	INFONET, GIST
Journal Club (2015. 11. 5)




	



	Support recovery with orthogonal matching pursuit in the presence of noise.



	Authors:
	Jian Wang

	Publication:
	IEEE transactions on signal processing, vol. 63, no. 21, Nov. 2015.

	Speaker:
	Jang Jehyuk




[bookmark: _Ref111275535]Short summary: 
 OMP is one of greedy algorithms for finding a sparse solution in underdetermined linear simultaneous equations. It is popular by its simple principle.
There are many literatures for the performance analysis of OMP, especially for the sufficient conditions for successful working. Whereas, relatively few literatures deal with necessary conditions, and I haven’t found the literatures which dictate error rate of OMP.
[bookmark: _GoBack] In this paper, Wang provides the sufficient and necessary conditions of OMP. In addition, Wang’s article provides upper bound for recovery error characterized by SNR and magnitudes of the sparse vector. Sufficient conditions have been analyzed in many other papers, therefore, it is not a novel. The necessary condition resembles some empirical results in prior works as well. The sufficient and necessary conditions have a restriction on restricted isometry constant (RIC) of sensing (system) matrix. However, in my opinion, the bound for recovery error seems a completely fresh result since it doesn’t require any restriction on the RIC. The restriction can be an obstacle in adopting the conditions into our practical models, where it is hard to calculate RIC since it requires intractable computations.
 Unfortunately, I’ve found defects in the proof of the bound for recovery error. Regardless of whether the author intentionally missed it or not, the corrected bound requires a strong restriction on the RIC even more than the sufficient and necessary conditions. I’ve tried to find a nontrivial bound without any restriction on the RIC based on the proof of Wang’s paper, but I failed. In conclusion, a nontrivial bound without the restriction on RIC cannot be found unless there is a novel alternative tricks in the proof.
 In this presentation, I first list the results of Wang’s paper, and then I focus on the proof for the recovery rate and the defects.

Preliminaries
Notations






















Let . For ,  is the set of all elements contained in  but not in .  represents a restriction of the vector  to the elements with indices in .  is a submatrix of  that only contains columns indexed by . If  is full column rank, then   is the pseudoinverse of .  represents the span of columns in .  is the projection onto the orthogonal complement of , where  denotes the identity matrix.  denotes the th column of .
Sensing model and restricted isometry property
Consider following noisy CS model,


[bookmark: ZEqnNum661659]		








where, , , , and . Suppose that  is sparse with support  with cardinality .








Wang’s paper presents sufficient and necessary conditions for the recovery of unknown  for given  and . The bounds in conditions are function of RIC, , and , where  and  is the minimum-to-average ratio of the input signal. I therefore introduce the definition of restricted isometry property, which indicates orthornomality of when mapping sparse vectors.
Definition(Restricted isometry property)



Consider the model . If there exists a constant  such that, for every -sparse vector ,

		



Then,  is said to satisfy the RIP of order  with the RIC .





One of major goal in compressed sensing theory is finding a good sensing matrix  with smaller restricted isometry constant(RIC) . Note that computation of  is NP-hard problem, therefore, any analysis having restriction on  would not be adoptable in practical since no one do know exact value of RIC of their sensing matrix unless the intractable computation is done.
Orthogonal matching pursuit
Now I introduce the pseudo code of OMP algorithm.
	Table I, The OMP algorithm

	Input
	


, , and sparsity .

	Initialize
	
iteration counter ,

	
	
Estimated support ,

	
	
and residual vector 

	While
	
 do

	
	


	
	
Identify 

	
	
Enlarge 

	
	
Estimate 

	
	
Update 

	End
	

	Output
	

the estimated  and vector 





In short, at each iteration OMP compares correlations between  and , the maximum argument is chosen as one element of estimated support, and then it removes the estimated ingredient from .
Main results
Sufficient and necessary conditions
A sufficient condition for the exact recovery with OMP in the presence of noise is presented in Wang’s paper.
Theorem 3.1 (Sufficient condition) :





Suppose that the measurement matrix  satisfies the RIP with . Then OMP performs the exact support recovery of any -sparse signal  from its noisy measurements , provided that 

		

Besides, a necessary condition is also presented, and Wang claims that other related or previous works haven’t provided the necessary condition.
Theorem 3.2 (Necessary condition) :




If one wishes to accurately recover the support of any -sparse signal  from its noisy measurements  with OMP, then the  should satisfy

[bookmark: ZEqnNum513206]		



In Theorem 3.2, note that the denominator in the right hand side of  should be positive to be a nontrivial bound since  is nonnegative. In other words, it should be assumed that . The paper doesn’t refer about this.

Both sufficient and necessary conditions provided in Wang’s paper have restrictions on , therefore, it is hard to exploit the conditions into our practical problems since the computation of RIC is intractable.
Upper bound for recovery error rate
Theorem 4.1 :





Let . Then if , OMP recovers the support of -sparse signal  from its noisy measurements  with error rate

[bookmark: ZEqnNum650641]		

where  is a constant.















Theorem 4.1 claims that recovery error rate would be bounded to a proportion of RIC if the bound is nontrivial. Remarks in Wang’s paper claim that  is reasonably small and the bound is reasonable (nontrivial) by explaining based on some examples. In specific, the author claims that the small  is obtained when , , and  is sufficiently large. In addition, the remarks insist the bound is reasonable from the fact that  when  and  is an orthonormal matrix, i. e., . However, I think the remarks are not sufficient to say the bound is a good or nontrivial. Indeed, I numerically evaluate the right hand side of  based on the proof, where  is provided in a implicit form, for varying  when , , and . Following Fig. 1 shows the result.
[image: ]
Fig.  1  Numerical evaluations for the upperbound of recovery error rate



This evaluation represents that the bound is nontrivial only approximately for . Otherwise, the bound doesn’t provide any insight since we already know .
Defects in provided proof

In this section, I intoduce sketch of proof for Theorem 4.1 not to make you understand, but to point out the defects, which result in constaint on  even bitter than the constraint in Theorem 3.1 and Theorem 3.2.

















Before proceeding, I introduce notations and definitions used in proof. For notational simplicity, let . At the th iteration of OMP (), let  denote the set of missed detection of support indices. For given constant , let  denote the subset of  corresponding to the  largest elements (in magnitude) of . Also, let  denote the th largest element (in magnitude) in . The author fixes . If , then set  and . Since OMP totally runs  iterations before stopping, the error rate of the support recovery can be given by

		

The recovery error rate is obtained from lower and upper bounds for energy of the residue vector at last iteration, i. e., bounds for energy of . The lower bound can be simply obtained by

[bookmark: ZEqnNum932617]		












where  uses the fact that  for any , and ,  follows from the RIP,  is because  and , and  is due to the fact  is supported on  and hence .



Here, defect is that  should be nonnegative. The author assumes that  but doesn’t refer. This assumption leads to a restriction on RIC of .


In consequent, lower bound of  is trivial. It is not for worth as a meaningful bound, but just for deriving the term . An upper bound for  derived from now on therefore should be meaningful. For this purpose, the author observes the energy behavior in residue vector for every iteration as presented by following proposition.
Proposition 4.3:

For any , the residual of OMP satisfies

		

Proof is omitted here. Proof of Proposition 4.3 provided in Wang’s paper also has same kind of defects in proof of Theorem 4.1. By similar reasons for defect in ,  is assumed.







Now I turn to obtaining the upper bound for . Without loss of generality, we assume that  and that the elements of  are in descending order of their magnitudes. Then from the definition of  we have that for any , ,

		
By applying Proposition 4.3, the upper bound of energy is obtained by

		





where  uses the facts that  and that the energy of residual of the OMP algorithm is always non-increasing with the number of iterations (i. e. ), and  is from .


In common with the case in , it should be assumed that , i.e., , which is missed in the statement of Theorem 4.1.






In conclusion, Theorem 4.1 also has a restriction on the RIC, even stricter than the restrictions in sufficient and necessary conditions. I tried to modify the proof to remove the restriction while following the idea of Wang’s proof, but I failed. The key in Wang’s proof for a nontrivial bound is Proposition 4.3. Without employing Proposition 4.3, we can remove the restriction, but the derived bound would be trivial. Meanwhile, Wang fixed , but it is not mandatory since we can tighten the bound and loosen the restriction on the RIC by letting  be a variable of . In specific, when we choose , then it follows that if  and , then

[bookmark: ZEqnNum917242]		
where

		
and

		

Evaluation of the right hand side of  is presented by following figure,
[image: ]
Fig.  2  Numerical evaluation of the modified bound for error rate
3
oleObject1.bin

image46.wmf
K

d


oleObject47.bin

image47.wmf
K

d


oleObject48.bin

image48.wmf
K

d


oleObject49.bin

image49.wmf
Φ


oleObject50.bin

image50.wmf
y


oleObject51.bin

image2.wmf
S

ÍW


image51.wmf
K


oleObject52.bin

image52.wmf
0

k

=


oleObject53.bin

image53.wmf
0

T

f

=


oleObject54.bin

image54.wmf
0

r=y


oleObject55.bin

image55.wmf
kK

<


oleObject56.bin

oleObject2.bin

image56.wmf
1

kk

=+


oleObject57.bin

image57.wmf
1

1

\

argmax,

k

kk

i

iT

t

f

-

-

ÎW

=

r


oleObject58.bin

image58.wmf
1

kkk

TTt

-

=È


oleObject59.bin

image59.wmf
2

:supp()=T

argmin

k

k

=

uu

xy-

Φ

u


oleObject60.bin

image60.wmf
kk

=

ry-

Φ

x


oleObject61.bin

image3.wmf
\

TS


image61.wmf
k

T


oleObject62.bin

image62.wmf
K

x


oleObject63.bin

image63.wmf
y


oleObject64.bin

image64.wmf
i

f


oleObject65.bin

image65.wmf
y


oleObject66.bin

oleObject3.bin

image66.wmf
Φ


oleObject67.bin

image67.wmf
1

1

1

K

K

d

+

<

+


oleObject68.bin

image68.wmf
K


oleObject69.bin

image69.wmf
x


oleObject70.bin

image70.wmf
y=

Φ

x+v


oleObject71.bin

image4.wmf
T


image71.wmf
(

)

(

)

1

1

2(1)

SNR

11MAR

K

K

K

K

d

d

+

+

+

>

-+×


oleObject72.bin

image72.wmf
K


oleObject73.bin

image73.wmf
x


oleObject74.bin

image74.wmf
y=

Φ

x+v


oleObject75.bin

image75.wmf
SNR


oleObject76.bin

oleObject4.bin

image76.wmf
(

)

1

1

(1)

SNR

1MAR

K

K

K

K

d

d

+

+

+

>

-×


oleObject77.bin

image77.wmf
SNR


oleObject78.bin

image78.wmf
1

1

K

K

d

+

<


oleObject79.bin

image79.wmf
1

K

d

+


oleObject80.bin

image80.wmf
,

:max

ijTij

xx

k

Î

=


oleObject81.bin

image5.wmf
S


image81.wmf
23/2

2

SNR

K

kd

-

³


oleObject82.bin

image82.wmf
K


oleObject83.bin

image83.wmf
x


oleObject84.bin

image84.wmf
y=

Φ

x+v


oleObject85.bin

image85.wmf
21/2

2

errorK

C

rkd

£


oleObject86.bin

oleObject5.bin

image86.wmf
C


oleObject87.bin

image87.wmf
C


oleObject88.bin

image88.wmf
12

C

£


oleObject89.bin

image89.wmf
1

k

=


oleObject90.bin

image90.wmf
2

0.001

K

d

=


oleObject91.bin

image6.wmf
S

S

Î

x

¡


image91.wmf
K


oleObject92.bin

image92.wmf
0

error

r

=


oleObject93.bin

image93.wmf
SNR

®¥


oleObject94.bin

image94.wmf
Φ


oleObject95.bin

image95.wmf
2

0

K

d

=


oleObject96.bin

oleObject6.bin

image96.wmf
C


oleObject97.bin

image97.wmf
2

K

d


oleObject98.bin

image98.wmf
12

K

=


oleObject99.bin

image99.wmf
1

k

=


oleObject100.bin

image100.wmf
SNR

®¥


oleObject101.bin

image7.wmf
x


image101.emf
0 0.005 0.01 0.015 0.02 0.025

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

X: 1e-22

Y: 0.9167

X: 0.001377

Y: 0.9969

X: 0.02041

Y: 2.635



upper bound of error rate(Theorem4.1)

K=12/



=1/ 0<



<(1/49)


image102.wmf
2

0.0014

K

d

£


oleObject102.bin

image103.wmf
1

error

r

£


oleObject103.bin

image104.wmf
2

K

d


oleObject104.bin

image105.wmf
2

:

K

dd

=


oleObject105.bin

image106.wmf
k


oleObject7.bin

oleObject106.bin

image107.wmf
0

kK

££


oleObject107.bin

image108.wmf
:\

kk

TT

G=


oleObject108.bin

image109.wmf
(0,1]

t

Î


oleObject109.bin

image110.wmf
k

t

G


oleObject110.bin

image111.wmf
k

G


image8.wmf
S


oleObject111.bin

image112.wmf
K

t

éù

êú


oleObject112.bin

image113.wmf
k

G

x


oleObject113.bin

image114.wmf
k

x

t


oleObject114.bin

image115.wmf
K

t

éù

êú


oleObject115.bin

oleObject116.bin

oleObject8.bin

image116.wmf
1/2

td

=


oleObject117.bin

image117.wmf
k

K

t

>G

éù

êú


oleObject118.bin

image118.wmf
kk

t

G=G


oleObject119.bin

image119.wmf
0

k

x

t

=


oleObject120.bin

image120.wmf
K


oleObject121.bin

image9.wmf
mS

S

´

Î

Φ

¡


image121.wmf
\

:

KKK

error

TT

TTK

r

GG

===


oleObject122.bin

image122.wmf
2

2

K

r


oleObject123.bin

image123.wmf
222

222

()

2

2

2

2

()

2

2

2

2

()

2

2

2

2

2

2

2

2

()

2

2

2

2

22

min

2

()

(1)()(1/1)

(1)(1)(1/1)

(12)(1/1)

(12)()(1/1)

(12)(1/1)

(12)(1/1)

K

K

KKK

a

K

b

K

c

K

K

d

K

x

tt

tdt

tt

tt

tt

tt

G

G

==

³---

³----

³---

³---

³---

³-G×--

ry-

Φ

x

Φ

x-x+v

Φ

x-xv

x-xv

x-xv

x-xv

xv

v


oleObject124.bin

image124.wmf
()

a


oleObject125.bin

image125.wmf
222

222

(1)(1/1)

pp

³---

u+vuv


oleObject126.bin

oleObject9.bin

image126.wmf
, 

uv


oleObject127.bin

image127.wmf
0

p

>


oleObject128.bin

image128.wmf
()

b


oleObject129.bin

image129.wmf
()

c


oleObject130.bin

image130.wmf
1/2

td

=


oleObject131.bin

image10.wmf
Φ


image131.wmf
22

(1)(1)(1)12

tttt

--³-³-


oleObject132.bin

image132.wmf
()

d


oleObject133.bin

image133.wmf
K

x


oleObject134.bin

image134.wmf
K

T


oleObject135.bin

image135.wmf
\

KK

KK

TT

G

==

xx0


oleObject136.bin

oleObject10.bin

image136.wmf
12

t

-


oleObject137.bin

image137.wmf
1/2

12120

td

-=-³


oleObject138.bin

image138.wmf
2

1

4

K

d

³


oleObject139.bin

image139.wmf
K

G


oleObject140.bin

image140.wmf
2

2

K

r


oleObject141.bin

image11.wmf
S


image141.wmf
1/2

0

kKK

d

éù

££-

êú


oleObject142.bin

image142.wmf
1/2

2

22

11/2

22

(17)

kkk

x

d

d

+

-³-

rr


oleObject143.bin

image143.wmf
2

1

36

K

d

³


oleObject144.bin

image144.wmf
2

2

K

r


oleObject145.bin

image145.wmf
{1,,}

TK

=

L


oleObject146.bin

oleObject11.bin

image146.wmf
1

{}

K

ii

x

=


oleObject147.bin

image147.wmf
k

x

t


oleObject148.bin

image148.wmf
0

k

³


oleObject149.bin

image149.wmf
kKK

t

+£

éù

êú


oleObject150.bin

image150.wmf
k

kK

xx

t

t

+

éù

êú

³


oleObject151.bin

image12.wmf
S

Φ


image151.wmf
(

)

(

)

1

2222

01

2222

0

()

22

2

1

2

22

1

2

2

2

1

()

2

2

2

1

22

2

1

(17)

(17)

(17)

K

Kkk

k

KK

a

kk

k

KK

k

k

KK

b

kK

k

K

k

kK

x

x

x

t

t

t

t

t

t

t

t

t

-

+

=

-

éù

êú

+

=

-

éù

êú

=

-

éù

êú

+

éù

êú

=

=+

éù

êú

=--

£--

£--

£--

=--

å

å

å

å

å

rrrr

yrr

y

y

y


oleObject152.bin

image152.wmf
()

a


oleObject153.bin

image153.wmf
1

K

t

³

éù

êú


oleObject154.bin

image154.wmf
22

1

22

, 0

kk

k

+

³³

rr


oleObject155.bin

image155.wmf
()

b


oleObject156.bin

oleObject12.bin

image156.wmf
(32)


oleObject157.bin

image157.wmf
1/2

17170

td

-=-³


oleObject158.bin

image158.wmf
2

1

49

K

d

£


oleObject159.bin

image159.wmf
1/2

td

=


oleObject160.bin

image160.wmf
t


oleObject161.bin

image13.wmf
(

)

1

†

TT

SSSS

-

=

Φ

Φ

Φ

Φ


image161.wmf
SNR


oleObject162.bin

image162.wmf
(

)

SNR11/SNR

t

=+-


oleObject163.bin

image163.wmf
2

1

12

K

K

d

£

+


oleObject164.bin

image164.wmf
(

)

(

)

2

1

SNR

12

K

K

dk

dd

+

³

--


oleObject165.bin

image165.wmf
(

)

(1)

1SNR

error

C

B

dk

r

d

+

£-

-


oleObject166.bin

oleObject13.bin

image166.wmf
1

SNR

1

C

t

t

+

=

-


oleObject167.bin

image167.wmf
(

)

(

)

(

)

(

)

2

2

121SNR

11

KK

B

dddk

dt

---+

=

+-


oleObject168.bin

image168.emf
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

0

0.2

0.4

0.6

0.8

1

1.2

1.4

X: 0.0204

Y: 0.5614



upper bound of error rate(modified version of Theorem 4.1)

K=12/



=1/Noiseless/Note that 1/(2K+1)=0.04

X: 0.0013

Y: 0.03636

X: 0.0001

Y: 0.0028

X: 0.04

Y: 1.083

X: 0.05

Y: 1.105


image14.wmf
S

Φ


oleObject14.bin

image15.wmf
()

S

span

Φ


oleObject15.bin

image16.wmf
S

Φ


oleObject16.bin

image17.wmf
SS

^

=

PI-P


oleObject17.bin

oleObject18.bin

image18.wmf
I


oleObject19.bin

image19.wmf
i

f


oleObject20.bin

image20.wmf
i


oleObject21.bin

image21.wmf
Φ


oleObject22.bin

image22.wmf
y=

Φ

x+v


oleObject23.bin

image23.wmf
1

m

´

Î

y

¡


oleObject24.bin

image24.wmf
mM

´

Î

Φ

¡


oleObject25.bin

image25.wmf
1

M

´

Î

x

¡


oleObject26.bin

image26.wmf
mM

<


oleObject27.bin

image27.wmf
x


oleObject28.bin

image28.wmf
T


oleObject29.bin

image29.wmf
TK

=


oleObject30.bin

image30.wmf
x


oleObject31.bin

image31.wmf
y


oleObject32.bin

image32.wmf
Φ


oleObject33.bin

image33.wmf
SNR


oleObject34.bin

image34.wmf
MAR


oleObject35.bin

image35.wmf
2

2

2

2

SNR:=

Φ

x

v


oleObject36.bin

image36.wmf
2

2

2

min

MAR:

jTj

Kx

Î

=

x


oleObject37.bin

image37.wmf
Φ


oleObject38.bin

image38.wmf
(

)

0,1

K

d

Î


oleObject39.bin

image39.wmf
K


oleObject40.bin

image40.wmf
K

x


oleObject41.bin

image1.wmf
{1,2,,}

n

W=

L


image41.wmf
222

222

(1)(1)

KKKKK

dd

-££+

x

Φ

xx


oleObject42.bin

image42.wmf
Φ


oleObject43.bin

image43.wmf
K


oleObject44.bin

image44.wmf
K

d


oleObject45.bin

image45.wmf
Φ


oleObject46.bin

