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Abstract: A probabilistic modeling for speckle pattern is introduced. Ways to suppress the
speckle pattern is also presented.

l. Introduction
Speckle

The vast majority of surfaces, synthetic or natural, are extremely rough on the scale of an
optical wavelength. Under illumination by coherent light, the wave reflected from such a
surface consists of contributions from many independent scattering areas. Interference of
these de-phased but coherent wavelets results in the granular pattern we know as speckle.

Note that if the observation point is moved, the path lengths traveled by the scattered
components change, and a new and independent valued of intensity may results from the
interference process.




I1.  Speckle as a random-walk phenomenon
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FIG. 2. Speckle formation in the free-space geometry.

The signal:
u(x, y,z;t) = A(x, y, z) exp(i2zvt)
where v is the optical frequency and A(x,Y,z) is a complex phasor amplitude

A(X,Y,2) = A(X, Y,2)exp(id(x, Y, 2)) .

The irradiance:

The directly observable quantity is the irradiance at (x,y,z), which is given by

1(x,y,2)= !igﬂih(x, Y, z;t)|2 dt =|A(x, y, z)|2 .

The complex amplitude of the field at (x,y,z) may be regarded as resulting from the sum of
contributions from many elementary scattering areas on the rough surface. Thus the phasor
amplitude of the field can be represented by



A(x,y,z) = Zak = Z|ak|9Xp(i¢k)

where |ak| and ¢, represent the amplitude and phase of the contribution form the kth

scattering area and N is the total number of such contributions.

FIG. 4. Random walk in the complex plane.

Two important assumptions

(i) The amplitude and the phase of the kth elementary phasor are statistically independent of
each other and of the amplitudes and phases of all other elementary phasors.

(if) The phases of the elementary contributions are equally likely to like anywhere in the
primary interval (-7, 7).

With these two assumptions, the similarity of our problem to the classical random walk in a
plane becomes complete.

Provided the number N of elementary contributions is large, we find (a) the real and
imaginary parts of the complex filed at (x,y,z) are independent, zero mean, identically
distributed Gaussian random variables, and (b) the irradiance | obeys negative exponential
statistics, i.e., its pdf is of the form

_[@/m)exp(=1/1), 1=0
()= { 0, otherwise

where 1 isthe mean irradiance.



A fundamental important characteristic of the negative exponential distribution is that its
standard deviation precisely equals its mean. Thus, the contrast of a polarized speckle pattern,
as defined by

C=o,/1

is always unity. Herein lies the reason for the subjective impression that the variations of
irradiance in a typical speckle pattern are indeed a significant fraction of the mean.

1. Suppression of speckle

The sum of M identically distributed, real-valued, uncorrelated random variables has a mean
value which is M times the mean of any one component, and a standard deviation which is
JM times the standard deviation of one component. Thus, if we add M uncorrelated speckle
patterns on an irradiance basis, the contrast of the resultant speckle pattern is reduced in
accord with the law

C=0,/T=1/IM.

Uncorrelated speckle patterns can be obtained from a given object by means of time, space,
frequency, or polarization diversity.

Pure spatial diversity occurs, for example, when a reflecting surface is illuminated by several
different lasers from different angles. If the angles of illumination are sufficiently separated,
the path length delays experienced by each of the reflected beams will be different enough to
generate uncorrelated speckle patterns.

A second way of changing optical paths (in wave lengths) traveled by a reflected wave is to
change the optical frequency of the illuminations. If the separation of these frequency
components is sufficiently great, M uncorrelated speckle patterns will result, with addition on
an irradiance basis.

Ex) In a reflection geometry, with angles of incidence and reflection near normal to the
surface, the separation required to produce uncorrelated speckle is approximately

Av=c/2o,



where ¢ is the light velocity and o, is the standard deviation of the surface height
fluctuations.

Time diversity: If a transparency object is illuminated through a diffuser, then motion of that
diffuser results in a continuous changing of the speckle pattern in the image. A time exposure
in the image plane then results in the addition, on an intensity basis, of a number of
uncorrelated speckle patterns, thus suppressing the contrast of the detected speckle pattern.

V. Discussion

The speckle phenomenon happens in turbid lens imaging (TLI) systems []. On the one hand,
it is used as useful information. On the other hand, it is regarded as a noise that we try to
suppress.

TLI is one new technique that increases the resolution of an imaging system beyond the
physical limitation given by lenses. In TLI, a turbid medium is inserted between a sample and
an objective lens. The turbid medium has many small particles in it, and the wavelets in the
sample beam experience multiple scattering inside the medium. This scattering is good in a
sense that higher angle mode waves, which usually go out of the detector, experience the
scattering and may be redirected into the detector. This makes it possible to collect higher
mode wave information which tells us the details of the sample. Also, the scattering is bad in
a sense that it scrambles the sample image in the detector. But if we know i) the way how the
medium scrambles images and ii) the way how to recover it using “i)”, it is no longer a
problem. Here we can obtain “i)” because the input and output relationship of the turbid
medium can be measured. “ii)” is also known as it is just an inverse problem given linear
system model and the system response.

The sample beam is a weighted sum of waves with many spatial frequencies, written as
follows,

X(t) =D x exp(i2r fit)
|
where fi is a spatial frequency and t is a spatial index.
We measure response of the optical system for a wave exp(i2x fit)
T,(t) =T (exp(i27 fit)).

Assuming TLI system is linear time-invariant (LT1), the response to the input x can be written



yO) =T (x(t) =T (z X, exp(i2z f|t)j =x>.T.

Here, the index t and | actually have dimension two. Then, the response can be represented by
a linear system model as follows

y=TX.

Here, we can estimate x with given y and T, where y and T are measured in the experiments.
Here, note that a column of T is a speckle pattern and the columns in T are uncorrelated to
each other for their path lengths differ enough; if the spatial frequency gap is more than a
certain value, it is true. So, we can see that the matrix T is well conditioned for recovery.

We also note that the y is in fact is a noisy measurement where speckle pattern is included in
the noise. For the suppression of the noise, we can use multiple uncorrelated measurement as
it is presented in the talk.



