
INFONET, GIST 
Journal Club 

 
 

 
Authors: J. Wright, Allen, Y. Yang, A. Ganesh, S. 

Shankar, and Yi Ma 

Publication: IEEE Trans. On Pattern Analysis and 
Machine Intelligence, Feb.2009 

Speaker: Woongbi Lee 
 
 

Short summary: In this paper, sparse signal representation is investigated for recognizing human faces from 

frontal views with varying expression and illumination, as well as occlusion and disguise. Based on a sparse 

representation computed by l1-minimization, this face recognition problem is cast as a general classification among 

multiple linear regression models. Even with severe occlusion and corruption, their algorithms show high 

performance classification of high dimensional data. 

 

I. INTRODUCTION 

In this paper, the discriminative nature of sparse representation for classification is exploited. 

Instead of using the generic dictionaries, the test sample is represented in an overcomplete 

dictionary whose base elements are the training samples themselves. If sufficient training 

samples are available from each class, it will be possible to represent the test samples as a linear 

combination of just those training samples from the same class. This representation is naturally 

sparse, involving only a small fraction of the overall training database. In many problems of 

interest, it is actually the sparsest linear representation of the test sample in terms of this 

dictionary and can be recovered efficiently via l1-minimization. 
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Fig. 1 Simple Example of face recognition: (a) occluded (b) corrupted 

 

There are 700 training images of 100 individuals (7 each). A test image (left) is represented as 

a sparse linear combination of all the training images plus sparse errors due to occlusion or 

corruption. Red coefficients correspond to training images of the correct individual. 

The theory of sparse representation and compressed sensing yields new insights into two 

crucial issues in automatic face recognition: the role of feature extraction and the difficulty due 

to occlusion. 

The role of feature extraction: Which low-dimensional features of an object image are the 

most relevant or informative for classification is a central issue in face recognition. As 

conventional methods, there exist Eigenfaces (PCA), Fisherfaces (LDA), Laplacianfaces, and a 

host of variants. The theory of compressed sensing implies that the precise choice of feature 

space is no longer critical: Even random features contain enough information to recover the 

sparse representation and hence correctly classify any test image. What is critical is that the 

dimension of the feature space is sufficiently large and that the sparse representation is correctly 

computed. 

Robustness to occlusion: Occlusion brings about significant troubles in face recognition. This 

is due to the unpredictable nature of the error occurred by occlusion. Typically, this error 

corrupts only a small part of the image pixels and therefore is sparse in the standard basis given 

by individual pixels. The sparse representation of an occluded test image naturally separates the 

component of the test image arising due to occlusion from the component arising from the 

identity of the test subject. 
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II. CLASSIFICATION BASED ON SPARSE REPRESENTATION 

In this section, they introduce classification using sparse representation and show that the 

sparse representation can be computed by l1-minimization and can be used for classifying and 

validating any given test sample. 

Object recognition aims to use labeled training samples from k distinct object classes to 

correctly determine the class to which a new test sample belongs. in  training samples from the 

i-th class form a matrix ,1 ,2 ,, , , i

i

m n
i i i i nA v v v       whose columns are the training face 

images of the i-th subject. The image is represented by w h  gray scale with the vector mv  

( m wh ). 

A. Test Sample as a Sparse Linear Combination of Training Samples 

For the structure of the Ai for recognition, one particularly simple and effective approach 

models the samples from a single class as lying on a linear subspace. Given sufficient training 

samples of the i-th object class, ,1 ,2 ,, , , i

i

m n
i i i i nA v v v      , any new test sample my  

from the same class will approximately lie in the linear span of the training samples associated 

with object i: 

,1 ,1 ,2 ,2 , ,i ii i i i i n i ny v v v       

for some scalars, ,i j  , 1, 2, , ij n  . 

A new matrix A is defined for entire training set as the concatenation of the n training samples 

of all k object classes: 

 1 2 ,1 ,2 ,, , , , , ,
ki k i i i nA A A A v v v       

Then, the linear representation of y can be written as 

0
my Ax   

where 0 ,1 ,2 ,0, ,0, , , , ,0, ,0
i

T n
i i i nx           is a coefficient vector whose entries are 

zero except those associated with the i-th class. 

Obviously, if m n , the system of equations y Ax  is over-determined, and the correct 0x  

can usually be found as its unique solution. In robust face recognition, the system y Ax  is 
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typically under-determined, and so, its solution is not unique. Conventionally, this difficulty is 

resolved by choosing the minimum l2-norm solution. 

  2
2

2
: arg minl x x  subject to Ax y  

While this optimization problem can be easily solved by the pseudo-inverse of A, the solution 


2x  is not especially informative for recognizing the test sample y. To resolve this difficulty, they 

instead exploit the following optimization problem: 

  0
0

0
: arg minl x x  subject to Ax y  

where 
0
  denotes the l0-norm, which counts the number of nonzero entries in a vector. 

However, the problem of finding the sparsest solution of an underdetermined system of linear 

equations is NP-hard and difficult even to approximate. 

 

B. Sparse Solution via l1-Minimization 

If the solution 0x  sought is sparse enough, the solution of the l0-minimization problem is 

equal to the solution to the following l1-minimization problem. 

  1
1

1
: arg minl x x  subject to Ax y  

This problem can be solved in polynomial time by standard linear programming methods. 

 

1) Dealing with Small Dense Noise 
Since real data are noisy,  

0y Ax z   

where mz  is a noise term with bounded energy 
2

z  . The sparse solution 0x  can be 

approximately recovered by solving the following stable l1-minimization problem: 

  1
1

1
: arg minsl x x  subject to 

2
Ax y    

This convex optimization problem can be efficiently solved via second-order cone programming. 

C. Classification Based on Sparse Representation 

Given a test sample y from one of the classes in the training set, the sparse representation 1x  

is computed. Noise and modeling error may lead to small nonzero entries associated with 
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multiple object classes. Based on the global sparse representation, one can design many possible 

classifiers to resolve this. By using linear structure, we instead classify y based on how well the 

coefficients associated with all training samples of each object reproduce y. For each class i, let 

i : n n   be the characteristic function that selects the coefficients associated with the i-th 

class. For nx ,   n
i x   is a new vector whose only nonzero entries are the entries in x 

that are associated with class i. Using only the coefficients associated with the i-th class, one can 

approximate the given test sample y as   1iiy A x . We then classify y based on the these 

approximations by assigning it to the object class that minimizes the residual between y and  iy : 

   1
2

min i i
i

r y y A x  

The recognition procedure is summarized in Algorithm 1. Implementation is done by 

minimizing the l1-norm via a primal-dual algorithm for linear programming. 

Algorithm 1: Sparse Representation-based Classification (SRC) 

1: Input: a matrix of training samples 

 1 2, , , m n
kA A A A     for k classes, a test sample my , (and an optional error 

tolerance 0  .) 

2: Normalize the columns of A to have unit l2-norm. 

3: Solve the l1-minimization problem: 


1

1
arg min xx x  subject to Ax y . 

(Or alternatively, solve 1
1

arg min xx x  subject to 
2

Ax y   .) 

4: Compute the residuals    1
2

i ir y y A x  for 1, ,i k  . 

5: Output: identity    arg min i iy r y . 
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Example 1. Original image: 192 x 168, downsampled: 12 x 10, size of matrix A is 120 x 1207, 

38 classes 

Fig. 2 A valid test image: (a) coefficients (b) residuals 

 

Fig. 3 Non-sparsity of the l2-minimizer: (a) coefficients (b) residuals 

 

D. Validation Based on Sparse Representation 

Before classifying a given test sample, test for validity of the sample is necessary. 

Example 2. Randomly selecting an irrelevant image from Google and downsample it to 12 x 

10 in the example 1 

Fig. 4 Example of an invalid test: (a) coefficients (b) residuals 
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Definition 1 (sparsity concentration index (SCI)) 

 
 

 11
max / 1

0,1
1

i ik x x
SCI x

k

 



  

If   1SCI x  , the test image is represented using only images from a single object, and if 

  0SCI x  , the sparse coefficients are spread evenly over all classes. So, we can choose a 

threshold  0,1   and do the validity test. 

If  SCI x  , then the test image is valid. 

 

III. TWO FUNDAMENTAL ISSUES IN FACE RECOGNITION 

A. The Role of Feature Extraction 

One benefit of feature extraction, which carries over to the proposed sparse representation 

framework, is reduced data dimension and computational cost. Conventionally, on class of 

methods extract holistic face features such as Eignefaces, Fisherfaces, and Laplacianfaces. 

Another class of methods tries to extract meaningful partial facial feature such as patches around 

eyes or nose. 

Since most feature transformations involve only linear operations, the projection from the 

image space to the feature space can be represented as a matrix d mR   with d m . 


0

dy Ry RAx    

The system of equations  dy RAx   is underdetermined in the unknown nx . By 

solving the following l1-minimization problem, 

  1
1

1
: arg minrl x x  subject to 

2
RAx y    

for a given error tolerance 0  . 

For the sparse representation approach to recognition, it is important how the choice of the 

feature extraction R affects the ability of the l1-minimization to recover the correct sparse 

solution x0. There is remarkable analysis: if the solution x0 is sparse enough, then with 

overwhelming probability, it can be correctly recovered via l1-minimization from any sufficiently 
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large number d of linear measurements  0y RAx . In other words, if x0 has t n  nonzeros, 

then with overwhelming probability,   2 log /d t n d  random linear measurements are 

sufficient for l1-minimization to recover the correct sparse solution x0. Random features can be 

regarded as a less-structured counterpart to classical face features such as Eignefaces or 

Fisherfaces. The linear projection generated by a Gaussian random matrix is called 

Randomfaces.  

Definition 2. Randomfaces. 

 - a transform matrix d mR   whose entries are independently sampled from a zero mean 

normal distribution, and each row is normalized to unit length. 

 

Fig. 5 Examples of feature extraction (a) Original face image (b) 120D representations in terms 

of four different features: Eigenfaces, Laplacianfaces, downsampled (12 x 10 pixel) image, and 

random projection (c) The eye is a popular choice of feature for face recognition. In this case, the 

feature matrix R is simply a binary mask. 

 

B. Robustness to Occlusion or Corruption 

In many practical face recognition scenarios, the test image y could be partially corrupted or 

occluded. The linear model can be modified as 

0 0 0 0y y e Ax e     

where 0
me   is a vector of errors – a fraction, r  of its entries are nonzero. The nonzero 

entries of e0 model which pixels in y are corrupted or occluded. 

Let us assume that the corrupted pixels are a relatively small portion of the image. Then, the 

above equation can be written as 
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  0
0

0

x
y A I Bw

e

 
  

 
  

where    m n mB A I    , so the system y Bw  is always underdetermined and does not 

have a unique solution for w. From the analysis of sparsity of x0 and e0, the correct generating w0 

has at most in m  nonzeros. We want to recover w0 as the sparsest solution to the system 

0y Bw . 

  1
1

1
: arg minel w w  subject to Bw y  

Once the sparse solution  
1 11w x e   
  is computed, setting 1ry y e   recovers a clean 

image of the subject with occlusion or corruption compensated for. To identify the subject, we 

slightly modify the residual  ir y , computing it against the recovered image ry  

     1 1 1
2 2

i r i ir y y A x y e A x       

 

IV. EXPERIMENTAL VERIFICATION 

 

A. Feature Extraction and Classification Methods 

SRC algorithm using several conventional holistic face features, namely, Eigenfaces, 

Laplacianfaces, and Fisherfaces, and compare their performance with two unconventional 

features: randomfaces and downsampled images. They compare the SRC algorithm with three 

classical algorithms, namely, NN, and NS, discussed in the previous section, as well as linear 

SVM (support vector machine).  

Solving   1
1

1
: arg minrl x x  subject to 

2
RAx y    with the error tolerance 0.05  .  

 

1) Extended Yale B Database 
The Extended Yale B database consists of 2,414 frontal-face images of 38 individuals. The 

copped and normalized 192 x 168 face images were captured under various laboratory-controlled 

lighting conditions. For each subject, they randomly select half of the images for training (about 
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32 images per subject) and the other half for testing. They compute the recognition rates with the 

feature space dimensions 30, 56, 120, and 504, whose numbers corresponding to downsampling 

ratios of 1/32, 1/24, 1/16, and 1/8, respectively. 

 

Fig. 6 Recognition rates on Extended Yale B database, for various feature transformation and 

classifiers. (a) SRC (b) NN (c) NS (d) SVM 

 

2) AR Database 

 

Fig. 7 Recognition rates on AR database, for various feature transformation and classifiers. (a) 

SRC (b) NN (c) NS (d) SVM 
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B. Partial Face Features 

 

Fig. 8 Recognition with partial face features (a) example features, (b) recognition rates of SRC, 

NN, NS, and SVM on the Extended Yale B database. 

 

C. Recognition Despite Random Pixel Corruption 
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D. Recognition Despite Random Block Occlusion 

 

 

 

 

V. CONCLUSIONS 

In this paper, exploiting sparsity can be used for the high-performance classification of 

high-dimensional data such as face images. The number of features is more important than the 

choice of features. With occluded and corrupted images, their classification algorithm shows still 

high-performance.  

 

VI. DISCUSSION 

After meeting, please write discussion in the meeting and update your presentation file. 
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