extent of these equivalences among speech sounds, in 

the first place by eliminating, to a large degree, phase information, and in the second 

place by lumping groups of frequencies together, particularly at the higher 

frequencies.”  

 “In other types of communication there may not be any equivalence classes of this 

type. The final destination is sensitive to any change in the message within the full 

message space of 2TW dimensions. This appears to be the case in television 

transmission. A second point to be noted is that the information source may put 

certain restrictions on the actual messages. The space of 2TW dimensions contains a 

point for every function of time ( )f t  limited to the band W and of duration T. The 

class of messages we wish to transmit may be only a small subset of these functions. 

For example, speech sounds must be produced by the human vocal system. If we are 

willing to forego the transmission of any other sounds, the effective dimensionality 

may be considerably decreased.” 

 
These ideas of dimensionality reduction from the full 2TW dimension perhaps go hand in 
hand with the core idea of the compressed sensing theory, in particularly via the idea behind a 
sparse representation of a signal in a certain basis.    
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4. Compressed Sensing in a Nutshell 
I would like to start the introduction to the theory of Compressive Sensing, based largely on 
the tutorial articles [6],[7] published in IEEE Signal Processing Magazine in 2007 and 2008 
respectively. The aim here is to illustrate what constitutes the theory of Compressive Sensing. 
These articles are concise but contain the essential parts of the Compressive Sensing theory; 
thus, they shall serve as good starting materials for Electrical Engineering and Computer 
Science and Engineering majors.  
 
Now, let us begin: 
 
1. Need for new look at sampling 

a Shannon-Nyquist sampling may lead to too many samples probably not all of 

these samples are necessary to reconstruct a given signal. Compression may 

become necessity prior to storage or transmission. 

b In an imaging system, increasing the sampling rate is sometimes difficult. 

   

2. Most signals are compressible signals 

a Let a real-valued signal represented in a vector form, i.e., 

 
1

N

i i
i

sψ
=

=x  or =x sy  (1) 

o N x 1 column vectors x and s  

o An N x N sparsifying basis matrixy  

o The signal x is called K-sparse if it can be represented as a linear combination of 

only K basis vectors; only K elements of the vector s are non-zero.  

o The signal x is called compressible if it contains a few elements with large values 

and many elements with small values.  

 

3. Compression using the usual transformation based source coding (lossy) 

o Uniform sample vector x is obtained.  

o Transform coefficients, via 1−=s xy , are found. 

o K largest elements are taken; the rest are thrown off.  

o Encode the K largest elements 

o Inefficiency can be noted here. 
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4. The Compressive Sensing approach 

o Directly acquire compressed samples without going through the intermediate stages 

o Compressive measurements via linear projections 

 = = =y x s sF Fy Q  (2) 

o Here y is an M x 1 measurement vector, where M < N. 

o F , or the Q , is an M x N measurement matrix. 

o A good measurement matrix preserves the information in x.  

o A good recovery algorithm recovers x.  

 

5. In Compressive Sensing, there are two major tasks. Namely, they are 

o Designing a good measurement matrix. Matrices with large compression effects 

and robustness against modeling errors are desired.     

o Designing a good signal recovery algorithm. Fast and robust algorithms are desired.   
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5. Compressed Sensing, explained with a little more care 
 
 A K-sparse signal, =x ψs , where there are K non-zero elements in s.  

 The dimension is N.  

 ψ is an orthonormal basis, i.e., H H
N= =ψ ψ ψψ I , the identity matrix of size N, 

where the superscript ( )H⋅ denotes the Hermitian transpose.  

 An M by 1 measurement vector y,  

 ( ) := = = =y Φx ψs Φψ s Θs  (3) 

The sensing matrices Φ  and Θ  are of size M x N, where M < N.  

 For a K-sparse signal x, a minimization based on the L1norm ( 1L norm) gives the 

unique solution x under the condition that the sensing matrix Φ  is good.  

 Surprising results: 

 M is closer to K than N as a sufficient condition for good signal recovery. Thus, 

there is a compression effect. It turns out that this is not so surprising from the 

perspective of channel coding, e.g., syndrome decoding. The dimension of 

syndrome is smaller than ambient dimension of the sparse error vector. 

 The L1 minimization solution gives a solution equivalent to the L0 solution 

which is the combinatorial solution, under a certain condition. 

 Like I said in the previous lecture, the compressive sensing comes down to the 

following two problems. 

 The design of good sensing matrix 

 The design of good recovery algorithm 

 Let us take a look at them one by one. 

 
 Note that (3) appears to be an ill-conditioned system. There are more unknowns than the 

number of equations, N > M. 

 But if x is K-sparse and the locations of the K non-zero elements are known, then the 

problem can be solved provided M K≥ .  
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 Namely, we can form a simplified equation by deleting all those columns and 

elements corresponding to the zero-elements: 

 =y Θ s   (4) 

where  is the support set which is the collection of indices corresponding to 
the non-zero elements of s .  
 Not always! Can you come up with a counter example? 

 Equation (4) has the unique solution s if the columns of Θ are linearly 

independent. It can be found by  

 ( ) 1T T−
=s Θ Θ Θ y     (5) 

Note that the inverse matrix exists since the columns are independent.  
 Thus, once the support set is found, the problem is easy to solve provided the 

columns are independent.  

 The support set   can be any size K subset of the full index set{1,2,3, , }N .  

 The necessary and sufficient condition for (4) to be well conditioned is that for any 

K-sparse vector v sharing the same K nonzero entries as s, the sensing matrix should 

satisfy the following condition, for some 0 1δ< < : 

 2

2

1 1δ δ− ≤ ≤ +
Θv

v
 (6) 

 Θ should be length preserving for any K-sparse v.  

 It should be noted that if the condition (6) holds, then any K columns of Θ  are 

linearly independent. Thus, the sufficient part has been proved.  

 Let us wait until we study Candes and Tao’s paper for the necessary part.  

 At this point, our aim is to get familiar a little bit with this inequality (6). Later, 

this inequality will be used repeatedly under the name Restricted Isometry 

Property (RIP), which will be discussed next.  

 

A. Restricted Isometry Property  
 
A sufficient condition for a stable solution for both K-sparse and compressible signals is that 
the sensing matrix satisfies (6) for any arbitrary 3K-sparse vector v. 
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 This statement is not obvious at the moment. 

 We know that (6) for 1K-sparse vectors is a sufficient condition for (4) which 

is a simplified version of (3) under the assumption that the support set   is 

known.  

 The RIP for 3K-sparse vector is obviously a stricter condition than that with 1K-

sparse vectors.  

 It is natural to find a stricter condition, the RIP, for equation (3) in which the 

support set   is also unknown, in addition to the values of s . 

 

B. Incoherence Condition  
 

The story related to incoherence condition is to say that the rows of Φ  should be 
incoherent to the columns of ψ . Why? 
 What would happen if the rows of Φ  are coherent to the columns ofψ ? 

 In the extreme case, we may select the M rows of Φ  to be the first M columns 

of ψ .  

 Then, we have 

 (1: ,:)

1

1

1

1

T
M

 
 
 = =
 
 
 

Φψ ψ ψ   

 Note that it is easy to see that this matrix can never satisfy the RI condition. 

 Another item in the story is that if i.i.d. Gaussian is used to construct the sensing 

matrix, it will be incoherent to any basis.  

 

C. Checking RIP is NP-hard. 
 
 Deterministic approach 

 Checking the RI condition is an NP-hard problem.   

 Given a sensing matrix Θ , we should check all ( )3
N
K  possible combinations of 

3K non-zero entries in the vector v of length N.  

 This quickly becomes intractable for large N. 

 Probabilistic approach 
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 Design Φ  randomly and show that the RIP and the incoherence condition can 

be achieved with high probability.  

 For example, let each element of Φ  be i.i.d. Gaussian with zero mean and 

variance 1/M.  

 Gaussian sensing matrix Φ  has two useful properties 

 With log( / )N M cK N K> ≥  where c is a constant, the RIP is met with high 

probability; thus, the K-sparse signal can be recovered.  

 The matrix Φ  is universal in the sense that =Θ Φψ  will be i.i.d. Gaussian 

and thus have the RIP condition met with high probability for any choice of the 

orthonormal basis set ψ .  

 Let us check: First we note the columns of the sensing matrix Θ  are 

mutually independent with each other, i.e., 

      
( )

H H H

H H

H
N

N

=

=

=
=

Θ Θ ψ Φ Φψ

ψ Φ Φ ψ

ψ I ψ

I

 


 

 Second, we note that the rows of the sensing matrix Θ  are mutually 

independent with each other as well, i.e.,  

( )
H H H

H

N
MM

=

=

=

ΘΘ Φψψ Φ

Φ Φ

I

 
  

 Third, each element in Θ  is i.i.d. Gaussian.  
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D. L0, L1, L2 norms and the null space  
 
 A signal reconstruction algorithm 

 Takes the input which is the measurement vector y 

 Outputs the K-sparse vector x 

 The null space ( )Θ  of the sensing matrix Θ : The null space of Θ  is defined as 

the collection of all vectors v such that  

 =Θv 0  (7) 

 Namely, { }( ) |  for any non zero N= = ∈Θ v Θv 0 v  . Since the dimension of Θ  is 

M x N, the dimension of the null space is at least N – M.   

 Thus, there are infinitely many solution 's to (3), ' := +s s v  where ( )∈v Θ . 

That is, each 's is the solution to ( )'= = + =y Θs Θ s v Θs .  

 Ex) Find the null space of the following matrix:  

 
1
2

1
2

01

10

 
=  
 

Θ  (8) 

 

 We need a criterion to choose a solution uniquely. 

 We will consider minimum L2 norm, minimum L1 norm, and minimum L0 norm 

criterion.  

Example) Let [ ]1 1 0= −x  and [ ]0.5 0.5 0.5= −y . Whose is bigger in the 

sense of L0 norm?  Whose L1 norm is bigger?  Whose L2 norm is bigger? 
 

i. The Lp norm of x is defined for 0p > ;as 

 

1

1

:
pN

p

ip
i

x
=

 =  
 
x  (9) 

ii. The unit circles with respect to different Lp norms, with p = 1/2, 1, 2, and 

100( ∞ ).  
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iii. The L ∞ norm is { }1 2max , , , Nx x x
∞

=x  .  

iv. The L0 norm is not well defined as a norm. Donoho uses it as a “norm” 

which counts the number of non-zero elements in a vector.  

   

 The minimum L2 norm solution:  

 
( )

2

1

ˆ arg min '   s.t. '

T T −

= =

=

s s y Θs

Θ ΘΘ y
 (10) 

However, this conventional solution will give us a non-sparse solution and will not be 
appropriate. We will do a homework problem for this.  

 
 The minimum L0 norm solution:  

 
0

ˆ arg min '   s.t. '= =s s y Θs  (11) 

The L0 norm of a vector is the number of non-zero elements in the vector by 

definition. This involves combinatorial search, finding all ( )N
K  possible support sets. 

This is an NP-complete problem.  
 
 The minimum L1 norm solution: The biggest surprise in compressive sensing comes 

from this. Namely, the L1 norm solution coincides with the L0 solution provided the 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5
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p = 1
p = 1/2
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RIP condition is met.  

 
1

ˆ arg min '   s.t. '= =s s y Θs  (12) 

 We will have to spend some time to prove this statement in this course.  

i. Example of L1 norm.  

 

 Example) Consider the following underdetermined problem: 

 [ ] 1

2

1 2
x

y
x

 
= −  

 
 (13) 

Let y = -2.  
i. Find the L0 solution  

ii. Find the L2 solution. 

iii. Find the L1 solution.  
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6. Summary 
The bottom line is that 

1. The L1 norm minimization solution is the L0 norm solution under the condition that 

the RIP is met.  

2. A randomly generated i.i.d. Gaussian measurement matrix Φ  with dimension 

log( / )N M cK N K> ≥  satisfies the RIP condition with high probability.  

 
Having said this, it feels like that we have already solved both of the problems related to 
Compressive Sensing. Namely, we know how to design a good sensing matrix as well as a 
good recovery algorithm: use an i.i.d. Gaussian sensing matrix, and apply the L1 norm 
minimization to obtain a signal recovery algorithm. This is true in some sense. But it should 
rather be the beginning of a new field, I hope since we need new ideas and new applications. 
Current issues of interest may include the following: 
 

1. Design of sensing matrix with deterministic performance guarantee 

2. Faster signal recovery algorithms 

3. Application of the Compressive Sensing theory to solve practical problems: channel 

coding problems, super-resolution problems, sparse representation problems, image 

compression problems, etc. 

4. Finite field results: If we wanted to use Compressed Sensing for compression 

purpose, it would be perhaps better off if we have used the parity check matrices of 

the channel codes. The syndrome vectors are packed in its vector space, GF( )Mq , 

while the error vectors are widely spread out in its vector space, GF( )Nq . More 

discussion on this shall be needed. See those sections Chapter VI.2 for the Coding 

Theoretic Approach, and 0 for the Bayesian Recovery methods.   

 

7. The Spark and The Singleton Bound 
Definition. The spark of a matrix A is the smallest number n such that there exists a set of n 
columns in A which are linearly dependent, i.e.,  

 
00

spark( ):= min     s.t.  .
≠

=
x

A x Ax 0  (14) 

Prove/disprove questions. 

o The rank of an [M x N] matrix A, M < N, can be larger than M.   
o The rank of matrix A is the minimum of the column and the row dimension. 
o The rank of an [M x N] matrix A, M < N, is the smallest number D such that all sets 

of D + 1 columns in A are linearly dependent, and D can be larger than or equal to M.  
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o (The Singleton Bound) The highest spark of an [M x N] matrix A is less than or 
equal to M + 1.    

8. Matrix Design with Givens Rotations 
 Exercise Problem 1: Let us design a sensing matrix A starting with the following 

initial matrix:  

 
1

1

 
 
 

 

 A matrix with spark = 3, let us aim to design. 

 Any idea? Any systematic method? 

 Let us use the Givens rotation matrix, 
cos( ) sin( )

sin( ) cos( )

a a
G

a a

 
=  − 

. This matrix will 

turn its input vector by angle a in the clock wise direction. For example, let us  

use / 2a π= . Then, we obtain the sensing matrix A as the concatenation of the 

two, the two by two identity matrix I and G,  A = [I; G].  

 

 Exercise Problem 2: Design a matrix A starting with the following initial matrix:  

 
1

1

1

 
 
 
  

 

 A matrix with spark = 3 

 A matrix with spark = 4 

 
 
 
 
 
 
 
 

 Can we use the Givens rotation matrix again? 

 Using 1

( ) ( ) 0

( ) ( ) 0

0 0 1

c a s a

G s a c a

 
 = − 
 
 

 with / 2a π= , we have the following rotation 
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result 

1 12

1 1
2 2

1 1
1 122 2

:

1 ( ) ( ) 0

1 ( ) ( ) 0 :

1 0 0 1 1
G

c a s a

s a c a G

=

   
   − = − =   

        
A

A



 

 Using 23

1 0 0

0 ( ) ( )

0 ( ) ( )

G c a s a

s a c a

 
 =  
 − 

 with / 2a π= , we have the following rotation 

result 

23

1 1 1 1 1
2 22 2 2

1 1 1 1 1
1 12 232 22 2 2

1 1
2 2

1 0 0

0 ( ) ( )

0 ( ) ( )1
G

c a s a G G

s a c a

       − = − =        −  −    

A



. 

 We note that the spark, when we form the 3 x 6 matrix with this result, is only 3.  

 Why? 

 So, let us do it one more time. This time, let us do a rotation between the axis 1 

and the axis 3. That is, using 13

( ) 0 ( )

0 1 0

( ) 0 ( )

c a s a

G

s a c a

 
 =  
 − 

 with / 4a π= , we have 

the following rotation result 

13

1 1 1
2 22

1 1 1
1 12 23 132 22

11 1
22 2

( ) 0 ( ) 0.1464 0.5 0.8536

0 1 0 0.8536 0.5 0.1464

( ) 0 ( ) 0.5 0.5
G

c a s a

G G G

s a c a

        − = − − =        − − − −     

A



. 

 Now, let us form the sensing matrix A using the results obtain so far 

 
1
2

1 0.1464 0.5 0.8536

1 0.8536 0.5 0.1464

1 0.5 0.5

 
 = − − 
 − − 

A . We note that the spark of this matrix 

is 4.  

 We have not aimed at optimizing this process yet. But from this simple 

procedure, it can be seen that we can easily obtain a matrix with spark 4, and 

thus the Singleton bound has been achieved. That is, the angle we have chosen at 

each rotation is simply 4
π . Was this an optimal choice? Probably not. This should 

be in the list of possible future research topics. For higher dimensional cases, the 
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best way to find the rotations is an open problem, and a good research direction.  

 Another possible direction to look at relevant works is in the space-time block 

code design literature.  

o See under “Unitary Space-Time Constellation” designs. There the aim is to 

design a codebook which is collection of rectangular matrices; thus, their 

problem is a little different. The distances between any pair of codewords 

have been maximized.  

o See the paper published in 2010 by Ashikhmin and Calderbank [8].  

 

9. Super Resolution Applications (Nano array filters and Nano lenses) 
 
An interesting application area of compressive sensing could be filter array based 
spectrometers. See the paper “on the estimation of target spectrum for filter array based 
spectrometers,”  C.C. Chang and H.N. Lee, OPTICS EXPRESS, vol. 16, no.2, 2008.  
 
In this application, the inverse problem in the compressed sensing theory can be used in a 
little bit different flavor. Super-resolution perspective, rather than compression, can be 
emphasized solving the under-determined system of equations. In compressed sensing, we 
aim to recover the uncompressed samples, an N x 1 vector, x from the compressed samples, 
an M x 1 vector M < N. The emphasis was put on the effect of compression, since M< N. This 
can be viewed differently as we put the emphasis on the fact that N is bigger than M when the 
number of samples M is given and fixed in a particular system. The view point is that we 
started off with a fixed number of M measurement samples, we aim to improve its resolution 
by a factor of N/M. In the paper referred above, we have used a non-negative least squares 
algorithm (NNLS). Back then, we did not notice the compressive sensing algorithms nor the 
sparse representation problem, and thus we did not make use of the L1 minimization 
algorithms. Somehow, however, we were able to pull out and use the best algorithm, the 
NNLS. Since the intensity of light is non-negative, this was the obvious choice.  
 
The NNLS algorithm has the intriguing power of achieving parsimonious representation. 
When one compares the algorithm with the L1 minimization routines, one finds that the 
NNLS algorithm is superior to many of these L1 minimization routines. It is an iterative 
algorithm. At each iteration, an active set is managed. An active element is selected by 
correlating the residual vector with the columns of the “sensing” matrix. Lawson and Hanson 
[30] have shown that the algorithm always converges.  
 
The problem of super resolution for nano array filter is summarized here: 
 
 The objective is to obtain a miniature spectrometer which is small and portable.  

 A nano array filter is cheap and incapable as an individual filter. Each filter is not 

sharp, but blurs the input image. Namely, it does not only pass a specific wavelength 

but also others at different wavelengths. In addition, a CCD camera array is 
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expensive. 

 The aim is to obtain the maximum resolution with a small number of photoelectric 

sensors, a resolution beyond the Nyquist Rate.  

 The output of a particular filter is a convolution of the light inputs at different 

wavelengths. 

 For the success of a miniature spectrometer, it is desired to have a smaller number of 

photoelectric sensor arrays. 

 The question is to ask “is it possible to have a spatial resolution finer than the spatial 

resolution obtained by the fixed number of sensors in the array?” 

 

 
 
Namely, we have  
 

= +r Hs n  
 
where r is the M x 1 observation vector, H is the M x N diffusion (convolution) matrix, s is 
the sparse vector, and n is the AWGN vector. Note here that M stands for the Nyquist rate 
spatial sampling; the aim is to see if the spatial resolution of the image can be improved, i.e., 
N > M. That is, we would like to see if beyond the Nyquist rate resolution can be achieved by 
exploiting the prior knowledge that the image is compressible.  
 
 
Murky Lenses Make Sharper Images! 
 
A similar application can be found in the Nanolens area. See one article at New Scientist 
(July 2nd, 2011), “Mulky lenses make sharper images,” written by MacGregor Campbell. It 
introduces a recent breakthrough in super resolution experiment in which a scattering lense, a 
rat skin or a layer of a peel of egg’s interior shell, can be used to improve resolution of an 
optical image. It includes the discussion of a technical paper entitled as “Scattering Lens 
Resolves Sub-100 nm Structures with Visible Light,” by Putten et. al., published in Physical 
Review Letters, May 13th, 2011 (DOI: 10.1103/PhysRevLett.106.193905). In the second 
article, they use a layer of Galium Phosphide topped by a slab of Porous layer for creaing a 
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scattering lense.    
 
Here is the logic:  
 When the wavefront of a coherent light source propagtes through a scattering 

medium, the rays are scattered in all directions, each with different phases and 

intensities.  

 The scattered rays are collected with an object lens. These rays are out of phase with 

each other, obviously.  

 These phase differences can be measured and fed back to the source. 

 A spatial modulator can then be used at the source to modulate the phases of 

transmitted light so that the collected rays at the image collector can remain coherent 

with each other. 

 
The following pictures are taken from the Putten et. al.’s paper: 
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10. HW set #1 
 
1. (Lp norms; L0 and L1 solutions) Let us learn the difference between various Lp norms.  

a Write the definition of the L0 norm.  

b Use the MATLAB and draw the boundaries of the Lp balls, where p = 2, 1, and 

1/2 in the 2 dimensional space.  

c Now find the solutions of the following equation with respect to L0, L1, and L1/2 

minimization, [ ] 1

2

1 2
x

y
x

 
=  

 
 for y = 2. Write the expression of the right null 

space of the matrix [1 2], and draw it on a same picture together with the Lp balls.  

d Depict your Lp solutions in your picture and explain the procedure how you have 

obtained your solution. See [Fig 3] of [7] for reference.  

e Find the L0 norm solution. Is it unique? 

f Find the L1 norm solution. Is it unique? Does it coincide with the L0 norm 

solution? If not, when does it? 

 
2. (RIP, Spark, Rank) Let A be an arbitrary [3 x 6] real valued matrix.  

a Find the maximum row dimension of the matrix. Give an example matrix A that 

achieves the maximum row dimension.  

b Find the maximum column dimension of the matrix. Give an example matrix A.  

c Design a [3 x 6] sensing matrix every set of three columns of which is linearly 

independent.  

d What is the rank of the matrix of c? 

e What is the Spark of the matrix of c? 

 

3. (RIP + L0 recovery) Let a [4 x 8] matrix A have Spark = 5.   

a Prove/Disprove that the matrix A satisfies the lower bound part of the RIP 

condition for any 4-sparse signals. 

b Prove/Disprove that the solution to =y Ax  has the unique L0 solution for any 2-

sparse x.  

 
4. (Underdetermined problem) What would happen when M N≥  in (3)?  

a (Prove/Disprove) The solution always exists and unique.  

b (Prove/Disprove) The L1 solution (12) and the L2 solution (10) coincide, when 
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the unique solution exists.  

 
 
5. (DCT, Noiselet, Wavelet, Fourier Transform) Let us figure out what they are and do small 

examples with them.  

a Obtain the general expression of the DCT transformation. Give a small example 

of DCT (say 4 x 4 or 8 x 8).  

b Do the same with a Noiselet transformation. See Reference [8] of [7]. 

c Do the same with a Wavelet transformation (the Harr wavelet).  
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Chapter III. MATHEMATICS OF 
COMPRESSIVE SENSING 
 
 
 
In this chapter, we aim to introduce a selection of mathematical results in compressed sensing 
theory. Before we do this, we summarize what we learned in previous chapters: 
 
 Natural signals can be represented as sparse signals in a certain basis. We say that a 

signal is K-sparse if only K non-zero elements are needed to describe a signal.  

 Sparse signals can be compressively sampled, meaning that the number M of samples 

needed for perfect reconstruction is less than the number N of Shannon-Nyquist samples. 

In our notation, the relation between the number of samples are K < M < N.  

 The reconstruction of the signal is done by the L1 minimization, rather than the usual L2 

minimization. 

 

This line of thoughts is considered pioneering. Obviously, there are many questions we would 
like to ask. Among them, the first batch could be: 
 How to obtain the [ ]M N× sensing matrix? 

 How small  M  can we choose given K and N? 

 How sparse the signal has to be at a given M? 

 When will the L1 convex relaxation solution attains the L0 solution? 

These questions are related with each other, we will find answers to them as we explore. 
Being able to answer them would mean that we have understood the core results of the 
compressed sensing theory. After we have conquered them, we may explore further questions 
dealing with more practical issues such as:  
 The input output model, y Fx= , is too simple. In practice, there is always measurement 

noise. What would happen to the L1 minimization signal recovery then? Would it still be 

possible to recover the signal reliably? 

 What would happen if there is a model mismatch? That is, suppose that the signal is not 

exactly a K-sparse signal, what kind of results do we expect under such an assumption?  

In this chapter, we will explore these issues.  
We now begin our discussion with the topic of uncertainty principle and sparse representation.  
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The first section presents the result of Donoho et al., sufficient conditions for L0 unique and 
L1 unique solutions, which are given for a special case when there are two orthonormal bases 
used for sparse represention of a given signal y. In compressive sensing approach, this is a 
special case where the sensing matrix dimension is given by 2M M× .  
 
We then give the sufficient conditions by Candes and Tao which are for general M N×  
sensing matrices. These results are however given by the so-called RIP constants which are 
tight but difficult to evaluate.  
 
In Section 3, we give our novel results on L0 and L1 uniquess theorems for the general 
general M N×  sensing matrices. Novelty lies in the fact that these theorems are given in 
terms of mutual coherence which is easy to calculate.  
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1. Uncertainty Principle and the L1 Uniqueness Proof 
In this section, we aim to introduce the subjects of uncertainty principle and L1 uniqueness 
first studied by Donoho and Stark in 1989, and later by others including Donoho and Huo, 
Elad and Bruckstein, Griebonbal and Nielson, etc. This subject is very interesting due to a 
number of reasons. Just to name a few. First, the uncertainty principle provides the 
fundamental law of signal resolution for sparse signal representation. The spirit is that a 
parsimonious representation is of value: a small sparsity representation, being able to 
represent a signal in a parsimonious way, is a figure of merit. But be aware that there is a 
limit. The uncertainty principle (UP) gives that limit. Second, it has intriguing relation to the 
L1 uniqueness proof which is one of the key issues in Compressed Sensing.   
 
There is nice review presentation made by Romberg [15] available in the Internet. A quick 
reference to this material, we find that the research history of this subject goes as follows: 

i. Discrete Uncertainty Principle for  : 2T N+ Ω ≥ (Donoho and Stark 1989) 

 

Figure 2 : A chart from [15]. 
 

ii. Generalization to pairs of bases 

A. Donoho and Huo 2001 [13] 

B. Elad and Bruckstein 2002 [14] 

iii. Sharp Uncertainty Principle by Tao 2004  

A. The block length N is prime.  

B. T N+ Ω ≥  (much more relaxed result) 
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Figure 3 : A chart from [15]. 
 
 
In this sub-section, our discussion will be based primarily on Donoho and Huo 2001 [13] and 
Elad and Brucstein 2002 [14]. In the next sub-sections, we will have a chance to discuss 
Tao’s UP when we consider papers by Candes, Romberg, and Tao [8][9][10]. 
 
In quantum mechanics, Heigenberg’s uncertainty principle states that the momentum pΔ  
and the position xΔ  of a particle, say of an electron, cannot be simultaneously determined 
precisely. A little more specifically, it is the multiplicative uncertainty relation given by 

p x hΔ Δ ≥  where h is the Planck’s constant. If one aims to measure the position precisely, for 
example, the momentum cannot be determined precisely, and vice versa. In Signal Processing, 
there is a similar uncertainty relation between time and frequency resolution of a signal.  
 
A. Representation via a Combined Dictionary  
In the sparse representation theory by Donoho et al., it is of interest to determine if a signal 
can be sparsely represented in an arbitrary pair of two different orthonormal bases A and B, 
simultaneously. A signal is uniquely representable by each basis. That is, each basis spans the 
vector space to which the signal belongs, i.e., Mx ∈ . An M dimensional column vector x  
is uniquely represented by an M dimensional basis A, as well as by B. In practice, we can find 
that one representation is more effective than the other. Effective here is to mean that the 
virtue is in the smallness of the sparsity: the sparser the representation is, the more it is 
effective. On the one hand, for example, using a wavelet basis would give a better time-
localization result and thus it would be more suitable when the signals of interest are impulse-
like ones. On the other hand, for rhythmic signals with high frequency contents, use of the 
Fourier basis would be more effective. Since one can encounter any type of signal in practice, 
it is interesting to see if there is any benefit to seek sparse signal representation in a combined 
dictionary, using two or more bases simultaneously. The combined dictionary can be 
constructed easily: concatenate the bases, matrix by matrix. For example, a dictionary matrix 
can be given by [ ; ]D A B= , a [ ]2M M× matrix. Thus, the problem becomes:  



 

43 
 

43 1: Uncertainty Principle and the L1 Uniqueness Proof 

 [ ]
( 1)  Find the most sparse representation ,  

         given a signal ,  using the dictionary ;  .

P s

x Ds D A B= =
 (15) 

The L1 minimization can again be used as the tool to draw the sparsest solution from the 
under-determined system of equations, i.e., x Ds= . One can expect that while one 
representation may give a poorer result, the other representation might give the more 
effective solution.  
 
This study would be very interesting for the cases where the signal of interest is complex 
exhibiting multiple distinctive features each of which is identifiable in different bases such as 
time, frequency, and space. For example, EEG signals exhibit distinctive features in time, 
frequency, and space, and the most suitable basis for each is known.  
 
Going back to our discussion of effective solution, the key questions we would like to ask 
then include: 
 
 (Q1) Would the combined representation provide a result more effective than what 

can be expected of a single best representation? What is the benefit of the dual 

representation of the same signal in the combined framework?  

 (D1) Obviously, parsimonious representation result can be obtained as we have 

discussed above with the example of rhythmic and impulse like signals. Say, A  is a 

basis effective for impulse like signals and B  for rhythmic signals. Suppose 1x  is 

a rhythmical signal. Then, its representations with respect to A and B are 1 1x As=  

and 1 2x Bs=  respectively, and 2s  shall be more parsimonious solution than 1s . 

What about when we choose to use the combined representation, i.e.,

[ ]( )1

21 ; s
sx A B D s= = ?  If we have an algorithm that seeks parsimonious 

representation, that algorithm will enforce the 1s  part to be zero and utilize the 2s  

part for parsimonious solution. Thus, the solution of such an algorithm would take a 

form of ( )
2

0
s . Thus, we shall expect a nice result, i.e., 2 10 0 0

s s s≈  . If this is 

true, clearly there are benefits of using the combined representation: (i) the combined 

representation gives us the parsimonious solution, at the same level that we perfectly 

knew that the signal is rhythmical and used the right basis B; (ii) the combined 

approach gives the benefit that a single framework can be used to deal with different 

classes of signals.  

 (Q2) Would the idea of concatenating not only two but more bases in the dictionary 

produce more effective representation, overall?  
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 (D2) The matrix D will become fatter and fatter as we include more bases; the 

system of equations becomes more and more underdetermined. With more bases 

covered, the dictionary may be able to deal with more diverse classes of signals. But 

on the negative side, this may impose a burden on the uniqueness of the L1 solution. 

Given the number of bases in the dictionary, the level of sparsity that can be dealt 

with by the system equation (15) must be limited. It makes perfect sense to say that 

the uniqueness of the representation via the combined system should depend 

completely on the choice of both the two bases as well as the sparsity of the signal. 

When the two bases are selected in such a way that they are uncorrelated with each 

other, the system equation  (15)  can produce a one-to-one correspondent map 

between s and x as long as the sparsity level of s is small enough. If we let the 

sparsity level grow, there will be a certain point beyond which the unique 

representation becomes impossible.  Thus, it would make perfect sense to avoid 

inclusion of bases that are correlated with each other. When there is a certain amount 

of correlation unavoidable, one may choose to remove them as much as possible, via 

one of the dimensionality reduction techniques such as the principal component 

analysis (PCA) and common spatial pattern (CSP) analysis, and put them into the 

dictionary.  

 
We believe that the answers to these questions are all positive, while further research shall be 
followed to prove them. A combined representation framework could serve as a universal 
approach to represent a diverse group of signals each with distinct characteristics. Then, we 
ask the following more specific question.  
 
 (Q3) Under what condition(s), would the L1 solution, or the L0 solution of (15), be 

unique?  

 (D3) The level of under-determinedness, the number of bases in the dictionary and 

the level of cross correlation between them, must have bearings on the level of 

spasity which (P1) in (15)  can obtain. Namely, the level of concentration (P1) can 

achieve depends up on the dictionary itself, in particular the cross-correlation level.  

 
For this very interesting problem, Donoho and Huo give the following results.  
 
B. The Uncertainty Principle  

Let the time domain signal x, ( ) 1

0

M

t t
x

−

=
, has the sparsity tK  under transformation 1x I s= , 

where I is the identity, and its Fourier transform x , ( ) 1

0

M

w w
x

−

=
 , has the sparsity wK  under 



 

45 
 

45 1: Uncertainty Principle and the L1 Uniqueness Proof 

x F x= . Then, the two sparsity parameters should satisfy 

 2
1

t wK K M
μ

≥ ≥  (16) 

where μ  is the maximum correlation of the two bases A and B, they are I and F in this 
particular example, in the dictionary,  

 { }
,

: max ,i j
i j

a bμ =  (17) 

and using the fact that 1
M

μ ≥  (See HW#2 for proving this) and that the arithmetic mean is 

larger than or equal to the geometric mean, it is also given by,  

 22t wK K M μ+ ≥ ≥ . (18) 

By this theorem, we can see that any signal of interest cannot be sparsely represented in both 
domains simultaneously. If the sparsity is in one domain, say tK , is given and fixed, then, 

the sparsity level obtainable in the other domain shall be limited, i.e., 2
w tK Kμ≥ − . We will 

sketch the proof here while leaving the exact proof as a problem in Homework set #2.  
 
C. The Theorem on the Uniqueness of the L0 Optimization 
In this section, we will show that the UP can be utilized to prove that the L0 solution is 
unique if 1s μ< . If the solution is not unique given 1s μ< , then the UP will be violated. In 

other words, the condition 1s μ<
 
is a sufficient condition such that the L0 solution of (15)  

is unique.  
 
The line of thoughts goes as follows: 

① If 1s μ<  and x Ds=  (15), then the L0 solution is unique. We aim to prove 

this statement. We will use the proof-by-contradiction routine (Hint: p and ~q 

leads to a contradiction, thus if p, then q.).  

② Let 1: ss K μ= <  and x Ds= ; suppose there are two distinct non-zero sK -

sparse  solutions 2
1 2, Ms s ∈ , i.e., 1 2,x Ds x Ds= =  respectively.  

③ We have 1 2

:

( ) 0
d

D s s
=

− = . Let 2
1 2: ( ) Md s s= − ∈ .  

④ On the sparsity of d , we can say, 

 
0

2 sd K≤ . (19) 
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⑤ Since 1
sK μ< , (19) leads to  

 2
0

2d μ< + . (20) 

⑥ But one should note that (20) is a contradiction since it violates the UP. Let us 

see it below. 

⑦ Let us consider the L0 norm of d . Note that we can divide d  into the top part 

with M elements, and the bottom part with the rest M elements. Let us denote 

them as topd and bottomd  respectively. That is, 0 topAd=  and 0 bottomB d= . Then, 

we can write  

 
0 00top bottomd d d= +  (21) 

⑧ From the UP, we must have   

 2
0 00top bottomd d d μ= + ≥ . (22) 

⑨ The statement is now proved.  

 

D. Uniqueness of the L1 Optimization 
We now aim to find the sufficient condition for L1 uniqueness. We note that this is the central 
result and perhaps the most intriguing part in the Compressed Sensing and the sparse 
representation theory. The best resource for understanding this includes Donoho and Huo [13] 
and Elad and Bruckstein [14]. Note that the latter is an extension of the former. The latter has 
obtained a sufficient condition tighter than that of Donoho and Huo by running an 
optimization routine.  
 
In this lecture note, we will generally follow their approaches but attempt to show along the 
way that these previous results can be further improved, at any place possible. The final result 
is thus a tighter sufficient condition, which is novel.  
 
The L0 optimization is given by 

 
0

2 1
0

00
0

: arg min      s.t.   =
M

l j
i

s s s x D s D s
−

=

= = =  (23) 

whereas the L1 optimization is given by 
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1

2 1

01
0

:=arg min      s.t.   =
M

l j
i

s s s x D s D s
−

=

= =  (24) 

 We first assume the sufficient condition, 1
0 0

s μ≤ ; then the L0 solution 
0l

s is unique 

and it should be the case
0 0ls s= , the true solution.  We then aim to find a sufficient 

condition for the L1 uniqueness. In other words, find the sufficient condition under which the 
L1 solution is unique, and thus

1 0l ls s= ?  

 Namely, we would like to show that 
01 1ls s≥  for any 2Ms ∈  satisfying 

x D s=  if this sufficient condition is met.  
 
Here are three possible lines of thoughts: 

① The direct proof:  Let us have 1
0 0

s μ< . Show if 2Ms ∈ and x D s= , 

implies 
01 1ls s≥  if the sufficient condition is met. That is, follow along the 

line of showing “
01 1ls s≥ for any feasible solution

 
2Ms ∈ and x D s= ,”  

and attempt to draw the condition which makes the statement inside “  ” to be 

true.   

② The contra positive proof (if p, then q = if ~q, then ~p) :  Let us have 1
0 0

s μ< . 

Find the sufficient condition so that 
01 1ls s  implies x D s≠ .  

③ The proof-by-contraction way: Let us have 1
0 0

s μ< . Find a sufficient condition 

under which if 2Ms ∈ is a feasible solution, i.e., x D s= , but its L1 norm is not 

greater than nor equal to the L1 norm of the L0 solution, i.e., 
01 1ls s , then it 

leads to a contradiction.  

 

Let us follow the first line here: 

① Let 1
0 0

s K μ= ≤ . Show that if 2Ms ∈ and ( )[ ; ] A

B

s
sx D s A B= = , implies 

01 1ls s≥ . Recall { }
,

: max ,i j
i j

a bμ =  where ( ) 1

0

M

i i
a

−

=
and ( ) 1

0

M

i i
b

−

=
are the 

columns of the orthonormal matrices A and B respectively.  

② Since s is a feasible solution and 0s  is the true K-sparse solution, they both 

satisfy 
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 0x D s D s= =  (25) 

③ Then, we have ( )0 0D s s− = , which leads to [ ; ] 0A B d =  where we let 

0:d s s= − .  

④ Similar to what we have done in the unique L0 optimization, we can divide d  

into the top part with the first M elements, and the bottom part with the rest M 

elements. Let us denote them as Ad and Bd  respectively. That is, ( ): A

B

d
dd =  

Then, from (25) we have  

 0 A BAd B d= +  (26) 

⑤ Thus, any feasible solution can be written as 0s s d= + . To show 01 1
s s≥ , 

we need to show  

 
2 1

0, 0,
0

0
M

i i i
i i

s d s
−

= ∈

+ − ≥ 


 (27) 

⑥ Decomposing the first part into two mutually exclusive index sets, the support 

set   and the non support set c , i.e., {0,1,2, , 2 1}c M∪ = −   , we have  

 ( )0, 0, 0
c

i i i i
ii

d s d s
∈∈

+ + − ≥ 


 (28) 

⑦ Let us use a lower bound such that  

 0, 0,i i i is d s d+ − ≥ −  (29) 

⑧ Use (29) in L.H.S. of (28) and have the result greater than or equal to zero, i.e.,  

 0
c

i i
ii

d d
∈∈

− ≥ 


 (30) 

⑨ Now, add  2 i
i

d
∈



on both sides to get
2 1

0

2
M

i i
i i

d d
−

= ∈

≥ 


. Namely,  
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 2 1

0

1

2

i
i
M

j
j

d

d

∈
−

=

≤



  (31) 

⑩ From the discussion so far, we note that if (31) holds for any null vector

{ }2( ) : 0 for any Md D d D d d∈ = = ∈  , it implies that the L1 norm of any 

feasible solution is larger than that of the L0 solution, 
01 1ls s≥ (Recall that 

that was our objective in this section). 

⑪ Now let us consider (31) a little more carefully. We first write it in the following 

form: 

 
1

2
i

i jj

d

d∈

≤


 (32) 

⑫ Consider each ratio first, i

jj

d

d
, and aim to express the denominator as a 

multiple of the numerators id , i.e., j ij
d d K≥  .  

⑬ Then, we can write  

 i i

i i ijj

d d K

d K Kd∈ ∈

≤ = 
 

   (33) 

⑭ And then, we can let it be smaller than or equal to 1/2 by making sure that

1
2K K≤  . To do that, let us find out how large K  can get. 

⑮ Let us focus on a single index i ∈ . Without loss of generality, Let us assume it 

belongs to the top index set, i.e., [0, 1]i M∈ − . From (26), we note 

A BAd Bd= − . Then, we have, T
A Bd A B d= −  (Hint: they are orthogonal 

matrices). Since id  is the i-th element of Ad , we have  
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( )
( )

row 

1

T
i Bi

B

B

d A B d

d

d

μ μ μ

μ

= −

≤

=

  (34) 

Thus, we get 

 
1

i
B

d
d

μ
≥ . (35) 

⑯ Let us focus In addition, we have a trivial bound  

 
1A id d≥ . (36) 

⑰ Adding the two inequalities (35) and (36) we have  

 
1 1

i
A B i

d
d d d

μ
+ ≥ +  (37) 

⑱ Thus, we note,
1

1
1id d

μ
 ≥ + 
 

. Using it to replace the L1 norm jj
d  in 

(33), we have  

 
1 1

1 1

i i

i ijj
i

d d K

d d
μ μ

∈ ∈

≤ =
   + +   
   

 
 

. (38) 

⑲ At this point, we take 
1

1K
μ

 = + 
 

 , and let 
1

2

K

K
≤ , which leads to Donoho’s 

result: 

 
1 1

1
2

K
μ

 ≤ + 
 

. (39) 

The result (39) implies that if the sufficient condition, 
1 1

1
2

K
μ

 ≤ + 
 

, is met, then the L1 

solution is the L0 solution, and thus the exact solution.  
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The development so far implies that if 1K μ≤ , the L0 solution is unique, and if ( )1 1
2 1K μ≤ +

( 1
μ< ), then the L1 solution is the unique L0 solution. We note that 

 ( )1 1 1
2 1 μ μ+ < , (40) 

and thus this may indicate that there is a price we have to pay using L1 optimization. 
However, since it is not a necessary condition, there is a room to explore further.  
 
 Elad and Bruckstein have attempted to narrow down this gap, via solving an 
optimization problem, and obtained a better bound 

 ( ) 0.91421 1 1
2 1 μ μ μ+ < < . (41) 

That optimization problem is recasting the problem in the following manner: 

 
2 1

0

1
minimize  

2
subject to [ ; ] 0

M

i ij
d d

A B d

−

= ∈
−

=

    (42) 

To understand this approach, let us recapitulate the Donoho’s approach which was to find the 

sufficient condition on the sparsity 
1 1

1
2

K
μ

 ≤ + 
 

 such that if is met, any null space vector d, 

i.e., [ ; ] 0A B d =  (25), satisfies the inequality 2 1

0

1

2
i

M
ij

d

d

∈
−

=

 ≤


 . We can write the inequality in the 

following form, i.e., 
2 1

0

1
0

2

M

i ij
d d

−

= ∈
− ≥  

.  This means, we note, that as long as the 

L.H.S. remains positive, the inequality 2 1

0

1

2
i

M
ij

d

d

∈
−

=

 ≤


  is satisfied. They aimed at minimizing 

the L.H.S. while not letting it go into the negative domain. For this, they included a couple of 
nice ideas added to (42).  
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2. The Uniform Uncertainty Principle 
Candes and Tao have introduced the notion of uniform uncertainty principle (UUP) in [8]. It 
aims to define an [ ]M N×  sensing matrix which obeys a “restricted isometry property 

(RIP).”  
 
(Restricted Isometry Property) Candes and Tao [9] define that the K-restricted isometry 
constant Kδ  of the [ ]M N× sensing matrix F  is the smallest quantity such that  

 
2

2
2

2

1 1K K

Fv

v
δ δ− ≤ ≤ +  (43) 

for any K-sparse vector v sharing the same K nonzero entries as the K-sparse signal x. The 
interpretation of this property should be clear: Any K or smaller column collection of the 
sensing matrix F should behave like a unitary transformation, i.e., a length preserving 
transformation. This would make sense when the constant is small and certainly it should not 
be equal to 1, i.e., 1Kδ < .  

 
Remarks on Further Research 
We note from the Coding Theory that designing a code, or equivalently a parity-check matrix 
of a code, which guarantees a certain minimum distance, which is referred to as the spark in 
CS theory, is generally considered as a challenging problem, especially for a large N. For a 
short block N, the problem is less difficult to handle and there are some codes that guarantee 
a certain minimum distance (a spark), such as the BCH and the Reed Solomon codes. In the 
approach of Candes and Tao, this difficulty is dealt with by defining a class of matrices which 
satisfy (43). Thus, the RIP condition (43), or the UUP, provides an asylum for the theory of 
Compressive Sensing. For those matrices satisfying the RIP, many good things are guaranteed 
to happen such as the L1 recovery is perfect. But it is an NP-complete problem to check if a 
matrix satisfies the RIP condition.  
 
In both the Coding Theory and the Compressed Sensing, the method of random construction 
has been used. If we obtain a sensing matrix randomly, with high probability the matrix 
satisfies the RIP. For a coding problem, if we obtain a parity check matrix randomly, the code 
comes with a certain minimum distance with a high probability. Further discussion of this 
aspect is a good research direction to which we have some preliminary results. See Chapter 
VI.2 for our discussion on this direction.  
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A. Sufficient and Necessary Conditions for the Unique L0 Solution 
 
Now we would like to ask for the condition that the L0 solution be unique under the setting 
that y Fx=  where F  is an [ ]M N×  sensing matrix and x  is a K-sparse signal. Let us fix 

K and find the minimum M  for good recovery. Let us consider the L0 recovery first 
followed by the L1 recovery.  
 
 We first note that M should be at least larger than or equal to K, i.e., M K≥ . Why? 

 
 
 
 
 Second, we note that for the unique L0 recovery we need 2M K≥ . Let us prove this 

now.  

 

There are two approaches we can think of.  

a) For a general sensing matrix F, we may use the spark S of F.  

Lemma 1. 2S K>  is the sufficient and necessary condition for unique recovery of a 

K sparse signal under L0 minimization. In addition, if 2S K> , 2M K≥ ; the 

converse does not hold.   

Proof: Let the spark S of the matrix be strictly greater than 2K, i.e., 2S K> . 

Suppose two distinct K-sparse solutions, say 1x  and 2x . Then, 1y Ax=  and 

2y Ax= ; thus, 1 2( ) 0A x x− = . This implies 1 2:dx x x= −  is in the null space of A. 

Note that from the denitition dx  is a sparse vector whose sparsity is 2K at maximum. 

Thus, there exists a set of 2K columns of A that are linearly dependent. This 

contradicts 2S K> .  

 

The Singleton bound dictates that 1S M≤ + . Thus, 2M K≥ is a necessary 

condition for unique L0 solution.  

 

Conversely, if 2S K≤ , then there exists two distinct K-sparse solutions, say 1x  and 

2x , to a same observation. Let us assume the worst case 2S K= . Since the spark of 

A is 2K, there exists a 2K-sparse non-zero vector dx , i.e., 0dAx = . We can express 
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1 2:dx x x= −  as the difference of two distinct K-sparse signals. Then, we can write 

1 2( ) 0A x x− =  from which we obtain 1y Ax=  and 2y Ax= , two distinct solutions 

to the same observation y.  

 

In addition, 2M K≥  does not necessarily enforce 2S K> . There exists an 

2M K×  matrix whose spark is smaller than 2K.  

 

b) Now, let’s go with a direction little bit different from the one given above (by 

Candes, Romberg and Tao [10])  

Lemma 2. Let an M N× sensing matrix F be selected out from the N N×  Fourier 

transform matrix where N is a prime number. M rows are selected randomly to 

construct the M N×  sensing matrix. In this setting, 2M K≥  is the sufficient and 

necessary condition for unique recovery of a K sparse signal under L0 minimization. 

If 2M K≥ , then 2S K> .  

 

The proof goes as follows: Let 2M K≥ . Suppose there are two distinct K sparse 

solutions 1y Ax=  and 2y Ax=  with support 1  and 2  respectively. Then,

1 2( ) 0A x x− = . The difference of the two 1 2:dx x x= −  is a signal in the null space of 

A whose support is 1 2∩   and sparsity 1 2∩   can be as large as up to 2K. 

Suppose the worst case that it is 2K. Note that dAx  is a linear transformation via the 

2K columns of A into the space of dimention 2M K≥  from the space of dimension 

2K . This transformation thus is injective; thus, for a non-zero input vector 0dx ≠ , 

the output vector cannot be zero, i.e. 0dAx ≠ , which contracts the supposition.  

Conversely, if 2M K< , we can show that, there exist two distinct K-sparse 

solutions, 1x  and 2x  to y Ax= .  Namely, the transformation 2M K×
1 2

A ∩ 

cannot but be surjective. Thus, there exists a non-zero dx  such that 0dAx = . 

 

This problem is a special case of a), our L1 uniqueness done with the spark. The 

sensing matrix is selected as an M < N number of randomly selected rows of the
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N N×  Fourier transform matrix with prime N. Because of the structure given by the 

Fourier transformation and prime N, the spark S of such an M N×  matrix is always 

at its maximum 1M + , 1S M= + , achieving the Singleton bound. That is, if 

2M K≥ , then 2S K> . Thus, a short proof for Lemma 2 is to use both Lemma 1 

and this result.  

 

(Fourier matrix with non prime N) Candes, Romberg and Tao [10] includes a 

discussion that for a non-prime N, the result does not hold any longer. This is because 

there exists nontrivial subgroups of N  with addition modulo N. If the set of row 

indices and the support set are not the subgroups of N , the results still hold. This 

led to probabilistic argument when the support set and the measurement set are 

selected randomly. In such a setting, they argue that, with probability close to 1, the 

results hold.  

 
 

 
 Now, let us have it expressed with the RIP constant. 

 

Lemma 3. If a sensing matrix fulfills the RIP with its constant satisfying 2 1Kδ < , then L0 

minimization solution 1x  is the unique and exact solution to y Ax= , i.e., 1x x= , 

where x  is  K-sparse.  

 

The proof is very similar to what is given above with the proof with spark, and thus  

omitted.  
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B. Condition for the Unique L1 Solution 
 
Here we would like to find the condition for the L1 solution to be identical to the L0 solution. 
We have learned that we need at least 2M K≥  for the unique L0 solution. Expressing this 
as a factor of K, i.e., ( )M O Kλ= , we would expect that 2λ >  for the L1 solution to be 

unique. We also note that for the unique L0 solution, we need the RIP satisfied for 2Kδ . For 

the unique L1 solution, we would expect that, the condition should get stricter, i.e., the RIP 
for 3Kδ . 

 
Candes and Tao [9] define another constant , 'K Kθ , the restricted orthogonality constant, to be 

the smallest quantity such that  

 , '

2 2

, '

'K K

Fv Fv

v v
θ ≥  (44) 

for all K-sparse v and K’-sparse vector v’ where the two supports sets are disjoint,
'∩ = ∅  .  

 
Theorem 1. (Theorem 1.4 of Candes and Tao [9]) Let 1K ≥ . Let the sensing matrix F be a 
matrix such that , ,2 1K K K K Kδ θ θ+ + < . Then the L1 solution is the L0 solution.  

 
Let us consider the proof of this theorem.  
 First, note that the L0 solution is unique. Why? 
 Let us call the L0 solution x.  
 Let us call the L1 solution d.  
 By definition, the L1 solution is the minimum L1 vector s.t. y = Fd ; thus  

 
1 1

d x≤ . (45) 

 To show d = x, therefore, it suffices to show
1 1

d x≥ .  

 We call the columns of F as jf , i.e., 1 2( )NF f f f=  . 

 This problem will be solved by duality. 
 (Lagrange duality) Consider an optimization problem where we aim to minimize 

( )J d  subject to Fd z= , and assume that J is differentiable. Then, from the 
Lagrange multiplier optimality condition, i.e.,  

 ( ) 0TJ d F v∇ − =  (46) 

we can find the Lagrange multiplier v. For d to be the solution, we set up the Lagrange 
multiplier v to satisfy ( ) TJ d F v∇ = .  

 In the L1 minimization case, the function J is given by ( ) jj
J x x= . The usual 

gradient vector in this case is not well defined since the function of absolute value is 
not differentiable at zero. But we note that the function J  is at least a convex 
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function. In such a case, the notion of the subgradient can be used, in place of the 
usual gradient. See Chapter VII.1 for reference on the subgradient and the 
subdifferential. Namely, a subgradient of a convex function J is equal to the usual 
gradient at a point where the function is differentiable; but at a point where the 
function is not differentiable, it is any vector whose affine extension, the extended 
line along the vector, can be used as a linear under-estimate of the function at any 
point along the line. This is best explained with pictures. See Figure 13 and Figure 14. 
As can be seen in those pictures, there may exist many such subgradients at any non 
differentiable point of a function. A collection of all possible subgradients at a point x 
is called the subdifferential of the function, denoted as ( )J x∂ . Namely, one can 
understand the subgradident as an extended version of the gradient. A subgradient 

( )J x∇  of a convex function J is thus the usual gradient vector at each point x; at 
each point x where the function if not differentiable, it is a vector in the 
subdifferential of the function. It works as long as the function J is convex.  

 (Subgradient ( ) ( )J x J x∇ ∈∂ ) The subgradient of ( ) jj
J x x=  is now well 

understood and thus can be used. First, note that the function J  is not differentiable 
at the origin. But, secondly, we note that the function J is convex since it is sum of 
convex functions, the absolute value functions.  

i. The absolute value function is convex, obviously. The absolute value function 
has its subdifferential as shown in Figure 14. Let [ ): 0,f → ∞  be the function 

taking the absolute value of its argument. The function is -1 whenever its 
argument is negative; +1 whenever positive; it is the interval [ ]1,1− when its 

argument is 0. 
ii. Thus, we can use a subgradient of J at x for (46), i.e., ( )( ) sgn( )jj

J x x∇ =  for

 j ∈  and ( ) [ ]( ) 1,1
j

J x∇ ∈ −  for  j ∉ . From (46), we have 

 ( ) sgn( )T
jj

F v x=  for  j ∈  (47) 

     and  

 ( ) 1T

j
F v ≤ , for  j ∉  (48) 

 Note that ( ) ,T
jj

F v v f= .  

 Now note that if we find the Lagrange multiplier vector v that satisfies the following 
two properties, we can show that the minimum L0 solution x is the minimum L1 
solution.  

i. , sgn( )j jv f x=
 
for all j ∈ , and 

ii. , 1jv f <  for all j ∉ , 

where sgn( )jx  is the sign of jx  and it is zero when jx  is zero.  

 That is, by making the supposition that the Lagrange multiplier vector v satisfying 
the two properties exists, we aim to show first that the L1 norm of the L1 
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minimization solution d, will satisfy 
1 1

d x≥ . This result can then be combined 

with the trivial convexity result such that 
1 1

d x≤  by the definition of L1 

minimization, to produce the desired result 
1 1

d x= . Thus, d = x.  

 

( )

( )

1

{1,2, , }

1

sgn( ) ( ) ,

( ) , 0 ,

,

,

j j j j
j j

j j j j j j
j j

j j j j j j
j j j

j j j j j
j j N j

j
j

j
j

d d x x d

x x d x d v f

x d x v f d v f

x v d f x f

x v y y

x

x

∈ ∉

∈ ∉

∈ ∈ ∉

∈ ∈ ∈

∈

∈

= − + +

≥ + − +

= + − + −

= + −

= + −

=

=

 

 

  

  





 

 

  

 






 (49) 

 Note that we have not used the condition in the theorem yet. Now, we need to show 
if we can construct such a vector v provided the sufficient condition of the theorem is 
satisfied. Namely, if the sensing matrix F is a matrix such that , ,2 1K K K K Kδ θ θ+ + < , 

then we should be able to find such a vector v satsifying the two properties and thus 
the L1 solution is the L0 solution, i.e., d = x.  

 

Candes and Tao have proved the theorem by proving the following two lemmas.  
 
Lemma 4. (Lemma 2.1 of [9], Dual Sparse Reconstruction Property, L2 version) Let 

, ' 1K K ≥ be such that 1Kδ < , and x be a K-sparse real vector supported on  . Then, there 

exists a vector v ∈ , the column space of F,  such that , j jH
v f x=  for all j ∈ . In 

addition, there is an “exceptional set” {1, 2,..., }N⊂ which is disjoint from , of size at 
most  

 'K≤  (50) 

and with the properties  

 , ',
(1 ) '

K K
j

K

v f x
K

θ
δ

≤
−

 for all j ∉ ∪   (51) 
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and  

 

1/22
,,

(1 )
K K

j
j K

v f x
θ

δ∈

 
≤   − 




. (52) 

Lemma 5. (Lemma 2.2 of [9] Dual Reconstruction Property, ell- ∞  version) Let 1K ≥  be 
such that ,2 1K K Kδ θ+ < , and x be a K-sparse real vector supported on  . Then, there exists 

a vector v ∈ , the column space of F,  such that 

 , j jv f x=  for all j ∈ . (53) 

 In addition, v obeys  

 ,

,2

,
(1 )

K K
j

K K K

v f
θ

δ θ
≤

− −
 for all j ∉  (54) 

 We note that the result of Lemma 3 is what we aimed to find. Namely, one can find 
such a vector v ∈  with the two properties.  

 The inequality in (54) is in fact ,

,2

,
(1 )

K K
j

K K K

v f x
K

θ
δ θ

≤
− −

 used by Candes 

and Tao to give the property ii. Note that they added a normalization constraint such 
that x K=  at the start of the proof of Lemma 3 (See the first line in the Proof of 

Lemma 2.2 on page 4214), and thus it becomes (54).  

 In order to enforce , 1jv f ≤ , we need to have ,

,2

1
(1 )

K K

K K K

θ
δ θ

≤
− −

. Thus, the 

sufficient condition has been derived, , ,21K K K K Kθ δ θ≤ − − .  

 
The proofs of Candes and Tao on the two lemmas are rather tedious. Let us see if we can 
obtain a result in our own way and compare our result with that of Candes and Tao. 
 
Again, here we aim to show that a vector v ∈ , the column space of F, can be found such 
that 

 , sgn( )j jv f x=  for all j ∈ . (55) 

 And, v must obey  

 ,

,2

, 1
(1 )

K K
j

K K K

v f
θ

δ θ
≤ ≤

− −
 for all j ∉  (56) 

provided that , ,21K K K K Kθ δ θ≤ − − . In addition, do not forget to add y F x=  and 
0

x K= .  
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 Note that v is an 1M ×  vector, the same dimension as the columns { }jf  of F.  

 From y F x= , we have   

 
y F x

F x

=
=  

 (57) 

 Now, let us decompose y into two 1M ×  parts.  

 1 2y v v= +  (58) 

 We can choose the first one 1v ∈  by  

 ( ) 1

1 sgn( )Tv F F F x
−

=      (59) 

Note that , ,2 1K K K K Kδ θ θ+ + <
 
implies that 1Kδ < . Thus, the inverse exists. 

Observe that 1v ∈  is a general 1M ×  vector, not a sparse vector.  

 Then, from (58), we have  

 2 1v y v= −  (60) 

 Then, it is trivial to show that such a vector 1v  satisfies the first property (55).  

 From (59), we have sgn( )TF v x=   .  

 Now, we only need to show that it satisfies the second property (56) as well, 

provided the sufficient condition ,2 , 1K K K K Kδ θ θ+ + ≤ , or perhaps a less tight 

condition we can find, holds.  

 Let us now find a sufficient condition such that 1, 1jv f ≤  for all j ∉ .  

 ( ) 1

1 th row
, sgn( )c

T T
j j

v f F F F F x
−

 =     
 (61) 

 Note that from the definition of restricted isometry constant Kδ , we have for 

0v∀ ≠ , by letting 
2

1v = . 

 1 1T T
K Kv F F vδ δ− ≤ ≤ +     (62) 
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Let the minimum and the maximum eigenvalue of the symmetric matrix TF F   

be ( )min
TF Fλ    and ( )max

TF Fλ    respectively.  In fact, the norm of the 

symmetric matrix TF F   is the square root of the maximum eigenvalue of the 

symmetric matrix. See (178).  
 

 Then, we have other inequality 

 ( ) ( )min max2
:T T TF F F F F Fλ λ≤ =       (63)  

 Then, we can say that ( )min1 T
K F Fδ λ− ≤    and ( )max 1T

KF Fλ δ≤ +   from 

the definition of RI constant.  

 See also the discussion that these inequalities stay hold in the limit of large M 

and for a fixed support set of size K. Candes and Tao on page 4209 of [9] 

discuss this issue. In addition, ( )min
TF Fλ    converges to ( )2

1 K
M− , and 

( )max
TF Fλ    does to ( )2

1 K
M+ . Thus, substituting the convergence results to 

the inequalities, we have 2 K K
K M Mδ ≈ + . But the following example shows that 

something may have gone wrong there. Let 1/ 2K
M = , then 

1 1 1
2 2 22 2 1.4 0.5 1.9Kδ ≈ + = + ≈ + = , a number greater than 1!!! Thus, a 

caution must be used for that result!!!    

 Now using (63) or the inequality ( )min1 T
K F Fδ λ− ≤    

 ( ) 1 1

1
T

K

F F
δ

−
≤

−   

 This means  
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( )
( )

1

1 th row

1

th row

th row

, sgn( )

sgn( )

1
sgn( )

1

1
( )sgn( )

1

1
1

c

c

c

T T
j j

T T

j

T

j
K

K

K

v f F F F F x

F F x F F

F F x

x

K

δ

μ μ μ
δ

μ
δ

−

−

 =  

 ≤  

 ≤  −

≤
−

= ≤
−

   

   

 



 (64) 

 Thus, the sufficient condition is that 
1 KK

δ
μ

−≤  or 
1 K

K

δμ −≤ . We have defined  

 max ,i j
i j

f fμ
≠

=  (65) 

 It would be interesting to compare this with the result of Candes and Tao. 

Namely, which one is tighter, 1K Kδ μ+ ≤  vs. , ,2 1K K K K Kδ θ θ+ + < ?  

 It would be also interesting to compare this result with 
1 1

1
2

K
μ

 ≤ + 
 

 (39) or 

to that of Elad and Bruckstein 0.9142K μ≤ .  
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Summarizing the results so far, we have Theorem 2.  
 

Theorem 2. (Sufficient condition for the L1 uniqueness) Let 1K ≥ . Let max ,i j
i j

f fμ
≠

= . Let 

F be a sensing matrix such that 1K Kδ μ+ < . Then, the L1 solution is the L0 solution. 

 The sufficient condition in Theorem 2 can be made by a better bound at (63). That is, 

we use  

 ( ) ( )
1

min

1T

T
F F

F Fλ
−

≤ 
 

. (66) 

 Then, the sufficient condition becomes ( )min
TF F

K
λ

μ≤   . 
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3. Uniqueness Proofs with Mutual Coherence μ   
 
Candes and Tao’s L0 and L1 uniqueness sufficient conditions are given in terms of the RI 
constants such as 2Kδ  and ,K Kθ . Uniquess proofs based on these parameters are not 

convenient in the aspect that they are difficult to find and check for a given matrix. However, 
those based on mutual coherence μ  is much easier to compute and check for a given matrix. 
It is of interest to find the sufficient conditions for solution uniqueness in terms of the mutual 
coherence μ  as well as to the restricted isometry constants. We aim to end this section with 
an attempt to obtain a new set of sufficient conditions for the L0 and L1 unique solutions 
with respect to the mutual coherence μ  so that the result can be applied to any M N×  
compressed sensing matrices.  
 
A. Comparison of , ,2K K K Kθ θ+  and Kμ  

 
It would be interesting to compare the two quantities, , ,2K K K Kθ θ+  and K μ . First, this 

comparative study shall give us the insight as to which one is better as the sufficient condition 
for the L0 uniqueness. Second, the meaning of these parameters can be learned through this 
process.  
 
First, let us show that , ' 'K K K Kθ δ +≤ .  

 
Note that 'K Kδ +  is the RIP constant for 'K K+ -sparse signals. For example, every 'K K+  

columns should be linearly independent. In addition, there are two mutually exclusive support 
sets   and ′ . Without loss of generality, let us assume unit energy K-sparse and 'K -
sparse signals v and v’, i.e., ' 1v v= = . Then, the RIP can be given by the following 

inequalities: 

 
2

2
' '2

2

'
1 1

'
K K K K

Fv Fv

v v
δ δ+ +

+
− ≤ ≤ +

+
 (67) 

In other form, it can also be given by the following inequalities 

 
2

2
' '

'
1 1

2K K K K

Fv Fv
δ δ+ +

−
− ≤ ≤ +  

which can be written, after multiplied by -1, as 

 
2

2
' '

'
1 1

2K K K K

Fv Fv
δ δ+ +

−
− − ≤ − ≤ − +  (68) 

Adding (67) and (68), we have  
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2 2

2 2
' '

' '

4K K K K

Fv Fv Fv Fv
δ δ+ +

+ − −
− ≤ ≤  (69) 

The term at the center is , 'Fv Fv  and we have shown that ', ' K KFv Fv δ +≤ . 

 
Similar development gives  

 ( )' ' , 'max ,K K K K K Kδ δ δ θ+ ≤ +  (70) 

Thus, we have 

 ( ), ' ' ' , 'max ,K K K K K K K Kθ δ δ δ θ+≤ ≤ +  (71) 

Now let us compare , ,2K K K Kθ θ+  with Kμ . 

 
Note that we have defined the constant , 'K Kθ , the restricted orthogonality constant, to be the 

smallest quantity such that  

 , '

, '

'K K

Fv Fv

v v
θ ≥  (72) 

for all K-sparse v and K’-sparse vector 'v  where the two supports sets are disjoint,
'∩ = ∅  .  

 
Thus, it is the supremum of all possible values in the R.H.S. 
 
Note that the maximum correlation can be written as 

 
,

all 1-sparse signals , '

max ,

max , '

i j
i j

v v

f f

Fv Fv

μ =

=
 (73) 

Thus, we can say μ  is a special case of 1,1θ .  

 
Now, can we compare 1,1θ and 1,2θ . 
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( )
( )

( )

1 1 2 2

1 2

1 2

1,2 sup ,

sup

sup

sup

sup

2

i

T
i

T T
i i i i i i

i i

i i

f Fv

f Fv

v f f v f f

v v

v v

θ

μ μ

μ

μ

=

=

= +

= +

= +

=

 (74) 

Note that the first inequality is obvious by the definition of maximum correlation μ . The 

second inequality is due to the normalization, i.e., 
1 1

2 2 1i iv v+ = . That is, given a vector v  

with the constraint 
1 1

2 2 1i iv v+ = , ( )1 12 2 2
1 1

,  1

sup 2
i i

i i
v v v

v v
∈ + =

+ =


. 

 
How about 2,2θ ?  

 

( ) ( )
( )

( )
( )( )

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

1 1 3 3 1 1 4 4 2 2 3 3 2 2 4 4

1 3 1 4 2 3 2 4

1 2 3 4

2,2 sup , '

sup ,

sup

sup

sup

sup

2

i i i i i i i i

T

i i i i i i i i

T T T T
i i i i i i i i i i i i i i i i

i i i i i i i i

i i i i

Fv Fv

f v f v f v f v

f v f v f v f v

v f f v v f f v v f f v v f f v

v v v v v v v v

v v v v

θ

μ

μ

μ

=

= + +

= + +

= + + +

= + + +

= + +

=

 (75) 

Lemma 6. Let
2

1v = . Then, 
1 0

sup =   s.t. v K v K= .  In addition, 

, 1 1
'K K v v Kθ μ μ= =   and ,2 2 2K K K K Kθ μ μ= = .  

 
 
Use the result that , ' 'K K K Kθ δ +≤  and 1K Kδ μ+ <  . Then, we have 

2 2,
1K K Kθ μ+ <  which 

leads to 2 1K Kμ μ+ < . Finally we have 2 1
3K μ< . If 2 1

3K μ< , then the L1 minimization gives 

the unique sparsest solution. This statement, however, has a problem because we have used a 
lower bound, , ' 'K K K Kθ δ +≤ , to replace Kδ , rather than using an upper bound. Now we aim to 

replace the RIP constant Kδ  with the maximum absolute correlation μ . Holger Rauhut has 

obtained an upper bound.  
 
B. Connections to Other Results 
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Proposition (H. Rauhut) Let M NA ×∈  with unit norm columns, coherence μ , 1-

coherence function 
[ ] [ ]1

\{ }
( ) max max ,j l

l N N l
j

K

K a a Kμ μ
⊂ ⊂ ∈≤

= ≤
 

, and restricted isometry constant 

Kδ . Then,  

 2μ δ= , 

 
[ ]

*
1 1 1, 1
( ) max e

N K
K A Aμ

→⊂ ≤ +
= −  

 where 
1

: max
p

p p px
A Ax

→ =
=  is the operator norm 

of a matrix from Lp norm into Lp norm,   

 1( 1) ( 1)K K Kδ μ μ≤ − ≤ − .  

 
Substituting the third result of Rauhut, i.e., ( 1)K Kδ μ≤ − , into the result of Theorem 2, i.e., 

1K Kδ μ+ <  (64), we have the following bound, ( 1) 1K K K Kδ μ μ μ+ ≤ − + < , which leads 

to  

 
1 1

1
2

K
μ

 ≤ + 
 

.  (76) 

This is a new result obtained in this lecture note. We have obtained a new sufficient condition 
based on the maximum correlation for the unique L1 solution. Note that this sufficient 
condition is exactly what we have obtained with the dictionary made of two ortho nomal 

basis in the previous section, i.e., 
1 1

1
2

K
μ

 ≤ + 
 

 (39). This is a surprising result that the 

condition holds also for a general M N×  sensing matrices. 
 

Theorem 3. (Sufficient condition for the L1 uniqueness) Let max ,i j
i j

f fμ
≠

= . Let F be any 

M N×  sensing matrix with mutual coherence μ . Let the sparsity of the signal x satisfy

1 1
1

2
K

μ
 ≤ + 
 

.  Then, the L1 solution is the L0 solution. 

 
Remarks: 
 
 Is 1

μ  a sufficient condition for uniqueness on L0 solution for the general M N×  

cases as well? Donoho and Elad have obtained that the sufficient condition for L0 

uniqueness is also 
1 1

1
2

K
μ

 ≤ + 
 

. Obviously, this can be improved.  

 The result in Theorem 3 can be also compared to that of Elad and Bruckstein 

0.9142K μ≤  where two orthogonal basis were used. Thus, the rate is 1/2, i.e., N = 2M. 
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Now, a research question is to find out if Elad and Bruckstein’s results can be 

generalized as well to general M N×  cases. This should be an interesting research 

direction.  

 
A bad approach. One may think the following direction may work for improving the L0 
uniquess condition; but it turns out that it leads to a useless bound. We know that 20 1Kδ< <  

is a sufficient condition that the L0 solution is unique due to Candes and Tao. Now let us 
suppose we choose one from the following relations, i.e., , 2 (2 1)K K KK Kμ θ δ μ= ≤ ≤ − . Note 

that the lower bound, 2KKμ δ≤  and letting 1Kμ ≤ , should not be used since a number 

smaller than 2Kδ  does not enforce 2 1Kδ < . A number larger than 2Kδ that is also smaller 

than 1, can enforce 2 1Kδ < . The only relation that we can have is 2 (2 1)K Kδ μ≤ − . But this 

is Theorem 3.   
 
The other direction is to use a lower bound on the mutual coherence. The following lemma 
states it.  

Lemma 7. If ( ) 2

1

2 1 1

N
K

N μ
≤

− +
, then 

2

M
K ≤ .  

Proof. The mutual coherence is lower bounded by ( , )
( 1)

N M
M N

M N
μ −≥

−
. Rearranging this 

with respect to M , we obtain ( ) 21 1

N
M

N μ
≥

− +
. We have the lower bound ( ) 21 1

N

N μ− +
be larger than 2K . This will guarantee that 2M K≥ .  
Q.E.D. 
 
 
See Lemma 1 and Lemma 2 we have proved earlier in pg. 53 (L0 uniqueness conditions). We 
write them here more explicitly.  
 
Lemma 8. Let the spark of a given matrix A be greather than 2K. Then, 2K M≤ is necessary. 
But the converse does not hold in general.  
 
Proof. Let the spark S of a given matrix A be greather than 2K, 2S K> . From the Singleton 
bound, 1S M≤ + . Thus, 1 2M S K≥ − ≥ . The converse does not hold because the spark of 
an 2M K×  matrix can have any spark , i.e., {2,3, , 1}S M∈ + . 
Q.E.D.  
 
Remarks. Let the dimension of a given sensing matrix A be M N×  with 2M K≥ . Let 
y F x=  and x  be K-sparse. We wish to be in a position that the L0 minimization solution 
subject to y F x=  gives the unique and exact solution. The statement is true when the 
sensing matrix is made of Fourier transform matrix (with prime N) or of the Vendermonde 
frame. But it is not true in general. When the sensing matrix is constructed from i.i.d. 
Gaussian distribution, what is found in the literature is M Kλ≥ where ( )log( /O N Kλ = , 

then, a random sensing matrix satisfies the RIP condition, and thus, the L0 solution is unique 
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and exact. See our discussion in Chapter III.4. 
 
Theorem 4. (the L0 uniqueness theorem in terms of mutual coherence) Let an M N× matrix 

A have mutual coherence μ . Let y = Ax. Let λ  be the oversampling factor. If the 

sparsity of signal x satisfies ( ) 2

1

1 1

N
K

Nλ μ
≤

− +
, then L0 solution is unique and exact 

with probability close to 1.  
 
Discussion with M. Elad at SPARS’11: Elad mentioned that Candes once had aimed at 

improving and obtaining a result similar to that of Theorem 4 involving 2
1

μ
. We need 

to find this source.  
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4. Ensembles of Random Sensing Matrices 
Candes and Tao [8] studied three kinds of ensembles of random matrices, random Gaussian, 
random Bernoulli, and the Fourier transform matrices (rows selected at random from unitary 
Fourier transform matrix), to see when they satisfy the uniform uncertainty principle or the 
RIP. They have studied the eigenvalues of the Gram matrix, TF F , and related them to the 
probability with which the RIP with a certain value of 2Kδ  is satisfied. Their focus has been 

to draw a condition on the number of measurements needed to make the random sensing 
matrix to be stable so that it can used to find the K-sparse signal exactly under L1 recovery 
criteria with a large probability.  
 
A. The log(N) factor for random ensembles 
 
Namely, the main result states that if the number of measurements obeys  

 ( log )N
KO K  (77) 

then, the L1 minimization reconstructs the unique and exact solution with probability close to 
1. Similar results hold for the three kinds of random matrices. Since these results are given in 
a similar format, let us give the result on the Fourier case here.  
 
Theorem 1. (Candes [33]) Let y be M Fouier coefficients with its frequencies selected 
uniformly at random. Let x be K-sparse. Then, the 1M ×  Fourier coefficient vector can be 
written as y Fx=  where the M rows of F are taken from the rows of the N N×  Fourier 
transform matrix and the M row indices correspond to the M selected frequencies. N here 
needs not be prime. Let the number of measurements satisfy  

 logM cK N≥ . (78) 

Then, minimizing L1 norm reconstructs x with overwhelming probability. In details, if the 
constant c is of the form 22( 1)δ + , then, the probability of success exceeds 1 ( )O N δ−− . 
 
In [33], Candes summarized the up-till-then results on Gaussian measurements. The results 
was that if  

 ( )log /M cK N K≥  (79) 

then, the sensing matrix satisfies the RIP condition such that 2 3 1K Kδ δ+ <  or better, 

2 ,2 1K K Kδ θ+ <  with probability exceeding 1 ( )NO e γ−−  for some 0γ > , and thus 

minimizing L1 reconstructs the unique and exact solution x. For binary measurements, it was 
conjectured that the similar result would hold.  
 
 
 
B. The log(N) factor, is it really needed for a random sensing matrix? 
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It was an interest of Park and Lee in [34] to find out how the logarithmic dependence on the 
block length N came to exist in determining the number of measurements M when random 
Gaussian matrices are used. They noted that the signal recovery can be divided into two parts, 
the support set recovery part which involves complexity of order ( )N

K  and the other is the 

signal value recovery part given the support which involves the complexity of finding the K 
non-zero values via the least squres solution (5).  
 
We know that the second part is simple once the support set is given. Thus, in [34], they 
aimed to remove the impact of the second part by considering binary alphabet for non-zero 
values of the K  sparse signal, the simplest of all. They then moved on to investigate how 
many measurements M , for a given N , are needed for a Gaussian matrix to satisfy the 
Restricted Isometry Property (RIP) with high probability.  
 
To our surprise, the result is still the same. That is, the number of measurements sufficient to 
satisfy the RIP with high probability is still ( )log( / )M O K N K= . In one aspect, this result 

may imply that the size of the alphabet is not a determining factor to the number of 
measurements, but the support set recovery part is. In another aspect, the bound involved in 
the calculation of the sufficient condition, i.e. the union bound, is perhaps too loose to tell any 
thing precisely at all. To determine what to do next, it should be of interest to describe the 
derviation to the result, which is given as follows: 
 
 The aim again, is to obtain a sufficient condition on the number of measurements when 

the non-zero elements of the K-sparse signal are taken from the binary set {0,1}.  

 First, they obtained a result in which the energy of the measurement vector 2 2

2 2
y Ax=  is 

a chi-square random variable with M  degrees of freedom, with mean K  and variance 
22K M . It should be noted that it is not a too difficult task to bound a tail event 

probability of this well known random variable.  

 Second, they use the result in the first step to get an upper bound on the probability of a 

large deviation event { }2 2 2

2 2 2
x x xδ− ≥A , ( )0,1δ ∈ , for a specific binary K  sparse 

signal x. They use the Chernoff bound to tail bound the event. The result is 

( ) 222 1
MMe δ δ− + , an upper bound on the probability of the two tails (both ends). Namely, 

the large deviation event occurs with probability less than ( ) 222 1
MMe δ δ− + . An obvious 

check is to see if M increases, the probability gets smaller. 

 Third, we move on to require the matrix A , the collection of 1M ×  columns, to satisfy 

the restricted isometry property with the RIP constant Kδ  for all possible binary K  

sparse signals, and aim to upper bound the probability of violation. From the perspective 

of success, we should check if each and every set of K columns of matrix A is 
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independent. From the perspective of failure, we should check if any set of K columns 

violates the restricted isometry condition. We use the second approach and the union 

bound. 

 Then, the upper bound on the probability of violation is obtained simply by multiplying 

the size of the collection of K-sparse support sets ( )N

K
 to the result of the second step, 

i.e., ( ) ( )222 1
MM N

K
e δ δ− + . Exponential expression of this result gives the sufficient 

condition, i.e., ( )( )logM O K N K≥ ; thus, the bound is of the form ( )( )1 2 log
e

N
Kc M c K

fP
− −≤  

for some constants 1c  and 2c . 

 In the following section, we provide a little more detail in this process.  

 

Remark 1. We make note of the fact that the ( )log N  factor maybe is the result of union 

bounding. Union bounds are not tight, especially when we have M approaching K. Tight 
union bounding techniques such as the Gallager’s random coding or tight bounding 
techniques can be useful to obtain tight results. Before deciding to pursuing this direction, 
though, it would be wise to study a lower bound, perhaps using the Fano’s inequality, and 
check if the lower bound has the log(N) factor or not. See Chapter IV.4.   
 
Remark 2. Suppose using a Vandermonde measurement frame instead of the Gaussian 
matrices. The use of Vandermonde matrices is one of the important factors in reducing the 
number of measurements. The reason is that they guarantee that any set of M  or less 
column vectors of an M N×  Vandermonde matrix is linearly independent by design. In other 

words, the probability of a large deviation event { }2 2 2

2 2 2
x x xδ− ≥A  is exactly zero for any 

x as long as 2M K≥ ; and thus, the union bound is zero as well. Hence, the probability that 
the Vandermonde frame satisfies the RIP is exactly one if 2M K≥ . In other words, the 
probability that the Vandermonde frame does not satisfy the RIP is exactly zero if 2M K≥ .   
 
C. The log(N) factor, deriven for binary K-sparse signals 
Let an M N× matrix A be constructed from i.i.d. Gaussian 1(0, )M . Let x be any binary 

signal whose support set is randomly drawn from S , the collection of all distinct subsets of 
{ }1, 2, , N  of size K. Thus, we aim to investigate the support recovery problem by 

considering binary K-sparse signals. Note that the matrix A and the signal vector x are 
independently drawn. 
 
The event that a sample matrix A fails to satisfy the following condition for a given particular
x  whose support is a subset of S, and for a given ( )0,1δ ∈  

 ( ) ( )2 2 2
1 1x x xδ δ− ≤ ≤ +A  (80) 

is defined as ( ),Fail xA  or the success event as ( , )Success xA . Note that the only random 
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part of this event is in matrix A .  
 
We have a result in [34] that the probability of failure is identical for each x in S, and is given 
by  

 ( )( ) ( ) 2Pr , 2exp 1
2

MM
Fail x

δ δ ≤ − + 
 

A . (81) 

Note that the observation vector x=y A , a summation of K randomly chosen columns of 
Gaussian A, is a Gaussian random vector. Thus, the probability of such an event can be easily 
defined and its upper bound can be obtained. We note that this probability should depend 
only on the variance of the Gaussian, and thus M, and the cardinality of the support set K.  
 
We are now interested in the event that a random matrix A , a collection of N randomly 
chosen columns of Gaussian, satisfies (80) for each and every supposet set S∈ . This 
event can be defined as ( )Success A . In other words, we note that the matrix A should satisfy 

the condition (80) for each and every S∈ , i.e., ( ) ( , )
x S

Success Success x
∈

=A A . The 

failure event ( )Fail A  can be described as the union of each failure event, i.e., 

( ) ( ),
x

Fail Fail x
∈

=
S

A A . Hence, the probability of ( )Fail A  is bounded by  

 

( )( )
( )( )

( )( )1

: Pr ,

Pr ,

Pr ,

f
x

x

P Fail x

Fail x

N
Fail x

K

∈

∈

=

≤

 
=  
 


S

S

A

A

A



, (82) 

where ( )( ) ( ) 2
1, 2exp 1

2

MM
P Fail x

δ δ ≤ − + 
 

A . Hence the probability ( )Fail A  is bounded by  

 
( ) ( )

( )( ) ( )

22 exp 1
2

2exp 1 log
2

M
K

f

M
P eN K

M
K eN K

δ δ

δ δ

 ≤ − + 
 

 ≤ − − + +     

. (83) 

Since ( )0,1δ ∈ , ( )1δ δ− +  must be positive, note that L.H.S. can converge to zero for the 

sufficiently large K and ( )( )logM K N K= Ο .  
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5. Stable Recovery Property  

 
Signal are not exactly sparse, in practice. That is, the signal may have small portion of 
dominant transform coefficients and large portion of transform coefficients that are indeed 
close to zero. But in many cases, the small transform coefficients are not exactly zeros. Thus, 
signals are sparse in a loose sense. There exists a model mismatch in a sparse model. In 
addition, there exist measurement noise, always. When signals are measured, they are 
contaminated with noise.  

 

Would the L1 optimization recovery provide a faithful performance under these practical 
settings? Would the measurement noise and the model mismatch completely ruin the nice 
properties of the Compressed Sensing? Compressed Sensing theorists have considered these 
questions and provided answers, and a collection of results have been obtained to address 
them. To state the results first, the news is on the positive side.  

 

The L1 recovery algorithm provides stable recovery results. 

 

This is to mean that the model mismatch and the observation errors do not amplify in the 
process of L1 minimization routines.  

 

The readers who are interested in this subject are referred to Donoho, Elad, Temlyakov [29] 
and Candes, Romberg, and Tao [30].  
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6. The Chapter Problems 
 

Problem 1 Show 1
M

μ ≥ . Assume that the columns of the orthonormal matrices A and B 

have the unit energy. 

 

Problem 2  Prove the uncertainty principle. Must use the notation of this note, i.e.,

1x As=  and 2x Bs=  throughout the proof. (Hint: see Elad’s paper) Provide a 

succinct (less than 10 statements) sketch of the proof in English. Note that the second 

part is more important than the first part. 

 

Problem 3 Provide a succinct sketch of the proof for the L0 uniqueness. Less than 10 

sentences again. 

 

Problem 4 Do the same for the L1 uniqueness proof.  

 

Problem 5 Do the L1 uniqueness proof using the proof-by-contradiction method.  

 

Problem 6 (Review of Sampling Theorem) Here we would like to review the sampling 

theorem of the Shannon and Nyquist. 

a.         First, show that the train of impulses in the time domain is again the 

train of impulses in the frequency domain under the Fourier transform: 

 { } 1 1( ) ( )
s ss T Tn k

t nT f kδ δ∞ ∞

=−∞ =−∞
− = −  , (84) 

where 2( ) ( ) : ( ) e ftx X f x t dtπ∞ −

−∞
= =   denotes the Fourier transform coefficients ( )X f

and ( )tδ  is the dirac delta function. (Hint: use the Fourier series). 

 

b.         Second, use MATLAB to see this. Use a time domain vector x = [1 0 

0 0 1 0 0 0 1 0 0 0 1 0 0 0]. Taking fft(x) should give 1
4 [1000100010001000] . 

 

c.         Third, find the F.T. of a signal {1, [ , ]
0, . .( ) p pt T T

o wx t ∈ −= . Show that the 
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energy is conserved. Sketch your results. 

d.         Fourth, find the inverse F.T. of {1, [ , ]
0, . .( ) f W W

o wX f ∈ −= , where we have 

defined the inverse F.T. as 1 21
2( ( )) ( ) : ( ) e ftX f x t X f dtπ

π

∞−

−∞
= =  . Show that 

the energy is conserved. Sketch your results. 

e.         Fifth, use the developments so far to derive the Shannon’s sampling 

theorem. See the Shannon’s 1948 paper. (Following is the exact words captured 

from the paper) 

 

 
 

Problem 7 (Let us see the effect of prime N)  

a.         We can create an example of the impulse trains similar to Problem 

6.b, with a prime block length N. (True/False with reasons)   

b.         Write the general expressions for the discrete Fourier transform pair. 

Verify the expression you’ve got by showing (i) orthogonality, and (ii) Inverse 

transform of the transform of a signal gets you back the original signal.  

c.         Make a 16 by 16 Discrete Fourier Transform matrix. Call this F. 

What is the RIP constant for this matrix F? You can obtain it from Monte Carlo 

simulation (say, from a thousand random trials) 

d.         Now take the first 8 rows of the matrix F and form a fat sensing 

matrix F1. Find the RIP constant of this matrix F1. Compare it with that of c. 

e.         Make a 17 by 17 Discrete Fourier Transform matrix. Do c & d again, 

and compare the results. Now, what can you say about the effects of prime N? 
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HW#3 starts from here. 
 

Problem 8 (Prove Lemma 2.2 of [9]) Use the notation of this note. Otherwise there is no 

point. Succinctly summarize the proof in English (10 sentences). Note that the latter 

part is very important.  

Problem 9 (The L0 uniqueness proof for prime N, Theorem 1.1 of [10]) Study the proof 

of the theorem, and (i) discuss the method of proof, among the three methods we 

discussed in class, (ii) discuss if there is any difference that we have done in the class, 

(iii) discuss the effect of prime N.  

Problem 10 (The L1 uniqueness proof for prime N, [10]) Read Section II of [10] and 

discuss the similarity and difference of the materials there with the materials covered 

in class regarding the L1 uniqueness proof.  

Problem 11 (Subdifferential and subgradient) Draw the subdifferential of the second 

function in Figure 14 in Chapter VII.1.  

Problem 12 (Lagrange duality)  

a.         Consider the following problem 

( )1 1 1
2 2 2

11
22

11
32

2 1

min          1 2 1 1 3

1 2

1 2
subject to 

1 3

Tx x x

x

 
  + + 
 
 

−   =   −     

 Is the primal function convex? 

 Obtain the Lagrange dual function.  

 Find the K.K.K. conditions.  

 Solve the optimization problem using the K.K.K. conditions. 

 What can you say about the strong or weak duality in this case? 

 

b.         (Capacity of two parallel channels) Consider the capacity of two 

parallel AWGN channels given a fixed power budget P. Note that capacity of an 

AWGN channel is 1
22 log (1 )i

i

P
N+  where iP  is the transmit power spent for 

channel i, i=1, 2. We aim to distribute the given power P to the two channels so 

that the capacity of the two channels can be maximized given the noise powers 

of the two channels N1 and N2 respectively.   
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 Set up a primal problem 

 Provide answers to the same set of questions given in a.  

 Solve the problem for P = 1, N1 = 0.5 and N2 = 1. Namely determine the 

power levels and the capacity.  

Problem 13 (Open Problem) Compare the sufficient condition bound obtained in the 

lecture with that of Candes and Tao.  
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Chapter IV. INFORMATION 
THEORETIC CONSIDERTATION 

 

1. K-sparse signal model 
We would like to specify the input vector, K-sparse signal x in the following manner:  
 
 (Index Profile t) It has K non-zero entries. We put the indices of the non-zero entries 

in to a vector 1 2( , , , )Kt t t=t  and call it an Index Profile. Each entry 

{1,2, , } :  kt N∈ =   denotes the index of a non-zero entry in x. We let t  be 

refered to as the set of all possible Index Profiles. We note its size is  

 ( )N
k=t . (85) 

 In this note, we assume each profile is equi-probable unless otherwise stated.  
 
 (Value Profile s) We put the values of the K non-zero entries into a vector 

1 2( , , , )Ks s s=s  , call it Value Profile. A value profile s can be determined from a 

distribution. For example, we may use Gaussian, Bernoulli, or a hybrid distribution. 
We use a pdf ( )fs s to denote a VP distribution. For the example of complex valued 

Gaussian multivariate random vector, the pdf is given by 

 ( ) ( )*
11

2

1
( ) exp

N
f

π
− = − − −  ss

s

s s s C s s
C

 (86) 

where { }: E=s s  is the mean vector of the Gaussian multivariate s and 

( )( ){ }*
: E= − −sC s s s s  is the covariance matrix.  

 
 (A hybrid distribution case)  The preceding steps 1 and 2 may be good enough for a 

K-sparse signal in exact sense—exactly K non-zero elements. The following would 
be useful when we want it to include all those x whose support set size is smaller than 
or equal to K. This is thus just a trivial extension. At any rate, we may use a hybrid 
distribution to cover such a case. In such a case, the IP set t  should include all 

possible IPs whose size is smaller than or equal to K. Then, the size of the IP set is 
equal to the number of points in a Hamming sphere of size K, i.e.,  

 ( )2
0

( , )
K

N
k

k

V N K
=

= =t . (87) 
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The number of non-zero entries, k, is now a random variable with the following 
distribution  

 
( )

2 ( , )( )
N
k

K V N Kf k = . (88) 

Using the two distributions (86) and (88), we may obtain a hybrid distribution . 
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2. The Entropy of K-sparse signals 
 
We are interested in asking the following questions. 
 How much information in terms of bits can be represented by the K-sparse signal x? 

Namely, we ask how large the entropy of the K-sparse signal x is. 
 How much information in terms of bits can be represented by the signal vector 1M ×y ?  

This question can be answered being divided into the two exclusive cases, the first 

case is when 2M K≥ and the complement case. In this section, we let F be an 
M N×  Fourier transform matrix with prime N. This case simplifies our answer to 
this question. Note that since 1M M N× ×=y F x  is given, as long as the map is one-to-

one correspondent, which is the case when 2M K≥ , the entropy of x is the entropy 

of 1M ×y . It would be a challenging task if the same question can be thrown when the 

sensing matrix is Gaussian.  
 
Lemma 1. Let F be an M N×  Fourier transform matrix with prime N where 2M K≥ . Let 
x be a K sparse signal. Then, the entropy of y given F is H(x), i.e., 

( | ) ( | ) ( )H H H= =y F Fx F x . If 2M K< , then ( | ) ( | ) ( )H H H= ≤y F Fx F x . 
 
The entropy of K-sparse signal x is  

 
1 1( ) ( ( , , ), ( , , ))

( ) ( | )

( ) ( )

K KH H t t s s

H H

H H

= = =
= +
= +

x t s

t s t

t s

 
 (89) 

Assuming that the support set of size K is uniform randomly distributed, the entropy of 

1( , , )KH t t can be written as 

 ( )1 2( , , ) log N
K KH t t = . (90) 

Using the Stirling’s approximation for the factorial function, we can show  

 
( ) ( ) ( ) ( )1

2 21log log NK K
KN N NN H N H+ + ≤ ≤ . (91) 

For a large N, thus, we note that ( ) ( )2log N K
K NN H≅ . 

 
But when K is small compared to N, the entropy function ( ) ( ) ( )2 2log logN N K NK K

N N K N N KH −
−= +  

can be approximated with the first term only, which is ( ) 1
2log NK

N N KH K≈ .  

This implies that for K N   

 ( )2( ) log NK
N KN H K≈ . (92) 
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Remark 1. This result is quite interesting. In the Compressive Sensing literature, the R.H.S. 
of (92) appears as the number of random projection measurements sufficiently needed for a 
reliable recovery. It is also same as the number of bits sufficiently required to search for the 
support set of size K.  
 
Now we note that if 2 TΩ ≥ , or 2M K≥ , any compression map from x to y = Fx is one-

to-one correspondent. Thus, the entropy of y is also the same as that of the input x.  
 
Using the result of Theorem 1.3 of Candes-Romberg-Tao [10], we can prove the following 
Lemma. 
 

Lemma 2. If 2T Ω≤ , 1( | , ) 0M M NH × × =x y F ; otherwise if 2T T≤ Ω < , 

1( | , ) )M M NH H× × ≤x y F (t .  If TΩ < , 1( | , ) ( )M M NH H× × ≤x y F x ; 

Proof:  Let us do this for the first case.  For the first case, the map M N×F is one-to-one 

correspondent from any K-sparse signal x to 1M×y . Thus, we have 1( | , ) 0M M NH × × =x y F .   

Now let’s consider the second case: 

 

1 1

1 1

0

1

( | , ) ( , | , )

( | , ) ( | , , )

( | , )

( )

M M N M M N

M M N M M N

M M N

H H

H H

H

H

× × × ×

× × × ×

=

× ×

=
= +

=
≤

x y F t s y F

t y F s t y F

t y F

t


 (93) 

The second line is due to conditional entropy. The third is due to the fact that the 
uncertainly on s is zero once t and 1M ×y are given. One may use the LS estimator for the 

over determined problem formed from those columns, known from t , of M N×F . The 

uncertainty on x given 1M×y is left only on the unknown vector t.  

 
On the third case, 1( | , , ) 0M M NH × × ≠s t y F .  

Thus, we only have a trivial result, i.e., 1( | , ) ( )M M NH H× × ≤x y F x .  

Q.E.D. 
 

It is interesting to note that in fact 1( | , , ) 0M M NH × × =s t y F as long as T ≤ Ω .   

 
Another line of thought can be that using the knowledge that the signal is K-sparse, we can 
find the vector t exhaustively. In such a case, we note that, there is about )H (t  much of 
uncertainty left on the input.  
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3. Mutual Information 
 

Lemma 3: Let M K≥ . The mutual information 1( ; )M M NI × ×x y F  between x and 1M×y  

given the measurement matrix is 1( ) ( ) ( | , )M M NH H H × ×+ −s t t y F .  

Proof: 

 

1 1

1

1

1

( ; ) ( ) ( | , )

( ) ( | , ) ( | , )

( | , ) ( ) ( | , )

( ) ( ) ( | , )

M M N M N M M N

M N M N M M N

M N M N M M N

M M N

I H H

H H H

H H H

H H H

× × × × ×

× × × ×

× × × ×

× ×

= −

= + −

= + −
≤ + −

x y F x F x y F

t F s t F t y F

s t F t F t y F

s t t y F

 (94) 

In the second line, we have 1( | , )M M NH × ×x y F  = 1( , | , )M M NH × ×s t y F which is equal to 

1( | , )M M NH × ×t y F + 1( | , , )M M NH × ×s y t F ; and the second term is zero (no uncertainty on s 

given the three).  Then, we have 1( | , )M M NH × ×t y F .  Proceeding with the inequality, 

we use “conditioning reduces the entropy” on ( | , ) ( )M NH H× ≤s t F s . The equality is met 

if the vector s is independent from the joint information of t and M N×F . 

Q.E.D. 
 
Corollary 4.  Let 2M K≥ . 1( ; ) ( )M M NI H× × =x y F x .   

This holds because given 1M ×y  and M N×F , there is no uncertainty on the position vector t.  

That is, 1( | , ) 0M M NH × × =t y F . 

 
Remark 1: Corollary 4, in fact, says that the sparse signals can be measured and perfectly 
recoverable with “incomplete” measurements, as long as one has M independent “incomplete” 
measurements. In fact, Corollary 4 shows that the “incomplete” measurement is not indeed 
incomplete since the “incomplete” measurement 1M ×y  in fact contains all the information 

that the input vector x contains within it. This is of course dependent upon the structure of the 
sensing matrix M N×F . The meaning of Corollary 4 should be clear. In the compressive 

sensing literature, the sparse-solution can be found through exhaustive search.  
 
Discussion on lossy vs. lossless compression.  
In information theory, we compare entropy of the input to the output. We say a compression 
is made when a source whose apparent rate is higher than the entropy of the source can be 
represented at a rate closer to the entropy.  
 
We say that the compression is lossless if the original signal can be recovered with 100% 
accuracy from the compressed signals. We say that the compression is lossy if the original 
signal can be recovered only with a certain amount of distortion.  
 
For the lossless compression, the encoding scheme includes the Huffman codes, Lempel-Ziv 
codes, Arithmetic codes, and Run-Length codes. These codes can be used to encode a source 
whose encoding rate is close to the entropy rate of the source. As long as the rate is greater 
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than the entropy rate, we can find a codebook that achieves zero errors.  
 
Shannon has shown that there exists a block code whose coding rate is arbitrarily close to the 
entropy rate of the source when the block length is sufficiently large. This is achieved when 
we allow the probability of error to be arbitrarily small but non zero.  
 
When we want the coding rate to be smaller than the entropy ( )R H x< , then we should look 
for a rate-distortion code which reproduces the source with a certain amount of distortion.  
 
Corollary 5.  The mutual information 1( ; , )M M NI × ×x y F  between the K-sparse signal x and 

the received signal 1M ×y  and M N×F  is 1( ; )M M NI × ×x y F . 

 
Proof:  Using the chain rule, we have 1 1( ; , ) ( ; ) ( ; | )M M N M N M M NI I I× × × × ×= +x y F x F x y F . 

But the first term is zero because the two are mutually independent.  
Q.E.D. 

 
At this point, it is of interest to find how big the non-zero term 1( ) ( | , )M N M M NH H× × ×−t F t y F  

is.  
 
First, we note that the first term is simply ( )H t . We cannot reduce uncertainty on the 
combination of non-zero positions in the unknown vector x by knowing the measurement 
matrix M N×F .  

 
Second, we should ask the question if the uncertainty on the combination 1( | , )M M NH × ×t y F  

can be reduced by knowing 1M ×y  in addition to M N×F . 

 

4. Lower Bound on Probability of Sensing Error via Fano’s Inequality 
 
Fano’s inequality has been used to prove the converse of the channel capacity theorem. That 
is, a sequence of channel codes has error probability which vanishes as the length of the code 
grows to infinity must have its code rate smaller than the information theoretic channel 
capacity. It may lead to a lower bound on the sensing bound. Let us see this possibility in this 
section.  
  
Let us note that the input is t, the support set. From the support t, we generate x, the signal. 
Then, we observe the measurement y. Now, suppose any decision device, and its outcome t̂  
which is made from the measurement y. Thus, we have a Markov chain ˆ→ → →t x y t . 
Suppose the sensing matrix is known to the decision device.  
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Theorem 6. (Fano’s inequality)  

 ( ) 1( ) log 1 ( | )b e e MH P P H ×+ − ≥t t y  (95) 

where ( )ˆ: PreP = ≠t t  means the support set detection error probability, t  means the size 

of the support set, 1( | )MH ×t y  is a conditional entropy, and ( )bH   is the binary entropy 

function.  
  
The technique for proof is available in Chapter 2 of Cover and Thomas.  
 
Now, let us apply the inequality to lower bound the probability of support set recovery error. 
From the Fano’s inequality, and making use of a bound ( ) 1b eH P ≤ , the decision error 

probability can be lower bounded as follows: 

 1( | ) 1

log 1
M

e

H
P × −≥

−
t y

t
. (96) 

Now suppose that 2M K≥ , then the map is one-to-one correspondent from t to 1M ×y ; thus, 

1( | ) 0MH × =t y  which leads to a trivial bound.  

 
This problem is simple because we are currently dealing with the Fourier sensing matrices 
with prime N, the reason for 1( | ) 0MH × =t y  for 2M K≥ .  

 
At any rate, this lower bound result is consistent with the result summarized in Remark 2 at 
Chapter III.4.B. 
 
Remark 1. (Fano inequality result is consistent with the upper bound result in Chapter III.4.B) 
In Chapter III.4.B, see Remark 2 there, we have discussed how the probability that the 
Vandermonde frame does not satisfy the RIP is exactly zero if 2M K≥ . That was because 
any collections of the columns of the 2M K×  Vandermonde matrix are all linearly 
independent, the spark is larger than 2K , thus unique L0 solution is obtainable for any K-
sparse input vector x. The M N×  partial Fourier matrix with prime N  has the same 
property. Thus, as in the case of the Vandermonde frame, the upper bound on the probability 
of support set recovery error is exactly zero. This is consistent with the lower bound made by 
the Fano’s inequality.  
  
Remark 2. (Results on Gaussian matrices) It would be perhaps more interesting when we 
consider Gaussian ensembles for sensing matrices. Tang and Nehorai considered the 
Gaussian ensembles, used the union bound approaches with Chernoff upper bound on 
pairwise error probabilities, used a derivative of the Fano’s inequality to obtain the lower 
bound on the probability of support set recovery error. They reported that they have obtained 

a necessary condition showing that the ( )log N
K  term cannot be removed, see the first 

paragraph on page 1385 in [35].   
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Chapter V. SPARSE RECOVERY 
ALGORITHMS 
 
 

1. Linear Programming 
 
Now, let us consider finding the solution of the L1 minimization problem. Following Chen-
Donoho-Saunders [17], we will call it a Basis Pursuit problem: 

(BP) 
1

min     s.t.    
Nx

x y Ax
∈

=


. (97) 

where the matrix A  is of size M N× . They say that BP is an optimization principle, not an 
algorithm. 
 
Recasting the BP problem into an LP problem can be done in the following way: 

 

[ ]

[ ]

[ ]

[ ]

( , )
min  = 1 0    0 1  

s.t.    e e 0,

       e e 0,

    0 e 0,

        0 0

T T T T
ix u

i

x
u u x

u

x
x u

u

x
x u

u

x
u

u

x
A b

u

  + =     
 − = −  
 
 − − = −  
 

 − = −  
 

  − = 
 









 (98) 

where we define e  as the identity matrix. Note that both the inequality constraint and the 
equality constraint functions are affine as well. Note that the third constraint, 0u ≥ , is 
redundant given the first two.  
 
Another approach taken by Huo and Donoho is as follows: 

 
min 1

. .

T

x
u

s t y Bu=
 (99) 
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where :
TT Tu x x+ − =   , { }: max ,0x x+ = , { }: max ,0x x− = − , and : [ ; ]B A A= − .  

We solve this by an interior point method.  
 
There are a number of MATLAB program routines that can be utilized to solve this problem 
as well. They include the ones good for large scale problems. See the MATLAB Help menu, 
and look for “linear programming.”  
 
We note that (98) takes after the form of the standard linear programming problem: 

(LP) 

0min     

s.t.    ( ) : 0, 1, 2, ,

        0

T

T
i i i

c x

f x c x d i m

Ax b

= + ≤ =
− =

  (100) 

where N
ic ∈ , Mb ∈ , A  an M N× matrix and id ∈  are given as constants. Note that 

each function, including the objective, inequality and equality constraint functions, is affine. 
Thus, the problem is convex and a linear program.  
 
In the L1-magic package, Candes and Romberg have outlined a number of L1 recovery 
algorithms. They provide several L1 recovery MATLAB programs to solve a number of 
different problems on which they have published papers. They are built based on two generic 
linear programming methods which have their underpinnings in the Convex Optimization by 
Boyd and Vendenberghe [12]. We will provide these two generic linear programming 
methods: 
 
 The first one is based on the Lagrange duality theory. This is the interior point 

method exposed below.  

 The second one is based on the log-barrier method.  
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2. Solving Linear Program via Lagrange Dual Interior Point Method 
 
We first obtain the Karush-Kuhn-Tucker conditions for the linear program. We then aim to 
find the optimal point ( ), ,x vλ  that satisfies the K.K.T. conditions. We will take the 

Lagrange dual approach to find the optimal point. We anticipate that the strong duality holds 
since the problem is convex. To search for the optimal point, an interior point method will be 
used.  
 
Please note that the L1 magic package by Candes and Romberg has a routine that does 
implement this algorithm. We also provide the MATLAB code and the manual of our own 
(with corrections of typos in the L1 magic package) in HW set #4 solution maual of this book.  
 

At the optimal point 
*x , there exist Lagrange multiplier vectors 

* 0λ ≥ ,
mλ ∈  and 

* Mv ∈ .  
 
The K.K.T. conditions are  

 

* *
0 0

* *

*

*

0

                    ( ) 0, 1,...,

                      0,

                        ( ) 0, 1,...,

m T
i ii

i i

i

c c A v

f x i m

Ax b

f x i m

λ

λ
=

+ + =

= =

− =
≤ =


 (101) 

This cannot be solved as a linear equation since it has the inequality constraints and the 
second set of equations is not linear (it’s a product of variables). Thus, we first like to use an 
interior condition to get rid of the inequality condition. We will use the Newton method such 
that in a number of iterations, we would like to have the solution of the Newton’s method 
approach to the optimal points *x , 

* 0λ ≥ , and *v .  Let us denote k as the iteration index, 
and kλ , kx and kv  as the primal and dual variables at the k-th iteration.  
  
That is, while trying to approach to the optimal solution, we would like to enforce 
 
 0, 1,...,i i mλ > =  and 

 *( ) 0, 1,...,if x i m< =  
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Figure 4: An example of linear objective function [ ]min 1 1      s.t.   1 0T

x
x x x− − ≤ . Note 

that the optimal point is achieved at the perimeter of the feasible set.  
 
The objective of approaching the solution from the interior can be achieved by employing an 

ever getting smaller slack variable 
1

kτ
 for 0τ >  which shrinks as the iteration proceeds, 

i.e.,  

 
1

( ) 0, 1,...,k k
i i k

f x i mλ
τ

+ = =  (102) 

Note that as the iteration index proceeds the slack variable tends to zero, and thus each 
equation approaches * *( ) 0, 1,...,i if x i mλ = = . We will have to choose kλ , kx carefully at 

each iteration so that they remain within the interior of the primal and dual feasible sets. We 
want the solution at the boundary to be approached from the interior.  
 
Note that (102) replaces both * *( ) 0, 1,...,i if x i mλ = =  and *( ) 0, 1,...,if x i m≤ =  in 

(101).  
Now we have the following three equations 
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0 0

1 1

( , , ) :

( )
1

( , , ) : 1, 1,...,

( )

( , , ) :  

m T
g i ii

s

m m

f

p

r x v c c A v

f x

r x v i m

f x

r x v Ax b

λ λ

λ
λ

τ
λ

λ

=

Λ

= + +

  
  = − − =  
  
  

= −



 



 (103) 

We combine all three as a single residual function ( ), ,
g

s

p

r

r x v r

r

λ
 
 =  
 
 

.  Refreshing our 

objective, we aim to find optimal point ( ), ,x vλ  such that ( ), , 0r x vλ = . Since the equation 

is non linear, we use the Newton’s method to find the roots of the equation.  
 
(Newton’s method) We use the first order approximation (linear approximation) to 

( ), ,r x vλ . That is, at a particular point ( ), ,x vλ  and the residual ( ), ,r x vλ  at that point, 

we find the Jacobian. Linear approximation of the residual ( ), ,r x vλ  using the Taylor 

expansion around the point ( ), ,x vλ  gives  

 ( ) ( )( , , ) , , , ,

x

r x x v v r x v J x v

v

λ λ λ λ λ
Δ 

 + Δ + Δ + Δ ≈ + Δ 
 Δ 

 (104) 

We aim to find the step so that the residual at the next point is zero, i.e., 
( , , )r x x v vλ λ+ Δ + Δ + Δ  = 0. Then, we have  

 ( ) ( ), , , ,

x

J x v r x v

v

λ λ λ
Δ 

 Δ = − 
 Δ 

 (105) 

Rewriting it with the details, we have 

 

0 00
1

0 1

0 0

m T
i iT T i

c c A v
C A x

C F f

A v
Ax b

λ

λ
τ

=
 + +
   Δ 
   −Λ − Δ = − −Λ −   

    Δ   − 
 


 (106) 

where C  is an m N× matrix with T
ic  as its rows, 1,...,i m= , and F  is an m m×  

diagonal with ( )ii iF f x= , 1,...,i m= .  
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We note the second equation can be rewritten as 

 1 1 1 1
1mF C x F f Fλ

τ
− − −Δ = − Λ Δ − Λ −  (107) 

And the other two equations can be written as  

 
( )

( )
0 0

mT T T
i ii

C A v c c A v

A x Ax b

λ λ
=

Δ + Δ = − + +

Δ = − −


 (108) 

Substituting (107) into the first equation of (108), 

( )
( )

1 1 1
0 0

1 1 1
0 0

1
1

1
1

mT T T
m i ii

mT T T T T
m i ii

C F C x F f F A v c c A v

C F C x C F f C F A v c c A v

λ
τ

λ
τ

− − −
=

− − −
=

 − Λ Δ − Λ − + Δ = − + + 
 

− Λ Δ − Λ − + Δ = − + +





 

and finally have 

 ( )1 1 1
0 0

1
1

mT T T T T
i i mi

C F C x A v c c A v C F f C Fλ
τ

− − −
=

− Λ Δ + Δ = − + + + Λ + . (109) 

Note that  

 

1 1

1 1

1 1

1

1

1

1

T T T
m

TT

m
T
m m

m m m

m

i ii

C F f C F f C

c

c

c c

c

λ

λ

λ λ

λ

− −

=

Λ = Λ = Λ

 − −  
   =    

  − −   
 
 =  
 
 

=

 



 

and 1 11 1
1T T

mC F C f
τ τ

− −=   where ( )
1

1 1 1
( ) ( )

:
m

T

f x f x
f − =  .  

Then, the rest can be written as 

 
1 11

0

0

T T T TxC F C A c C f A v

vA b Ax
τ

− −Δ   − Λ − + − 
=    Δ −    

 (110) 

Thus, we can solve (110) to obtain ( , )x vΔ Δ  first, and then we get λΔ  from (107).  
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The step ( , , )x vλΔ Δ Δ  obtained from (110) and (107) provides a direction to move in the 
multi-dimensional space.  
 
Next, we determine how big a move is needed in the found direction. This step size, denoted 
as s , 0 1s< ≤ , needs to be carefully chosen at each move to ensure that the next step must 
remain as an interior point. Namely, it would be nice if one can choose the largest possible 
step size while x s x+ Δ  and sλ λ+ Δ  stays interior to the feasible sets, for all 1,...,i m= , 
i.e., 

 ( ) 0if x s x+ Δ <  and 0sλ λ+ Δ > . 
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3. Solving Second Order Cone Programs with Log-Barrier Method 
 
This section aims to describe the log barrier method which is useful to solve second order 
cone programs (SOCPs). SOCPs arise in Compressed Sensing problems which include 
measurement noise. Namely, the following problem belongs to the category of SOCPs: 

(P1) *

1 2
: arg min subject to x x Ax b ε= − ≤ , (111) 

where 0b Ax e= + , 0x  is the sparse signal, and e  is used to denote the noise term. There is 

a stability result that *x  is very close to 0x . More precisely, if 0x  is sufficiently sparse and 

the error is bounded, 
2

e ε≤ , then, *
0x x c ε− ≤ ⋅  for some constant c.  

 
The algorithm and a manual are provided in the L1 magic package by Candes and Romberg.  
We also provide the MATLAB code and the manual of our own (with corrections of some 
typos noted in the L1 magic package) in HW set #4 solution manual of this book.  
 
Note that the main problem (P1) in this section can be recasted as a problem of a second-
order cone problem (SOCP) such that 

 

( )

*

( , )

2 2

2

: arg min

- 0, for each 

- - 0, for each 
subject to 

1
0

2

i
x u

i

i i

i i

x u

x u i

x u i

Ax b ε

=

≤
 ≤

 − − ≤



 (112) 

The log-barrier method, as the name indicates, for is characterized by placing a barrier 
function to the objective function. This barrier is created by adding a barrier function, or a 
penalty function, to the objective function. The job of the barrier is to make an optimization 
procedure, an iterative algorithm implemented with a Newton’s method, to remain inside the 
feasible set while searching for the optimal solution. The new objective function formed with 
the addition of the barrier to the original objective function should remain close to the 
original function inside the feasible set, and approach infinity at the boundary of the feasible 
set. Once the search is started from inside the feasible set, then, the search will remain inside 
the feasible set.  
 
 
The following figure should be helpful.  
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Figure 5: The Concept of Placing Barriers At the Boundary of the Feasible Set  
 
A. A log barrier function 
 
Now, it should be of interest to find a suitable barrier function. Note that our selection should 
take into account the Newton’s method. We consider the log function only in this section. The 
log function is continuous and differentiable, and thus should be suitable for Newton’s 
method.  
 
To explain the choice of the barrier function, let us consider the following optimization 
problem: 

 
( ) 0 for some  

min ( ), subject to 
( ) 0

i
o

z
e

f z i I
f z

f z

≤ ∈
 =

 (113) 

where ( ) for some if z i I∈  are the inequality constraint functions and ( )ef z  is the 

equality constraint. Using the log barrier method, we cast the problem in the following form: 

 ( )
1

1
min ( ) log ( ) , subject to ( ) 0

m

o i ez
ik

f z f z f z
τ =

+ − − = . (114) 

Note here that we have moved up all the inequality constraints to the objective part, except 
the equality constraint. We negate each inquality constraint function ( )if z , i.e., ( )if z− . 

Objective 
Function 

Feasible 
Function 

Feasible 
Set 

Barriers 
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Then, inside the feasible set, ( )if z−  is positive and when the argument z approaches the 

boundary of feasible set, ( )if z−  is getting close to zero. Taking the log, i.e.,  ( )log ( )if z− , 

then, the result gets smaller in magnitude inside the feasible set but it approaches negative 
infinity near the boundary. We then negate the result again to form the barrier function, i.e., 

( )log ( )if z− − . At this point, the barrier function is close to positive infinite near the 

boundary of the feasible set. In order to subdue the additive influence of the log-barrier 
function, we scale the log barrier function by 1

kτ , i.e., ( )1 log ( )
k if zτ− − . We increase the 

value of the denominator kτ in each iteration where k is the iteration index. Then, each 
barrier function will behave like a big wall near the boundary of the feasible set. 
 
The duality gap: It can be shown that *( ) ( )

k

m
o of z f z τ− ≤  where m is used to denote the 

number of inequality constraints in (113). The measure on the R.H.S. 
k

m
τ  can thus be used as 

the duality gap. This shows that the solution *z  is within a distance of 
k

m
τ  from the optimal 

solution.  
 

 
Figure 6: A log-barrier function 
 
B. The interior log barrier method for solving SOCPs 
 
We now aim to apply the log-barrier method to the problem given in (112). To derive an 
algorithm which is good for a general set of problems, we also assume there is an equality 
constraint of the form, 1 1A x b= .  This way, we can handle recovery problem with equality 

constraint as well. Then, we have 

0 u 

( )1
log u

τ
−

as τ grows
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( )
( ) ( ) ( )

( )

2 2

2,

:

1 1

1 1
min log log log

2

. . 0

i i i i ikx u
i i i

f z

u x u x u Ax b

s t A x b

ε
τ

=

  + − − + + − + − − − −    

− =

  
 .

 (115) 

where we have defined the variable ( ): ;z x u= . 

 
The quadratic approximation of the objective function is 

( ) ( ) ( )1
:

2
T T
z zf z z f z g z z H z q z z≈ + Δ + Δ Δ = Δ+ Δ +

 

The gradient zg  and the Hessian zH  are what we need to find for this approximation. They 

are
 

( )
( ) ( )( )

( )( )

1 2

1 2

1 2 1 2

1 2 1 2

2
2

2 2 2 2 2

2 2 2 2

21 1 1

1 1 1
1

1 1 1 1 1 1

1 1 1 1 1 1

T

k T
u u N

z

T
k

u u

TT T

k k
u u u u

z

k k
u u u u

A Ax b

f f Ax b Ax b
g

f f

A Ax b Ax b A A Af

f f f f f
H

f f f f

ε

ε

τ ε

τ

τ τ

τ τ

  −  − + −   − − −  = ∈ℜ
 

  + +   
  

   − − −
 + + − +      =

  
− + +    
  

2 2N N×

 
 
 

∈ℜ 
 
   

 

where 
1 2

- , - -u uf x u f x u= = , and ( )2 2

2

1

2
f Ax bε ε= − − . In addition, we have used

( )
( ) ( )

( )( )
22

2
TT T T

T

A Ax b A Ax b Ax b A A Af

z fAx b Ax b

ε

εε

 − − − −∂   =
 ∂ − − − 

. 

 
a. Construct the matrix vector equation with the unknown ( ),z νΔ  

Now, given that x is feasible, i.e., 1 1A x b= , we aim to find the step zΔ  which is the solution 

of the following optimization problem:  

( ) [ ]1min . . 0 0
z

q z s t A z
Δ

Δ Δ =  

The lagrangian is 

( ) ( ) [ ]( )1, 0
T

L z v q z A z vΔ = Δ + Δ  

From the KKT conditions, i.e., setting the gradient of the Lagrangian function equals to zero, 

we can obtain 
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( ) [ ]( )( )
[ ]

( ) [ ]( )( )
[ ]

1

1

1

1

0
0

0
0

T

T

z z

T

d q z A z v
g H z A v

d z

d q z z A z v
A z

dv

Δ + Δ
= + Δ +

Δ

Δ + Δ
= Δ

+
 

Finally, we get 

[ ]
[ ]

1

1

0

00 0

T
zz

z gH A

vA

  Δ −   
=     

     
 

We solve this equation and obtain the step direction zΔ . From this we can obtain the next 

solution 1kz +   

 1k k
stepz z q x+ = + Δ . 

The step size stepq  is obtained heuristically, which is explained below a little bit. Iteration 

will continue until the duality gap is smaller than a certain prescribed value, i.e., 
k

m
τ η≤ . 

Here 2 1m N= + , the number of all inequality constraints.  
 
Namely, the algorithm should go as follows: 

1. Input: Set a feasible value 1z , a tolerance η , a parameter μ , the barrier constant τ , 

and 1k = . 

2. Compute the gradient ( ) :k k
z zg z g= and the Hessian ( ) :k k

z zH z H=  at kz .  

3. Solve [ ]
[ ]

1

1

0

00 0

T
zz

z gH A

vA

  Δ −   
=     

     
 and obtain zΔ . 

4. Obtain 1k k
stepz z q x+ = + Δ  while stepq  is selected semi-heuristically.  

5. Check the stopping criterion. If yes, stop and return kz , else set 1k kτ μτ+ = , 

1k k= + , and go to Step 2.  

 Determination of initial guess 

- We can use the same initial values for 0 0k kx u= =,  as in the case of L1 norm 

with equality constraint such that 

- 0
1

k Tx A b= =  

- 0 0 00.95 0.1 maxk k ku x x= = = 
  

= + ×  
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- 0kv = : From the KKT condition, we know that [ ]
[ ]

1

1

0

00 0

T
zz

z gH A

vA

  Δ −   
=     

     
 

such that 0 0
1

k k
zv A g= == −  

 Step size selection 

- From the KKT condition, we obtain kzΔ , which is the Newton step direction. 
Then, the step size q is chosen so that it is the maximum step size satisfying 
all the following requirements 

1) All feasibility constraints are satisified, i.e.,  

( )
( )

( )

1

2

,

,

, 0 1,...,

, 0 1,...,

0

u i i step i i step i

u i i step i i step i

i step i

f x q x u q u for i N

f x q x u q u for i N

f x q xε

+ Δ + Δ < =

+ Δ + Δ < =

+ Δ <
 

2) The function had decreased sufficiently 

( ) ( )1k k k
step zf z f z q g zα+ < + Δ  

- The requirement basically states that the decrease must be within a certain 
percentage of that predicted by the linear model. 

- Usually, we set 0.01α = . 

- If the conditions 1) and 2) are not satisfied, we reduce the step-size 

step stepq qβ= and check it again, where 0.5β =  is chosen in Candes and 

Romberg’s package.  
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4. Homotopy Algorithms 
 
A. Motivation 
In this section, we aim to study the paper by Donoho and Tsaig [18] where the so-called 
Homotopy algorithm was proposed to solve the Basis Pursuit problem given in (97), the L1 
minimization solution, i.e., 

1
min x  subject to y A x= . The motivation for studying this 

algorithm includes: 
 
 It is a fast algorithm perhaps suitable for large scale L1 minimization problems. As 

Donoho and Tsaig comments (see the caption in Fig. 1 of [18] and the relevant 

discussion in the body text) “Homotopy probably solves L1 minimization problem.”  

 It has the K iterative-step solution property. The K-sparse solution can be obtained in 

K iterative steps when sufficient sparsity is present. This is interesting.  

 It is related to other algorithms such as Least Angle Regression (LARs), LASSO, 

Orthogonal Matching Pursuit (OMP). OMP is probably the fastest; but it is superior 

to the BP. There are cases where the OMP cannot find the sparse solution while L1 

can.  

 The interior point methods, and many other conventional L1 norm minimization 

routines, start at a dense solution and approach the sparse solution as iteration goes. 

Meanwhile, the Homotopy and the OMP build a sparse solution through the iterative 

steps by including or removing a sparse set of elements. If the solution is sparse, it is 

easier to accept now, the Homotopy and the OMP must be faster and simpler than the 

interior point methods. The complexity of Homotopy is O(K3+KMN). 

 
The Homotopy method was originally proposed by Osborne, Presnell, and Turlach [21][22] 
for solving noisy over-determined L1 penalized least squares problem. Donoho and Tsaig [18] 
used it to obtain the sparse solution of underdetermined problem using the L1 norm 
minimization, i.e., the Basis Pursuit problem given in (97).  
 
B. The Homotopy Problem 
In the Homotopy problem, one aims to solve the following unconstrained L1 penalized least 
squares problem: 

(Homotopy) 
21

2 12
min  + 

x
y Ax xλ−  (116) 

The lambda is a utility variable, i.e., [ )0,λ ∈ ∞ . Given a fixed λ , we note, there is a 

corresponding solution, say xλ . If the utility variable is varied, the solution traces a path. 
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There exists a set of solution paths { : [0, )}xλ λ ∈ ∞ . The desired L1 solution, we hope for, 

shall be approached as we change the utility variable. In this case, it is changed from a large 

value to smaller ones. See the illustration below.  

 

 

Figure 7: Variation of the penalized objective function as lambda is changing from 4 to 0.   
 

Why? Why not from a smaller value to larger values of lambda? 

 

We note that a large λ  can be used to put more emphasis on the L1 norm while for a smaller 

λ  the more emphasis on the L2 norm of the difference. Thus, for a large λ  the solution xλ  

shall be close to the zero vector. Smallness of x dominates the minimization result whether or 

not such an x is a feasible solution. As 0λ → , we further note, the emphasis is put more on 

the feasibility of the solution. At this point, it shall be nice to recall the nature of finding the 

solution of the L1 norm minimization. We make the L1 ball to grow until it hits the feasibility 

space for the first time. The first feasible solution at which the L1 ball touches the feasibility 

space is the L1 norm minimized solution. Thus, it now makes a little more sense why we 
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shrink the value of lambda started off from a large value. Thus, as λ  shrink from a large 

value to a smaller one, xλ  converges to the L1 norm minimization solution, the solution of 

the Basis Pursuit problem (97). It looks like starting from a solution closely satisfying 

y Ax= .  

 

LASSO: One can consider the following optimization problem, the so-called LASSO 

problem, that Tibshirani [23] has proposed:  

(LASSO) 
2

12
min   s.t. 

x
qy Ax x ≤−  (117) 

where [0, )q ∈ ∞ and qx  a solution in (117). The set of solutions { : [0, )}qx q ∈ ∞  identifies 

a solution path 0qx =  as the utility variable q is increased from 0q = . As q → ∞ , qx
 

converges to the solution of the Basis Pursuit problem (97). It seems that the two problems 

are equivalent, LASSO and Homotopy, as there exists a reparametrization ( )q λ  defined by 

1( ) || ||q xλλ =  so that the solution path of the Homotopy( λ ) and that of LASSO( ( )q λ ) 

coincide.  

 

Osborne et. al [21] found that the solution path follows a polygonal path. Based on these 

observation, the Homotopy algorithm is developed, which follows the solution path by 

jumping from vertex to vertex of this polygonal path. Perhaps, the meaning of this will 

become clearer after we have introduced the algorithm. For the moment, we can define the 

meaning of the active set. The active set is defined as the index set of non-zero elements of x 

at a particular iterative step of the algorithm. It starts at 0xλ =  for a large λ with an empty 

active set. At each vertex, the active set is updated through the addition or removal of “active” 

elements. An active element here means the element which is believed to be an non-zero 

element of the sparse vector x using the clues gathered up to that particular step in the course 

of the algorithm. In a sequence of steps, the algorithm’s active set is guided to become the 

support set of x as λ is made to go to zero in a controlled manner.  

 

The following figure, Figure 8, taken from Donoho and Tsaig (Fig. 1 of [18]) illustrates the 

position of Homotopy in the map of relations from L1 minimization, to Least Angle 
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Regression (LARs), and to the OMP algorithms: 

 

Figure 8: Relation map of algorithms. From Donoho and Tsaig [18].  
 

(1) Homotopy probably solves L1 minimization problems.  

(2) LARS is obtained from Homotopy by removing the sign constraint check. (Not 

removing an element from the active set.) 

(3) OMP and LARS are similar in structure, OMP solves a least squares problem at each 

iteration, whereas LARS solves a linearly penalized least-squares problem. 

Theorem (The K-step Property of Homotopy). Let { }: max ,i j
i j

a aμ
≠

=  where ia s are the 

columns of the sensing matrix A. Let the sparsity of the vector x satisfy the following 
inequality 

 1( 1) 2.K μ−≤ +  (118) 

Then, the Homotopy algorithm runs K steps and stops, delivering the correct solution. 
 
Remarks: It is worthwhile to note that the sufficient condition (118) is identical to the 
sufficient condition that the solution of the BP problem is identical to the unique L0 norm 
minimization solution.  In addition, Tropp [19][20] found that when (118) holds, even the 
OMP algorithm recovers the unique L0 solution. The OMP is a very simple greedy algorithm, 
which will be discussed shortly.  
 
In fact, when the degree of restrictiveness of the sufficient condition (118) is considered, 
namely it is so restrictive that even the simplest OMP algorithm finds the correct unique 
solution. The theorem of Homotopy algorithm is not at all surprising because it is more 
advanced and complex than the OMP algorithm.  
  
C. Two constraints from the subdifferential 
Let ( )fλ x  denote the objective function of the Homotopy problem, i.e., 

 
21

12 2
( ) :  + || ||f x y Ax xλ λ= − . (119) 
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We will solve this problem and obtain xλ  as λ  is started at a large value and varied while 

converging to zero. At each time λ  is varied, the selection should be carefully made. The 
selection criterion is derived from the classical convex analysis.  
 
From the classical convex analysis, a necessary condition for xλ  to be a minimizer of 

( )f xλ  is that the zero vector is an element of the subdifferential of fλ  at xλ , i.e., 

0 ( )x f x
λ λ λ∈∂ , where  

 1( ) ( ) + || ||T
x xf x A y Ax x

λ λλ λ λ λλ∂ = − − ∂  (120) 

and  

 

,
1

sgn( ), ( ) 0
|| || .

[ 1,1], ( ) 0
i iN

x
i

u x x i
x u R

u x iλ

λ λ
λ

λ

 = ≠  ∂ = ∈ ∈ − =    

Let { }: ( ) 0i x iλ= ≠  denote the support set of xλ . Let us refer to ( ) Tc A y A xλ= − as the 

vector of residual correlations.  
 
Then, the condition 0 ( )x f x

λ λ λ∈∂  can be written equivalently as two conditions. The first 

one is the sign agreement, 

 ( ) sgn( ( )),           c i x i iλλ= ⋅ ∀ ∈ . (121) 

In words, on the support of  , the residual correlation must all have magnitude equal to λ, 
and the sign of the corresponding element of xλ should match the sign of the residual 

correlation. 
 
The second is the upper-bound on residual correlation, 

 { }( ) ,          0,1, , 1c i i Nλ≤ ∀ ∈ −   (122) 

It says that off the support of   the residual correlation must have magnitude less than or 
equal to λ.  
 
The Homotopy algorithm carefully traces out the optimal path xλ  that maintains the 

conditions (121) and (122) for all 0λ ≥ . The key to its successful operation, as Donoho 
and Tsaig puts it, is that the path xλ  is a piecewise linear path, along the vertices of a 

polygon. 
 
D. The Homotopy Algorithm           
 

Homotopy is an iterative algorithm. Similar to the Newton’s method, seen in the previous 
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sections, it finds the direction and the step-size. Then, the update of solution is made by 

moving the current solution estimate by the amount of step-size in the found direction.  One 

notable aspect is that throughout its operation, the algorithm aims to maintain the active set I  

 { }: ( )l lI j c j c λ
∞

= = =  (123) 

which satisfies the conditions (121) and (122). As the iteration goes, the active set shall 
converge to the sparse support set  . We would like to have the residual correlation be 
smaller each time. 
  



 

105 
 

105 4: Homotopy Algorithms 

 
The Homotopy Algorithm 
================================================================== 

1. Initialize: Given A and y (= Ax), set 0 0x = , I = ∅ , 0
Tc A y= , 0 0d = , IA = ∅ , 

and 0cλ
∞

= .  Let the iteration index be l = 0, 1, 2, … 

2. Update direction:  

Obtain an updated direction vector ld  for the active set by solving 

 ( ) sgn( ( ))T
I I l lA A d I c I=  (124) 

Let ( ) 0c
ld I = .  

(This direction update ld  ensures that all the magnitudes of residual correlations on 

the active set decline equally.)  
 

3. Determine the step-size ls :  

There are two cases of constraint violation (for the two constraints).  

Case 1: A nonactive element of lc  would increase in magnitude beyond λ, violating 

the upper bound in (122). This first occurs when  

 
( ) ( )

min ,
1 ( ) 1 ( )c

l l
l T Ti I

i I l i I l

c i c i
s

a A d I a A d I

λ λ+

∈

 − +=  − + 
 (125) 

where the minimum is taken only over positive arguments.  
 
Call the minimizing index i + . 
 
Case 2: An active coordinate crosses zero, violating the sign agreement in (121). This 
first occurs when 

 
( )

min
( )
l

l i I
l

x i
s

d i
−

∈

 −=  
 

 (126) 

where the minimum is taken only over positive arguments. 

Call the minimizing index i − .   

 

The step-size is determined as the minimum of the above two: 

 { }min ,l l ls s s+ −=  (127) 
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4. Update the active set, the solution estimate, the residual correlation, and λ . 

{ } if 

{ } otherwise.
l lI I i s s

I I i

+ +

−

 = ∪ =
 = −  

1l l l lx x s d+ = +  

1 1( )T
l lc A y Ax+ += −  

1lcλ + ∞
=  

5. If residual correlation is zero, then stop; otherwise let 1l l= +  and go to Step 2 :  

This algorithm terminates when || || 0lc ∞ = , which indicates the solution has been 

reached. 
================================================================ 
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E. Proof of the Theorem 
 
There are introductory assumptions for the proof of the Theorem. 
1.  Let y Ax=  with 0|| ||x K=  and  x has its nonzeros in the first K positions.  

2.  If two or more coordinates are candidates to enter the active set, assume the algorithm 
inserts them one at a time, on separate stages. 
3. Let lx  denote the Homotopy solution at the l th step, l lr y Ax= −  the residual at the step, 

and T
l lc A r=  the corresponding residual correlation vector. 

 
Definition (Correct Term Selection Property). The Homotopy algorithm has the Correct Term 
Selection Property at a given problem y Ax= , if at each iteration, the algorithm selects a 
new term to enter the active set from the support of x. 
 
If the Homotopy has the the Correct Term Selection Property, at the termination, the support 
set of the solution is guaranteed to be a subset of the support set of x. 
 
Definition (Sign Agreement Property). Homotopy algorithm has the Sign Agreement Property 
if at every step l  for all j I∈  sgn( ( )) sgn( ( ))l lx j c j= .  

 
That is, the Homotopy has the sign agreement property if, at every step of the algorithm, the 
residual correlations in the active set agree in sign with the corresponding solution 
coefficients. This ensures that the algorithm never removes elements from the active set. 
 
Lemma 1. The Homotopy algorithm has the K-step solution property if and only if it has the 
correct term selection property and the sign agreement property. 
Proof: Converse proof first. After K steps, correct term selection property implies that the 
active set is a subset of the support of x, i.e., {1, 2, , }I K⊆  . The sign agreement property 
ensures that no variable leaves the active set. Thus, after K steps, {1, 2, , }I K=  , the 
Homotopy algorithm recovers the correct sparsity pattern. To show that the algorithm 
terminates at the K step, the step-size Ks  is chosen so that, for some cj I∈ , 

 ( ) ( )T
K K j I K K Kc j s a A d I sλ− = −  

with ( )K Kc Iλ
∞

= .  

 

In addition, for the K th update, we have ( ) 1
( ) T T

I K I I I I K KA d I A A A A r r
−

= =  since Kr  is 

contained in the column space of A (because k kr y Ax= −  and y Ax=  is noiseless.) 

Hence, ( ) ( )c

c T
K I KI

c I A A d I=  and K Ks λ=  is chosen to satisfy the sign agreement constraint. 

Therefore, the solution at step K has KAx y= . Since y has a unique representation in terms of 

the columns of IA , we conclude that kx x= . 

 
Now let us do the forward part. It is obvious, since violation of either the correct term 
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selection property or the sign agreement property would result in a number of steps greater 
than k or an incorrect solution.  
 
Lemma 2. (Correct Term Selection) Let the sufficient condition of the Theorem holds, i.e., 

1( 1) 2.K μ−≤ +  Let the residual at the lth step be written as a linear combination of the first 

K columns in A, i.e., 
1

( )
k

l l j
j

r w j a
=

= . Then the next step of the Homotopy algorithm selects 

an index from among the first K. 
 
Proof. We will show that at the lth step 

 
1
max , max ,l i l i

i K i K
r a r a

≤ ≤ >
>  (128) 

and so at the end of the lth iteration, the active set is a subset of {1,2, , }K . 

Let : TG A A=  denote the Gram matrix of A.  Let 1
ˆ arg max ( )i K li w i≤ ≤= . The left-hand side 

of (128) is bounded below by 

 

ˆ
1

ˆ,
1

ˆ,
ˆ

ˆ

max , ,

( )

ˆ( ) ( )

ˆ( ) ( )

ˆ ˆ( ) ( 1) ( )

l i l ii K

K

l i j
j

l li j
j i

l l
j i

l l

r a r a

w j G

w i G w j

w i w j

w i K w i

μ

μ

≤ ≤

=

≠

≠

≥

=

≥ −

≥ −

≥ − −







 (129) 

since 2
2|| || 1ja =  for all j and ˆ,

: max ,i ji j i j
G a aμ

≠
≤ =  for ˆj i≠ . On the right-hand side of 

(128), for i K> , we have 

 

1

1

, ( )

( )

ˆ( ) .

K

l i l ij
j

K

l
j

l

r a w j G

w j

K w i

μ

μ

=

=

≤

≤

≤



  (130) 

Then, we note that (128) holds if the lower bound (129) is greater than or equal to the 
upper bound (130), i.e.,  

 1 ( 1) .K Kμ μ− − >  (131) 
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Recall that in the Homotopy algorithm the sign agreement condition (121) is used to remove 
an index i from the active set at stage l  if the sign agreement condition is violated.  
 
The following lemma shows that, when x is sufficiently sparse, the sign disagreement never 
happens. Namely, at each stage of the algorithm, the residual correlations in the active set 
agree in sign with the direction of change of the corresponding terms in the solution. In other 
words, the solution moves in the right direction at each step. In particular, it implies that 
throughout the Homotopy solution path, the sign agreement property is maintained. Again 
this happens when when x is sufficiently sparse, i.e., 1( 1) 2K μ−≤ + .  
 
Lemma 3. (Sign Agreement)  Suppose that y Ax= , where x has only K nonzeros, with K 

satisfying 1( 1) 2K μ−≤ + . For {1, 2, , }l K∈  , let T
l lc A r= , and the active set I be defined 

as in (123). Then, the updated direction ld  defined by (12) satisfies 

 sgn( ( )) sgn( ( )).ld I c I=  (132) 

Proof: Let l lcλ
∞

= . We will show that ( ) sgn( ( )) 1l lI I− <d c  for i I∈ , which means that 

(132) holds.  From (12) and (9), we have ( ) ( ) ( ) ( )T
l I I d l l l lA A e d I d I c Iλ λ− = − +  where de  

is the identity matrix. This yields 

 

( )

( )

( , )

( ) ( )

( )

1
( )

2
1

( ) ( ) ( )
2

1
( ) ( )

2

l l l

T
I I d l l

l l

l l l l

l l l l

d I c I

A A e d I

d I

c I d I c I

d I c I

λ

λ

μ λ

μ λ

μ λ λ

∞

∞∞ ∞

∞

∞ ∞

∞

−

≤ − ⋅

−≤

−≤ + −

−= + −

 (133) 

where 
( , )∞ ∞

⋅  denotes the induced L∞  operator norm.  

Rearranging terms, we get 

 
1

( ) ( )
1l l l l ld I c I

μλ λ λ
μ∞

−− ≤ ⋅ <
+

 

and so 

 ( ) sgn( ( )) 1l ld I c I
∞

− < . 

Thus (21) follows.   
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5. Bayesian Compressive Sensing on the Graph Model 
 
There are a number of approaches in the compressive sensing literature relevant to the title of 
this section. A few of the authors are Dror Baron and Baraniuk, Donoho, et. al (Donoho, A. 
Maleki, and A. Montanari), and others.  
 
Our approach in this section will be different from these other approaches, independently 
done. 
 
Our main focus in this section has been to 
 
 Derivation of a Belief Propagation (Message Passing) algorithm which determines 

the posterior probability on the signal values given the observation. In this regard, 

our algorithm derivation is similar to that of Gallager for his probabilistic decoding 

method of low density parity check code.  

 Derivation of the state distribution and the support set recovery algorithm. Once the 

support set is recovered, the determination of the signal values will be done via 

solving the over-determined Least Squares (LS) solution. This process enables early 

breaking out of the costly iterative process.  

 Demonstration that the derived algorithm can be applied to real or complex valued 

signals, quantized values and elements of the signals and the sensing matrix, as well 

as to them over Galois field GF(q). Our preliminary results show that GF(q) results 

well follow the prediction made by the Gilbert Varshamov bounds discussed in 

Chapter VI.2.  

 
Major research problems still remain include: 
 
 Determination of the limit performance of this Bayesian approach, in comparison 

with the sufficient conditions we have obtained in the previous sections.  

 Connections to the RIP conditions and the sufficient conditions to L1 unique solution. 

Here the matrix is designed to be sparse, rather than the dense matrices often 

assumed in the majority of compressive sensing literature. There exists an intriguing 

relation between the density and the RIP constant.  

 Determination of the density of the sensing matrices (the number of non-zero 

elements). There is a trade-off relation between the density and the performance. 

Increasing the density, the minimum distance of the code grows, but the iterative 

algorithm covered in this section shall not work very well. This is what we have 
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learned from our coding theory class. There the values have been restricted to 1s and 

0s. Here the alphabet is much larger, the set of real numbers. In the decoding process, 

however, the alphabet is often quantized and discretized densities have been used for 

iterations. Then, the question is to investigate the performance trade-off relation 

between the quantization effect (noise) and the overall complexity. The other 

approach is to use a high density sensing matrix and use a Gaussian approximation. 

When there are many connections in the graph, a dense graph, a Gaussian 

approximation may work out well. The trade-off here will be that since high density, 

the matrix will have a large minimum distance, the spark, but the reconstruction 

perhaps is just an approximation, rather than an exact recovery of the solution. This 

is interesting research point which may have deep impact to the coding theoretic 

practice of iterative message passing algorithms.  

 
A. Iterative Compressive Sensing Algorithm 
 
There are two states: 0tS =  or 1tS =  for 0,1, , 1t N= − . The state tS  is taken from the 0-

1 Bernoulli  random variable with parameter K
Np =  where K  is the approximate sparsity.  

When the state is zero, the sample tx  is taken from the zero state distribution, say
2

0 0( ) (0, )f x σ ; or when the state is one, it is taken from the first state distribution, i.e.,
2

1 1( ) (0, )f x σ . Roughly, therefore, there are K  first states out of N positions.  
 
Now the problem is to determine the realization of the input vector ( )0 1 1Nx x x x −=   given 

the observation of the syndrome of the following parity check relation  

P1: 

00

11

11

1 0 0 100 10

11 1 0 00 0 1
:

0 0 1 100 1 0

                    =: 
NM

xy

xy
y

xy

F x
−−

− −     
    − −     = =
    
    −    

      (134) 
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We now aim to design the iterative density passing algorithm.  
 
The purpose of the message passing algorithm is to obtain the distributions of the signal 
values 0 0P( | , )x Cτ= y  and the those of the states { }Pr 1| ,tS r C= , use them to determine the 

support set  , the non-zero element states, by thresholding, say { } 1
2Pr 1| ,tS r C= ≥ . Once 

all the non-zero states have been determined, the unknown values on each of the states can be 
determined by solving the over-determined Least Squares Estimate(LSE) of the unknown K-

sparse vector, i.e., ( ) 1T Tx A A A y
−

=    . When this estimation is good enough, i.e. 

2
r Ax δ− ≤ , a certain threshold, one can stop the iteration. A suitable threshold δ  can be 

determined from a probabilistic analysis. Obviously, the larger the threshold, the algorithm 
can stop earlier but the greater the inclination to errors.  
 
B. The Distribution of the Signal Value 
 
The decoding theorem is given here, which is given as an example to determine the first 
value 0tx =  without loss of generality. Note that the first signal node 0x  is connected to the 

first observation 0y  as well as to the second observation 1y . The first observation is then 

connected to the signal nodes 3x  and 6x ; the second one to 1x  and 7x .  

Theorem 1: The aposteriori probability that the first value, 0 0x τ= , takes a certain point in 

s0 x0 

s1 x1 
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s4 x4 

s5 x5 

s6 x6 

s7 x7 
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+ 

+ 
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Prior 
information is 
given p, ,  

Figure 9: The Graph 
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an alphabet  , given the observation y and enforcing the checks (checks should be satisfied), 
is given by 

 

( )
( ) ( )

( )

0 0
0 0 0 0 0 0,0 0,0 0,0 0,0

0,0 0,0

1 0 0 0,1 0,1 0,1 0,1

0,1 0,1

|
P( | , ) P | , , ( | )

|

                                                   P | , , ( | )

P x
x C C x P

P C

C x P

τ
τ τ

τ

=

=

 =
= = = = = 

  
 

× = = = 
  





x τ

x τ

y
y x τ y x τ y

y

x τ y x τ y

 (135) 

We apply the same procedure and obtain a similar AP result for each 0τ  in the alphabet. We 

repeat this procedure for each element of the input vector x. Note that one can make a 
Maximum A Posteriori decision at any time given the posterior distribution for each element.  
 
Proof: Let us consider the following derivation to determine the distribution of the first value, 

0x . Note that without loss of generality, we can repeat the same procedure for the rest of the 

variables, tx s.   

 

( )
( )

( )
( )

0 0 0 0 3 3 6 6 1 1 2 2 7 7

0,0 0,0 0,1 0,1
0,0 0,0 0,1 0,1
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P( | , ) P( , , , , , | , )

P , , , ,

,

P | , , ,

,

x C x x x x x x C

x C

P C

C x

P C
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τ
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x τ
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 (136) 

Q.E.D. 
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A single round of calculation of the posterior distribution { }P( | , ) :t t tx Cτ τ= ∈y   for each and 

every variable, 0,1, , 1t N= − , constitute a single iteration. We repeat the iteration again and 
again. In a single iteration, all N different posterior distributions are updated once. Why do we 
need iterations? Why can’t we be just satisfied with a single iteration? This has to do with our 
choice on the density of the sensing matrix. We have chosen sparse sensing matrix. Thus, the 
graph is sparsely connected. This is because that way the iterative algorithm works well. In 
one iteration, only local information is gathered. Through many iterations, the whole 
information available from the entire observation y and from the checking relations presented 
in the sparse graph, can be gathered. Enough number of iterations should be repeated before an 
attempt to make a Maximum A Posteriori (MAP) decision on the value of each signal node. 
One may choose to apply the MAP rule on the posterior distribution obtained at the end of a 
prescribed number of iterations. That is, we determine the value of each variable via the 
following rule 

 ˆ : arg max ( | , )t t t
t

x P x C
τ

τ= = y  (137) 

for each t, 0,1, , 1t N= − . 

Note that ( )0 0 0 0,0 0,0 0,0 0,0

0,0 0,0

P | , , ( | )C x Pτ
=

 
= = = 

  


x τ

x τ y x τ y  is obtained from the convolution 

of probability density functions for random variables x3 and x6. Similarly, 

( )1 0 0 0,1 0,1 0,1 0,1

0,1 0,1

P | , , ( | )C x Pτ
=

 
= = = 

  


x τ

x τ y x τ y for all x0 is obtained from the convolution of 

random variables x1, x2 and x7. The convolution operations can be computed in the frequency 
domain using FFT and IFFT.  
 
For clarity, we use the following examples. 
 
Example)  From the system of equations y = Fx, we note that the first equation is 

0 0 3 6x y x x= + + ; and the second equation is 0 1 1 2 7x y x x x= − + − .  

 

00

11

11

1 0 0 100 10

11 1 0 00 0 1
:

0 0 1 100 1 0 NM

xy

xy
y

xy −−

− −     
    − −     = =
    
    −    

    
 

Here 0y  is an observed value; thus, a determined and given value. We know the distributions 

of the random variables 3x , 6x , and those of 1x , 2x  and 7x . We aim to find the 

distribution of 0x  that satisfies the two equations simultaneously.  For the first equation, we 

note that, the distribution of 0x  is determined by the convolution of the distribution of 3x  

and that of 6x . For the second equation, it is determined by the convolution of the 

distributions of 1x , 2x  and 7x : One may obtain the convolution of 1x , 2x  first; and the 

output of this convolution is convolved again with the distribution of 7x . 
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C. The Distribution of the Signal Value in the Presence of Noise 

 
We now consider a little bit different problem. We choose 2

0σ =0 in P1. Thus, the vector x is 
exactly sparse, which means that when the state is zero, the value of the variable node is zero 
with probability 1. In addition, the observation is made under the additive white Gaussian 
noise with zero mean and variance of 2

No  where oN  is the single sided power spectral 

density of the noise.  
 
Now the problem is to determine the realization of the input vector ( )0 1 1Nx x x −=x   given 

the noisy observation of the syndrome of the following parity check relation  

 

00 0

11 1

11 1

1 0 0 100 10

11 1 0 00 0 1
:

0 0 1 100 1 0

                    =: 

                   :

NM M

xr w

xr w

xr w−− −

− −      
     − −      = = +
     
     −     

+
= +

r

Fx w

y w

    

 (138) 

Theorem 2. The decoding theorem is given by the following equation. It is given as an 
example to determine the first value 0tx =  without loss of generality. It is the result of the 
Maximum A Posteriori criterion which is used to determine the first value 0x :  

 
0 0 0 0

0 0

P( | , ) P( | , , ) ( )

P( | , ) ( )

x C x C p

x C p

τ τ

τ

= = =

= = = −




w

w

r w r w

y r w w

 (139) 

The proof is obvious and omitted. We can use Theorem 1 to determine 0 0P( | , )x Cτ= = −y r w .  
Thus, the result can be obtained by averaging it over the distribution of the noise.  
 
D. Distribution of the Binary State Value 

Since there are only two states, it might be more robust to determine the state at each node, 

instead of the exact value tx . Once the states are found, the over-determined problem can be 

solved, and the unknown sparse vector x can be found.  

Given the distribution 0 0P( | , )x Cτ= r , there are number of ways we can obtain the LLRs for 

the state likelihoods. 

1. Use the Kulback-Leibler Distance to the distribution of the zero state probability, i.e.,  
( )0 0P( | , ) || ( )D x C f xr  and to that of the non-zero state probability, i.e., 
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( )0 1P( | , ) || ( )D x C f xr .  Compare the result and determine the state value.  

 
2. Find the probability of the state value given the prior distribution and the posterior

0P( | , )x Cr . We are given from the problem set up the conditional probability distribution 

{ }0 0 0| 0 ( )p x S fτ τ= = =  and { }0 0 1| 1 ( )p x S fτ τ= = = , and the prior distribution on the 

state values, namely, the state tS  is the 0-1 ( )Bernoulli K
Np = , i.e. { }0Pr 1S p= = . Next 

suppose that observation r is made, and the posterior distribution 0( | , )p x r Cτ=  has been 

obtained by enforcing the parity-checking relations to r. Now, we ask 

 
{ } { }

{ } { }
0 0 0 0

0 0 0

: Pr 1| , 1, | ,

Pr 1| , , | ,

S r C p S x r C d

S x r C p x r C d

γ τ τ

τ τ τ

= = = = =

= = = =




 (140) 

We note the term { }0 0Pr 1| , ,S x r Cτ= = . It is equal to { }0 0Pr 1|S x τ= =  once the value 

0x  is given, r and C do not provide any additional information to the state value.  

 
Now, let us work on the conditional probability { }0 0Pr 1|S x τ= =  

 

{ } { }

( ) ( )
( )

( )
( ) ( ) ( )

0 0
0 0

0

0 0 0

0

1 0

1 0 0 0

Pr 1,
Pr 1|

Pr{ }

| 1 Pr 1

1

K
N

K K
N N

S x d
S x

x d

p x S S

p x

f x

f x f x

τ τ
τ

τ τ
τ

τ
τ

τ τ

= = +
= = =

= +
= = =

=
=

=
=

= + − =

 (141) 

 Finally, one can design the decision maker, i.e.,  

 0
0

1,         if 0.5
Binary State Decision:   

0,                  o.w.
S

γ ≥
= 


 (142) 

Theorem 3. (The Posterior Binary State Distribution) Let tS  is the 0-1 ( )Bernoulli K
Np = . 

Let the conditional probability distribution on the signal values at different states be 
{ }0 0 0| 0 ( )p x S fτ τ= = =  and { }0 0 1| 1 ( )p x S fτ τ= = =  respectively.  Let { }| ,tp x r Cτ=

be obtained from the message passing algorithm given by Theorem 2. Then, the probability 
of state tS , 0,1, , 1t N= − , given r and applying the check relation C, is obtained as  

 

{ }
( )

( ) ( ) ( ) { }1 0

1 0 0 0

: Pr 1| ,

| ,
1

t t

K
N

tK K
N N

S r C

f x
p x r C d

f x f x

γ
τ

τ τ
τ τ

= =

=
= =

= + − =
 (143) 
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for 0,1,2, , 1t N= − .  
 
Support Set Recovery with Log Likelihood Ratios 
 
We note that { }Pr 1 | ,tS r C=  may not be a probability measure given that 

{ } { }Pr 1 | , Pr 0 | ,t tS r C S r C= + =  is not equal to zero. This may be due to the approximation 

we have made in (140) for { }0 0Pr 1 | , ,S x r Cτ= = , with { }0 0Pr 1 |S x τ= = (141).  

To resolve this issue, one may use normalization. The other approach is to use the log ratio. 
We may opt to use the log ratio because the algorithm may be simplied with the log-ratio 
approach. Let us see.  
 
 

{ }
{ }

( )
( ) ( ) ( ) { }

( ) ( )
( ) ( ) ( ) { }

( ) { }
( ) ( ) { }

0
0

0

1 0
0

1 0 0 0

0 0
0

1 0 0 0

1 0 0

0 0 0

Pr 1 | ,
LR( ) : log

Pr 0 | ,

| ,
1

log
1

| ,
1

| ,
log

1 | ,

K
N

K K
N N

K
N

K K
N N

K
N

K
N

S r C
S

S r C

f x
p x r C d

f x f x

f x
p x r C d

f x f x

f x p x r C d

f x p x r C d

τ τ τ
τ τ

τ τ τ
τ τ

τ τ τ

τ τ τ

=
=

=

=
=

= + − =
=

− =
=

= + − =

= =
=

− = =












 

 
Note that it is in the form of log-sum-product. Express the integral operation as the Riemann 
summation. Then, we have 

( ) { }
( ) ( ) { }

1 0 0

0 0 0

1, 0,

| ,
log

1 | ,

log log exp( ) log exp( )

K
N

K
N

f x p x r C d

f x p x r C d

K
lp lp

N K τ τ
τ τ

τ τ τ

τ τ τ

= =

− = =

    = + −     −     




 




 

where  
 

( ) { }( )
( ) { }( )

1, 1 0 0

0, 0 0 0

log | ,

log | ,

lp f x p x r C

lp f x p x r C

τ

τ

τ τ

τ τ

= = =

= = =




. 

 
Note that the argument inside the logarithm is the product of two probability measures; thus, 
log of the product should be negative.  
Now, let us discuss one of the log products 
   

( ) { }( )
( )( ) { }( )

1, 1 0 0

1 0 0

log | ,

log log | ,

lp f x p x r C

f x p x r C

τ τ τ

τ τ

= = =

= = + =




. 
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Giving attention to the second term, we have 
 

{ }( ) ( )
( )

( )

( )

0,0 0,0

0,1 0,1

0
0

0 0 0,0 0,0 0,0 0,0

1 0 0,1 0,1 0,1 0,1

|
log | , log

|

log P | , , ( | )

log P | , , ( | )

P x
p x r C

P C

C x P

C x P

τ
τ

τ

τ

=

=

 =
= =   

 
 

+ = = = 
  
 

+ = = = 
  





x τ

x τ

y

y

x τ y x τ y

x τ y x τ y

 

 
Now, we note that the second and the third term are in the form of log-sum-product again. Let 
us find a way to simplify them. 
 
First, let us use the FFT technique to get rid of the cumbersome convolution operation.  
Recall that convolution in the time domain (the pdfs in this problem) is equivalent to the 
multiplication in the frequency domain (the product of characteristic function).  
 
We may apply the FFT technique to express the convolution. For example, the first term is 
the convolution of two random variables 3x  and 6x , i.e., 3 6 0x x y τ+ = − . Let us denote 

the FFT and IFFT operators as F and IF. Then, the pdf of the convoluted random variable is 
obtained by 

 ( ) ( )( )
=

= ×
3,6 3 6

3 3 6 6

( ) *

IF F F ( )

pdf t pdf pdf

pdf pdf t
 (144) 

Then, substitute 0t y τ= −  and we have 

 

{ }( ) ( )
( )
0

0 3,6 0 1,2,7 1

|
log | , log log ( ) log ( )

|

P x
p x r C pdf y pdf y

P C

τ
τ τ τ

 =
   = = + − + −      

 

y

y
. 

 
Now, substitute the result to the previous expression: 
 

( ) { }( )
( )( ) ( )

( )

1, 1 0

0
1 0 3,6 0 1,2,7 1

log | ,

|
log log log ( ) log ( )

|

tlp f x p x r C

P x
f x pdf y pdf y

P C

τ τ τ

τ
τ τ τ

= = =

 =
   = = + + − + −      

 

y

y




 

 
Similarly we have 
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( ) { }( )
( )( ) ( )

( )

0, 0 0 0

0
0 0 3,6 0 1,2,7 1

log | ,

|
log log log ( ) log ( )

|

lp f x p x r C

P x
f x pdf y pdf y

P C

τ τ τ

τ
τ τ τ

= = =

 =
   = = + + − + −      

 

y

y




 

 
Combining the results so far, we have  
 

{ }
{ }

{ } ( )

{ } ( )
1

0

0
1, 0,

0

1, 1 1,
max  index

:max

0, 0 0,

:max

Pr 1| ,
log log log exp( ) log exp( )

Pr 0 | ,

log max log 1 exp max

max log 1 exp max

S r C K
lp lp

S r C N K

K
lp lp

N K

lp lp

τ τ
τ τ

τ τ
ττ

τ τ
τ

≠

=

=

=     = + −     = −     

    = + + + − −    −   

− − + − −

 




 max  indexτ ≠

    


 

 
Now, it becomes very simple to do the operation.   
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E. Useful Mathematical Identities for Log-Sum-Products 
 
Product of real numbers 
 

( )sgn( )exp logi i i
ii i

a a a
 =  
 
∏ ∏  

 
An example is sgn( )sgn( )exp log logab a b a b=  +   . 

 
A logarithmic identity 
We may use the following identity on the log sum of more than two numbers for positive 
numbers A, B, and C,  

 

( )

( ) ( )

( ) ( )

log log(exp(log ) exp(log ) exp(log ))

log(e e e )

log(e (1 e e ))

log(1 e e ).

a b c

a b a ca

a b a c

A B C A B C

a

− − − −

− − − −

+ + = + +

= + +
= + +
= + + +

 (145) 

where it is supposed that max( , , )a a b c= .  
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F. The Message Passing Algorithm 
 
The message passing algorithm is given as the following: 

 
1. Initialization: Set ( ) ( ) ( ) ( )1 0| 1K K

t t t t t tN NP x f x f xτ τ τ= = = + − =y  for all t. Determine a 

threshold δ  for stopping criterion.   

2. Run message passing routine: Do the convolution (or the FFT/IFFT) routine for each t, 

obtaining P( | , )t tx Cτ= y  for all t. 

3. Run the active set recovery routine. An index t will be decided to be added to the active if 

the log ratio, ( )tLR S , for 0,1,2, , 1t N= − , is greater than zero, i.e., 

  ( ){ }: 0.0tI t LR S= >  

4. Check if I is  : Run ( ) 1T T
I I I Ix A A A y

−
= . When this value is good enough, i.e. 

2
r Ax δ− ≤  the threshold, the iteration can be put to stop. Otherwise, return to step 2 

and repeat.  

 
 
G. Donoho’s message passing algorithm for compressed sensing 

  
Donoho et al. discuss a new iterative algorithm which builds upon a standard linear 
programming (LP) based iterative algorithm. According to the authors, this new algorithm 
brings dramatically faster reconstruction than the LP-based approach. The idea for  
improvement seems to be partly borrowed from the iterative message passing algorithm on 
bipartite code graphs popularly used in the coding theory community (They refer to 
Richardson and Urbanke’s Modern Coding Theory, Cambridge University Press, 2008). One 
key difference could be the addition of a corrective term to the iterative algorithm. Research in 
this direction shall be very interesting. 
 
 
Reference 
1. D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for compressed 

sensing,” vol.106, no.45, Proceedings of National Academy of Science, Nov. 10, 2009. 
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6. The Expander Graph Approach 
 

In previous sections, we have demonstrated that the solution to the under-determined linear 
system of equations could be found using the L1 optimization approach, which has been 
known in the literature as “basis pursuit”. While L1 optimization can be done in polynomial-
time (often 3( )O N ), this may still be infeasible in applications where N  is quite large. In 
[1], motivated by the existence of bipartite expander graphs [6], a new scheme for 
compressive sensing with deterministic performance guarantees based on expander graphs 
was proposed. The recovery complexity of this algorithm is ( )O K , where K  is the number 
of non-zero entries in the signal vector. Research in this direction shall be of interest.  
  



 

123 
 

123 7: Section References 

7. Section References 
[1] Sina Jafarpour , Weiyu Xu , Babak Hassibi, and Robert Calderbank, “Efficient and 

robust compressed sensing using optimized expander graphs” IEEE Transactions on 
Information Theory, 55 (9). pp.2009. 

[2] W.Xu and B.Hassibi, “Efficient compressive sensing with deterministic guaratees 
using expander grahs,” Proceedings of  IEEE Information Theory  Workshop, 
Lake Tahoe, 2007. 

[3] W.Xu and B.Hassibi, “Further results on performance analysisi for co-mpressive 
sensing using expander graphs,” Conference Record of the Forty-First Asilomar 
Conference on Signal, Systems and Computers. ACSSC 2007.4-7 Nov.2007 
Pages(s):621-625,2008 

[4] E. Candes, J. Romberg and T. Tao, “Robust Uncertainty Principles: Exact Signal 
Reconstruction from Highly Incomplete Frequency Information”, IEEE Transactions 
on Information Theory , 52(2) pp.489-509,Feb.2006. 

[5] E. Candes and T .Tao, “Near Optimal Signal Recovery From Random Projections: 
Universal Encoding Strategies?”, IEEE Trans.on Information Theory, 52(12) pp. 
5406 - 5425, Dec. 2006. 

[6] Michael Sipser and Daniel A. Spielman  “Expander codes”, IEEE Transactions on 
Information Theory , vol.42, NO.6,Nov,1996. 

[7] L.A. Bassalygo and M.S. Pinsker, “Complexity of an optimum nonblocking 
switching network without reconnections”, Problems in Information Transmission, 
vol 9 no 1, pp. 84-87, 1973. 

[8] Fan Chung and Linyuan Lu, “Concentration inequalities and martingale inequalities: 
A survey”, Internet Mathematics Vol.3,No.I:79-127.  

[9] E. Candes and T. Tao, “Decoding by Linear Programming”, IEEE Trans. on 
Information Theory, 51(12), pp. 4203 - 4215, Dec. 2005. 

  



 
124 Chapter V: Sparse Recovery Algorithms 

8. Chapter Problems 
 

Design a small scale y = Ax problem. The dimension of y should be at least 100 by 1. The 

dimension of A should be 100 by 200. The unknown x should be a K-sparse vector. Let K 

= 10. A is randomly generated from the Gaussian distribution. Make sure that the columns 

of A have energy 1 by normalizing each column.  

 
6. Consider the linear program given in class. Namely, it is  

 

[ ]

[ ]

[ ]

[ ]

( , )
min  = 1 0    0 1  

s.t.    e e 0,

       e e 0,

    0 e 0,

        0 0
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− = −  
 
 

− − = −  
 

 
− = −  

 
 

− = 
 









 

a.         Use the MATLAB’s standard routine to obtain the solution of linear program 

solution. Keep it for reference.  

b.         Note that the constraint includes the non-negativeness of u. The programs in 

L1-magic package by Candes and Tao do not include this. Seeing the effect of 

including this term is one of our objectives.  

c.         Use the Lagrange-dual interior point method to do the L1  minimization. 

First obtain the KKT conditions. Write them down.  

d.         Next obtain the Jacobian matrix discussed in class. Specify each and every 

component matrices. Specify their dimensions.  

e.         Construct the two equations, one for λΔ  and the other for ( ),x vΔ Δ . 

f.         Construct the Netwon’s step routine. Verify its correct operation by doing a 

small problem of your own with known solution. Explain how you have verified 

its correct operation. Include the verification results.  

g.         Implement the step-size selection routine in MATLAB. Complete the    
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MATLAB program implementation by including the stopping condition.  

h.         Verify the operation of your algorithm by solving the small scale problem.  

i.         Provide the evidence of the convergence of the solution estimate. Show the 

duality gap narrows as iteration goes on. Show that the mean square error 

between the solution estimate and the true solution narrows as the iteration goes 

on. 

 
 

7. Repeat the first problem with the Log-Barrier method. 

a. Obtain the Hessian by specifying the compoment matrices. Specify their 

dimensions.  

b. Construct the matrix vector equation with the unknown ( ),x vΔ .  

c. Implement the Netwoen method routine in MATLAB. 

d. As done in the first problem, provide the evidence that your program is 

working properly by making comparison with the first examples.  

 

8. Repeat the first problem with the Homotopy algorithm. Do the full verification as to 

show that your algorithm is working properly. 

 

9. Compare the recovery performance of the four algorithms: the MATLAB’s built-in 

routine, the primal-dual interior point method, and the log-barrier method. To compare, 

do a Monte carlo simulation in which the sensing matrices are randomly generated and 

the sparse-signals are randomly generated. Fix the matrix size as 100 x 200, try to see 

the performance as you increase the sparsity K = 10, 20, 30, 40, 50.  

 

10. Use the Bayesian method and verify your routine. Include into the comparison.  

11. Use the log-barrier algorithm for SOCPs and solve TV1 Problem. Do the Shepp-Logan 

phantom example. For this, refer to page 9 of the l1-magic program manual provided 

by Candes and Romberg.  
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Chapter VI. RECENT RESEARCH 
RESULTS 
1. Deterministic Matrix Design 
 
This part will be added soon.  
 

2. Coding Theoretic Approach 
This section is adopted from [8] (Section Reference). Compressed sensing has provided 

a new signal acquisition framework with which one can take samples of a given signal of 
interest while compressing it simultaneously. This compressed sample taking is done via 
linear projection of the given signal against a prescribed set of kernels, i.e., one linearly 
projected sample per kernel. In its standard form, this compressed sensing operation is 
developed over the field of real numbers. In this presentation, we are interested in the 
development of compressed sensing over the finite fields. Fundamental limits on sensing 
measurement requirements as we vary the size of the finite field will be discussed. When 
compressed sensing is put to work in digital systems, the signals and the kernels should be 
represented in a finite precision manner anyhow; thus, the study of compressed sensing over 
finite fields should be of interest for implementation point of view. We aim to present our 
understanding on compressive sensing via Gilbert Varshamov (GV) bounds, new results on 
average spark calculation results, and proposal of the a posteriori (AP) signal recovery 
algorithm, and provide discussion on how they are related with each other. 

We make note of existence of a few prior studies relevant to the content of this section. 
Draper and Malekpour [2] have studied compressed sensing over finite fields and obtained 
fundamental bounds on sensing requirements using the error exponent analysis techniques of 
the channel coding theory. Ardestanizadeh, Cheraghchi, and Shokrollahi [6] have studied the 
question how much bit precision on the compressive measurements will be needed for good 
recovery of sparse signals of a finite size alphabet, say q . They assumed the use of 
Vandermonde frames [5] and obtained that the precision requirement is 2

2( log log )N
KO K q K+ . 

Zhang and Pfister [4] discussed the connection between compressed sensing and error 
correction codes, and proposed the use of low density parity check matrices over GF(q) and a 
verification based iterative decoding schemes.  

 
 

A.  Compressed Sensing via Syndrome Decoding  
In this section, we aim to draw analogy between parity checking in coding theory and 

the under-determined equation in compressed sensing by recasting the basic compressed 
sensing equation  

 y F x=  (146) 
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as a coding theoretic parity-checking equation. Treat y as an 1M ×  syndrome vector, F as an 
M N×  parity check matrix, M N< , and x as an 1N ×  K-sparse error vector. Note that this 
model is valid for real, complex, and finite fields GF(q). Finite fields can be useful for 
implementing the CS system in digital forms, with a finite precision representation, say 

2log ( )q  bit precision, done to the coefficients of the elements of the sensing matrices and 
signals.  

We assume that K t≤  where t means the number of errors a given code defined by an F 
can correct. Let U = N – M. The rate R of the code is U/N. We can then find the N U×
generator matrix G from F using the relationship that FG = 0 (e.g. using Gaussian elimination 
on F) where 0 denotes the M U× all zero matrix. Let  be the codebook—collection of all 

codewords. Each 1N ×  codeword c can be generated by multiplying an arbitrary 1U ×
message vector m to the generator matrix, i.e., c Gm= . We assume c is sent over a noisy 
channel where the noisy channel introduces an additive random error pattern x to c, and the 
output of the channel is z = c + x.  

In this setting, parity checking on z shall return the zero syndrome, i.e.,
( )y F z F c x F x= = + = , unless there is zero errors or the error pattern x is a codeword, i.e.

x∈ ; otherwise it will give a non-zero syndrome vector. The code is linear and hence it 
contains the all-zero codeword. The error correction capability of this code  can be 
parameterized by its minimum distance dmin. The minimum distance dmin is the minimum 
Hamming weight (the number of non-zero coefficients) of any codeword, since the code is 
linear, i.e.,    

 min
0,

min ( )H
c c

d w c
≠ ∈


c

. (147) 

But a codeword is a word that satisfies the parity check equation, i.e., 0F x = . From this 

observation, we may also write that mind  is also the smallest number d that there exists a set 

of d columns of a matrix F  that are linearly dependent; this definition is the same as that of 
the spark in compressed sensing. This discussion will continue further in Section B. From the 
coding theory, we note that, a code defined by its parity check matrix F with dmin can correct 
all t or smaller error patterns, and t is given by 

 min min1
2 2

d dt − = ≈  . (148)  

Our discussion up to (148) implies that all K-sparse error vectors x can be uniquely 
determined from the syndrome equation y = F x as long as K t≤ . Notice that this is a 
deterministic guarantee, rather than probabilistic, on the recovery of the sparse vectors. Such 
a code or a matrix F with dmin can be constructed. Namely, we can construct an F so that any 
collection of less than or equal to dmin – 1 columns of F is linearly independent. This means 
that dmin - 1 can be as large as the rank of F which is further upper bounded by M since M < N.  
Hence, we have the Singleton bound, 

 min 1d M− ≤ . (149) 

Those codes that achieve the Singleton bound with equality are called maximum distance 
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separable codes.  They include the repetition codes and Reed Solomon (RS) codes. Real- or 
complex-valued RS code like sensing matrix F with dmin can also be found. The examples are 
given in [5],[7]. From (149), we can obtain min 1

2 2 2
dM

N N N≥ + , by dividing both sides by 2N. By 

defining the compression ratio M
comp Nρ   and the error correction ratio (ECR) t

t Nρ  , we have  

 2comp tρ ρ≥ . (150) 

We call (150) the CS Singleton bound. Any x whose sparsity ratio K
sp Nρ   is smaller than 

or equal to ECR (i.e., K t≤ ), can be uniquely determined from syndrome y. Fig. 1 shows the 
CS Singleton bound.   

On the other hand, the Gilbert-Varshamov bound tells us the existence of a t error 
correcting linear block code. The rate R of such a code is given by, 

 ( ) 1 ( )qR Hδ δ≥ −  (151) 

where mind
Nδ  , N M

NR −=  and ( )qH δ  is the q-ary entropy function. It is the lower bound 

on the rate required to have the relative minimum distance δ . Eq. (151) can then be written 
as, 

 (2 )comp q spHρ ρ≤                (152) 

for [0,0.5]spρ ∈ . 

It is interesting to note that (2 )q spH ρ  approaches the line with slope 2 as q increases. 

The required code rate can be as large as what this lower bound predicts for a long block 
length. It is then an upper bound on the redundancy. The number of check equations required 
for a sensing matrix to have the relative minimum distance is at most what this bound can tell 
us. One needs at most this much redundancy to be able to find a sensing matrix with the 
relative minimum distance δ . It can be shown that an ensemble of parity check (PC) codes, 
say ( , , , )s cN d d q block codes of length N, check degree cd , signal element degree sd , and 

GF(q), closely approach the GV bound from above as the degrees are increased. Thus, GV 
bounds in fact work as a benchmark, instead of upper bounds. The check degree and the 
signal element degree indicate the number of non-zero entries in any row of a sensing matrix 
and the number of non-zero entries in any column respectively. We focus on the cases here 
that the degrees are fixed for each row and column. Thus, for a compressed sensing system 
with a large fieldGF( )q , the sufficient condition is going to approach  

 2comp spρ ρ>


. (153) 

This means that if 2comp spρ ρ>


, a good sensing matrix exists and thus one can be found. As the 

dimension of the system approaches infinity, a randomly selected code out of an ensemble 
will behave as good as what these bounds can predict, with probability getting close to 1. 
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Figure 10 : Gilbert-Varshamov Compressed Sensing Bounds for Sensing Matrices over GF(q) 
and The Singleton Bound 
 
B. The Sparks of Sensing Matrices over GF(q) 

In this section, we aim to find the ensemble average sparks of an GF(q) LDPC codes. 
The spark of an M N×  matrix is the smallest number S such that there exists a set of S 
columns of the matrix that are linearly dependent. One should note that spark for a sensing 
matrix and dmin for a parity check matrix are exactly the same. From the Singleton bound, 
then, 1S M− ≤ .  Finding the SPARK of a sensing matrix is of paramount importance in 
compressed sensing because it can provide a limit on how sparse a signal has to be for 
guaranteed unique recovery. For example, if the spark of a certain M N× sensing matrix F is 
given to be S, then any signal x with the sparsity K can be uniquely determined from the 
combinatorial L0 minimization routine, as long as 2

SK ≤ . That is, 2
SK ≤  is the sufficient 

condition for the L0 norm minimization solution, subject to y = F x constraint, to return the 
unique solution. Otherwise, say 2 1SK = + for example, the solution is not unique, which can 

be easily proved. The L0 minimization is known as an NP-hard problem since it is 
combinatorial. The sufficient condition, thus, provides a meaningful benchmark on the 
required sparsity.  

Finding the spark of a matrix is thus desired, but it requires a combinatorial search and 
hence is an NP-hard problem by itself. In this section, we find the average spark of an 
ensemble of sensing matrices. For a system with a large block length N, the average spark of 
an ensemble of sensing matrices is very close to the spark of an individual sensing matrix 
randomly selected out of the ensemble. That is, it can be shown that the spark of an 
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individual sensing matrix concentrates around the ensemble averaged spark.  
Theorem 1 : The average spark of an ensemble of GF(q) random sensing matrices, i.e., 

( , , , )s cN d d q , is given by  

{ ( ) ( ) ( ) }SPARK( , , , ) min {2, , }   1 ln( 1) ln 0d
N
d

N
s c v sN d d q d N d d q d= ∈ − − + ≥  (154) 

where the variable dN  is a function of the check degree cd  and it is given by 

 = Coeff ( ) c

N

d
d dN p x

 
  
 

 (155) 

where
0

( )
cd

i
i

i

p x p x
=

= , ( )i
cd

ip = , for even i , 0
i

p =  for odd i, 0 ci d≤ ≤ , ( )Coeffd ⋅ denotes 

the coefficient of the term dx  in the expansion of the argument polynomial, and we assume 

c

N
d  is integer. 

 
C. 

 

Signal Detection Algorithms 
In this section, we aim to discuss how to detect the sparse signal x measured from a 

sensing matrix F  selected randomly out of an ensemble ( , , , )s cN d d q  [3].  

The sparse signal values can be obtained by solving the following problem: 

 
GF( )

: arg max ( | , )   s.t.  = 
t

t t t
q

x P x y C y F x
τ

τ
∈

= =  (156) 

where 0,1, , 1t N= − and the symbol “C” in the conditioning argument compartment 
means satisfaction of all the M “check” relations. The function ( | , )t tP x y Cτ=  is the 

posterior distribution, given the observation, and after enforcing the check relations. This 
posterior distribution is updated for each element of the signal x. 
   
Theorem 2: The aposteriori probability (AP) that the first value, 0 0 GF( )x qτ= ∈ , given the 

observation y and enforcing the checks (checks should be satisfied), is given by 

 

( )
( )

( )
,

0 , 0,0
1

|
P( | , )

|

| , , ( | )
c

p

t p

t
t

d

i t t p
p x

P x y
x y C

P C y

P C x x y P x y

ττ

τ
=

=
= = ×

 
= 

  
∏ 

 (157) 

We apply the same procedure and obtain the AP result for each element of x. A single 
round of calculation of the posterior distribution { }P( | , ) :t t tx Cτ τ= ∈y   for each element, 

0,1, , 1t N= − , constitutes a single iteration. In a single iteration, therefore, all N different 
posterior distributions are updated once. We repeat this iteration multiple times. Why do we 
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need iterations? Why can’t we be satisfied with a single iteration? This has to do with our 
choice on the density, controlled by the two degrees, of the sensing matrix. Choosing a sparse 
sensing matrix (small degrees) would be desired because when the matrix is sparse, the 
iterative algorithm works well from the experience we had on the low density parity check 
codes. In a single iteration, only local information is gathered because of sparse connections. 
Through iterations, it is hoped that and thus the algorithm is only sub-optimal, the entire 
information from observation y available via enforcing checking relations prescribed in the 
sparse matrix can be gathered. An enough number of iterations should be repeated before 
convergence can be seen on the value of each signal element.  

It can be shown that the check posterior results, i.e.,  

( )
,

0 , ,| , , ( | )
p

t p

i t t p t p
x

P C x x y P x yτ=  in (157), can be obtained from a series of convolution 

operations of the probability distribution functions of the signal variables connected to the 
pertinent check 

pi
C . For example, suppose tx  is connected via its first check to say x3 and 

x6, then it is the convolution of the two distributions, one for the signal element 3x  and the 

other for 6x . The convolution operations can be conveniently done in the frequency domain 

using FFT and IFFT. 
In [3], a couple of ideas on iterations based on identifying the support set detection are 

also included. One of them is aiming to obtain the posterior distribution of the state tS  of t

-th signal element. A state value tS  is binary, 1 for the non-zero value of tx , and 0 for the 

zero values. Then, the state posterior either Pr{ 1| , }tS y C= and Pr{ 0 | , }tS y C=  can be 

updated in each iteration. The log ratio of the posterior probabilities on the state is maintained 
in each iteration. For the state posterioir calculation, the prior information that the signal is 
sparse is utilized. When the log ratio is greater than 0, then the pertinent state is more like to 
be 1; otherwise it is zero. At the end of each iteration, we can determine the non-zero states 
by thresholding the log ratios, collect the indices of non-zero states, and form an estimate of 
the support set. Once a support set estimate of size K is given, one can then attempt to solve 
the over-determined problem (by collecting only those columns of matrix F and those 
elements of x corresponding to the non-zero indices) and find a solution x . If this one is 
found to satisfy the observation, i.e. y F x=  , i.e., it is declared to be the solution; then the 
iteration can stop.      
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Figure 11 : Simulation results of a C(N=1200, ds = 3, dc = 6) code with different field sizes.  
 
D. Simulation Results 

Figure 11 shows the Monte Carlo simulation results of our MAP algorithms. The block 
length is N = 1200. The number of observation is M = 600; the maximum of number 
iterations is 20. For each sensing matrix, selected randomly out of 

( )1200, 3, 6,s cN d d q= = = ensemble, large enough signal vectors with sparsity K are 

simulated with an aim to obtain at least 1000 errors for each simulation point. In addition, the 
same procedure is repeated over for 50 matrix selections, and thus a little bit of averaging is 
also done for matrix selections within a particular ensemble. Also indicated in Figure 11 are 
the sparsities obtained from the Gilbert-Varshamov bounds for q=2, 4, 16 and 256 and for (3, 
6) code. They are indicated as the lines in Figure 11. In addition, Table I shows the sparsity of 
various rate 1/2 matrices. 

 
Table 1: The Spark S and Relative Spark S/N (inside the parenthesis) obtained from Theorem 
1 for (N=1200, dv, dc) Ensembles and GF(q). The rate M/N is 1/2.  
(dv, dc) code q=2 q=4 q=16 q=256 
(3,6)  32 (0.027) 64 (0.54) 108 (0.09) 121(0.10)
(4,8)  78 (0.065) 146(0.12) 235 (0.20) 284(0.24)
(5,10) 102 (0.085) 187(0.16) 294 (0.25) 370(0.30) 
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E. Section Summary 
We note that all three measures, the sparsity obtained from GV bounds, the ensemble average 
sparsity obtained from Theorem 1, and the simulation results of the iterative recovery 
algorithm, agree to the observation that as the field size q increases, a given sensing matrix of 
rate 1/2 can have large spark and thus can be used to detect the signals with a larger sparsity 
K. Simulation results show that the iterative algorithm can far surpass the predictions made 
by the average sparks as well as by the GV bounds, which is very interesting, and calls for 
further study. We also note that as the field size is increased, the compressed sensing bound is  

2M K≥  for unique recovery under the Singleton bound. A sensing matrix that satisfies this 
can be found easily from the random construction, and the iterative recovery algorithm 
introduced here can be used to even surpass it. We note that the sparsity limits obtained from 
simulation are much larger. Namely, they are 70, 130, 240, and 325 obtained from simulation. 
The Singleton bound at N=1200 gives a spark of 600 for rate 1/2 code.  
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3. Representation via Correlation vs. via Sparseness 
We note that there are multiple ways to represent correlated data. With the sparse 
representation, we have one more. To name a few, they are Markov chain, statistical 
correlation via joint distribution, and sparse representation in a certain basis. It would be 
interesting research direction to see how these different ways of representing correlated 
signals are related with each other.  
 
Relation between multiple elements ix s in a vector can be represented as   

 Probabilistic model: A signal x has inter-signal correlation. This can be modeled as 

the joint distribution, given by  

 1 2( ) ( , , , )Np x p x x x=   

where ix s are the samples of the signal.  

  
 Knowing a certain group of signal samples xΣ  , { }1,2, , NΣ ⊂  , can tell the 

samples of the other group of samples, xΜ , { }1,2, , \NΜ ⊂ Σ , via the conditional 

probabilities 

 
( , )

( | )
( )

p x x
p x x

p x
Μ Σ

Μ Σ
Σ

=  (158) 

 We assume ( | ) ( , )H x x H x xΜ Σ Μ Σ<  for correlated data.  

 The number of checks required for signal reproduction will be less, for the correlated 

data.  

 

 Sparse model: a signal x, say an image or a speech signal, is represented as x s= Ψ .  

It is possible to reduce the dimensionality of x via a sparsifying basis Ψ . Note that the 

energy of x and s are the same. But the number of non-zero samples are different.  

 For sparse signals, the number of checks required for signal reproduction is smaller.  
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Chapter VII. REVIEW OF 
MATHEMATICAL RESULTS 
 

1. Directional Derivatives, Subgradients, and Subdifferentials 
 
In optimization problems, an evaluation of the objective function at a certain point is 
compared with that at a neighbor point. Thus, the notion of derivative can serve as a useful 
tool. But what should we do when the function we deal with is not differentiable at a certain 
point? Directional derivatives and subgradients are useful for such cases. As long as the 
function is convex, these tools may serve as an alternate tool for analysis. Please note that the 
the textbook [11] is good for further reading on the materials presented in this subsection. 
 
 (Hyperplane) Hyperplane is a set of vectors x satisfying 'a x b= ( 0a ≠ ), i.e., 

{ }'x a x b=  

 

 

 (Convex function)  Let : nf →   be a convex U function.  

i. The 2nd derivative is non negative for all nx ∈ , ( ) 0f x′′ ≥ , or 

ii. A convex function satisfies the Jensen’s inequality (the average of function is 

larger than or equal to the function of average.)   

 (Subgradient of f) : We say that a vector nd ∈ is a subgradient of f at a point 
nx ∈  if  

 ( )( ) ( ) , nf z f x z x d z′≥ + − ∀ ∈ . (159) 

 ( ( )f x∂ , the subdifferential of f ) : The subdifferential of  f  is referred to as the set 

of all subgradients.  

 (Geometrical Illustration of Subdifferential) Let us rewrite (159)  

Figure 1: The Hyperplane Figure 12: Hyperplane 
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 ( ) ' ( ) 'f z z d f x x d− ≥ −  (160) 

 each side of which can be rewritten as  n + 1 dimensional inner product, i.e., 

 ( ) ( )( , 1) ( , 1)z x
f z f xd d   − ≥ −     (161) 

Interpreting (161) geometrically, the set of all z is the supporting hyperplane to the epigraph 
of f  at ( , ( ))x f x : 
 

 
 
 
 

 (Directional derivative) : Subgradient and directional derivative are closely related. 

Let z x yα= +  for 0, nyα∀ > ∀ ∈ . Then, the subgradient can be written as 

 

( ) ( )f x y f x
y d

α
α

+ − ′≥
 

We say f is directionally differentiable at x in the direction of y if the limit of the L.H.S. exists 
as 0α ↓ . (cf, We say f is directionally differentiable at x if differentiable in all directions.) 
  

 

Figure 13: Geometrical illustration of a subgradient of a convex
function f. Note that the space is n + 1 dimensional. 



 

137 
 

137 1: Directional Derivatives, Subgradients, and Subdifferentials 

 
 
 (Examples) Express the sub-differential of f as a function of x. 

  As we can see from the examples, a subgradient of a function can be used as a 

linear approximation to the function. Namely, a subgradient provides an under-

estimate for a convex function, while an overestimate is provided for a concave 

function.   

 Some properties of the subdifferential ( )f x∂  are given as follows: 

 Let : nf →   be a convex U function.  

 The subdifferential is non-empty, convex, and compact (closed and bounded) for 

all nx ∈ .  

 The function f is differentiable at x with gradient ( )f x∇  iff ( )f x∇  is the 

unique subgradient at x.  

 Let : , 1,2, , ,n
jf j m→ =   be convex functions and let 

1

m

jj
f f

=
= . Then,  

 

 

 

 

 

HW 

Figure 2: Examples of subgradients 
 
Figure 14: Illustration of subgradients 
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1

( ) ( )
m

j
j

f x f x
=

∂ = ∂  (162) 

 (ε -Subgradients) There is a notion of approximate subgradient. Let : nf →   be 

a convex U function. We say that a vector nd ∈ is an ε  subgradient of f at a point 
nx ∈  if  

 ( )( ) ( ) , nf z f x z x d zε′≥ + − − ∀ ∈ . (163) 

Geometrically, it can be interpreted in the following picture. Note that the change is 
tangential lines, and thus the change in the subdifferential.  
 
 

 

 
 

 
 

  

 

 

Figure 15: Geometrical illustration of a subgradient of a convex
function f. Note that the space is n + 1 dimensional. 
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2. Duality and Convex Optimization 
The word dual, an adjective, means twofold, double, or of pertaining two. Wikipedia defines 
the mathematical meaning of duality in the following way:  
In mathematics, a duality translates concepts, theorems, or mathematical structures into 
other concepts, theorems, or structures, in a one-to-one fashion, often (but not always) by 
means of an involution operation: If the dual of A is B, then the dual of B is A.    
 
The following are several charts from Convex Optimization [12]. They nicely summarize the 
Lagrange duality theory.  
 
The standard optimization problem is  

 

min ( )

s.t.   ( ) 0,   1,...,

      ( ) 0,   1,...,

o

i

j

f x

f x i m

h x i p

≤ =
= =

 (164) 

where the argument of the functions, nx ∈ , is the variable over which the minimization is 
defined. The domain D of the functions is n unless otherwise stated. More specifically, it is 

1 1dom dom m p
i i i iD f h= == ∩  . This set up is general: the objective function ( )of x  does not 

need to be convex; any of the functions in the constraints need not be convex or concave 
either.  
 
(Feasible set) A point x is called feasible if it satisfies the both sets of inequality and equality 
constraints. The collection of all feasible solutions is called the feasible set of the problem.  
 
(Convex Problem) The optimization problem becomes a convex optimization problem if the 
objective function ( )of x  is convex and the feasible set is convex.  

 
The Lagrange dual theory is a powerful one which works not only for a convex optimization 
problem but also for the standard optimization problem. It gives us an option for working 
with the Lagrangian dual optimization problem, which will be precisely defined soon, instead 
of the original problem in (164) (called the primal problem) which may be difficult to deal 
with since it is a constrained problem. It is often convenient to deal with the Lagrangian dual 
optimization problem because the Lagrangian dual function is always concave over the dual 
variable space. In addition, it has the lower bound property such that the result of the dual 
optimization is always smaller than or equal to the result of the primal problem. Furthermore, 
the equality to the optimal result is guaranteed if the primal problem is convex. This 
motivates the study of Lagrange dual theory.   
 
The Lagrangian function L is defined as the following: 

 
1 1

( , , ) : ( ) ( ) ( )
m p

o i i i ii i
L x v f x f x v h xλ λ

= =
= + +   (165) 

It is obtained by adding the weighted sums of the constraint functions to the objective 
function.  
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 The lambdas { }, 1, ,i i mλ =  are the Lagrange multipliers for the inequality 

constraints. 
 The v’s { }, 1, ,iv i p=  are the Lagrange multipliers for the equality constraints. 

 
We note the following facts on the Lagrangian function: 
 

 L is an affine function of the Lagrange variables ( ),vλ  for a fixed x. That is, we can 

express the Lagrangian function in the following form, the sum of a scalar plus the 

inner product, i.e.,  

 

( )1 1( , , ) ( ) ( ) ( ) ( ) ( )

( ) ( )

o m pL x v f x f x f x h x h x
v

b x A x
v

λ
λ

λ

 
= +  

 
 

= +  
 

 
 (166) 

 The second term is negative if 0λ  since each term ( ) 0i if xλ ≤  is non positive for 

a feasible x.  
 The third term is zero as long since each term ( ) 0i ih xν =  for a feasible x.  

 

The Lagrange dual function ( ),g vλ  is defined as the infimum of the Lagrange function 

( , , )L x vλ  over all x  for a fixed set of Lagrange multipliers ( ),vλ :  

 ( ) ( ), : inf , ,
x D

g v L x vλ λ
∈

= . (167) 

From this definition, we can make the following important observations: 
 

1. ( ),g vλ  is concave function of ( ),m pvλ ∈ ∈  .  

2. ( ),g vλ  for 0λ  is a lower-bound to *p , the result of the primal optimization.  

Since these results are central to the Lagrange dual theory, let usprove them here. 
 

Proof of concavity. The direction is to use the Jensen’s inequality ( ( ) ( )g gλ λ≥  ). 

Without loss of generality, we omit the part involving v and show the concavity of ( )g λ . 

Let [0,1]θ ∈ . We have  



 

141 
 

141 2: Duality and Convex Optimization 

 

( )( ) ( )( ){ }
( )( ){ }

[ ] [ ]{ }
[ ]{ } [ ]{ }
[ ]{ } [ ]{ }

( ) ( ) ( )

1 2 1 2

1 2

1 2

1 2

1 2

1 2

1 inf ( ) ( ) 1

inf ( ) (1 ) ( ) ( ) 1

inf ( ) ( ) (1 ) ( ) ( )

inf ( ) ( ) inf (1 ) ( ) ( )

inf ( ) ( ) (1 ) inf ( ) ( )

1

x

x

x

x x

x x

g b x A x

b x b x A x

b x A x b x A x

b x A x b x A x

b x A x b x A x

g g

θλ θ λ θλ θ λ

θ θ θλ θ λ

θ λ θ λ

θ λ θ λ

θ λ θ λ

θ λ θ λ

+ − = + + −

= + − + + −

= + + − +

≥ + + − +

= + + − +

= + −

 (168) 

The one inequality in (168) is valid for all mλ ∈ . To show this, let us consider two points 

1x  and 2x  without loss of generality. There are only two cases we shall consider. The first 

case is when ( ) ( )1 1 1 2a x a x>  and ( ) ( )2 1 2 2a x a x> . Then, the L.H.S. is  

 
( ) ( ) ( ) ( ){ } ( ) ( )

1 2
1 1 2 1 1 2 2 2 1 2 2 2,

inf (1 ) , (1 ) (1 )
x x

a x a x a x a x a x a xθ θ θ θ θ θ+ − + − = + −
, 

while the R.H.S. is  

 
( ) ( ){ } ( ) ( ){ } ( ) ( )1 1 1 2 2 1 2 2 1 2 2 2inf , inf (1 ) , (1 ) (1 )

x x
a x a x a x a x a x a xθ θ θ θ θ θ+ − − = + −

. 

Thus, we have the equality in this case.  
 

The second case is when ( ) ( )1 1 1 2a x a x>
 but ( ) ( )2 1 2 2a x a x<

. In addition, we let

( ) ( )( ) ( ) ( ) ( )( )1 1 1 2 2 2 2 11a x a x a x a xθ θ− < − −
.  Then, the L.H.S. is  

 
( ) ( ) ( ) ( ){ } ( ) ( )

1 2
1 1 2 1 1 2 2 2 1 1 2 1,

inf (1 ) , (1 ) (1 )
x x

a x a x a x a x a x a xθ θ θ θ θ θ+ − + − = + −
, 

while the R.H.S. is  
 

 
( ) ( ){ } ( ) ( ){ } ( ) ( )1 1 1 2 2 1 2 2 1 2 2 1inf , inf (1 ) , (1 ) (1 )

x x
a x a x a x a x a x a xθ θ θ θ θ θ+ − − = + −

. 
 

Now let us compare the two results. Since ( ) ( )1 1 1 2a x a x> , the L.H.S is strictly lager than 

the R.H.S. Thus, we have the inequality in this case. Furthermore, let 

( ) ( )( ) ( ) ( ) ( )( )1 1 1 2 2 2 2 11a x a x a x a xθ θ− > − − . Then, the L.H.S. is  

 
( ) ( ) ( ) ( ){ } ( ) ( )

1 2
1 1 2 1 1 2 2 2 1 2 2 2,

inf (1 ) , (1 ) (1 )
x x

a x a x a x a x a x a xθ θ θ θ θ θ+ − + − = + −
, 

while the R.H.S. stays the same 
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( ) ( ){ } ( ) ( ){ } ( ) ( )1 1 1 2 2 1 2 2 1 2 2 1inf , inf (1 ) , (1 ) (1 )

x x
a x a x a x a x a x a xθ θ θ θ θ θ+ − − = + −

. 
 

Now let us compare the two results. Since we have assumed ( ) ( )2 1 2 2a x a x< , the L.H.S is 

again strictly larger than the R.H.S. Thus, we have the inequality in this case. 
Q.E.D. 
 
 
Proof on the lower-bounding part. See the chart below. 
 
From the definition, we have 

 

( ) ( )

{ }1 1

, : inf , ,

inf ( ) ( ) ( )

x D

m p

o i i i ii ix D

g v L x v

f x f x v h x

λ λ

λ
∈

= =∈

=

= + + 
 

Let x  is a feasible point and 0λ  . Then, we have the following relations 

 ( ) ( ) ( )( ) , , inf , , ,o
x D

f x L x v L x v g vλ λ λ
∈

≥ ≥ =  . (169) 

Now minimizing the objective fuction over all feasible points, we have the result 

 ( )* *: ( ) ,op f x g vλ= ≥ . (170) 

Q.E.D. 
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The following is a graphical illustration that the Lagrange dual function is concave.  
 

 
Figure 16: The trajectory of L(x, λ) with λ is varied from 0.4 to 4. 

 

 
Figure 17: Illustration of the duality gap 
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Since, we now know that, the Lagrange dual function is concave and provides a lower bound 

to p* for non negative λ , the dual problem makes sense. Namely, the maximization ( ),g vλ  

will narrow the gap between p* and ( , )g vλ . Along the same direction of discussion, the 
following results make sense.  
 

Let ( )* : max ,   s.t. 0d g vλ λ=   for this discussion. Then,  

 Weak duality, * *d p≤ , holds always even for nonconvex problems. Thus, Lagrange 

dual optimization can be used to provide a non trivial lower bound to the optimal 

value for nonconvex and difficult problems.  

 Strong duality, * *d p= , usually holds for convex problems. There are some 

conditions on the constraints that guarantee strong duality in convex problems.  

 
(Convex optimization problem) A convex optimization problem must take the following 
form 

 

[ ]

min ( )

s.t.   ( ) 0,   1,...,

       ,        is a  matrix

o

i

f x

f x i m

Ax b A p n

≤ =
= ×

 (171) 

where the objective and the functions of the inequality constraints, i.e., if s, 0,1, ,i m=  , are 

convex functions and the inequality constraint functions ih s are affine functions. In other 

words,  



 

145 
 

145 2: Duality and Convex Optimization 

 the objective function is convex and  

 the feasible set is convex as well  

for an optimization problem to be convex. The first one should be obvious while the second 
one needs a little discussion.  
 
The set of points { }( ) 0i ix f f x∈ ≤  is called a sublevel set. A sublevel set of a function 

: n
if →   is convex if the function is convex. The intersection of convex sets is a convex 

set as well.  
 
(Strong duality holds if strictly feasible) Now we go back to the discussion of the constraint 
qualification which guarantees the strong duality. Namely, for a convex problem, the strong 
duality holds if it is strictly feasible. Strict feasibility is meant by the existence of a feasible 
point x D∈  such that  

 ( ) 0, 1,2, , ,if x i m Ax b< = = . (172) 

Notation for there exists a feasible point is intx D∈ . When some of the constraint functions 
are affine, say 1,...,i k= , then the condition (172) can be relaxed, such that ( ) 0if x ≤ , the 

equality part, is o.k. for 1,...,i k= .  
 
(Strong duality holds if * *( , )x λ  is a saddle point for ( , )L x λ ) Consider Figure 16 again, 
and now observe that the primal optimal value and the dual optimal value can be compared as 
follows. For this discussion, we omit the contribution of the equality constraints without loss 
of generality, and the Lagrange function with one inequality constraint function 1( ) 0f x ≤ :  

 1( , ) : ( ) ( )oL x f x f xλ λ= +  (173) 

The figure explains how the Lagrange dual function ( ) : inf ( , )
x

g L xλ λ=  behaves as λ  is 

varied from 0 to a larger value. Figure 17 shows the concavity of ( )g λ  as a function of λ  

and the duality gap * *p d− . On the one hand, the primal optimal value *p  was obtained by 

visually inspecting the objective function 0( )f x  within the feasible set: one can move up and 

down the horizontal line, and read off the primal optimal value *p  and its primal optimal 

point *x  inside the feasible set. On the other hand, the dual optimal value *d  was obtained 

by maximizing the concave function ( )g λ  with the constraint of non negative lambda, 

0λ ≥ , i.e.,  

 ( )*

0
: sup inf ,

x D
d L x

λ
λ

∈
=


 (174) 

Now let us consider obtaining the primal optimal value. We note that it can be obtained by 

taking the minimum of the maximum of ( ),L x λ , i.e.,  
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 ( )*

0
: inf sup ,

x D
p L x

λ
λ

∈
=


 (175) 

At each point x, there are infinitely many ( ),L x λ  and we take the supremum first over λ . 

On the set of non-feasible points, ( ),L x λ  tends to ∞ since 1 0f > , i.e., 

( )
0

sup ,   as  L x
λ

λ λ= ∞ → ∞


.  On the set of feasible points, ( )
0

sup , ( )  as  0oL x f x
λ

λ λ= →


. 

Second, we take the infimum of the supremums with respect to x D∈ .  
 
Thus, the weak duality is simply  

 ( ) ( )* *

0 0
: supinf , : inf sup ,

x D x D
d L x p L x

λ λ
λ λ

∈ ∈
= ≤ =

 
. (176) 

The equality is obtained if the sup and inf can be switched without affecting the result. This 
happens when the function ( , )L x λ  satisfies the strong max-min property or the saddle point 
property. For the proof on this, please refer to Theorem 1 and Theorem 2 of Lasdon [16] on 
page 84 and 85 respectively.  
 
Definition. (A slack variable s) A variable is called a slack variable when it is used to convert 
an inequality into equality.  For example, the inequality, x + y ≤ 20, can be made to become  
x + y + s = 20 and then, s is a slack variable. 
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Note that the KKT conditions here are necessary conditions such that if the strong duality 
holds then the optimal parameters must satisfy the KKT conditions.  
 

 
 
For convex problem, those parameters that satisfy the KKT conditions are the optimal 
parameters.  
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3. Some Useful Linear Algebra Results 
 
A. Some Facts on the Matrix Norm 
 
Let us consider the following equalities: 

Let A be an M K×  matrix, M K≥ . Note the following equalites: 

 

2
2

2 2
2 2

max
2
2

0 0

max

max

max max

(  the eigenvector for )

T T

T

Ax x A Ax

x xx x

x x

x
xλ λ

λ

≠ ≠
=

=

=

 (177) 

Let maxλ  be the largest eigenvalue of the non-negative definite K K× matrix TA A .  

 
The maximum gain  

 2

2
max

0
max

Ax

xx
λ

≠
=  (178) 

is called the matrix norm or spectral norm of A.  
 
Then, the matrix norm of TA A  is maxλ . 

 
Similarlry, let minλ  be the minimum eigenvalue of the non-negative definite matrix. Then, 

the minimum gain is  

 2

2
min

0
min

Ax

xx
λ

≠
= . (179) 

B. Other useful matrix norm properties  
 
Suppose TA A=  be K K× matrix. Then, TA U U= Σ is the eigenvalue decomposition where 
U is the unitary matrix, and the diagonal matrix Σ ’s entries are the sorted eigenvalues, such 
as 1 Kλ λ≥ ≥ . The following are true for any x: 

 1
T Tx Ax x xλ≤  

 T T
Kx Ax x xλ≥  

 For any x, Ax A x≤ . 

 A B A B+ ≤ +  (Triangle inequality) 

 0 0A A= ⇔ =  
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 AB A B≤  
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