
INFONET Seminar Application Group 2014/03/20 

Super-resolution and reconstruction 
of sparse sub-wavelength images 

 

Snir Gazit, Alexander Szameit, Yonina C. Eldar, Mordechai 
Segev 

OPTICS EXPRESS 2009 

 

 

Presenter Pavel Ni 

1 



Contents 

•Background 
•Introduction 

•Experimental setup 
•Results 

•Basis Pursuit 

•Unique sparse solution 

2 



Background 

• Observations of sub-wavelength structures with microscopes are difficult 
because of diffraction limit defined by Ernst Abbe (1873). 

 

•                  , where (n Sin theta) is numerical aperture. 
 

• Light with wavelength lambda travels in a medium with reflective index n 
and converging to a spot with angle theta will make a spot with 
diameter d. 
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• But the true limit of imaging arises  
from the optical wavelength λ and  
the best recoverable resolution is λ/2.  
This is because propagation of  
EM waves in bulk media behaves  
as low-pass filter, for distances  
larger then the wavelength,  
rendering spatial frequencies larger  
then 1/lambda evanescent. 
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Background 

• Sub-wavelength imaging is nothing but capturing this evanescent waves. 
 

• “evanescent waves are formed when waves traveling in a medium 
undergo total internal reflection at its boundary because they strike it at 
an angle greater than the so-called critical angle.” We can compare this 
waves by analogy in acoustics as pressure gradients. 

 

• These are waves that travel from a light source or an object to a lens, or 
the human eye. 

 
 
• This can alternatively be studied as the far field.  
In contrast, the superlens, or perfect lens,  
captures propagating light waves and  
waves that stay on top of the surface  
of an object, which, alternatively,  
can be studied as both the far field  
and the near field. 
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Introduction 

• Many attempts to bypass the λ/2 limit on imaging 
• “Hardware attempts” ex: superlens, hyperlens, Near-Field Optical 

Scanning Microscope 
• Not real-time imaging, scanning required 
• Requirement to fabricate on nanometer precision 
 

• “Theoretical approaches” ex: bandwidth extrapolation 
• Taylor expansion 

• Image is described by spatially defined function, if analytical function 
known in an arbitrary small region of the far field, then entire function 
can be found by means of analytic continuation. It allows us theoretically 
recover sub-wavelength information. 
• Extremely sensitive to noise in the measured data 
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Introduction 

• Concept presented how sub-wavelength information could be recovered 
from far-field of an optical image, overcoming loss of information 
embedded in decaying evanescent waves 

• The purpose is to recover information in spatial frequencies that were cut 
off by diffraction limit which acts as a low-pass filter 

• Requirement is that the image is known to be sparse 
• Sub-wavelength imaging reformulated as sparse sampling problem 
• Extended version of basis-pursuit used 

 
• So why extrapolation methods fail? 
• They are not robust to noise in measured data. 
• The noise is extremely uncorrelated, hence it is uniformly distributed on 

the basis functions. All extrapolation methods fail when projection on 
basis function comparable to noise, which introduces large errors.  
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Introduction 

• If information is sparse in some domain then it is possible to find some a 
proper basis where we could separate further into two subspaces: 

• where projections of the measured data much larger then the noise 
• and  second where the projection are very small and can be set to zero 

without losing information. 
• CS identifies subspace where projection are large therefore CS method 

does not suffer from noise. 
• To do that CS uses knowledge that signal is sparse, which implies that 

information could be represented in a compact way in some basis 
spanning only a subspace of possible solutions 
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Experimental setup 

The laser beam is collimated using lenses L1 and L2, before the sample is 

illuminated. The signal then Fourier transformed using lens L3, low-pass filtered 

by the slit and again Fourier transformed into the real plane by L4. additional 

Fourier transform lens L5 and then image superimposed using beam splitter. 
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Results 

Experimental proof reconstruction of amplitude information 

(a) original information of three vertical stripes, (b) Fourier spectrum,  

(c) horizontal cross-section of the amplitude,  

(d,e,f) using optical slit the signal is low pass filtered and yielding a highly blurred image.  

(g,h,k) Reconstruction using CS techniques 
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Results 

(a,b) the original image of an arrangements of circles and its respective Fourier 

transform. (c,d) after some propagation distance all spatial frequencies above 1/λ 

are lost so that actual image is blurred and cannot be resolved. 

(e,f) Applying CS algorithm reveals the underlying sub-wavelength structure in 

real space because Fourier spectrum fully resolved. 
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Basis Pursuit 

Solve the (convex) optimization problem: 

 

 

 

Find the sparsest x that is consistent with measurements 

 

x: unknown image 

y: measured image 

A: Low-pass filter + sparsity basis 

ε: Noise parameter 

 

 

The requirement on L1 norm is to promote sparsity 
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Triangle inequality 

 

 

If every S1+S2 columns of W are linearly independent then 

 

 

 

If                                    , then there is a unique sparse solution 

 

 

Unique sparse solution 

 

 1 2 1 2( ) 0y Wd Wd W d d Wz     

1 2 1 2 1 20 0 0 0
d d d d z S S     

1 20 0Wz z z d d     

1 1
0 (1 )

2 ( )
d

W
 

12 



Thank you 


