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A fundamental important characteristic of the negative exponential distribution is that its 
standard deviation precisely equals its mean. Thus, the contrast of a polarized speckle pattern, 
as defined by 

/IC I  

is always unity. Herein lies the reason for the subjective impression that the variations of 
irradiance in a typical speckle pattern are indeed a significant fraction of the mean. 

 

 

III. Suppression of speckle 

 

The sum of M identically distributed, real-valued, uncorrelated random variables has a mean 
value which is M times the mean of any one component, and a standard deviation which is 

M  times the standard deviation of one component. Thus, if we add M uncorrelated speckle 
patterns on an irradiance basis, the contrast of the resultant speckle pattern is reduced in 
accord with the law 

/ 1/IC I M  . 

 

Uncorrelated speckle patterns can be obtained from a given object by means of time, space, 
frequency, or polarization diversity. 

Pure spatial diversity occurs, for example, when a reflecting surface is illuminated by several 
different lasers from different angles. If the angles of illumination are sufficiently separated, 
the path length delays experienced by each of the reflected beams will be different enough to 
generate uncorrelated speckle patterns.  

A second way of changing optical paths (in wave lengths) traveled by a reflected wave is to 
change the optical frequency of the illuminations. If the separation of these frequency 
components is sufficiently great, M uncorrelated speckle patterns will result, with addition on 
an irradiance basis. 

Ex) In a reflection geometry, with angles of incidence and reflection near normal to the 
surface, the separation required to produce uncorrelated speckle is approximately 

/ 2 zc    



where c is the light velocity and z  is the standard deviation of the surface height 

fluctuations. 

Time diversity: If a transparency object is illuminated through a diffuser, then motion of that 
diffuser results in a continuous changing of the speckle pattern in the image. A time exposure 
in the image plane then results in the addition, on an intensity basis, of a number of 
uncorrelated speckle patterns, thus suppressing the contrast of the detected speckle pattern. 

 

IV. Discussion 

The speckle phenomenon happens in turbid lens imaging (TLI) systems []. On the one hand, 
it is used as useful information. On the other hand, it is regarded as a noise that we try to 
suppress. 

 

TLI is one new technique that increases the resolution of an imaging system beyond the 
physical limitation given by lenses. In TLI, a turbid medium is inserted between a sample and 
an objective lens. The turbid medium has many small particles in it, and the wavelets in the 
sample beam experience multiple scattering inside the medium. This scattering is good in a 
sense that higher angle mode waves, which usually go out of the detector, experience the 
scattering and may be redirected into the detector. This makes it possible to collect higher 
mode wave information which tells us the details of the sample. Also, the scattering is bad in 
a sense that it scrambles the sample image in the detector. But if we know i) the way how the 
medium scrambles images and ii) the way how to recover it using “i)”, it is no longer a 
problem. Here we can obtain “i)” because the input and output relationship of the turbid 
medium can be measured. “ii)” is also known as it is just an inverse problem given linear 
system model and the system response. 

 

The sample beam is a weighted sum of waves with many spatial frequencies, written as 
follows, 

( ) exp( 2 )l l
l

x t x i f t  

where fl is a spatial frequency and t is a spatial index. 

We measure response of the optical system for a wave exp( 2 )li f t  

 ( ) exp( 2 )l lT t T i f t . 

Assuming TLI system is linear time-invariant (LTI), the response to the input x can be written 



( ) ( ( )) exp( 2 )l l l l
l l

y t T x t T x i f t x T    
 
  . 

Here, the index t and l actually have dimension two. Then, the response can be represented by 
a linear system model as follows 

y Tx . 

Here, we can estimate x with given y and T, where y and T are measured in the experiments. 
Here, note that a column of T is a speckle pattern and the columns in T are uncorrelated to 
each other for their path lengths differ enough; if the spatial frequency gap is more than a 
certain value, it is true. So, we can see that the matrix T is well conditioned for recovery. 

We also note that the y is in fact is a noisy measurement where speckle pattern is included in 
the noise. For the suppression of the noise, we can use multiple uncorrelated measurement as 
it is presented in the talk. 


