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Short summary: In this paper, they present the probabilistic approach to reconstruction 

and discuss its optimality and robustness. And they detail the derivation of the message 

passing algorithm for reconstruction. Moreover, they further develop the asymptotic 

analysis of the corresponding phase diagrams with and without measurement noise, for 

different distribution of signals. 

 

I. INTRODUCTION 

The CS problem can be posed as follows: given an N − component signal s , one makes M  

measurements that are grouped into an M − component vector y , obtained from s  by a linear 

transformation using M N×  matrix F , given by 
1

N

i i
i

y F sµ µ
=

=∑  with 1,2,..., Mµ = .The aim is 

to reconstruct the signal s  from the knowledge of F  and y . This amounts to inverting the 

linear system y = Fs . However, we want to have M  as small as possible and when M N<  

there are fewer equations than unknowns. The system is under-determined and the inverse 

problem is ill-defined. However, CS deals with sparse signals. In the noiseless case, an exact 

reconstruction case, an exact reconstruction is possible for such signals as soon as M K> .         

Candes, Tao, Donoho and collaborators proposed to find the vector satisfying the constraints 

y = Fx  which has the smallest 1l norm. This optimization problem is convex and can be solved 

using efficient linear programming techniques. For any signal with density /K Nρ = , the 1l  

reconstruction gives indeed the exact result x = s  with probability one only if 
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1
/ ( )lM Nα α ρ= >  is, however, larger than ρ . The 1l  reconstruction is thus sub-optimal: it 

requires more measurements than theoretically necessary.  

 
 

II. PROBABILISTIC RECONSTRUCTION IN COMPRESSED SENSING 

The definition of the compressed sensing problem is as follows 
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y F sµ ξ
=

= +∑  1,..., Mµ = ,                       (1) 

 

Where is  are the signal elements, out of which only K  are non-zero. uiF  are the elements 

of a known measurement matrix, yµ  are the known result of measurements, and uξ  is 

Gaussian white noise on the measurement with variance µ∆ . The goal of CS is to find an 

approach that allows reconstruction with as low values of α  as possible. 

We shall adopt a probabilistic inference approach to reconstruct the signal.  
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Where Z , the partition function, is a normalization constant. Here we model the signal as 

stochastic with iid entries, the fraction of non-zero entries being 0ρ >  and their distribution 

being φ . 

We stress that in general the signal properties are not known and hence we do not assume that 

the signal model matches the empirical signal distribution, 0 0 0, ,ρ ρ φ φ= ∆ = ∆ = . One crucial 

point in our approach is using 1ρ <  which includes the fact that on searches a sparse signal in 

the model of the signal. 

 

A. The Bayesian optimality and the Nishimori condition 

The probabilistic approach can also be recovered from a Bayesian point of view. Indeed, given 

F and y , from Bayes theorem, we have 

 

( | ) ( )( | , )
( )

P PP
P

=
x F y | F,xx F y

y | F
                       (3) 

 

The value of measurements y  given the knowledge of the matrix F  and the signal x  is, 

by definition of the problem, given by 
11
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P y F xµ µ
µ

δ
==

= −∑∏y | F,x  in the noiseless case, 

and by 
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With random Gaussian measurement noise of variance µ∆ , for measurement µ . To express 

the probability ( )P x | F  we consider that the signal dose not depend on the measurement matrix. 

And we model the signal as an iid: 
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P x F x xρ δ ρφ
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Thus the posterior probability of x  after the measurement of y  is given by 
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Where ( ) ( )Z P=y,F y | F  is again the normalization constant.  

  An estimator *x  that minimizes mean-squared error with respect to the original signal s , 

defined as 2

1
( ) /

N

i i
i

E x s N
=

= −∑ , is then obtained from averages of ix  with respect to the 

probability measure ( )P x | F,y , i.e., 

 
* ( ),i i i i ix dx x v x= ∫                               (7) 

Where ( )i iv x  is the marginal probability distribution of the variable i  

 

{ }
( ) ( )

j j i

i i
x

v x P
≠

≡ ∫ x | F,y .                           (8) 

 

III. THE BELIEF PROPAGATION RECONSTRUCTION ALGORITHM FOR COMPRESSED SENSING 

Exact computation of the averages * ( )i i i i ix dx x v x= ∫  requires exponential time and is thus 

intractable. To approximate the expectations we will use a variant of the belief propagation(BP) 

algorithm. Indeed, message passing has been shown very efficient in terms of both precision and 

speed for the CS problem.  

 

A. Belief Propagation recursion 

The canonical BP equation for the probability measure ( )P x | F,y  are expressed in terms of 

2MN  “messages”, ( )j jm xµ→  and ( )j jm xµ→ , which are probability distribution functions. 
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[ ]1( ) (1 ( ) ( ) ( )i i i i i iim x x x m x
Zµ γµ

γ µ

ρδ ρφ→ →→
≠

= − + ∏ ,              (10) 

 

Where iZ µ→ and iZ µ→  are normalization factors ensuring that ( ) 1i i idx m xµ→ =∫ , 

( ) 1i i idx m xµ→ =∫ . 

Using the Hubbard-Stratonovich transformation 
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For ( )j jj i
w F xµ≠
= ∑  we can simplify Eq.(9) as 
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The integration over scalar jx  takes the form of the moment generating function. Therefore, 
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By assuming that each scalar jX  is Gaussian distributed, the moment generating function is 

expressed using means and variance. Thus, introducing means and variances as “messages” 

 

( )i i i i ia dx x m xµ µ→ →≡ ∫ ,                                (14) 

2 2( )i i i i i iv dx x m x aµ µ µ→ → →≡ −∫                             (15) 
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We obtain 
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Performing the Gaussian integral over λ , we obtain 
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Where  
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To close the equation on messages ia µ→  and iv µ→  we notice that  

 


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21( ) [(1 ) ( ) ( )]
i
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i i i iim x x x e
Z

γ γγ µ γ µ
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Message ia µ→  and iv µ→  are respectively the mean and variance of the probability 

distribution ( )i im xµ→ . It also useful to define the local beliefs ia  and iv  as 

 

( )i i i i ia dx x m x≡ ∫                            (21) 

2 2( ) ,i i i i i iv dx x m x a≡ −∫                         (22) 
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Where  
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Let us define the probability distribution  
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Where  2( , , )Z R x∑  is normalization. We define the average and variance of φΜ  as  

 

 2 2( , ) ( , , )af R dxx R x≡ Μ∑ ∑∫                        (25) 

2 2 2 2 2( , ) ( , , ) ( , )c af R dxx R x f R≡ Μ −∑ ∑ ∑∫                (26) 

 

The closed form of the BP update is 
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For a general signal model ( )ixφ  the functions af  and cf  can be computed using a 

numerical integration over ix . Eqs. (14-15) together with (18-19) and (20) lead to closed 

iterative message passing equation, which can be solved by iterations. There equation can be 

used for any signal s , and any matrix F . When a fixed point of the BP equations is reached, the 
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elements of the original signal are estimated as *
i ix a= , and the corresponding variance iv  can 

be used to quantify the correctness of the estimate. Perfect reconstruction is found when the 

message converge to a fixed point such that i ia s=  and 0iv = . 

IV. DISCUSSION 

After meeting, please write discussion in the meeting and update your presentation file. 
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